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Traditional methods of personality assessment, and survey-based research in general, cannot make
inferences about new items that have not been surveyed previously. This limits the amount of information
that can be obtained from a given survey. In this article, we tackle this problem by leveraging recent
advances in statistical natural language processing. Specifically, we extract “embedding” representations of
questionnaire items from deep neural networks, trained on large-scale English language data. These
embeddings allow us to construct a high-dimensional space of items, in which linguistically similar items
are located near each other. We combine item embeddings with machine learning algorithms to extrapolate
participant ratings of personality items to completely new items that have not been rated by any participants.
The accuracy of our approach is on par with incentivized human judges given an identical task, indicating
that it predicts ratings of new personality items as accurately as people do. Our approach is also capable of
identifying psychological constructs associated with questionnaire items and can accurately cluster items
into their constructs based only on their language content. Overall, our results show how representations of
linguistic personality descriptors obtained from deep language models can be used to model and predict a
large variety of traits, scales, and constructs. In doing so, they showcase a new scalable and cost-effective
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method for psychological measurement.
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Personality measurement is central to the study of individual
differences and the prediction of behaviors, attitudes, beliefs, and
outcomes. Most personality tests use questionnaires composed of
natural language items—words and sentences—that describe
common traits. Participants are asked to rate themselves (or others,
such as acquaintances) on the trait descriptions, and the resulting
data are projected onto a small number of dimensions through
statistical techniques like factor analysis. These methods provide
quantitative insights into the structure of variability in traits across
individuals and are used to motivate influential and highly predictive
theories of personality (Digman, 1990; Goldberg, 1990; Goldberg et
al., 2006; McCrae & John, 1992).

Despite their successes, traditional methods of personality
assessment are constrained to making inferences over the respective
set of participants and items in a survey data set. In other words,

factor analysis on standard questionnaire data does not provide any
information about the responses of individuals who have not taken
the questionnaire or about participant responses for questionnaire
items (and thus traits or constructs) that have not been surveyed.
This is particularly relevant for research on understudied popula-
tions and traits. Researchers have introduced new tools for
addressing the first of these limitations: that of generalizing to
out-of-sample individuals. These tools rely on large-scale digital
data, such as social media activity, to quantitatively represent
thousands of individuals. Researchers give a subset of these
individuals a personality questionnaire and, using their responses,
build machine learning models capable of predicting the person-
alities of other individuals using only their digital data (Bleidorn &
Hopwood, 2019; Kosinski et al., 2013; Park et al., 2015; Stachl et
al., 2021). In this article, we examine whether digital data and
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machine learning can also provide a solution to the second
limitation: That of generalizing survey data to out-of-sample items,
that is, items that have not been surveyed previously (including
completely new items that are not part of existing questionnaires).

In order to solve this challenge, we need a way to quantitatively
represent the language used in a personality item, so that machine
learning models trained on a participant’s ratings for one set of items
can generalize and make predictions about ratings for a completely
new set of items. Recently, a class of deep neural networks, known as
transformer models (Devlin et al., 2019; Vaswani et al., 2017), has
been shown to accurately represent natural language sentences as
embeddings. Sentence embeddings (also known as sentence vectors)
are points in a high-dimensional space, whose structure captures the
linguistic properties of sentences. Linguistically similar sentences
have similar embeddings and can thus be seen as occupying nearby
points in the embedding space. Transformer models are typically
trained on large amounts of text data, and the embeddings they extract
from this data contain high-quality representations of the linguistic
properties of sentences. For this reason, sentence embeddings from
transformer models are highly predictive in a variety of natural
language processing tasks, including text summarization, sentiment
analysis, question answering, and translation (Lewis et al., 2020;
Radford et al., 2019; Yang et al., 2019). High-quality sentence
embeddings are also responsible for the success of new Aurtificial
Intelligence models like the Generative Pre-trained Transformer 3
(Brown et al., 2020), which generate human-like language based on
their embedding representations of the user’s linguistic input.

One type of transformer model is Sentence-BERT (SBERT;
Reimers & Gurevych, 2019). SBERT is specialized for creating
embedding representations of sentences that capture their semantics,
so that sentences that have similar meanings are given similar
embedding representations. SBERT is based on the BERT
(Bidirectional Encoder Representations from Transformers) architec-
ture (Devlin et al., 2019; Y. Liu et al., 2019) and is trained on a very
large language data set, as well as a large data set of sentence pairs
annotated with linguistic entailment relations (Bowman et al., 2015;
Cer et al., 2017). Subsequently, embeddings produced by SBERT
have outperformed many other methods in the SentEval evaluation
set of tasks (Conneau & Kiela, 2018). We take advantage of this
model in our study and use SBERT to extract embeddings for
questionnaire items (Figure 1A). This allows us to describe
personality item sentences as points in a high-dimensional semantic
space (Figure 1B), in which items with similar meanings are located
close to each other. Since SBERT can be used to obtain embedding
representations for any possible personality item, we can use it to
generalize from a small set of rated items to thousands of new unrated
personality items. This can be accomplished using several standard
machine learning techniques that use the similarities between
representations for generalization. The K-nearest neighbors regres-
sion (Cover & Hart, 1967), for example, predicts the rating of a new
item by averaging the ratings assigned to the K nearest items in the
embedding space (Figure 1B).

Theoretically, our approach draws on the lexical hypothesis in
personality psychology (Allport & Odbert, 1936; R. B. Cattell,
1943; Galton, 1884), which proposes that personality traits that are
important to a group are expressed through words and sentences in
their language. This hypothesis has motivated many advances in
personality research and is the foundation for leading personality
theories, such as the five-factor model, which uses natural language

to describe and measure the core dimensions of variation in people’s
personalities (Goldberg, 1990; John et al., 1988; Klages & Johnson,
1929). The lexical hypothesis also implies that quantitative
representations of language obtained from deep neural networks
should make it possible to quantify, and subsequently predict
personality traits, since these models are based on the statistics of
everyday language. In other words, traits that co-occur with each
other should have similar linguistic descriptors, and deep networks
trained to quantify these descriptors should be able to generate
similar representations for the traits.

Our approach is also inspired by recent work that has used the
semantic similarity of the individual words in questionnaire items to
measure the similarity of items (Arnulf et al., 2014; Evans et al.,
2022; Garcia et al., 2020; Rosenbusch et al., 2020). This line of
research leverages word embeddings (high-dimensional vectors for
individual words) for item selection, for example, finding related
items for a new scale or avoiding redundancies. We extend this idea
to predict participant responses, a problem that can now be solved as
deep language models provide high-quality representations for
sentences that are based not just on the individual words in the items
but also syntax and word order in the sentence (in this way, sentence
embeddings capture nuances in sentence meaning that cannot be
captured by word embedding models). In our analysis below, we
also consider a version of our approach applied to word embeddings,
a method similar to that of Rosenbusch et al. (2020), to test whether
sentence embeddings from deep neural networks provide superior
representations and predictions for personality items.

We evaluate the applicability of our approach for personality
prediction using a series of empirical tests. In Study 1, we apply cross-
validation to a 100-item NEO Personality Inventory-Revised (NEO-
PI-R) data set to assess our model’s ability to predict out-of-sample,
that is, we train our model on ratings for a subset of items and use it to
predict ratings for held-out items (Figure 1C). We also contrast our
models’ accuracy rates with those of human judges that are given an
identical task and are incentivized to make accurate predictions. To
ensure that our approach is robust, we replicate this analysis pipeline
for three additional personality questionnaires in Study 2A-C. In
Study 3, we extend our tests to a large new data set of over 3,000
existing personality items taken from hundreds of different scales and
constructs, thus allowing us to test the cross-domain predictive
accuracy of our approach. Finally, in Study 4, we use SBERT’s
assessment of item similarity to infer the personality dimensions and
constructs associated with personality items. This allows us to test
whether established constructs are explicitly reflected in the structure
of the underlying SBERT embedding space. We also attempt to cluster
novel, unlabeled personality items with already established and
labeled ones, in order to infer personality constructs associated with
these items.

