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Traditional methods of personality assessment, and survey-based research in general, cannot make

inferences about new items that have not been surveyed previously. This limits the amount of information

that can be obtained from a given survey. In this article, we tackle this problem by leveraging recent

advances in statistical natural language processing. Specifically, we extract “embedding” representations of

questionnaire items from deep neural networks, trained on large-scale English language data. These

embeddings allow us to construct a high-dimensional space of items, in which linguistically similar items

are located near each other. We combine item embeddings with machine learning algorithms to extrapolate

participant ratings of personality items to completely new items that have not been rated by any participants.

The accuracy of our approach is on par with incentivized human judges given an identical task, indicating

that it predicts ratings of new personality items as accurately as people do. Our approach is also capable of

identifying psychological constructs associated with questionnaire items and can accurately cluster items

into their constructs based only on their language content. Overall, our results show how representations of

linguistic personality descriptors obtained from deep language models can be used to model and predict a

large variety of traits, scales, and constructs. In doing so, they showcase a new scalable and cost-effective

method for psychological measurement.
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Personality measurement is central to the study of individual

differences and the prediction of behaviors, attitudes, beliefs, and

outcomes. Most personality tests use questionnaires composed of

natural language items—words and sentences—that describe

common traits. Participants are asked to rate themselves (or others,

such as acquaintances) on the trait descriptions, and the resulting

data are projected onto a small number of dimensions through

statistical techniques like factor analysis. These methods provide

quantitative insights into the structure of variability in traits across

individuals and are used to motivate influential and highly predictive

theories of personality (Digman, 1990; Goldberg, 1990; Goldberg et

al., 2006; McCrae & John, 1992).

Despite their successes, traditional methods of personality

assessment are constrained to making inferences over the respective

set of participants and items in a survey data set. In other words,

factor analysis on standard questionnaire data does not provide any

information about the responses of individuals who have not taken

the questionnaire or about participant responses for questionnaire

items (and thus traits or constructs) that have not been surveyed.

This is particularly relevant for research on understudied popula-

tions and traits. Researchers have introduced new tools for

addressing the first of these limitations: that of generalizing to

out-of-sample individuals. These tools rely on large-scale digital

data, such as social media activity, to quantitatively represent

thousands of individuals. Researchers give a subset of these

individuals a personality questionnaire and, using their responses,

build machine learning models capable of predicting the person-

alities of other individuals using only their digital data (Bleidorn &

Hopwood, 2019; Kosinski et al., 2013; Park et al., 2015; Stachl et

al., 2021). In this article, we examine whether digital data and
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machine learning can also provide a solution to the second

limitation: That of generalizing survey data to out-of-sample items,

that is, items that have not been surveyed previously (including

completely new items that are not part of existing questionnaires).

In order to solve this challenge, we need a way to quantitatively

represent the language used in a personality item, so that machine

learning models trained on a participant’s ratings for one set of items

can generalize and make predictions about ratings for a completely

new set of items. Recently, a class of deep neural networks, known as

transformer models (Devlin et al., 2019; Vaswani et al., 2017), has

been shown to accurately represent natural language sentences as

embeddings. Sentence embeddings (also known as sentence vectors)

are points in a high-dimensional space, whose structure captures the

linguistic properties of sentences. Linguistically similar sentences

have similar embeddings and can thus be seen as occupying nearby

points in the embedding space. Transformer models are typically

trained on large amounts of text data, and the embeddings they extract

from this data contain high-quality representations of the linguistic

properties of sentences. For this reason, sentence embeddings from

transformer models are highly predictive in a variety of natural

language processing tasks, including text summarization, sentiment

analysis, question answering, and translation (Lewis et al., 2020;

Radford et al., 2019; Yang et al., 2019). High-quality sentence

embeddings are also responsible for the success of new Artificial

Intelligence models like the Generative Pre-trained Transformer 3

(Brown et al., 2020), which generate human-like language based on

their embedding representations of the user’s linguistic input.

One type of transformer model is Sentence-BERT (SBERT;

Reimers & Gurevych, 2019). SBERT is specialized for creating

embedding representations of sentences that capture their semantics,

so that sentences that have similar meanings are given similar

embedding representations. SBERT is based on the BERT

(Bidirectional Encoder Representations from Transformers) architec-

ture (Devlin et al., 2019; Y. Liu et al., 2019) and is trained on a very

large language data set, as well as a large data set of sentence pairs

annotated with linguistic entailment relations (Bowman et al., 2015;

Cer et al., 2017). Subsequently, embeddings produced by SBERT

have outperformed many other methods in the SentEval evaluation

set of tasks (Conneau & Kiela, 2018). We take advantage of this

model in our study and use SBERT to extract embeddings for

questionnaire items (Figure 1A). This allows us to describe

personality item sentences as points in a high-dimensional semantic

space (Figure 1B), in which items with similar meanings are located

close to each other. Since SBERT can be used to obtain embedding

representations for any possible personality item, we can use it to

generalize from a small set of rated items to thousands of new unrated

personality items. This can be accomplished using several standard

machine learning techniques that use the similarities between

representations for generalization. The K-nearest neighbors regres-

sion (Cover & Hart, 1967), for example, predicts the rating of a new

item by averaging the ratings assigned to the K nearest items in the

embedding space (Figure 1B).

Theoretically, our approach draws on the lexical hypothesis in

personality psychology (Allport & Odbert, 1936; R. B. Cattell,

1943; Galton, 1884), which proposes that personality traits that are

important to a group are expressed through words and sentences in

their language. This hypothesis has motivated many advances in

personality research and is the foundation for leading personality

theories, such as the five-factor model, which uses natural language

to describe and measure the core dimensions of variation in people’s

personalities (Goldberg, 1990; John et al., 1988; Klages & Johnson,

1929). The lexical hypothesis also implies that quantitative

representations of language obtained from deep neural networks

should make it possible to quantify, and subsequently predict

personality traits, since these models are based on the statistics of

everyday language. In other words, traits that co-occur with each

other should have similar linguistic descriptors, and deep networks

trained to quantify these descriptors should be able to generate

similar representations for the traits.

Our approach is also inspired by recent work that has used the

semantic similarity of the individual words in questionnaire items to

measure the similarity of items (Arnulf et al., 2014; Evans et al.,

2022; Garcia et al., 2020; Rosenbusch et al., 2020). This line of

research leverages word embeddings (high-dimensional vectors for

individual words) for item selection, for example, finding related

items for a new scale or avoiding redundancies. We extend this idea

to predict participant responses, a problem that can now be solved as

deep language models provide high-quality representations for

sentences that are based not just on the individual words in the items

but also syntax and word order in the sentence (in this way, sentence

embeddings capture nuances in sentence meaning that cannot be

captured by word embedding models). In our analysis below, we

also consider a version of our approach applied to word embeddings,

a method similar to that of Rosenbusch et al. (2020), to test whether

sentence embeddings from deep neural networks provide superior

representations and predictions for personality items.

We evaluate the applicability of our approach for personality

prediction using a series of empirical tests. In Study 1, we apply cross-

validation to a 100-item NEO Personality Inventory-Revised (NEO-

PI-R) data set to assess our model’s ability to predict out-of-sample,

that is, we train our model on ratings for a subset of items and use it to

predict ratings for held-out items (Figure 1C). We also contrast our

models’ accuracy rates with those of human judges that are given an

identical task and are incentivized to make accurate predictions. To

ensure that our approach is robust, we replicate this analysis pipeline

for three additional personality questionnaires in Study 2A–C. In

Study 3, we extend our tests to a large new data set of over 3,000

existing personality items taken from hundreds of different scales and

constructs, thus allowing us to test the cross-domain predictive

accuracy of our approach. Finally, in Study 4, we use SBERT’s

assessment of item similarity to infer the personality dimensions and

constructs associated with personality items. This allows us to test

whether established constructs are explicitly reflected in the structure

of the underlying SBERT embedding space.We also attempt to cluster

novel, unlabeled personality items with already established and

labeled ones, in order to infer personality constructs associated with

these items.

If successful, the methods outlined in this article would provide a

powerful set of tools for personality researchers. By predicting the

responses of participants to thousands of personality items,

researchers would be able to describe each individual in terms of

a large variety of distinct traits, scales, and constructs, and in turn

build richer models of personality (and associated behaviors,

attitudes, beliefs, and outcomes), without the need for extensive data

collection. Additionally, new personality items could be tested using

our trained models instead of human participants. This would offer

researchers a cost-effective and scalable resource for psychological
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measurement and theory development (Bleidorn &Hopwood, 2019;

Evans et al., 2022; Yarkoni & Westfall, 2017).

Transparency and Openness Promotion

We report how we determined our sample size, all data exclusions

(if any), allmanipulations, and allmeasures in the study, andwe follow

Journal Article Reporting Standards (Appelbaum et al., 2018). All

data, analysis code, and research materials are available at https://osf

.io/sxg8n/?view_only=762b6188d54246c0a4c1c7e6218e33c3. Data

were analyzed using Python, Version 3.9 (Van Rossum & Drake,

2009), and the packages scikit-learn, Version 0.23 (Pedregosa et al.,

2011), statsmodel, Version 0.13 (Seabold & Perktold, 2010), and

matplotlib, Version 3.5.0 (Hunter, 2007). Study 1’s depth analysis

experiment was preregistered on https://aspredicted.org/dx4dn.pdf.

Ethics Statement

All studies involving human data collection were approved by the

institutional review board of The University of Pennsylvania under

approval number 823184 (“Everyday Judgments and Decisions”).

Computational studies without human data or with only retrospective
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Figure 1

Overview of the Modeling Approach

Note. Panel (A): Illustration of SBERT, which takes sentences (personality items) as inputs and generates 1,024 dimensional embeddings

(vectors) of the sentences as outputs. Panel (B): Illustration of the SBERT embedding space and K-nearest neighbors regression. In this space,

each point represents an item, and items with similar meanings are located close to each other. Predictions for test items (indicated in red) can be

obtained by averaging the ratings of the K, here 5, nearest training items (indicated in green). Note that the actual SBERT embedding space is

1,024 dimensional instead of three dimensional and that any possible personality item (if expressed as a sentence) can be represented as a point in

this space. Panel (C): Methodology for predicting participants’ responses from item embeddings in Study 1.We first extract SBERT embeddings

for all items in the NEO-PI-R questionnaire (100 items in this example). Then, for each participant, we use these 1,024-dimensional item

embeddings as inputs and the participant’s responses as target outputs in a standard machine learning model, such as K-nearest neighbors

regression. We test the model’s performance using 10-fold cross-validation. The fully trained model can then be used to predict the participant’s

responses to new items that are not in the questionnaire. SBERT = Sentence-Bidirectional Encoder Representations from Transformers; CLS =

Classification, tag used to represent the sentence level. See the online article for the color version of this figure.
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analysis of anonymized human data from public data sets were

exempted from the need for approval.

Computational Methods

We begin by summarizing the computational methods used in our

studies. These methods entail the generation of questionnaire items’

embeddings (i.e., SBERT and baselines), training, validation, and

selection of the predictive models, as well as evaluations of model

performance. Any deviations from and extensions of these methods

are detailed in the respective studies’ sections.

SBERT Embeddings

We created the questionnaire item embeddings by feeding each

item’s text through the SBERT neural network, then averaging the

embeddings in the last layer across the whole sentence to get a

representation for the item. See Figure 1A for a visual overview of this

procedure. We used the SBERT version called “nli-roberta-large,”

based on the pretrained RoBERTa-Large model (Y. Liu et al., 2019)

with 24 layers and 1,024 hidden vector dimensions, and trained on the

MultiGenre Natural Language Inference data set (Williams et al.,

2018). RoBERTa is based on the BERT (Devlin et al., 2019)

architecture and outputs a 1,024-dimensional embedding for each of

the questionnaire items. For the implementation of the embedding

extraction, we used the Python library sentence transformers, provided

by the original authors (Reimers&Gurevych, 2019). Note that the item

responses for the personality prediction task were not reversed-coded

and no information about items’ construct or direction they load onto a

construct (positive/negative) was provided to the model, meaning our

model based its representations solely on the items’ raw text.

Baseline Embeddings

We considered two alternative embeddings as baselines to

SBERT, Word2Vec (Mikolov et al., 2013), and Linguistic Inquiry

and Word Count (LIWC; Pennebaker et al., 2015). Word2Vec was

trained on English Wikipedia texts and generates 300-dimensional

embeddings for millions of common English words. These

embeddings have been shown to accurately capture the similarity

relationships between individual words, so that similar words have

similar word embeddings (Richie & Bhatia, 2021). To generate

Word2Vec embeddings for each item, we averaged the word

embeddings across all words in the item text. Importantly,Word2Vec

is only sensitive to the individual words from the personality item

and, unlike SBERT, ignores the ordering of the words and syntactical

structure of the sentence. Therefore, this model is similar to prior

attempts at measuring item similarities using the similarities of their

individual words (Arnulf et al., 2014; Evans et al., 2022; Garcia et al.,

2020; Rosenbusch et al., 2020).

LIWC provides sets of words (called “lexicon”) for 73 common

psychological variables. For example, the Anxiety variable contains

words like “worried,” “fearful,” and so on. To obtain LIWC

embeddings for our personality items, we simply counted the number

of times words in each of the 73 LIWC lexicons occurred in the

personality item, giving us 73-dimensional LIWC embeddings. The

counting and scoring of personality items on LIWC dimensions were

done using the Differential Language Analysis ToolKit (Schwartz

et al., 2017).

Predictive Models

We applied standard machine learning techniques, such as ridge

(Hoerl & Kennard, 1970), K-nearest neighbor (K-NN; Cover & Hart,

1967), and support vector (SVC;Hearst et al., 1998) classification and

regression, to map each item’s embeddings onto each participant’s

rating of the item. Ridge methods made predictions by estimating a

regularized linear function on each embedding dimension, K-NN

methods made predictions by averaging the ratings on the K most

similar items to a target item, and SVC methods made predictions by

estimating a potentially nonlinear function on the embedding

dimensions with a kernel trick (i.e., mapping the input into a further

high-dimensional space).

We applied the regression and classification methods to all three

types of embeddings: SBERT, Word2Vec, and LIWC. This gave us a

total of 5 × 3 = 15 models (e.g., KNN regression with SBERT

embeddings, SVC with LIWC embeddings). Regarding hyperpara-

meter tuning, for the ridge models, we tested five different a-values,

corresponding to the weight on the regularization penalty. For the

KNNmethods, we tested five differentK values, reflecting the number

of nearest neighbors used for prediction. For the SVC method, we

tested five different C values, corresponding to the strength of the

regularization penalty. To ensure consistency across our studies,

we determined the best-performing embedding and hyperparameter

combination in Study 1 and used it in all subsequent studies. See Table

A1 in the Appendix for the specific values used and their effect on

performance in Study 1.

Cross-Validation

We trained and evaluated models using 10-fold cross-validation.

In particular, we divided each participant’s data into 10 equally sized

groups or folds (with 10% of ratings in each fold), then fitted each

model on the 90% of items in the first nine folds (the training data)

and evaluated its predictions on the 10% of items in the held-out fold

(the test data). This was repeated nine more times with each fold

serving as the test data once. See Figure 1C for an illustration.

All models were estimated in the Python’s scikit-learn library

(Pedregosa et al., 2011).

To evaluate model performance, we calculated the correlation of a

model’s predictions with the observed ratings for each participant.

Specifically, for the ith participant and the kth test fold (k = 1, 2, … ,

10), we calculated a model’s predictions for the 10% of items in the

fold, when that fold was in the test data. We then concatenated the

predictions across all testing folds into one list containing our model’s

out-of-sample predictions for each item offered to the participant. This

list was then compared with the observed ratings of the participant

using Pearson correlation, to obtain ameasure of ourmodel’s accuracy

for that participant.

Study 1

In Study 1, we tested whether our approach, as described in the

Computational Methods section, accurately predicts participant

responses to out-of-sample items in an established personality

questionnaire: the NEO-PI-R (Costa & McCrae, 1992; Goldberg et

al., 2006). We also evaluated our approach against previous models

in the field and against incentivized human judges.
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Method

NEO-PI-R Data Set

We used data collected by Stillwell and Kosinski (2012) in order to

train and test our predictive model. This data set has responses from

N = 2,749 individuals who used the myPersonality Facebook

application between 2007 and 2012. Personality was measured using

the NEO-PI-R five-factor model (Costa &McCrae, 1992), and for this

reason, we will refer to this data set as the NEO-PI-R data set for the

rest of the article. The five-factor model classifies each participant

along five personality dimensions: Openness to experience (O),

Conscientiousness (C), Extraversion (E), Agreeableness (A), and

Neuroticism (N). The questionnaire contains 100 natural language

items (20 per personality dimension) from the International Personality

Item Pool (IPIP; Goldberg et al., 2006). Each item asks participants to

indicate their agreement with a description on a 5-point Likert scale.

Participants in the NEO-PI-R data set completed all 100 items. See

Table 1 for a summary of data set characteristics.