If successful, the methods outlined in this article would provide a
powerful set of tools for personality researchers. By predicting the
responses of participants to thousands of personality items,
researchers would be able to describe each individual in terms of
a large variety of distinct traits, scales, and constructs, and in turn
build richer models of personality (and associated behaviors,
attitudes, beliefs, and outcomes), without the need for extensive data
collection. Additionally, new personality items could be tested using
our trained models instead of human participants. This would offer
researchers a cost-effective and scalable resource for psychological
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Figure 1
Overview of the Modeling Approach
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Note. Panel (A): lllustration of SBERT, which takes sentences (personality items) as inputs and generates 1,024 dimensional embeddings

(vectors) of the sentences as outputs. Panel (B): Illustration of the SBERT embedding space and K-nearest neighbors regression. In this space,
each point represents an item, and items with similar meanings are located close to each other. Predictions for test items (indicated in red) can be
obtained by averaging the ratings of the K, here 5, nearest training items (indicated in green). Note that the actual SBERT embedding space is
1,024 dimensional instead of three dimensional and that any possible personality item (if expressed as a sentence) can be represented as a point in
this space. Panel (C): Methodology for predicting participants’ responses from item embeddings in Study 1. We first extract SBERT embeddings
for all items in the NEO-PI-R questionnaire (100 items in this example). Then, for each participant, we use these 1,024-dimensional item
embeddings as inputs and the participant’s responses as target outputs in a standard machine learning model, such as K-nearest neighbors
regression. We test the model’s performance using 10-fold cross-validation. The fully trained model can then be used to predict the participant’s
responses to new items that are not in the questionnaire. SBERT = Sentence-Bidirectional Encoder Representations from Transformers; CLS =

Classification, tag used to represent the sentence level. See the online article for the color version of this figure.

measurement and theory development (Bleidorn & Hopwood, 2019;
Evans et al., 2022; Yarkoni & Westfall, 2017).

Transparency and Openness Promotion

We report how we determined our sample size, all data exclusions
(if any), all manipulations, and all measures in the study, and we follow
Journal Article Reporting Standards (Appelbaum et al., 2018). All
data, analysis code, and research materials are available at https:/osf
.o/sxg8n/?view_only=762b6188d54246c0a4c1c7e6218e33c3. Data
were analyzed using Python, Version 3.9 (Van Rossum & Drake,

2009), and the packages scikit-learn, Version 0.23 (Pedregosa et al.,
2011), statsmodel, Version 0.13 (Seabold & Perktold, 2010), and
matplotlib, Version 3.5.0 (Hunter, 2007). Study 1’s depth analysis
experiment was preregistered on https://aspredicted.org/dx4dn.pdf.

Ethics Statement

All studies involving human data collection were approved by the
institutional review board of The University of Pennsylvania under
approval number 823184 (“Everyday Judgments and Decisions”).
Computational studies without human data or with only retrospective
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analysis of anonymized human data from public data sets were
exempted from the need for approval.

Computational Methods

We begin by summarizing the computational methods used in our
studies. These methods entail the generation of questionnaire items’
embeddings (i.e., SBERT and baselines), training, validation, and
selection of the predictive models, as well as evaluations of model
performance. Any deviations from and extensions of these methods
are detailed in the respective studies’ sections.

SBERT Embeddings

We created the questionnaire item embeddings by feeding each
item’s text through the SBERT neural network, then averaging the
embeddings in the last layer across the whole sentence to get a
representation for the item. See Figure 1A for a visual overview of this
procedure. We used the SBERT version called “nli-roberta-large,”
based on the pretrained RoBERTa-Large model (Y. Liu et al., 2019)
with 24 layers and 1,024 hidden vector dimensions, and trained on the
MultiGenre Natural Language Inference data set (Williams et al.,
2018). RoBERTa is based on the BERT (Devlin et al., 2019)
architecture and outputs a 1,024-dimensional embedding for each of
the questionnaire items. For the implementation of the embedding
extraction, we used the Python library sentence transformers, provided
by the original authors (Reimers & Gurevych, 2019). Note that the item
responses for the personality prediction task were not reversed-coded
and no information about items’ construct or direction they load onto a
construct (positive/negative) was provided to the model, meaning our
model based its representations solely on the items’ raw text.

Baseline Embeddings

We considered two alternative embeddings as baselines to
SBERT, Word2Vec (Mikolov et al., 2013), and Linguistic Inquiry
and Word Count (LIWC; Pennebaker et al., 2015). Word2Vec was
trained on English Wikipedia texts and generates 300-dimensional
embeddings for millions of common English words. These
embeddings have been shown to accurately capture the similarity
relationships between individual words, so that similar words have
similar word embeddings (Richie & Bhatia, 2021). To generate
Word2Vec embeddings for each item, we averaged the word
embeddings across all words in the item text. Importantly, Word2Vec
is only sensitive to the individual words from the personality item
and, unlike SBERT, ignores the ordering of the words and syntactical
structure of the sentence. Therefore, this model is similar to prior
attempts at measuring item similarities using the similarities of their
individual words (Arnulf et al., 2014; Evans et al., 2022; Garcia et al.,
2020; Rosenbusch et al., 2020).

LIWC provides sets of words (called “lexicon”) for 73 common
psychological variables. For example, the Anxiety variable contains
words like “worried,” “fearful,” and so on. To obtain LIWC
embeddings for our personality items, we simply counted the number
of times words in each of the 73 LIWC lexicons occurred in the
personality item, giving us 73-dimensional LIWC embeddings. The
counting and scoring of personality items on LIWC dimensions were
done using the Differential Language Analysis ToolKit (Schwartz
et al., 2017).

Predictive Models

We applied standard machine learning techniques, such as ridge
(Hoerl & Kennard, 1970), K-nearest neighbor (K-NN; Cover & Hart,
1967), and support vector (SVC; Hearst et al., 1998) classification and
regression, to map each item’s embeddings onto each participant’s
rating of the item. Ridge methods made predictions by estimating a
regularized linear function on each embedding dimension, K-NN
methods made predictions by averaging the ratings on the K most
similar items to a target item, and SVC methods made predictions by
estimating a potentially nonlinear function on the embedding
dimensions with a kernel trick (i.e., mapping the input into a further
high-dimensional space).

We applied the regression and classification methods to all three
types of embeddings: SBERT, Word2Vec, and LIWC. This gave us a
total of 5 X 3 = 15 models (e.g., KNN regression with SBERT
embeddings, SVC with LIWC embeddings). Regarding hyperpara-
meter tuning, for the ridge models, we tested five different a-values,
corresponding to the weight on the regularization penalty. For the
KNN methods, we tested five different K values, reflecting the number
of nearest neighbors used for prediction. For the SVC method, we
tested five different C values, corresponding to the strength of the
regularization penalty. To ensure consistency across our studies,
we determined the best-performing embedding and hyperparameter
combination in Study 1 and used it in all subsequent studies. See Table
Al in the Appendix for the specific values used and their effect on
performance in Study 1.

Cross-Validation

We trained and evaluated models using 10-fold cross-validation.
In particular, we divided each participant’s data into 10 equally sized
groups or folds (with 10% of ratings in each fold), then fitted each
model on the 90% of items in the first nine folds (the training data)
and evaluated its predictions on the 10% of items in the held-out fold
(the test data). This was repeated nine more times with each fold
serving as the test data once. See Figure 1C for an illustration.
All models were estimated in the Python’s scikit-learn library
(Pedregosa et al., 2011).

To evaluate model performance, we calculated the correlation of a
model’s predictions with the observed ratings for each participant.
Specifically, for the ith participant and the kth test fold (k =1, 2, ...,
10), we calculated a model’s predictions for the 10% of items in the
fold, when that fold was in the test data. We then concatenated the
predictions across all testing folds into one list containing our model’s
out-of-sample predictions for each item offered to the participant. This
list was then compared with the observed ratings of the participant
using Pearson correlation, to obtain a measure of our model’s accuracy
for that participant.

Study 1

In Study 1, we tested whether our approach, as described in the
Computational Methods section, accurately predicts participant
responses to out-of-sample items in an established personality
questionnaire: the NEO-PI-R (Costa & McCrae, 1992; Goldberg et
al., 2006). We also evaluated our approach against previous models
in the field and against incentivized human judges.
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Method
NEO-PI-R Data Set

We used data collected by Stillwell and Kosinski (2012) in order to
train and test our predictive model. This data set has responses from
N = 2,749 individuals who used the myPersonality Facebook
application between 2007 and 2012. Personality was measured using
the NEO-PI-R five-factor model (Costa & McCrae, 1992), and for this
reason, we will refer to this data set as the NEO-PI-R data set for the
rest of the article. The five-factor model classifies each participant
along five personality dimensions: Openness to experience (O),
Conscientiousness (C), Extraversion (E), Agreeableness (A), and
Neuroticism (N). The questionnaire contains 100 natural language
items (20 per personality dimension) from the International Personality
Item Pool (IPIP; Goldberg et al., 2006). Each item asks participants to
indicate their agreement with a description on a 5-point Likert scale.
Participants in the NEO-PI-R data set completed all 100 items. See
Table 1 for a summary of data set characteristics.

Comparison With Human Judges

We compared our model’s performance with that of incentivized
humans that were given an identical prediction task (i.e., predicting a
participant’s NEO-PI-R ratings on 10 test items using their ratings
on 90 training items). There were 2,749 participants and 10 cross-
validation folds per participant in the NEO-PI-R data set, generating
27,490 distinct prediction tasks for our model. Since collecting
human predictions for so many tasks was not feasible, we compared
model versus human performance on a subset of participants from
the original study. Specifically, we conducted two human rating
experiments, which prioritized depth (i.e., a detailed analysis of
target-level human accuracy that reduces noise on the target-level
estimates) and breadth (i.e., covering a broad range of model
performance to maximize representativeness), respectively.

Depth Experiment. For our first experiment, we selected three
target participants out of the 2,749 participants from the NEO-PI-R
data set based on the predictive accuracy of our main SBERT model
(details in the Results section). Specifically, we selected one target
participant for whom our model performed well (75th percentile
accuracy out of all participants), one participant for whom our model
performed moderately (50th percentile accuracy), and one partici-
pant for whom our model performed poorly (25th percentile
accuracy). The 100 responses of each of these three target

Table 1

participants were divided into the same 10 folds as used in the
cross-validation analysis for model training and evaluation,
resulting in a total of 30 tasks for our human judges.

We collected a sample of 600 human judges (41.83% female;
M,y = 36.17) from Prolific Academic for this part of Study 1. Each
human judge was randomly assigned to one task leading to 20 judges
per task, reducing noise and allowing for rigorous tests of target-level
human accuracy. In the training phase of the task, the human judge
first viewed a target participant’s responses to 90 NEO-PI-R survey
questions one at a time and then in the testing phase, they predicted
the target participant’s responses to the remaining 10 NEO-PI-R
survey questions in the testing fold. Each participant received $2 for
completion. We also incentivized participants by giving a bonus
payment of $1 to those whose predictive accuracy was in the top 10%
among all judges. We preregistered this study at https://aspredicted
.org/dx4dn.pdf.

Breadth Experiment. Our second experiment obtained human
ratings for 60 target NEO-PI-R participants. We chose the target
participants corresponding to the Oth—-100th percentiles of model
predictive accuracy in equidistant steps (e.g., Oth, 1.5th, 3rd, 4.5th
percentile accuracy). This way, our sample of target participants
covered a broad range of our model’s predictive accuracy allowing
for a more representative comparison of the model and human
performance (i.e., comparing human predictions to several bad,
average, and good model predictions). We collected a sample of 600
human judges (45.5% female; M, = 38.85) from Prolific Academic.
All other aspects of the design were identical to the depth experiment,
except for the fact that there were 600 tasks (60 target participants X
10 cross-validation folds) leading to only one human judge per task.

Results
Model Performance

We found the best-performing model using SBERT embeddings
to be the K-NN regression with K = 5 (see Table A1 for a full model
comparison). Intuitively, this model finds the K = 5 training items
that have the most similar embeddings to the test item and then
averages the participant’s rating on these items to predict their rating
of the test item. For Word2Vec and LIWC embeddings, we found
the best-performing model to be SVC with C = 10 and ridge
regression with a = 10, respectively.

The best-performing SBERT model achieved an average
correlation of .45 in predicting out-of-sample ratings, one-sample

Key Characteristics of Each Questionnaire Used in This Article

Data set No. of items No. of participants No. of constructs Reverse coded
Study 1 NEO-PI-R 100 2,749 5 Yes
Study 2A 16PF 163 49,159 16 Yes
Study 2B RIASEC 48 135,764 6 No
Study 2C HSQ 32 590 4 Yes
Study 3 IPIP 3,653 161 242% Yes®

Note.

The reverse coded column refers to whether the questionnaire involves reverse-coded items that

have negative loadings onto the construct. NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16
Personality Factors; RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional;
HSQ = Humor Styles Questionnaire; IPIP = International Personality Item Pool.

#For the IPIP, information regarding constructs and directions was only available for 1,932 items out of

3,653 items.
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t test against zero means: #(2,747) = 158.09, p < .001, 95% CI [.45,
.46]. As can be seen in Figure 2A, the models with the Word2Vec and
LIWC embeddings achieved much lower performances than the
model with the SBERT embeddings, with average correlations of .13,
#2,747) = 51.68, p < .001, 95% CI [.12, .13], and .10, #2,747) =
3543, p < .001, 95% CI [.01, .11], respectively. This indicates
SBERTs superiority in quantifying item representations. In Figure 2B,
we present the distribution of correlations across participants. Here,
we can see that the SBERT model achieved a significant (p < .05)
positive correlation for the vast majority (94.2%) of participants. By
contrast, the Word2Vec and LIWC models achieved significant
positive correlations for a much smaller proportion of participants
(30.2% and 28.0%, respectively).

Comparison With Human Judges

To contrast our model’s performance against human judges, we
calculated the judges’ performance as the correlation between the
predicted item responses and the observed item responses for each
test fold on each target participant. Specifically, for the ith target
participant (i = 1, 2, 3) and the kth fold (k =1, 2 ..., 10), we
calculated the human prediction for the 10 items in the fold. These
10 predictions were then compared with the observed ratings of the
target participant to generate a fold-level Pearson’s correlation. We
calculated the K-NN SBERT model’s performance analogously.

Figure 3A shows that our method’s performance, in our depth
experiment, was on par with that of human judges. The average
correlation across 10 testing folds of our model for the 75th
percentile target was .61, one-sample 7 test against zero mean: #9) =
9.75, p < .001, 95% CI [.47, .75]; 50th percentile target was .46,
1(9) = 4.86, p < .001, 95% CI [.24, .67]; and 25th percentile target
was .38, #(9) = 4.07, p = .003, 95% CI [.17, .59]. Meanwhile, the
average correlation of 200 human judges for the 75th percentile
target was .43, 1(199) = 17.51, p < .001, 95% CI [.38, .47]; for the
50th percentile target was .58, #(199) =31.54, p < .001,95% CI [.54,
.62]; and for the 25th percentile target was .39, #(199) = 17.8, p <
.001, 95% CI [.34, .43].

In total, the average correlation across all three targets was
slightly better for our model: .48, #29) = 9.57, p < .001, 95% CI
[.38, .59], versus .47, #(599) = 36.09, p < .001, 95% CI [.44, .49],
though not statistically distinguishable; Welch’s two-sample ¢ test,
independent samples: #32.92) = —0.32, p = .751. Notice that the
error bars were larger for our models relative to the human judges as
its correlations were averaged across only 10 values (one value for
each of 10 testing folds), instead of 200 values for human judges (20
judges for each of 10 testing folds).

Figure 3B shows the SBERT model’s performance and the
human judges’ performance for each of the 30 tasks in the depth
experiment (10 distinct testing folds, for three target participants).
Here we see that the model performance was roughly equal to the
human performance across the tasks. Note that there was one outlier
condition for the 50th percentile target, for which our model
achieved a correlation of —.26, r(8), p = .47, whereas human judges
achieved an average correlation of .57, one-sample ¢ test against zero
mean: #(19) = 10.53, p < .001, 95% CI [.46, .68]. The outliers seem
to be driven by contradictory statements in the conscientiousness
training items (high and low), which led to neutral predictions of
these items. It could be that the human judges were less sensitive
to these contradictions because they ignore contradicting facets
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(e.g., using only the most relevant facet) or use their expectations
regarding social faking. This explains the slight underperformance
of our model for the second (50th percentile) target.

Regarding the second, breadth-focused experiment, Figure 4 shows
that our method’s performance was, again, on par with that of human
judges and that the overall distribution of prediction performance
across experimental conditions was similar. Specifically, the average
correlation across all experimental conditions was .47, #(598) = 38.39,
p < .001, for our model, and .49, #(598) = 36.375, p < .001, for the
human judges. The difference between model and human perfor-
mance was statistically nonsignificant, Welch’s two-sample ¢ test,
independent samples: #(1183.06) = 1.08, p = .28.