Comparison With Human Judges

We compared our model’s performance with that of incentivized

humans that were given an identical prediction task (i.e., predicting a

participant’s NEO-PI-R ratings on 10 test items using their ratings

on 90 training items). There were 2,749 participants and 10 cross-

validation folds per participant in the NEO-PI-R data set, generating

27,490 distinct prediction tasks for our model. Since collecting

human predictions for so many tasks was not feasible, we compared

model versus human performance on a subset of participants from

the original study. Specifically, we conducted two human rating

experiments, which prioritized depth (i.e., a detailed analysis of

target-level human accuracy that reduces noise on the target-level

estimates) and breadth (i.e., covering a broad range of model

performance to maximize representativeness), respectively.

Depth Experiment. For our first experiment, we selected three

target participants out of the 2,749 participants from the NEO-PI-R

data set based on the predictive accuracy of our main SBERT model

(details in the Results section). Specifically, we selected one target

participant for whom our model performed well (75th percentile

accuracy out of all participants), one participant for whom our model

performed moderately (50th percentile accuracy), and one partici-

pant for whom our model performed poorly (25th percentile

accuracy). The 100 responses of each of these three target

participants were divided into the same 10 folds as used in the

cross-validation analysis for model training and evaluation,

resulting in a total of 30 tasks for our human judges.

We collected a sample of 600 human judges (41.83% female;

Mage = 36.17) from Prolific Academic for this part of Study 1. Each

human judge was randomly assigned to one task leading to 20 judges

per task, reducing noise and allowing for rigorous tests of target-level

human accuracy. In the training phase of the task, the human judge

first viewed a target participant’s responses to 90 NEO-PI-R survey

questions one at a time and then in the testing phase, they predicted

the target participant’s responses to the remaining 10 NEO-PI-R

survey questions in the testing fold. Each participant received $2 for

completion. We also incentivized participants by giving a bonus

payment of $1 to those whose predictive accuracy was in the top 10%

among all judges. We preregistered this study at https://aspredicted

.org/dx4dn.pdf.

Breadth Experiment. Our second experiment obtained human

ratings for 60 target NEO-PI-R participants. We chose the target

participants corresponding to the 0th–100th percentiles of model

predictive accuracy in equidistant steps (e.g., 0th, 1.5th, 3rd, 4.5th

percentile accuracy). This way, our sample of target participants

covered a broad range of our model’s predictive accuracy allowing

for a more representative comparison of the model and human

performance (i.e., comparing human predictions to several bad,

average, and good model predictions). We collected a sample of 600

human judges (45.5% female;Mage= 38.85) from Prolific Academic.

All other aspects of the design were identical to the depth experiment,

except for the fact that there were 600 tasks (60 target participants ×

10 cross-validation folds) leading to only one human judge per task.

Results

Model Performance

We found the best-performing model using SBERT embeddings

to be the K-NN regression with K = 5 (see Table A1 for a full model

comparison). Intuitively, this model finds the K = 5 training items

that have the most similar embeddings to the test item and then

averages the participant’s rating on these items to predict their rating

of the test item. For Word2Vec and LIWC embeddings, we found

the best-performing model to be SVC with C = 10 and ridge

regression with a = 10, respectively.

The best-performing SBERT model achieved an average

correlation of .45 in predicting out-of-sample ratings, one-sample
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Table 1

Key Characteristics of Each Questionnaire Used in This Article

Data set No. of items No. of participants No. of constructs Reverse coded

Study 1 NEO-PI-R 100 2,749 5 Yes
Study 2A 16PF 163 49,159 16 Yes
Study 2B RIASEC 48 135,764 6 No
Study 2C HSQ 32 590 4 Yes
Study 3 IPIP 3,653 161 242a Yesa

Note. The reverse coded column refers to whether the questionnaire involves reverse-coded items that
have negative loadings onto the construct. NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16
Personality Factors; RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional;
HSQ = Humor Styles Questionnaire; IPIP = International Personality Item Pool.
a For the IPIP, information regarding constructs and directions was only available for 1,932 items out of
3,653 items.
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t test against zero means: t(2,747) = 158.09, p < .001, 95% CI [.45,

.46]. As can be seen in Figure 2A, the models with theWord2Vec and

LIWC embeddings achieved much lower performances than the

model with the SBERT embeddings, with average correlations of .13,

t(2,747) = 51.68, p < .001, 95% CI [.12, .13], and .10, t(2,747) =

35.43, p < .001, 95% CI [.01, .11], respectively. This indicates

SBERT’s superiority in quantifying item representations. In Figure 2B,

we present the distribution of correlations across participants. Here,

we can see that the SBERT model achieved a significant (p < .05)

positive correlation for the vast majority (94.2%) of participants. By

contrast, the Word2Vec and LIWC models achieved significant

positive correlations for a much smaller proportion of participants

(30.2% and 28.0%, respectively).

Comparison With Human Judges

To contrast our model’s performance against human judges, we

calculated the judges’ performance as the correlation between the

predicted item responses and the observed item responses for each

test fold on each target participant. Specifically, for the ith target

participant (i = 1, 2, 3) and the kth fold (k = 1, 2 … , 10), we

calculated the human prediction for the 10 items in the fold. These

10 predictions were then compared with the observed ratings of the

target participant to generate a fold-level Pearson’s correlation. We

calculated the K-NN SBERT model’s performance analogously.

Figure 3A shows that our method’s performance, in our depth

experiment, was on par with that of human judges. The average

correlation across 10 testing folds of our model for the 75th

percentile target was .61, one-sample t test against zero mean: t(9) =

9.75, p < .001, 95% CI [.47, .75]; 50th percentile target was .46,

t(9) = 4.86, p < .001, 95% CI [.24, .67]; and 25th percentile target

was .38, t(9) = 4.07, p = .003, 95% CI [.17, .59]. Meanwhile, the

average correlation of 200 human judges for the 75th percentile

target was .43, t(199) = 17.51, p < .001, 95% CI [.38, .47]; for the

50th percentile target was .58, t(199)= 31.54, p< .001, 95%CI [.54,

.62]; and for the 25th percentile target was .39, t(199) = 17.8, p <

.001, 95% CI [.34, .43].

In total, the average correlation across all three targets was

slightly better for our model: .48, t(29) = 9.57, p < .001, 95% CI

[.38, .59], versus .47, t(599) = 36.09, p < .001, 95% CI [.44, .49],

though not statistically distinguishable; Welch’s two-sample t test,

independent samples: t(32.92) = −0.32, p = .751. Notice that the

error bars were larger for our models relative to the human judges as

its correlations were averaged across only 10 values (one value for

each of 10 testing folds), instead of 200 values for human judges (20

judges for each of 10 testing folds).

Figure 3B shows the SBERT model’s performance and the

human judges’ performance for each of the 30 tasks in the depth

experiment (10 distinct testing folds, for three target participants).

Here we see that the model performance was roughly equal to the

human performance across the tasks. Note that there was one outlier

condition for the 50th percentile target, for which our model

achieved a correlation of −.26, r(8), p = .47, whereas human judges

achieved an average correlation of .57, one-sample t test against zero

mean: t(19) = 10.53, p < .001, 95% CI [.46, .68]. The outliers seem

to be driven by contradictory statements in the conscientiousness

training items (high and low), which led to neutral predictions of

these items. It could be that the human judges were less sensitive

to these contradictions because they ignore contradicting facets

(e.g., using only the most relevant facet) or use their expectations

regarding social faking. This explains the slight underperformance

of our model for the second (50th percentile) target.

Regarding the second, breadth-focused experiment, Figure 4 shows

that our method’s performance was, again, on par with that of human

judges and that the overall distribution of prediction performance

across experimental conditions was similar. Specifically, the average

correlation across all experimental conditions was .47, t(598)= 38.39,

p < .001, for our model, and .49, t(598) = 36.375, p < .001, for the

human judges. The difference between model and human perfor-

mance was statistically nonsignificant, Welch’s two-sample t test,

independent samples: t(1183.06) = 1.08, p = .28.

Importantly, Figure 5A and 5B shows that the performances of

both our model and the human judges were not driven by outliers.

For example, Figure 5A shows that most of the model and human

performance is positive (>90%), with the majority being larger than

.50. Figure 5B shows that the performances on most targets are very

similar (close to the dashed line/equality). The figure further shows

that model and human performance strongly correlated, r(58) = .76,

p < .001, indicating that the prediction problems were similar for

both model and humans (i.e., targets that were easy to predict for our

model were also easy to predict for humans).