Importantly, Figure SA and 5B shows that the performances of
both our model and the human judges were not driven by outliers.
For example, Figure 5A shows that most of the model and human
performance is positive (>90%), with the majority being larger than
.50. Figure 5B shows that the performances on most targets are very
similar (close to the dashed line/equality). The figure further shows
that model and human performance strongly correlated, r(58) = .76,
p < .001, indicating that the prediction problems were similar for
both model and humans (i.e., targets that were easy to predict for our
model were also easy to predict for humans).

Discussion

Study 1 tested our approach to predicting participant responses on
out-of-sample personality items, using a large existing data set of
NEO-PI-R ratings. It found that sentence embeddings obtained from
SBERT (a leading deep language model optimized for encoding
semantic similarity between sentences) were able to predict out-of-
sample participant responses with an average correlation of .45. To
interpret our accuracy rates, we can contrast our results with
previous predictive models of five-factor responses. L. Liu et al.
(2016) achieved a maximum correlation of .19 using social media
profile picture features; Golbeck (2016) reported a correlation of up
to .24 using texts from participants’ public Facebook posts; and
Youyou et al. (2015) showed an average correlation of up to .56
using a large amount of a person’s Facebook likes. Our approach
differed from these tests in two ways. First, we predicted responses
for out-of-sample items, whereas all prior tests predicted responses
for out-of-sample individuals. Second, we predicted responses at the
item level, instead of the average personality scores on a construct
(e.g., an Openness score). There is much higher variability in
responses on the item level, making our prediction problem
significantly harder. Finally, it should be noted that the performance
metrics for L. Liu et al. (2016) and Golbeck (2016) reported
above were the metrics for the best-performing constructs (e.g.,
Agreeableness for Golbeck (2016)) and not the average performance
across all items as reported for our method. For this reason, we
can conclude that our prediction exercise was quite successful,
especially relative to past work on personality prediction.

We also tested various machine learning models for predicting
responses from SBERT embeddings. Here we found that a K-nearest
neighbors regression with K = 5 performed the best. This model
predicts the rating for an out-of-sample item by finding the five
training items with the highest similarity and then averaging the
participant’s ratings for those items. The superiority of the K-NN
algorithm over alternate models like the ridge regression indicates
that the mapping between item embeddings and participant ratings
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Figure 2
Prediction Accuracy of the K-NN SBERT Model Versus Baselines for All Data Sets
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We measured the prediction accuracy of each model by calculating the correlation between the model’s
predicted and observed out-of-sample responses for each participant. The average correlation across all participants is
reported in the left panel of each questionnaire (error bars correspond to 95% CI for the average correlation). The
distribution of correlations across all participants is reported in the right panel. K-NN = K-nearest neighbor; SBERT =
Sentence-Bidirectional Encoder Representations from Transformers; LIWC = Linguistic Inquiry and Word Count;
NEO-PI-R =NEO Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC = Realistic, Investigative,
Artistic, Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire; IPIP = International Personality
Item Pool; CI = confidence intervals. See the online article for the color version of this figure.
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Figure 3
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Prediction Accuracy of the K-NN SBERT Model Versus Human Judges
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The performances of the two were tested on the personality ratings of three target participants. Panel (A) shows the average correlations

between predictions and observed responses across experimental conditions. The 95% Cls are reported as error bars. For each target participant, the
reported correlation was averaged across the N = 200 human rating correlations and N = 10 model prediction correlations. Panel (B) shows correlations
of predictions and observed responses for each of N = 30 experimental conditions. Each point in the plot refers to the performance of our model (y-axis)
and the average human judge (x-axis). The points were grouped by target participant (color). The plot shows that our model performance was
comparable to that of human judges. K-NN = K-nearest neighbor; SBERT = Sentence-Bidirectional Encoder Representations from Transformers; CI =
confidence interval. See the online article for the color version of this figure.

may be nonlinear. K-NN can successfully capture these nonlinea-
rities, as it uses only the local structure of input space (five nearest
neighbors) to predict responses.

We also found that SBERT provided better item representations, and
subsequently higher predictive power, than embeddings obtained from
Word2Vec (a prominent word representation model) and LIWC (a
common approach to extracting psychological variables from text).
The superiority of SBERT over Word2Vec and LIWC indicates that
the context and sentence structure (e.g., word order, syntax) of a
personality item plays an important role in specifying its meaning and

Figure 4

that averaging embeddings for the words in the item (as with
Word2Vec) or counting up the words associated with various
psychological variables (as with LIWC) is not enough for capturing the
psychological richness of the item. Prior work has used word
embeddings for scale creation, for example, tasks such as item selection
(Arnulf et al., 2014; Evans et al., 2022; Garcia et al., 2020; Rosenbusch
etal., 2020). Our results show that it may be possible to improve on this
work by using SBERT embeddings to measure item similarity.
Finally, and perhaps most importantly, we ran two experiments in
which we elicited incentivized personality predictions from human

Comparison of Our Method With Incentivized Human Judges
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The performances of the human judges and our model were tested on the personality ratings of 60 targets

from the original questionnaire data sets. The plot shows the average correlations between predictions and
observed responses across all experimental conditions with 95% CI as error bars. The figure shows that our
model’s performance is on par with incentivized human judges across all questionnaires. NEO-PI-R = NEO
Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC = Realistic, Investigative, Artistic,
Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire; CI = confidence interval. See the

online article for the color version of this figure.
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Figure 5

Detailed Performance Overview of Our Model and Incentivized Human Judges
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Detailed analysis of our model’s and human judges’ performance. The left column shows the distribution of prediction accuracy—the

correlation between predicted and observed personality ratings—across all experimental conditions for both human judges and our model. The
distribution plots indicate similar performance for our model and human judges. The right column shows correlations of predictions and
observed responses for each of the 60 targets (averaged across all test folds). Each point refers to the performance of our model (y-axis) and the
average human judge (x-axis) for a specific target and test fold. The dashed line represents equality. The figures show that our model performance
was comparable to that of human judges (close to the dashed line) and that neither performance was driven by outliers. NEO-PI-R = NEO
Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional;
HSQ = Humor Styles Questionnaire. See the online article for the color version of this figure.
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judges. The first of these was a depth experiment, which obtained a
large number of human predictions for each cross-validation task
performed by our model but used only three NEO-PI-R target
participants. The second was a breadth experiment that used a much
larger set of NEO-PI-R participants but obtained a smaller number of
human predictions per cross-validation task. Both these experiments
showed that our model performed equivalently to human judges,
indicating that it is as good at out-of-sample personality prediction as
humans. Additionally, we found that human and model predictions
were highly correlated with each other (r = .76), indicating that target
participants that were easy or difficult for humans to predict were also
easy or difficult for the model to predict. This provides strong
evidence for the capabilities of our model and, in particular, the
quality of its representations for the items that make up the NEO-PI-R
survey.

Studies 2A-C

Overall, Study 1 shows that deep language models provide high-
quality quantitative representations for NEO-PI-R personality items
and that the similarities between these representations can be used
to predict responses for out-of-sample items with a human level
of accuracy. In Studies 2A-C, we tested whether our model’s
performance generalizes beyond the NEO-PI-R to three other
personality questionnaires: 16PF (16 Personality Factors; H. E. P.
Cattell & Mead, 2008) in Study 2A, RIASEC (Realistic, Investigative,
Artistic, Social, Enterprising, Liao et al., 2008) in Study 2B, and HSQ
(Humor Styles Questionnaire, Martin et al., 2003) in Study 2C. This
diverse conceptualization and structure of personality allowed us to
test the generalizability of our model.