Discussion

Study 1 tested our approach to predicting participant responses on

out-of-sample personality items, using a large existing data set of

NEO-PI-R ratings. It found that sentence embeddings obtained from

SBERT (a leading deep language model optimized for encoding

semantic similarity between sentences) were able to predict out-of-

sample participant responses with an average correlation of .45. To

interpret our accuracy rates, we can contrast our results with

previous predictive models of five-factor responses. L. Liu et al.

(2016) achieved a maximum correlation of .19 using social media

profile picture features; Golbeck (2016) reported a correlation of up

to .24 using texts from participants’ public Facebook posts; and

Youyou et al. (2015) showed an average correlation of up to .56

using a large amount of a person’s Facebook likes. Our approach

differed from these tests in two ways. First, we predicted responses

for out-of-sample items, whereas all prior tests predicted responses

for out-of-sample individuals. Second, we predicted responses at the

item level, instead of the average personality scores on a construct

(e.g., an Openness score). There is much higher variability in

responses on the item level, making our prediction problem

significantly harder. Finally, it should be noted that the performance

metrics for L. Liu et al. (2016) and Golbeck (2016) reported

above were the metrics for the best-performing constructs (e.g.,

Agreeableness for Golbeck (2016)) and not the average performance

across all items as reported for our method. For this reason, we

can conclude that our prediction exercise was quite successful,

especially relative to past work on personality prediction.

We also tested various machine learning models for predicting

responses from SBERT embeddings. Here we found that a K-nearest

neighbors regression with K = 5 performed the best. This model

predicts the rating for an out-of-sample item by finding the five

training items with the highest similarity and then averaging the

participant’s ratings for those items. The superiority of the K-NN

algorithm over alternate models like the ridge regression indicates

that the mapping between item embeddings and participant ratings
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Figure 2

Prediction Accuracy of the K-NN SBERT Model Versus Baselines for All Data Sets

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

Note. We measured the prediction accuracy of each model by calculating the correlation between the model’s

predicted and observed out-of-sample responses for each participant. The average correlation across all participants is

reported in the left panel of each questionnaire (error bars correspond to 95% CI for the average correlation). The

distribution of correlations across all participants is reported in the right panel. K-NN=K-nearest neighbor; SBERT=

Sentence-Bidirectional Encoder Representations from Transformers; LIWC = Linguistic Inquiry and Word Count;

NEO-PI-R=NEOPersonality Inventory-Revised; 16PF= 16 Personality Factors; RIASEC=Realistic, Investigative,

Artistic, Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire; IPIP = International Personality

Item Pool; CI = confidence intervals. See the online article for the color version of this figure.
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may be nonlinear. K-NN can successfully capture these nonlinea-

rities, as it uses only the local structure of input space (five nearest

neighbors) to predict responses.

We also found that SBERTprovided better item representations, and

subsequently higher predictive power, than embeddings obtained from

Word2Vec (a prominent word representation model) and LIWC (a

common approach to extracting psychological variables from text).

The superiority of SBERT over Word2Vec and LIWC indicates that

the context and sentence structure (e.g., word order, syntax) of a

personality item plays an important role in specifying its meaning and

that averaging embeddings for the words in the item (as with

Word2Vec) or counting up the words associated with various

psychological variables (as with LIWC) is not enough for capturing the

psychological richness of the item. Prior work has used word

embeddings for scale creation, for example, tasks such as item selection

(Arnulf et al., 2014; Evans et al., 2022; Garcia et al., 2020; Rosenbusch

et al., 2020). Our results show that it may be possible to improve on this

work by using SBERT embeddings to measure item similarity.

Finally, and perhaps most importantly, we ran two experiments in

which we elicited incentivized personality predictions from human
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Figure 3

Prediction Accuracy of the K-NN SBERT Model Versus Human Judges

Note. The performances of the two were tested on the personality ratings of three target participants. Panel (A) shows the average correlations

between predictions and observed responses across experimental conditions. The 95% CIs are reported as error bars. For each target participant, the

reported correlation was averaged across theN= 200 human rating correlations andN= 10 model prediction correlations. Panel (B) shows correlations

of predictions and observed responses for each ofN= 30 experimental conditions. Each point in the plot refers to the performance of our model (y-axis)

and the average human judge (x-axis). The points were grouped by target participant (color). The plot shows that our model performance was

comparable to that of human judges. K-NN=K-nearest neighbor; SBERT= Sentence-Bidirectional Encoder Representations fromTransformers; CI=

confidence interval. See the online article for the color version of this figure.

Figure 4

Comparison of Our Method With Incentivized Human Judges

Note. The performances of the human judges and our model were tested on the personality ratings of 60 targets

from the original questionnaire data sets. The plot shows the average correlations between predictions and

observed responses across all experimental conditions with 95% CI as error bars. The figure shows that our

model’s performance is on par with incentivized human judges across all questionnaires. NEO-PI-R = NEO

Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC = Realistic, Investigative, Artistic,

Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire; CI = confidence interval. See the

online article for the color version of this figure.
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Figure 5

Detailed Performance Overview of Our Model and Incentivized Human Judges

Note. Detailed analysis of our model’s and human judges’ performance. The left column shows the distribution of prediction accuracy—the

correlation between predicted and observed personality ratings—across all experimental conditions for both human judges and our model. The

distribution plots indicate similar performance for our model and human judges. The right column shows correlations of predictions and

observed responses for each of the 60 targets (averaged across all test folds). Each point refers to the performance of our model (y-axis) and the

average human judge (x-axis) for a specific target and test fold. The dashed line represents equality. The figures show that ourmodel performance

was comparable to that of human judges (close to the dashed line) and that neither performance was driven by outliers. NEO-PI-R = NEO

Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional;

HSQ = Humor Styles Questionnaire. See the online article for the color version of this figure.
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judges. The first of these was a depth experiment, which obtained a

large number of human predictions for each cross-validation task

performed by our model but used only three NEO-PI-R target

participants. The second was a breadth experiment that used a much

larger set of NEO-PI-R participants but obtained a smaller number of

human predictions per cross-validation task. Both these experiments

showed that our model performed equivalently to human judges,

indicating that it is as good at out-of-sample personality prediction as

humans. Additionally, we found that human and model predictions

were highly correlated with each other (r= .76), indicating that target

participants that were easy or difficult for humans to predict were also

easy or difficult for the model to predict. This provides strong

evidence for the capabilities of our model and, in particular, the

quality of its representations for the items that make up the NEO-PI-R

survey.

Studies 2A–C

Overall, Study 1 shows that deep language models provide high-

quality quantitative representations for NEO-PI-R personality items

and that the similarities between these representations can be used

to predict responses for out-of-sample items with a human level

of accuracy. In Studies 2A–C, we tested whether our model’s

performance generalizes beyond the NEO-PI-R to three other

personality questionnaires: 16PF (16 Personality Factors; H. E. P.

Cattell &Mead, 2008) in Study 2A, RIASEC (Realistic, Investigative,

Artistic, Social, Enterprising, Liao et al., 2008) in Study 2B, and HSQ

(Humor Styles Questionnaire, Martin et al., 2003) in Study 2C. This

diverse conceptualization and structure of personality allowed us to

test the generalizability of our model.

Method

Data Sets

We used data collected from the Open Source Psychometrics

Project (https://openpsychometrics.org/_rawdata/) for the 16PF

questionnaire (N = 49,159 participants), RIASEC questionnaire

(N = 135,764 participants), and HSQ questionnaire (N = 590

participants). These questionnaires had 163, 48, and 32 items,

respectively, and each participant rated each item on a 5-point Likert

scale. See Table 1 for a summary. We selected these three data sets

(and not others in the Open Source Psychometrics Project), as they

are all multiconstruct Likert-scale questionnaires with at least 500

responses, covering diverse topics and involving diverse constructs.

For instance, the 16PF questionnaire is another hierarchical

personality model based on the lexical hypothesis (Rossier et al.,

2004), similar to the NEO-PI-R. However, the 16PF hierarchical

structures were designed using a bottom-up structure (identifying 16

primary factors and then five higher level dimensions) as opposed to

the NEO-PI-R’s top-down approach (identifying five higher level

dimensions and then 30 lower level facets). The 16PF questionnaire

contains the following constructs: Warmth (A), Reasoning (B),

Emotional stability (C), Dominance (E), Liveliness (F), Rule-

consciousness (G), Social boldness (H), Sensitivity (I), Vigilance

(L), Abstractedness (M), Privateness (N), Apprehension (O),

Openness to change (Q1), Self-reliance (Q2), Perfectionism (Q3),

and Tension (Q4; Rossier et al., 2004). The RIASEC questionnaire

describes personality through preferences and aversions that

influence the choice of work environments (and environments

through typical work activities and demands placed on individuals).