Method
Data Sets

We used data collected from the Open Source Psychometrics
Project (https://openpsychometrics.org/_rawdata/) for the 16PF
questionnaire (N = 49,159 participants), RIASEC questionnaire
(N = 135,764 participants), and HSQ questionnaire (N = 590
participants). These questionnaires had 163, 48, and 32 items,
respectively, and each participant rated each item on a 5-point Likert
scale. See Table 1 for a summary. We selected these three data sets
(and not others in the Open Source Psychometrics Project), as they
are all multiconstruct Likert-scale questionnaires with at least 500
responses, covering diverse topics and involving diverse constructs.
For instance, the 16PF questionnaire is another hierarchical
personality model based on the lexical hypothesis (Rossier et al.,
2004), similar to the NEO-PI-R. However, the 16PF hierarchical
structures were designed using a bottom-up structure (identifying 16
primary factors and then five higher level dimensions) as opposed to
the NEO-PI-R’s top-down approach (identifying five higher level
dimensions and then 30 lower level facets). The 16PF questionnaire
contains the following constructs: Warmth (A), Reasoning (B),
Emotional stability (C), Dominance (E), Liveliness (F), Rule-
consciousness (G), Social boldness (H), Sensitivity (I), Vigilance
(L), Abstractedness (M), Privateness (N), Apprehension (O),
Openness to change (Q1), Self-reliance (Q2), Perfectionism (Q3),
and Tension (Q4; Rossier et al., 2004). The RIASEC questionnaire
describes personality through preferences and aversions that
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influence the choice of work environments (and environments
through typical work activities and demands placed on individuals).
The questionnaire contains six personality dimensions (and parallel
environments): Realistic (R), Investigative (I), Artistic (A), Social (S),
Enterprising (E), and Conventional (C), collectively called RIASEC
(Armstrong et al., 2008). Finally, the HSQ describes personality
through different styles of using humor, containing the dimensions of
Self-enhancing, Affiliative, Aggressive, and Self-defeating (Martin et
al., 2003). As such, the HSQ uses a conceptualization of humor as a
stable multidimensional aspect of personality (Lopez & Snyder,
2003). Validation studies have further shown that the HSQ
dimensions (humor styles) correlate with other established personal-
ity measures, such as the NEO-PI-R dimensions (Martin et al., 2003).

Comparison With Human Judges

Analogous to Study 1, we compared our model’s performances
on the above questionnaires with that of human judges incentivized
to make accurate predictions. We collected a sample of 600 judges
for each of the questionnaires (16PF: 62.00% female, Mo, = 39.71;
RIASEC: 51.33% female, M,,. = 42.41; HSQ: 50.83% female,
M,g. = 40.60). All test procedures were the same as the breadth
experiment in Study 1. In particular, human judges predicted the
responses of 60 target participants from the original questionnaire
data sets (i.e., target participants for which our model performance
ranged from the Oth percentile to the 100th percentile). Each judge
was given one of the model’s cross-validation tasks, in which they
used 90% of the target’s responses (training fold) to predict the held-
out 10% of their responses (test fold). We incentivized participants
by giving a bonus payment of $1 to those whose predictive accuracy
was in the top 10% among all judges.

Results and Discussion

Figure 2C-H shows that the out-of-sample predictive perfor-
mance of the SBERT method persisted for these questionnaires,
with average correlations of .39, #(49,158) = 585.49, p < .001, 95%
CI [.39, .39] for 16PF in Study 2A; .35, #(135,763) = 594.91, p <
.001, 95% CI[.35, .35] for RIASEC in Study 2B; and .34, #(589) =
33.21, p <.001,95% CI[.32, .36] for HSQ in Study 2C. Overall, our
SBERT model achieved significant (p < .05) positive correlations
for 93.3%, 51.4%, and 64.7% of participants in the three studies,
respectively. Consistent with Study 1, our method outperformed
alternative baseline models that use the Word2Vec and LIWC
embeddings. These models achieved much lower correlations than
SBERT in all three studies (though note that the performance of the
Word2Vec method was very close to that of SBERT in Study 2B).

Furthermore, Figure 4 shows that the average out-of-sample
predictive performance of our method was, for all questionnaires, on
par with that of human judges incentivized to make accurate
predictions. The average correlation across all experimental
conditions for the 16PF was .40, #(598) = 37.02, p < .001, 95%
CI [.37, .42], for our model, and .39, #(598) = 33.60, p < .001, 95%
CI [.37, .42], for the human judges. For the RIASEC, it was .38,
#(598) = 18.29, p < .001, 95% CI [.34, .42], for our model, and .32,
#(598) = 14.72, p < .001, 95% CI [.28, .37], for the human
judges. For the HSQ, it was .42, #(598) = 15.30, p < .001, 95% CI
[.37, .48], for our model, and .42, #(598) = 15.86, p < .001, 95% CI
[.36, .47], for the human judges. Our model performed slightly better
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than the human judges, albeit statistically nonsignificant for the
16PF; Welch’s two-sample 7 test, independent samples: #(1152.59) =
—0.08, p = .94; RIASEC: #1060.20) = —1.95, p = .05; and HSQ:
1(995.83) = —.18, p = .86. Figure 5SC-H shows that most of the
model and human performance is positive. The scatterplots show no
outliers in model/human performance, except a single outlier for the
16PF, for which our model performs significantly worse than human
judges (—1.0 vs. .02). This outlier did not influence any of our results
and model and human performance strongly to moderately
correlated for all questionnaires; 16PF: r(58) = .70, p < .001;
RIASEC: r(58) = .53, p < .001; HSQ: r(58) = .46, p < .001,
indicating that the prediction problems were similar for both model
and humans.

Overall, the results of Studies 2A—C show that the success of our
approach is not specific to the NEO-PI-R but instead generalizable to
other common and less common questionnaires used in personality
research.

Study 3

Although Studies 1 and 2A—C provide evidence for the power of
our approach, each of these studies uses a single personality
questionnaire, composed of a small set of curated items. As a more
challenging test, Study 3 examined whether our method could
achieve good performance on a large and unconstrained collection
of items, spanning a diverse set of domains and constructs, as well as
grammar and phrasing structures. For this, we collected a new data
set of personality ratings of over 3,500 different items taken from the
IPIP (Goldberg et al., 2006).

Method

One hundred sixty-one participants (62.30% female; My, =
19.88) were recruited through the university’s undergraduate subject
pool. We selected the sample size for this study to ensure that we
have data from at least 150 participants to evaluate our approach.
Participants indicated at the beginning of the study if they wanted to
answer one, two, or three blocks of approximately 300 items (each
for a fixed amount of study credit). These items were sampled from a
larger set of 3,563 personality items, all available items at the time of
data collection in 2019, taken from the IPIP (Goldberg et al., 2006).
The IPIP is a very large, broad collection of personality items across
a multitude of different scales and constructs. It covers items from
36 distinct scales, involving 242 distinct constructs. For example,
the IPIP includes constructs such as Tolerance, Adaptability, or
Toughness with items such as “I believe in equality between all
races,” “I adapt easily to new situations,” or “I remain calm under
pressure.” Note that the IPIP lists two item sets, one “total” list with
3,320 items and one ‘“assigned only” list with items that have
information about scales and constructs provided. We obtained
3,563 unique items after merging both lists. Also note that the
number of scales and constructs referred to in this article was taken
from the items that have scale and construct information provided
(see https://ipip.ori.org/ItemAssignmentTable.htm for more infor-
mation). Each item involved responses on a 5-point Likert scale. See
Table 1 for a summary of data set characteristics. Model predictions
for Study 3 participants were obtained using the same methods as in
Studies 2A—C.

Results and Discussion

Figure 21 and J shows that the out-of-sample predictive
performance of the SBERT method persisted for Study 3, with
an average correlation of .37, #(160) =44.24, p < .001, 95% CI [.35,
.38]. Additionally, our SBERT model achieved significant (p < .05)
positive correlations for 99.4% of participants. Finally, as in Studies
1 and 2A-C, our method outperformed alternative baseline models
that use the Word2Vec and LIWC embeddings. Overall, these
results demonstrate the ability of our method to generalize across
constructs and questionnaires, even beyond the standard question-
naire format. In other words, our approach can be used to make
accurate predictions for thousands of different personality items
using only a small set of participant ratings.

Study 4

Studies 1-3 have shown that our approach is able to predict
participant responses to out-of-sample personality items and moreover
do so with a human-level of accuracy. This is likely because the
SBERT semantic space captures the meanings of items in a manner
that corresponds to the distribution of personality traits in the
population. In other words, traits that correlate in the population are
likely to have SBERT embeddings that are highly similar to each
other. In Study 4, we rigorously tested this assumption by using item
embeddings to predict the item’s construct and its direction of loading
on the construct. Note that this test is quite challenging (especially for
the IPIP data), as the model has to learn how to classify items into a
very large number of constructs.