The questionnaire contains six personality dimensions (and parallel

environments): Realistic (R), Investigative (I), Artistic (A), Social (S),

Enterprising (E), and Conventional (C), collectively called RIASEC

(Armstrong et al., 2008). Finally, the HSQ describes personality

through different styles of using humor, containing the dimensions of

Self-enhancing, Affiliative, Aggressive, and Self-defeating (Martin et

al., 2003). As such, the HSQ uses a conceptualization of humor as a

stable multidimensional aspect of personality (Lopez & Snyder,

2003). Validation studies have further shown that the HSQ

dimensions (humor styles) correlate with other established personal-

ity measures, such as the NEO-PI-R dimensions (Martin et al., 2003).

Comparison With Human Judges

Analogous to Study 1, we compared our model’s performances

on the above questionnaires with that of human judges incentivized

to make accurate predictions. We collected a sample of 600 judges

for each of the questionnaires (16PF: 62.00% female,Mage = 39.71;

RIASEC: 51.33% female, Mage = 42.41; HSQ: 50.83% female,

Mage = 40.60). All test procedures were the same as the breadth

experiment in Study 1. In particular, human judges predicted the

responses of 60 target participants from the original questionnaire

data sets (i.e., target participants for which our model performance

ranged from the 0th percentile to the 100th percentile). Each judge

was given one of the model’s cross-validation tasks, in which they

used 90% of the target’s responses (training fold) to predict the held-

out 10% of their responses (test fold). We incentivized participants

by giving a bonus payment of $1 to those whose predictive accuracy

was in the top 10% among all judges.

Results and Discussion

Figure 2C–H shows that the out-of-sample predictive perfor-

mance of the SBERT method persisted for these questionnaires,

with average correlations of .39, t(49,158) = 585.49, p < .001, 95%

CI [.39, .39] for 16PF in Study 2A; .35, t(135,763) = 594.91, p <

.001, 95% CI [.35, .35] for RIASEC in Study 2B; and .34, t(589) =

33.21, p< .001, 95%CI [.32, .36] for HSQ in Study 2C. Overall, our

SBERT model achieved significant (p < .05) positive correlations

for 93.3%, 51.4%, and 64.7% of participants in the three studies,

respectively. Consistent with Study 1, our method outperformed

alternative baseline models that use the Word2Vec and LIWC

embeddings. These models achieved much lower correlations than

SBERT in all three studies (though note that the performance of the

Word2Vec method was very close to that of SBERT in Study 2B).

Furthermore, Figure 4 shows that the average out-of-sample

predictive performance of our method was, for all questionnaires, on

par with that of human judges incentivized to make accurate

predictions. The average correlation across all experimental

conditions for the 16PF was .40, t(598) = 37.02, p < .001, 95%

CI [.37, .42], for our model, and .39, t(598) = 33.60, p < .001, 95%

CI [.37, .42], for the human judges. For the RIASEC, it was .38,

t(598) = 18.29, p < .001, 95% CI [.34, .42], for our model, and .32,

t(598) = 14.72, p < .001, 95% CI [.28, .37], for the human

judges. For the HSQ, it was .42, t(598) = 15.30, p < .001, 95% CI

[.37, .48], for our model, and .42, t(598) = 15.86, p < .001, 95% CI

[.36, .47], for the human judges. Our model performed slightly better
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than the human judges, albeit statistically nonsignificant for the

16PF;Welch’s two-sample t test, independent samples: t(1152.59)=

−0.08, p = .94; RIASEC: t(1060.20) = −1.95, p = .05; and HSQ:

t(995.83) = −.18, p = .86. Figure 5C–H shows that most of the

model and human performance is positive. The scatterplots show no

outliers in model/human performance, except a single outlier for the

16PF, for which our model performs significantly worse than human

judges (−1.0 vs. .02). This outlier did not influence any of our results

and model and human performance strongly to moderately

correlated for all questionnaires; 16PF: r(58) = .70, p < .001;

RIASEC: r(58) = .53, p < .001; HSQ: r(58) = .46, p < .001,

indicating that the prediction problems were similar for both model

and humans.

Overall, the results of Studies 2A–C show that the success of our

approach is not specific to the NEO-PI-R but instead generalizable to

other common and less common questionnaires used in personality

research.

Study 3

Although Studies 1 and 2A–C provide evidence for the power of

our approach, each of these studies uses a single personality

questionnaire, composed of a small set of curated items. As a more

challenging test, Study 3 examined whether our method could

achieve good performance on a large and unconstrained collection

of items, spanning a diverse set of domains and constructs, as well as

grammar and phrasing structures. For this, we collected a new data

set of personality ratings of over 3,500 different items taken from the

IPIP (Goldberg et al., 2006).

Method

One hundred sixty-one participants (62.30% female; Mage =

19.88) were recruited through the university’s undergraduate subject

pool. We selected the sample size for this study to ensure that we

have data from at least 150 participants to evaluate our approach.

Participants indicated at the beginning of the study if they wanted to

answer one, two, or three blocks of approximately 300 items (each

for a fixed amount of study credit). These items were sampled from a

larger set of 3,563 personality items, all available items at the time of

data collection in 2019, taken from the IPIP (Goldberg et al., 2006).

The IPIP is a very large, broad collection of personality items across

a multitude of different scales and constructs. It covers items from

36 distinct scales, involving 242 distinct constructs. For example,

the IPIP includes constructs such as Tolerance, Adaptability, or

Toughness with items such as “I believe in equality between all

races,” “I adapt easily to new situations,” or “I remain calm under

pressure.” Note that the IPIP lists two item sets, one “total” list with

3,320 items and one “assigned only” list with items that have

information about scales and constructs provided. We obtained

3,563 unique items after merging both lists. Also note that the

number of scales and constructs referred to in this article was taken

from the items that have scale and construct information provided

(see https://ipip.ori.org/ItemAssignmentTable.htm for more infor-

mation). Each item involved responses on a 5-point Likert scale. See

Table 1 for a summary of data set characteristics. Model predictions

for Study 3 participants were obtained using the same methods as in

Studies 2A–C.

Results and Discussion

Figure 2I and J shows that the out-of-sample predictive

performance of the SBERT method persisted for Study 3, with

an average correlation of .37, t(160) = 44.24, p < .001, 95% CI [.35,

.38]. Additionally, our SBERT model achieved significant (p < .05)

positive correlations for 99.4% of participants. Finally, as in Studies

1 and 2A–C, our method outperformed alternative baseline models

that use the Word2Vec and LIWC embeddings. Overall, these

results demonstrate the ability of our method to generalize across

constructs and questionnaires, even beyond the standard question-

naire format. In other words, our approach can be used to make

accurate predictions for thousands of different personality items

using only a small set of participant ratings.

Study 4

Studies 1−3 have shown that our approach is able to predict

participant responses to out-of-sample personality items andmoreover

do so with a human-level of accuracy. This is likely because the

SBERT semantic space captures the meanings of items in a manner

that corresponds to the distribution of personality traits in the

population. In other words, traits that correlate in the population are

likely to have SBERT embeddings that are highly similar to each

other. In Study 4, we rigorously tested this assumption by using item

embeddings to predict the item’s construct and its direction of loading

on the construct. Note that this test is quite challenging (especially for

the IPIP data), as the model has to learn how to classify items into a

very large number of constructs.

Method

The items for Study 4 were taken from Studies 1−3 and consisted

of the NEO-PI-R, 16PF, RIASEC, HSQ, and IPIP questionnaire (see

Table 1 for a summary). Model training and prediction were done

using a procedure that was similar to that in Studies 1−3. However,

instead of learning to predict participant responses using item

embeddings, our models learnt to predict the questionnaire construct

that the item belonged to. This is a multinomial classification problem

in which the number of categories corresponds to the number of

constructs in the questionnaire. Thus, for example, for the NEO-PI-R

questionnaire, our model attempted to predict whether a held-out item

would fall into the Openness, Conscientiousness, Extraversion,

Agreeableness, or Neuroticism categories. Importantly, it attempted

to do so using only the items’ texts and not human responses to

the items.

We also considered a second model type that was trained to

predict the direction (positive or negative) on which an item loaded

onto a construct (e.g., “I feel comfortable around people” vs. “I keep

in the background” for the Extraversion construct in NEO-PI-R).

We trained this model in a manner that was identical to the first

model but used the items’ directional loading as labels during

classifier training. Note that we did not train this model on the

RIASEC or IPIP data because these questionnaires do not have item

direction codes (RIASEC has only positive directional loadings; the

IPIP data do not provide directional loadings for most items).