Method

The items for Study 4 were taken from Studies 1—3 and consisted
of the NEO-PI-R, 16PF, RIASEC, HSQ, and IPIP questionnaire (see
Table 1 for a summary). Model training and prediction were done
using a procedure that was similar to that in Studies 1-3. However,
instead of learning to predict participant responses using item
embeddings, our models learnt to predict the questionnaire construct
that the item belonged to. This is a multinomial classification problem
in which the number of categories corresponds to the number of
constructs in the questionnaire. Thus, for example, for the NEO-PI-R
questionnaire, our model attempted to predict whether a held-out item
would fall into the Openness, Conscientiousness, Extraversion,
Agreeableness, or Neuroticism categories. Importantly, it attempted
to do so using only the items’ texts and not human responses to
the items.

We also considered a second model type that was trained to
predict the direction (positive or negative) on which an item loaded
onto a construct (e.g., “I feel comfortable around people” vs. “I keep
in the background” for the Extraversion construct in NEO-PI-R).
We trained this model in a manner that was identical to the first
model but used the items’ directional loading as labels during
classifier training. Note that we did not train this model on the
RIASEC or IPIP data because these questionnaires do not have item
direction codes (RIASEC has only positive directional loadings; the
IPIP data do not provide directional loadings for most items).

To keep the model training procedure consistent across studies and
tasks, we again identified the best-performing machine learning
technique and associated hyperparameters on the NEO-PI-R data set
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for each embedding type (SBERT, Word2Vec, LIWC) and then
applied the respective models and hyperparameters on the remaining
data sets. Note, since the labels in this task reflect a nominal scale
(item construct), we only considered classification and not regression
algorithms from Study 1 (ridge classification, K-nearest neighbor
classification, support vector classification). To get robust estimates
of our model’s out-of-sample performance, we again applied cross-
validation. Analogous to Studies 1-3, we then compared our
predictive model against two alternative embeddings (Word2Vec and
LIWC). To evaluate model performances, for both construct and
direction prediction, we calculated the classification accuracy as the
percentage of correct classifications across all predictions. Note that
the prediction classes, personality constructs, and directional loadings
are balanced for all questionnaires, except the IPIP which has a
nonequal number of items for the different personality constructs.

Results
Semantic Similarity

Before building predictive models of construct classification, we
first examined whether the embedding similarity of pairs of items
from the same construct was (significantly) larger than that of items
from different constructs. We measured the similarities between
items by calculating the cosine similarity of their SBERT embeddings.
We did this for all pairs of items in a questionnaire, then regressing
pairwise item similarity scores onto a binary independent variable
describing whether or not the items came from the same construct.
We also included fixed effects for each of the constructs in these
regressions.

The regression showed a significant positive coefficient for the
in-construct variable for all data sets, except the HSQ: b = 0.03,
1(491) = 1.581, p = .114. Details are presented in Table 2.

A visualization of the results is presented in Figure 6, for the NEO-
PI-R data set (6A), the 16PF data set (6B), the RIASEC data set (6C),
and the HSQ data set (6D). The IPIP data set is omitted from Figure 6
since it has too many constructs (242 in total). The figure shows the
average similarity scores for item pairs grouped by their constructs as
a heat map and indicates that, on average, items that load onto a given
construct are closer to other items that load onto that same construct
relative to items that load onto other constructs. In other words,
personality items, across multiple distinct questionnaires, cohere

Table 2
Regression Results of Items’ Semantic Similarity Over Construct
Origin (Same vs. Different)

Data set b SE 95% CI t P
NEO-PI-R 0.069 0.006 [0.057, 0.081] 11.51 <.001
16PF 0.052 0.006 [0.04, 0.06] 8.35 <.001
RIASEC 0.130 0.010 [0.111, 0.149] 13.58 <.001
HSQ 0.030 0.019 [-0.007, 0.067] 1.58 114
Note. We regressed item pairs’ cosine similarity scores as a function of

whether or not they are from the same construct, with fixed effects for each
of the constructs. Results show that in-construct items significantly predicted
higher cosine similarity scores, except for the HSQ. NEO-PI-R = NEO
Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC =
Realistic, Investigative, Artistic, Social, Enterprising, Conventional; HSQ =
Humor Styles Questionnaire; SE = standard error; CI = confidence interval.

together in stable constructs not only in human data but also in
linguistic meaning.

Figure 6 also shows some high cross-construct similarities. For
example, items from the Agreeableness and Extraversion constructs
of NEO-PI-R are highly similar to each other, as are items from the
Aggressive and Self-defeating constructs of HSQ. However, it
should be noted here that (a) the same-construct similarity is still
higher and (b) our predictive models (in the subsequent analysis) use
high-dimensional item representations and not a single similarity
score to make predictions. As such, these models can use additional
information, such as the exact positions or directions relative to
other items in the embedding space, for predicting an item’s
construct and distinguishing it from other constructs that have
semantically similar items.

Construct Prediction

We found the ridge classification model with a = 1,000 to be the
best-performing model on the NEO-PI-R and applied it on all other
data sets as well. Figure 7A, C, E, F, and H illustrates the results of
the construct prediction task for each questionnaire. Here, we see
that our model achieved very high accuracy rates, outperforming
both a random baseline (which would achieve an accuracy equaling
the proportion of the most frequent construct) as well as the
Word2Vec and LIWC baselines. This indicates that SBERT
embeddings are indeed able to distinguish between same- and
cross-construct items. Interestingly, our model achieved a 25%
accuracy for the IPIP data set, despite the very large number of
constructs (a random model would achieve only 2% accuracy for
this test). Figure 7B, D, and G shows similar results for the direction
prediction task. For this task, we found the ridge classification model
with @ = 10 to be the best-performing model on the NEO-PI-R and
applied it on all other data sets as well. We achieved high accuracy
rates, of up to 100%, across all questionnaires, outperforming every
baseline.

We also analyzed the performance of our models for individual
constructs. Our main model’s prediction accuracy is high across all
constructs with only few exceptions. For instance, the performance
on four of the 16PF constructs (Emotional stability, Social boldness,
Apprehension, and Tension) is low (20%—50%) compared to the
remaining constructs (70%—80%). This might be due to the high
intercorrelation of these 16PF constructs, which were explicitly
designed to be nonorthogonal (Saville & Blinkhorn, 1981). For the
IPIP, our model performed well over a variety of constructs with an
overrepresentation of Interest-related items in the top-performing
constructs and Expressivity-related items in the bottom-performing
constructs.

It should be noted here, however, that the IPIP items stem from a
multitude of scales and as such from a wide range of potentially very
fine-grained constructs with strong conceptual overlap (see, e.g.,
constructs, such as Tolerance, Compassion, Forgiveness, Mercy, etc.).
Therefore, a lower performance of our model on some constructs does
not necessarily indicate a systematic weakness in capturing these
meanings. Indeed, a closer look into the misclassified items reveals
that many were classified as closely related constructs. For instance, “I
find it hard to forgive others” and “I try to forgive and forget” were
misclassified as Forgiveness/Mercy instead of Compassion, and “I
express my affection physically” and “I have difficulty showing
affection” were misclassified as Romantic disinterest instead of
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Figure 6
Average Semantic Similarity Between Items in Each Pair of Constructs
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figure shows a general trend of higher in-construct versus between-construct similarity. NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16
Personality Factors; RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire. See the online

article for the color version of this figure.

Positive expressivity. Similarly, some items that belong to overarch-
ing, higher level constructs are misclassified because there are suitable
lower level constructs and facets that have a closer semantic match.
For example, “I break rules” and “I continue until everything is
perfect” were misclassified as Norm-violation and Perfectionism
instead of Conscientiousness. However, this is not captured by
the accuracy metric, which ignores the closeness of the model’s
misclassifications to the true constructs. Yet, our model was still able
to achieve accuracies several times above baselines indicating our
approach’s broad ability to capture psychological meanings in item
texts, which it can then leverage to make more accurate predictions.