To keep the model training procedure consistent across studies and

tasks, we again identified the best-performing machine learning

technique and associated hyperparameters on the NEO-PI-R data set
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for each embedding type (SBERT, Word2Vec, LIWC) and then

applied the respective models and hyperparameters on the remaining

data sets. Note, since the labels in this task reflect a nominal scale

(item construct), we only considered classification and not regression

algorithms from Study 1 (ridge classification, K-nearest neighbor

classification, support vector classification). To get robust estimates

of our model’s out-of-sample performance, we again applied cross-

validation. Analogous to Studies 1−3, we then compared our

predictive model against two alternative embeddings (Word2Vec and

LIWC). To evaluate model performances, for both construct and

direction prediction, we calculated the classification accuracy as the

percentage of correct classifications across all predictions. Note that

the prediction classes, personality constructs, and directional loadings

are balanced for all questionnaires, except the IPIP which has a

nonequal number of items for the different personality constructs.

Results

Semantic Similarity

Before building predictive models of construct classification, we

first examined whether the embedding similarity of pairs of items

from the same construct was (significantly) larger than that of items

from different constructs. We measured the similarities between

items by calculating the cosine similarity of their SBERT embeddings.

We did this for all pairs of items in a questionnaire, then regressing

pairwise item similarity scores onto a binary independent variable

describing whether or not the items came from the same construct.

We also included fixed effects for each of the constructs in these

regressions.

The regression showed a significant positive coefficient for the

in-construct variable for all data sets, except the HSQ: b = 0.03,

t(491) = 1.581, p = .114. Details are presented in Table 2.

A visualization of the results is presented in Figure 6, for the NEO-

PI-R data set (6A), the 16PF data set (6B), the RIASEC data set (6C),

and the HSQ data set (6D). The IPIP data set is omitted from Figure 6

since it has too many constructs (242 in total). The figure shows the

average similarity scores for item pairs grouped by their constructs as

a heat map and indicates that, on average, items that load onto a given

construct are closer to other items that load onto that same construct

relative to items that load onto other constructs. In other words,

personality items, across multiple distinct questionnaires, cohere

together in stable constructs not only in human data but also in

linguistic meaning.

Figure 6 also shows some high cross-construct similarities. For

example, items from the Agreeableness and Extraversion constructs

of NEO-PI-R are highly similar to each other, as are items from the

Aggressive and Self-defeating constructs of HSQ. However, it

should be noted here that (a) the same-construct similarity is still

higher and (b) our predictive models (in the subsequent analysis) use

high-dimensional item representations and not a single similarity

score to make predictions. As such, these models can use additional

information, such as the exact positions or directions relative to

other items in the embedding space, for predicting an item’s

construct and distinguishing it from other constructs that have

semantically similar items.

Construct Prediction

We found the ridge classification model with a = 1,000 to be the

best-performing model on the NEO-PI-R and applied it on all other

data sets as well. Figure 7A, C, E, F, and H illustrates the results of

the construct prediction task for each questionnaire. Here, we see

that our model achieved very high accuracy rates, outperforming

both a random baseline (which would achieve an accuracy equaling

the proportion of the most frequent construct) as well as the

Word2Vec and LIWC baselines. This indicates that SBERT

embeddings are indeed able to distinguish between same- and

cross-construct items. Interestingly, our model achieved a 25%

accuracy for the IPIP data set, despite the very large number of

constructs (a random model would achieve only 2% accuracy for

this test). Figure 7B, D, and G shows similar results for the direction

prediction task. For this task, we found the ridge classification model

with a = 10 to be the best-performing model on the NEO-PI-R and

applied it on all other data sets as well. We achieved high accuracy

rates, of up to 100%, across all questionnaires, outperforming every

baseline.

We also analyzed the performance of our models for individual

constructs. Our main model’s prediction accuracy is high across all

constructs with only few exceptions. For instance, the performance

on four of the 16PF constructs (Emotional stability, Social boldness,

Apprehension, and Tension) is low (20%−50%) compared to the

remaining constructs (70%−80%). This might be due to the high

intercorrelation of these 16PF constructs, which were explicitly

designed to be nonorthogonal (Saville & Blinkhorn, 1981). For the

IPIP, our model performed well over a variety of constructs with an

overrepresentation of Interest-related items in the top-performing

constructs and Expressivity-related items in the bottom-performing

constructs.

It should be noted here, however, that the IPIP items stem from a

multitude of scales and as such from a wide range of potentially very

fine-grained constructs with strong conceptual overlap (see, e.g.,

constructs, such as Tolerance, Compassion, Forgiveness, Mercy, etc.).

Therefore, a lower performance of our model on some constructs does

not necessarily indicate a systematic weakness in capturing these

meanings. Indeed, a closer look into the misclassified items reveals

that many were classified as closely related constructs. For instance, “I

find it hard to forgive others” and “I try to forgive and forget” were

misclassified as Forgiveness/Mercy instead of Compassion, and “I

express my affection physically” and “I have difficulty showing

affection” were misclassified as Romantic disinterest instead of
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Table 2

Regression Results of Items’ Semantic Similarity Over Construct

Origin (Same vs. Different)

Data set b SE 95% CI t p

NEO-PI-R 0.069 0.006 [0.057, 0.081] 11.51 <.001
16PF 0.052 0.006 [0.04, 0.06] 8.35 <.001
RIASEC 0.130 0.010 [0.111, 0.149] 13.58 <.001
HSQ 0.030 0.019 [−0.007, 0.067] 1.58 .114

Note. We regressed item pairs’ cosine similarity scores as a function of
whether or not they are from the same construct, with fixed effects for each
of the constructs. Results show that in-construct items significantly predicted
higher cosine similarity scores, except for the HSQ. NEO-PI-R = NEO
Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC =

Realistic, Investigative, Artistic, Social, Enterprising, Conventional; HSQ =

Humor Styles Questionnaire; SE = standard error; CI = confidence interval.
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Positive expressivity. Similarly, some items that belong to overarch-

ing, higher level constructs are misclassified because there are suitable

lower level constructs and facets that have a closer semantic match.

For example, “I break rules” and “I continue until everything is

perfect” were misclassified as Norm-violation and Perfectionism

instead of Conscientiousness. However, this is not captured by

the accuracy metric, which ignores the closeness of the model’s

misclassifications to the true constructs. Yet, our model was still able

to achieve accuracies several times above baselines indicating our

approach’s broad ability to capture psychological meanings in item

texts, which it can then leverage to make more accurate predictions.

Clustering

In our final analysis, we attempted to interpret the latent structure of

our SBERT item space by clustering embeddings for all 3,653 IPIP

items into a small set of clusters. For this, we used the K-means

clustering algorithmwithK= 5, meaning that the items were grouped

into five clusters. Note that this parameter is unrelated to the K in

K-NN regression, which is a regularization parameter expressing how

many responses to similar items (the Kmost similar ones) are used to

estimate the response to another item. For K-means clustering, K

represents a top-down assumption on the number of clusters in the

data and can be used for theorizing (i.e., by setting the number of

clusters based on theoretical considerations).We choseK= 5 to show

the feasibility of clustering large item sets into small sets of clusters

and for ease of presentation. However, we are not bound to any

specific clustering solution. The resulting clusters are presented in

Table 3, which reports the most frequent traits measured by the items

in the respective clusters. Here, we can see that the clusters reflect

reasonable psychological topics. For instance, Cluster 1 refers to traits

associated with attention problems (e.g., adhd and conscientious-

ness), with exemplary items containing “I felt like I was dreaming

when I was awake,” “I have been told I am not listening when others

are speaking,” and “I make careless mistakes.” The remaining

Clusters 2, 3, 4, and 5 refer to traits related to mental health (e.g.,

depression and anxiety), integrity (e.g., honesty and humility),

leadership qualities (e.g., organization and leadership items), and

sociality (e.g., sociability and sensation-seeking items), respectively.

Table 4 provides an overview of exemplary items in each cluster.

Although this demonstration is undoubtedly only a preliminary

qualitative analysis, it shows that our approach can be used to

meaningfully cluster large sets of items using only the item texts (see

also Rosenbusch et al., 2020, for a similar test using word

embeddings rather than sentence embeddings). Thus, this method

can be used as a basis for future theoretical work that attempts to
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Figure 6

Average Semantic Similarity Between Items in Each Pair of Constructs

Note. The similarity of each pair was calculated using the averaged cosine similarity between all items of one construct and all items of the other. The

figure shows a general trend of higher in-construct versus between-construct similarity. NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16

Personality Factors; RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire. See the online

article for the color version of this figure.
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synthesize the very large set of items and behaviors that describe

human personality.