Clustering

In our final analysis, we attempted to interpret the latent structure of
our SBERT item space by clustering embeddings for all 3,653 IPIP
items into a small set of clusters. For this, we used the K-means
clustering algorithm with K = 5, meaning that the items were grouped
into five clusters. Note that this parameter is unrelated to the K in
K-NN regression, which is a regularization parameter expressing how
many responses to similar items (the K most similar ones) are used to
estimate the response to another item. For K-means clustering, K
represents a top-down assumption on the number of clusters in the

data and can be used for theorizing (i.e., by setting the number of
clusters based on theoretical considerations). We chose K = 5 to show
the feasibility of clustering large item sets into small sets of clusters
and for ease of presentation. However, we are not bound to any
specific clustering solution. The resulting clusters are presented in
Table 3, which reports the most frequent traits measured by the items
in the respective clusters. Here, we can see that the clusters reflect
reasonable psychological topics. For instance, Cluster 1 refers to traits
associated with attention problems (e.g., adhd and conscientious-
ness), with exemplary items containing “I felt like I was dreaming
when [ was awake,” “I have been told I am not listening when others
are speaking,” and “I make careless mistakes.” The remaining
Clusters 2, 3, 4, and 5 refer to traits related to mental health (e.g.,
depression and anxiety), integrity (e.g., honesty and humility),
leadership qualities (e.g., organization and leadership items), and
sociality (e.g., sociability and sensation-seeking items), respectively.
Table 4 provides an overview of exemplary items in each cluster.
Although this demonstration is undoubtedly only a preliminary
qualitative analysis, it shows that our approach can be used to
meaningfully cluster large sets of items using only the item texts (see
also Rosenbusch et al., 2020, for a similar test using word
embeddings rather than sentence embeddings). Thus, this method
can be used as a basis for future theoretical work that attempts to
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Figure 7
Prediction Accuracy in the Construct and Direction Prediction Tasks for All Data Sets
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Note. The results show that SBERT item embeddings can accurately capture items’ construct and direction information and subsequently predict these
variables with high accuracy. The baseline value corresponds to the accuracy achieved by a model that predicts constructs and directions randomly or as the
majority class (for the IPIP). SBERT = Sentence-Bidirectional Encoder Representations from Transformers; LIWC = Linguistic Inquiry and Word Count;
IPIP = International Personality Item Pool; NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16 Personality Factors; RIASEC = Realistic,
Investigative, Artistic, Social, Enterprising, Conventional; HSQ = Humor Styles Questionnaire. See the online article for the color version of this figure.

synthesize the very large set of items and behaviors that describe
human personality.

Discussion

While Studies 1—-3 evaluated the utility of SBERT embeddings for
predicting participant ratings, Study 4 attempted to use SBERT item
embeddings to classify items into constructs. Using the question-
naires from Studies 1—3, we found that items from the same construct
were significantly more similar to each other in the SBERT
embedding space than items from different constructs. Additionally,
we found that our machine learning models could accurately predict
both the construct and the loading (positive or negative) of items onto
the construct in a questionnaire. Again, models based on SBERT
embeddings outperformed those based on Word2Vec or LIWC,
showing that SBERT provides a superior representation of item

meaning. Finally, we provided a simple demonstration of the utility of
our SBERT embeddings for construct classification, by clustering all
3,653 IPIP items into a small number of categories based on their
positions in the SBERT embedding space. Together, the tests
conducted in Study 4 show that item embeddings are able to capture
the psychological content of questionnaire items using only their text.

General Discussion

The lexical hypothesis proposes that personality traits that are
important to a group are encoded in words of its everyday language
(Goldberg, 1990; John et al., 1988; Klages & Johnson, 1929). This
hypothesis has provided a theoretical basis for the use of linguistic
descriptors in personality research and, in this way, has guided and
constrained personality research for decades. Expanding on the
lexical hypothesis, we have used a recent deep language model,

Table 3
Summary of the Three Most Frequent Constructs Within Each Identified Cluster
Cluster Trait 1 Trait 2 Trait 3
1 Dissociation Adhd Conscientiousness
2 Depression Anxiety Sentimentality
3 Forgiveness/mercy Modesty/humility Honesty/integrity/authenticity
4 Creativity/originality Organization Leadership
5 Esthetic appreciation/artistic interests Sociability Risk-taking/sensation-seeking/thrill-seeking
Note. We clustered all IPIP items based on their embeddings. The table shows the most frequent traits within each resulting

cluster. Cluster 1 relates to attention problems. Cluster 2 relates to mental health. Cluster 3 relates to integrity. Cluster 4 relates to
leadership qualities. Cluster 5 relates to sociality traits. The results show that we can use embeddings to cast unlabeled items, such
as the ones in the IPIP inventory or newly created items, into reasonable constructs. IPIP = International Personality Item Pool.
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Table 4
Exemplary Items Within Each Identified Cluster
Cluster name Item 1 Item 2 Item 3
1 I felt like I was dreaming when I was awake I have been told I am not listening I make careless mistakes
when others are speaking
2 I am sad most of the time I am generally a fearful person I am easily moved to tears
3 I accept apologies easily I do not call attention to myself I am true to my own values
4 I come up with new ways to do things I supervise the work of others I am good at helping people work
well together
5 I can become tearful thinking of the I am interested in people I prefer friends who are excitingly

goodness of others

unpredictable

Note. We clustered all IPIP items based on the similarity of their vector representations. The table shows exemplary items for each identified cluster. All
items presented belong to the clusters’ most frequent traits as shown in Table 3. The table provides an overview of the specific measures clustered together
based on the semantic relations of the item texts. IPIP = International Personality Item Pool.

SBERT (Reimers & Gurevych, 2019; see also Devlin et al., 2019), to
obtain representations for items in personality questionnaires. SBERT
is trained on large amounts of natural language data and can
accurately represent the meaning of sentences in high-dimensional
embeddings that are sensitive to word order and syntax. We have used
SBERT embeddings, combined with various machine learning
models, to predict participant responses to out-of-sample personality
items from several existing questionnaire data sets: NEO-PI-R
(Stillwell & Kosinski, 2012) in Study 1, 16PF (H. E. P. Cattell &
Mead, 2008) in Study 2A, RIASEC (Liao et al., 2008) in Study 2B,
and HSQ (Martin et al., 2003) in Study 2C. Across these studies, we
have found that the SBERT approach achieves high accuracy rates,
greatly outperforming accuracy rates obtained from baseline models
that represent questionnaire items using either Word2Vec word
embeddings (Mikolov et al., 2013) or LIWC dimensions (Pennebaker
etal., 2015). Word2Vec can capture word meaning but does not take
into account the structure and word order in personality items.
Likewise, LIWC uses word frequency statistics to categorize items on
several psychological variables but does not encode additional
nuances in the meanings of the items. The superior performance of
SBERT relative to Word2Vec and LIWC highlights the importance
of sentence embeddings for capturing the meanings of personality
items and the overall value of recent advances in deep learning and
natural language processing for the prediction of human personality.

Studies 1 and 2A—C have used existing personality questionnaires
to measure model accuracy. To test whether our approach can also
apply to a larger unconstrained set of personality items, we collected
new data in Study 3, in which we offered over 3,500 personality
items from the IPIP (Goldberg et al., 2006) to human participants.
As with our previous studies, we found that our approach
successfully extrapolates personality ratings and predicts people’s
responses even when test items involve diverse domains and
different types of constructs. This illustrates the broad applicability
of our method for personality prediction.

In Studies 1 and 2A-C, we also compared the performance of our
approach to incentivized human judges that were given an identical
prediction task. We found that our approach achieved similar
performance to human judges, indicating that the accuracy levels
documented in this article match the accuracy levels that can be
obtained by humans. Additionally, there was a high correlation
between human accuracy and model accuracy in all studies,
indicating that target participants that were easy or difficult to
predict by human judges were also easy or difficult to predict by the

model. This provides strong evidence that our model is able to
represent the meanings of personality items in a human-like manner.

In Study 4, we directly tested whether the SBERT assigned similar
representations to closely related personality traits. We found that
this was indeed the case, with items belonging to the same construct
being given similar embeddings. For this reason, our approach was
able to predict the construct that an item belonged to and could even
describe how an item loaded onto its construct. Again, SBERT was
much better at construct prediction than Word2Vec and LIWC.
SBERT was also able to generate interpretable clusters of IPIP items
in a bottom-up manner, indicating that it can be used for scale
construction and construct delivery.

The success of our approach has implications for the representation
and measurement of personality. Prior research has represented a
person’s personality using a collection of linguistic descriptors. For
example, a person may be described as being high in extraversion,
where extraversion is specified as a set of sentences or trait words. We
show that these linguistic descriptors can themselves be assigned
quantitative representations. Thus, we are able to represent an
individual using a collection of points (corresponding to the
personality items they rate highly) in a high-dimensional space.
Thus, even though the embeddings used in our analysis are the
representations of the language models, since these language models
represent the meanings of sentences, and sentences are (in accordance
with the lexical hypothesis) used to represent personality, the
embeddings by proxy also become representations of personality.
The advantage of these quantitative representations is that they also
inherently express the relationship between items and constructs (e.g.,
via distance metrics in the embedding space), as shown in the
construct prediction and the clustering tasks.