Discussion

While Studies 1−3 evaluated the utility of SBERT embeddings for

predicting participant ratings, Study 4 attempted to use SBERT item

embeddings to classify items into constructs. Using the question-

naires from Studies 1−3, we found that items from the same construct

were significantly more similar to each other in the SBERT

embedding space than items from different constructs. Additionally,

we found that our machine learning models could accurately predict

both the construct and the loading (positive or negative) of items onto

the construct in a questionnaire. Again, models based on SBERT

embeddings outperformed those based on Word2Vec or LIWC,

showing that SBERT provides a superior representation of item

meaning. Finally, we provided a simple demonstration of the utility of

our SBERT embeddings for construct classification, by clustering all

3,653 IPIP items into a small number of categories based on their

positions in the SBERT embedding space. Together, the tests

conducted in Study 4 show that item embeddings are able to capture

the psychological content of questionnaire items using only their text.

General Discussion

The lexical hypothesis proposes that personality traits that are

important to a group are encoded in words of its everyday language

(Goldberg, 1990; John et al., 1988; Klages & Johnson, 1929). This

hypothesis has provided a theoretical basis for the use of linguistic

descriptors in personality research and, in this way, has guided and

constrained personality research for decades. Expanding on the

lexical hypothesis, we have used a recent deep language model,
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Figure 7

Prediction Accuracy in the Construct and Direction Prediction Tasks for All Data Sets

Note. The results show that SBERT item embeddings can accurately capture items’ construct and direction information and subsequently predict these

variables with high accuracy. The baseline value corresponds to the accuracy achieved by a model that predicts constructs and directions randomly or as the

majority class (for the IPIP). SBERT = Sentence-Bidirectional Encoder Representations from Transformers; LIWC = Linguistic Inquiry and Word Count;

IPIP = International Personality Item Pool; NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC = Realistic,

Investigative, Artistic, Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire. See the online article for the color version of this figure.

Table 3

Summary of the Three Most Frequent Constructs Within Each Identified Cluster

Cluster Trait 1 Trait 2 Trait 3

1 Dissociation Adhd Conscientiousness
2 Depression Anxiety Sentimentality
3 Forgiveness/mercy Modesty/humility Honesty/integrity/authenticity
4 Creativity/originality Organization Leadership
5 Esthetic appreciation/artistic interests Sociability Risk-taking/sensation-seeking/thrill-seeking

Note. We clustered all IPIP items based on their embeddings. The table shows the most frequent traits within each resulting
cluster. Cluster 1 relates to attention problems. Cluster 2 relates to mental health. Cluster 3 relates to integrity. Cluster 4 relates to
leadership qualities. Cluster 5 relates to sociality traits. The results show that we can use embeddings to cast unlabeled items, such
as the ones in the IPIP inventory or newly created items, into reasonable constructs. IPIP = International Personality Item Pool.
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SBERT (Reimers & Gurevych, 2019; see also Devlin et al., 2019), to

obtain representations for items in personality questionnaires. SBERT

is trained on large amounts of natural language data and can

accurately represent the meaning of sentences in high-dimensional

embeddings that are sensitive toword order and syntax.We have used

SBERT embeddings, combined with various machine learning

models, to predict participant responses to out-of-sample personality

items from several existing questionnaire data sets: NEO-PI-R

(Stillwell & Kosinski, 2012) in Study 1, 16PF (H. E. P. Cattell &

Mead, 2008) in Study 2A, RIASEC (Liao et al., 2008) in Study 2B,

and HSQ (Martin et al., 2003) in Study 2C. Across these studies, we

have found that the SBERT approach achieves high accuracy rates,

greatly outperforming accuracy rates obtained from baseline models

that represent questionnaire items using either Word2Vec word

embeddings (Mikolov et al., 2013) or LIWC dimensions (Pennebaker

et al., 2015). Word2Vec can capture word meaning but does not take

into account the structure and word order in personality items.

Likewise, LIWCuses word frequency statistics to categorize items on

several psychological variables but does not encode additional

nuances in the meanings of the items. The superior performance of

SBERT relative to Word2Vec and LIWC highlights the importance

of sentence embeddings for capturing the meanings of personality

items and the overall value of recent advances in deep learning and

natural language processing for the prediction of human personality.

Studies 1 and 2A–C have used existing personality questionnaires

to measure model accuracy. To test whether our approach can also

apply to a larger unconstrained set of personality items, we collected

new data in Study 3, in which we offered over 3,500 personality

items from the IPIP (Goldberg et al., 2006) to human participants.

As with our previous studies, we found that our approach

successfully extrapolates personality ratings and predicts people’s

responses even when test items involve diverse domains and

different types of constructs. This illustrates the broad applicability

of our method for personality prediction.

In Studies 1 and 2A–C, we also compared the performance of our

approach to incentivized human judges that were given an identical

prediction task. We found that our approach achieved similar

performance to human judges, indicating that the accuracy levels

documented in this article match the accuracy levels that can be

obtained by humans. Additionally, there was a high correlation

between human accuracy and model accuracy in all studies,

indicating that target participants that were easy or difficult to

predict by human judges were also easy or difficult to predict by the

model. This provides strong evidence that our model is able to

represent the meanings of personality items in a human-like manner.

In Study 4, we directly tested whether the SBERT assigned similar

representations to closely related personality traits. We found that

this was indeed the case, with items belonging to the same construct

being given similar embeddings. For this reason, our approach was

able to predict the construct that an item belonged to and could even

describe how an item loaded onto its construct. Again, SBERT was

much better at construct prediction than Word2Vec and LIWC.

SBERT was also able to generate interpretable clusters of IPIP items

in a bottom-up manner, indicating that it can be used for scale

construction and construct delivery.

The success of our approach has implications for the representation

and measurement of personality. Prior research has represented a

person’s personality using a collection of linguistic descriptors. For

example, a person may be described as being high in extraversion,

where extraversion is specified as a set of sentences or trait words.We

show that these linguistic descriptors can themselves be assigned

quantitative representations. Thus, we are able to represent an

individual using a collection of points (corresponding to the

personality items they rate highly) in a high-dimensional space.

Thus, even though the embeddings used in our analysis are the

representations of the language models, since these language models

represent the meanings of sentences, and sentences are (in accordance

with the lexical hypothesis) used to represent personality, the

embeddings by proxy also become representations of personality.

The advantage of these quantitative representations is that they also

inherently express the relationship between items and constructs (e.g.,

via distance metrics in the embedding space), as shown in the

construct prediction and the clustering tasks.

Testing whether our approach extends to other psychological

variables is an important topic for future work. For example, life

satisfaction is a variable associated with several personality traits

(Schimmack et al., 2002, 2004, Steel et al., 2008). The study of the

interplay between life satisfaction and personality currently involves

regressing participants’ ratings of life satisfaction on a small handful

of personality dimensions (e.g., those from the five-factor model).

Instead, using our approach, we could use a participant’s position in

our language space as a predictor, by treating each individual as the

sum of the embeddings of the items that they rate highly. The high

dimensionality of this representation could lead to more accurate

predictions and shed light on the specific personality items (i.e.,

regions of embedding space) that correlate with life satisfaction (see
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Table 4

Exemplary Items Within Each Identified Cluster

Cluster name Item 1 Item 2 Item 3

1 I felt like I was dreaming when I was awake I have been told I am not listening
when others are speaking

I make careless mistakes

2 I am sad most of the time I am generally a fearful person I am easily moved to tears
3 I accept apologies easily I do not call attention to myself I am true to my own values
4 I come up with new ways to do things I supervise the work of others I am good at helping people work

well together
5 I can become tearful thinking of the

goodness of others
I am interested in people I prefer friends who are excitingly

unpredictable

Note. We clustered all IPIP items based on the similarity of their vector representations. The table shows exemplary items for each identified cluster. All
items presented belong to the clusters’ most frequent traits as shown in Table 3. The table provides an overview of the specific measures clustered together
based on the semantic relations of the item texts. IPIP = International Personality Item Pool.
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Nimon et al., 2016, for a related analysis). Of course, similar

analyses could be attempted with other important psychological

variables, as well as socioeconomic, neural, and even genetic

variables (Ayoub et al., 2018; Kennis et al., 2013; McGue et al.,

1993; Sugiura et al., 2000; Vukasović & Bratko, 2015). Attempting

such an analysis is a fruitful topic for future work.

Our approach is complementary to recent work that attempts to

model personality using high-dimensional feature vectors for

individuals obtained from their social media activity (Bleidorn &

Hopwood, 2019; Kosinski et al., 2013; Park et al., 2015; Stachl et al.,

2021). By featuring individuals, these researchers can successfully

predict responses to personality surveys for out-of-sample individuals.

For example, it is now possible to determine, based only on a person’s

social media activity, whether a person will be high or low on

extraversion. While social media analyses focus on predicting out-of-

sample individuals, we show that it is also possible to predict out-of-

sample personality items. By combining the two approaches, it may

even be possible to predict responses of out-of-sample individuals

to out-of-sample items. If successful, this would help personality

researchers characterize arbitrary individuals on arbitrary traits and

thus open the door to several new types of quantitative behavioral

analyses (see Vu et al., 2020, for recent work demonstrating the

feasibility of this analysis). However, these approaches need to be

carefully balanced with ethical considerations. Researchers applying

our methods must ensure strict observance of informed consent, opt-

out of data usage, and especially data anonymization to prevent out-of-

sample participant predictions from being applied on unwilling

participants (e.g., by collecting their online data) and out-of-sample

itempredictions frombeing applied on sensitive items that participants

refuse to answer (e.g., questions on sexual orientation).

Quantifying personality items, as we have done in this article, also

has value beyond prediction. For example, we have shown that our

methods can be used to infer high-level constructs associated with

unlabeled personality items and even cluster large sets of items into a

smaller set of constructs. Importantly, this method does not require

participant data, making it easily scalable to tens of thousands of

personality items. This method has particular value for survey design.

For example, it would be possible to optimize the set of personality

items used in a given survey, by selecting personality items from

distinct regions of language space, thereby maximizing the

information acquired in a survey (Arnulf et al., 2014; Evans et al.,

2022; Garcia et al., 2020; Rosenbusch et al., 2020). Similar optimal

experimental design methods have been proposed in other areas of

psychology (e.g., Myung & Pitt, 2009) and can be extended to

personality research, as we are now able to quantitatively represent

the stimuli used in personality experiments (see Yarkoni, 2010).

It should be noted here that our approach relies on data exclusively

collected from Western samples. The overreliance on so-called

WEIRD (Western, educated, industrialized, rich, democratic) samples

for psychology research has been criticized and previous research

found that many fundamental cognitive and affective processes differ

across populations (see Henrich et al., 2010). Similarly, the language

models used to create quantitative item representations are based on

the language use of mostly WEIRD populations in English. Different

populations and languages might have different linguistic conceptua-

lizations of personality that, following the lexical hypothesis, should

map better on these populations’ personalities (see Laajaj et al., 2019,

for difficulty accessing personality traits using WEIRD-based

questionnaires). As such, our models could be WEIRD-skewed

and mask potential group-specific differences in personality traits.

This gives reason for caution against an unreflective use of ourmodels

and should motivate researchers to consider language models trained

on non-WEIRD corpora. For instance, ParsBERT (Farahani et al.,

2021) and ARBERT/MARBERT (Abdul-Mageed et al., 2021) are

BERT-based monolingual language models trained on Persian and

Arabic corpora and subsequently outperform multilingual language

models usually used for these languages, such as multilingual BERT

(Devlin et al., 2019) or Cross-lingual Language Model based on A

Robustly Optimized BERT Pretraining Approach (Conneau et al.,

2020). However, the cultural bias in the language models is also an

opportunity to quantitatively study group differences using this

framework. For instance, to what extent do item representations based

on different languages or language use of different populations differ?

Do cultural perceptions and connotations of personality in language

map onto measurements of personality? Another potentially fruitful

line of research could incorporate current debiasing efforts of

language models (e.g., Barikeri et al., 2021; Lauscher et al., 2020;

Liang et al., 2020) into this approach. Reducing cultural biases in

language models could help increase model performance and

generalizability to non-WEIRD populations.

Finally, the applicability of our approach is not limited to

personality research. For example, it would be possible to apply an

identical research pipeline to predict emotion and well-being, using

the thousands of items across hundreds of survey questionnaires and

well-being dimensions, that have been proposed in prior research

(Linton et al., 2016). A similar approach could be applied to the

prediction of risk preferences, organizational attitudes, and health

judgments (Aka & Bhatia, 2022; Bhatia, 2019; Bhatia et al., 2022;

Gandhi et al., 2022; Singh et al., 2022). More generally, survey-based

research is a central component of many areas in the behavioral and

cognitive sciences, including health, clinical, consumer, and

managerial psychology. We show that it is possible to accurately

quantify the language in surveys with deep networks, providing

researchers with mathematical representations for verbal constructs

and items. We look forward to future work that extends our approach

to alternate domains in the behavioral sciences, thereby facilitating

not only more accurate prediction but also more rigorous scientific

theorizing.

References

Abdul-Mageed, M., Elmadany, A., & Nagoudi, E. M. B. (2021). ARBERT &

MARBERT: deep bidirectional transformers for Arabic [Conference

session]. Proceedings of the 59th annual meeting of the association for

computational linguistics and the 11th international joint conference on

natural language processing. https://doi.org/10.18653/v1/2021.acl-long.551

Aka, A., & Bhatia, S. (2022). Machine learning models for predicting,

understanding, and influencing health perception. Journal of the Association

for Consumer Research, 7(2), 142–153. https://doi.org/10.1086/718456

Allport, G. W., & Odbert, H. G. (1936). Trait names: A psycholexial study.

Psychological Monographs, 47(1), i–171. https://doi.org/10.1037/h0093360

Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., &

Rao, S. M. (2018). Journal article reporting standards for quantitative

research in psychology: The APA publications and communications board

task force report. American Psychologist, 73(1), 3–25. https://doi.org/10

.1037/amp0000191

Armstrong, P. I., Day, S. X., McVay, J. P., & Rounds, J. (2008). Holland’s

RIASEC model as an integrative framework for individual differences.

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al

A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al

u
se

o
f
th
e
in
d
iv
id
u
al

u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.

A DEEP LEARNING APPROACH TO PERSONALITY ASSESSMENT 327



Journal of Counseling Psychology, 55(1), 1–18. https://doi.org/10.1037/

0022-0167.55.1.1

Arnulf, J. K., Larsen, K. R., Martinsen, Ø. L., & Bong, C. H. (2014).

Predicting survey responses: How and why semantics shape survey

statistics on organizational behaviour. PLOS ONE, 9(9), Article e106361.

https://doi.org/10.1371/journal.pone.0106361

Ayoub, M., Gosling, S. D., Potter, J., Shanahan, M., & Roberts, B. W.

(2018). The relations between parental socioeconomic status, personality,

and life outcomes. Social Psychological & Personality Science, 9(3), 338–

352. https://doi.org/10.1177/1948550617707018
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Table A1

Prediction Accuracy on the NEO-PI-R Data Set for Models Using SBERT

Embeddings

No. Model Hyperparameter Correlation 95% CI

1 Ridge classification a = 1 .34 [.33, .34]
2 a = 10 .34 [.33, .35]
3 a = 100 .37 [.36, .37]
4 a = 1,000 .41 [.41, .42]
5 a = 10,000 .35 [.34, .35]
6 Ridge regression a = 1 .38 [.37, .38]
7 a = 10 .38 [.37, .39]
8 a = 100 .41 [.40, .41]
9 a = 1,000 .45 [.44, .45]
10 a = 10,000 .27 [.26, .27]
11 K-NN classification K = 1 .37 [.37, .38]
12 K = 5 .41 [.40, .41]
13 K = 10 .38 [.37, .38]
14 K = 15 .37 [.37, .38]
15 K = 50 .20 [.19, .21]
16 K-NN regression K = 1 .37 [.37, .38]
17 K = 5 .45 [.45, .46]
18 K = 10 .42 [.41, .42]
19 K = 15 .40 [.40, .41]
20 K = 50 .14 [.13, .14]
21 SVC C = 1 .41 [.40, .41]
22 C = 10 .43 [.43, .44]
23 C = 100 .43 [.43, .44]
24 C = 1,000 .43 [.43, .44]
25 C = 10,000 .43 [.43, .44]

Note. This table compares the accuracy of different machine learning techniques over a
range of hyperparameters. Accuracy is measured in terms of average correlation across N =

2,749 study participants. The best-performing model (K-NN regression, K = 5), which has
been bolded, was applied to other questionnaires: 16PF, RIASEC, HSQ, and IPIP in Studies 2
and 3. All correlations are significantly different to zero at p < .001, with Bonferroni corrected
significance level of .002. K-NN = K-nearest neighbor; SBERT = Sentence-Bidirectional
Encoder Representations from Transformers; SVC = Support Vector; CI = confidence
interval; NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16 Personality Factors;
RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional; HSQ =

Humor Styles Questionnaire; IPIP = International Personality Item Pool.
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