Testing whether our approach extends to other psychological
variables is an important topic for future work. For example, life
satisfaction is a variable associated with several personality traits
(Schimmack et al., 2002, 2004, Steel et al., 2008). The study of the
interplay between life satisfaction and personality currently involves
regressing participants’ ratings of life satisfaction on a small handful
of personality dimensions (e.g., those from the five-factor model).
Instead, using our approach, we could use a participant’s position in
our language space as a predictor, by treating each individual as the
sum of the embeddings of the items that they rate highly. The high
dimensionality of this representation could lead to more accurate
predictions and shed light on the specific personality items (i.e.,
regions of embedding space) that correlate with life satisfaction (see
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Nimon et al., 2016, for a related analysis). Of course, similar
analyses could be attempted with other important psychological
variables, as well as socioeconomic, neural, and even genetic
variables (Ayoub et al., 2018; Kennis et al., 2013; McGue et al.,
1993; Sugiura et al., 2000; Vukasovi¢ & Bratko, 2015). Attempting
such an analysis is a fruitful topic for future work.

Our approach is complementary to recent work that attempts to
model personality using high-dimensional feature vectors for
individuals obtained from their social media activity (Bleidorn &
Hopwood, 2019; Kosinski et al., 2013; Park et al., 2015; Stachl et al.,
2021). By featuring individuals, these researchers can successfully
predict responses to personality surveys for out-of-sample individuals.
For example, it is now possible to determine, based only on a person’s
social media activity, whether a person will be high or low on
extraversion. While social media analyses focus on predicting out-of-
sample individuals, we show that it is also possible to predict out-of-
sample personality items. By combining the two approaches, it may
even be possible to predict responses of out-of-sample individuals
to out-of-sample items. If successful, this would help personality
researchers characterize arbitrary individuals on arbitrary traits and
thus open the door to several new types of quantitative behavioral
analyses (see Vu et al., 2020, for recent work demonstrating the
feasibility of this analysis). However, these approaches need to be
carefully balanced with ethical considerations. Researchers applying
our methods must ensure strict observance of informed consent, opt-
out of data usage, and especially data anonymization to prevent out-of-
sample participant predictions from being applied on unwilling
participants (e.g., by collecting their online data) and out-of-sample
item predictions from being applied on sensitive items that participants
refuse to answer (e.g., questions on sexual orientation).

Quantifying personality items, as we have done in this article, also
has value beyond prediction. For example, we have shown that our
methods can be used to infer high-level constructs associated with
unlabeled personality items and even cluster large sets of items into a
smaller set of constructs. Importantly, this method does not require
participant data, making it easily scalable to tens of thousands of
personality items. This method has particular value for survey design.
For example, it would be possible to optimize the set of personality
items used in a given survey, by selecting personality items from
distinct regions of language space, thereby maximizing the
information acquired in a survey (Arnulf et al., 2014; Evans et al.,
2022; Garcia et al., 2020; Rosenbusch et al., 2020). Similar optimal
experimental design methods have been proposed in other areas of
psychology (e.g., Myung & Pitt, 2009) and can be extended to
personality research, as we are now able to quantitatively represent
the stimuli used in personality experiments (see Yarkoni, 2010).

It should be noted here that our approach relies on data exclusively
collected from Western samples. The overreliance on so-called
WEIRD (Western, educated, industrialized, rich, democratic) samples
for psychology research has been criticized and previous research
found that many fundamental cognitive and affective processes differ
across populations (see Henrich et al., 2010). Similarly, the language
models used to create quantitative item representations are based on
the language use of mostly WEIRD populations in English. Different
populations and languages might have different linguistic conceptua-
lizations of personality that, following the lexical hypothesis, should
map better on these populations’ personalities (see Laajaj et al., 2019,
for difficulty accessing personality traits using WEIRD-based
questionnaires). As such, our models could be WEIRD-skewed
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and mask potential group-specific differences in personality traits.
This gives reason for caution against an unreflective use of our models
and should motivate researchers to consider language models trained
on non-WEIRD corpora. For instance, ParsBERT (Farahani et al.,
2021) and ARBERT/MARBERT (Abdul-Mageed et al., 2021) are
BERT-based monolingual language models trained on Persian and
Arabic corpora and subsequently outperform multilingual language
models usually used for these languages, such as multilingual BERT
(Devlin et al., 2019) or Cross-lingual Language Model based on A
Robustly Optimized BERT Pretraining Approach (Conneau et al.,
2020). However, the cultural bias in the language models is also an
opportunity to quantitatively study group differences using this
framework. For instance, to what extent do item representations based
on different languages or language use of different populations differ?
Do cultural perceptions and connotations of personality in language
map onto measurements of personality? Another potentially fruitful
line of research could incorporate current debiasing efforts of
language models (e.g., Barikeri et al., 2021; Lauscher et al., 2020;
Liang et al., 2020) into this approach. Reducing cultural biases in
language models could help increase model performance and
generalizability to non-WEIRD populations.

Finally, the applicability of our approach is not limited to
personality research. For example, it would be possible to apply an
identical research pipeline to predict emotion and well-being, using
the thousands of items across hundreds of survey questionnaires and
well-being dimensions, that have been proposed in prior research
(Linton et al., 2016). A similar approach could be applied to the
prediction of risk preferences, organizational attitudes, and health
judgments (Aka & Bhatia, 2022; Bhatia, 2019; Bhatia et al., 2022;
Gandhi et al., 2022; Singh et al., 2022). More generally, survey-based
research is a central component of many areas in the behavioral and
cognitive sciences, including health, clinical, consumer, and
managerial psychology. We show that it is possible to accurately
quantify the language in surveys with deep networks, providing
researchers with mathematical representations for verbal constructs
and items. We look forward to future work that extends our approach
to alternate domains in the behavioral sciences, thereby facilitating
not only more accurate prediction but also more rigorous scientific
theorizing.
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Appendix

Overview of Hyperparameter Tuning in Study 1

Table Al
Prediction Accuracy on the NEO-PI-R Data Set for Models Using SBERT
Embeddings

No. Model Hyperparameter Correlation 95% CI
1 Ridge classification a=1 34 [.33, .34]
2 a=10 34 [.33, .35]
3 a =100 37 [.36, .37]
4 a = 1,000 41 [.41, .42]
5 a = 10,000 35 [.34, .35]
6 Ridge regression a=1 .38 [.37, .38]
7 a=10 .38 [.37, .39]
8 a =100 41 [.40, .41]
9 a = 1,000 45 [.44, .45]

10 a = 10,000 27 [.26, .27]

11 K-NN classification K=1 37 [.37, .38]

12 K=5 41 [.40, .41]

13 K=10 .38 [.37, .38]

14 K=15 37 [.37, .38]

15 K =50 .20 [.19, .21]

16 K-NN regression K=1 37 [.37, .38]

17 K=5 45 [.45, .46]

18 K=10 42 [.41, .42]

19 K=15 40 [.40, .41]

20 K =50 .14 [.13, .14]

21 svC C=1 41 [.40, .41]

22 Cc=10 43 [.43, .44]

23 C =100 43 [.43, .44]

24 C = 1,000 43 [.43, .44]

25 C = 10,000 43 [.43, .44]

Note. This table compares the accuracy of different machine learning techniques over a
range of hyperparameters. Accuracy is measured in terms of average correlation across N =
2,749 study participants. The best-performing model (K-NN regression, K = 5), which has
been bolded, was applied to other questionnaires: 16PF, RIASEC, HSQ, and IPIP in Studies 2
and 3. All correlations are significantly different to zero at p < .001, with Bonferroni corrected
significance level of .002. K-NN = K-nearest neighbor; SBERT = Sentence-Bidirectional
Encoder Representations from Transformers; SVC = Support Vector; CI = confidence
interval; NEO-PI-R = NEO Personality Inventory-Revised; 16PF = 16 Personality Factors;
RIASEC = Realistic, Investigative, Artistic, Social, Enterprising, Conventional; HSQ =
Humor Styles Questionnaire; IPIP = International Personality Item Pool.
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