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ABSTRACT

A recent paper by L. Zheng [Phys. Plasmas 30, 042515 (2023)] presented a critical analysis of standard Lie-transform perturbation theory
and suggested that its application to the problem of charged-particle motion in a magnetic field suffered from ordering inconsistencies. In the
present Comment, we suggest that this criticism is unjustified and that standard Lie-transform perturbation theory does not need to be modi-

fied in its application to guiding-center theory.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0167236

In a recent paper, Zheng' suggested that when standard Lie-
transform perturbation theory” is applied to the guiding-center theory
of charged-particle motion in a magnetic field,”~ ordering inconsisten-
cies arise. Unfortunately, Zheng never defined an ordering parameter
(denoted € in the present Comment) in his critique of standard Lie-
transform perturbation theory and, here, it is argued that his proposed
modification of Lie-transform perturbation theory is completely
unnecessary.

In guiding-center theory,”” the mathematical construction of the
magnetic moment relies on the space-time scales (L, @) of the con-
fining magnetic field B = Bb to be long compared to the characteristic
gyroradius p and the gyroperiod Q™' = mc/eB, respectively, leading
to the small dimensionless small parameter”

6BE:D/I/B’\"(U/£2<<13 (1)

which is also used in Zheng’s paper. While this dimensional parameter
makes physical sense, it is not an ordering parameter per se to be used
in a perturbation expansion.

In early formulations of guiding-center theory, ' the dimen-
sional ratio m/e was proposed as an ordering parameter in deriving
guiding-center equations of motion, which is consistent with Eq. (1),
ie., g o< m/e. In previous Hamiltonian guiding-center models,”' >
on the other hand, a dimensionless ordering parameter € was intro-
duced either as a mass renormalization m — em'” or as a charge
renormalization e — e/e,”' " so that the dimensional ratio m/e
— em/e is indeed considered small in both cases (i.e., eg ~ €). These

renormalization orderings can then form the basis for a well-defined
perturbation-expansion analysis of charged-particle motion in a mag-
netic field by Lie-transform perturbation methods.”

Depending on the renormalization ordering used, we can begin
our guiding-center perturbation analysis with the particle Lagrangian,
either expressed according to the charge renormalization as

2
L(x7p):(E—eCA+p) -i(—(e*le(D-l—%), (2)

or, according to the mass renormalization, as

2
L/(X7P):<§A+€P) ~X—(e<1>+e|P|), ©)

2m.

which are simply related as L(x, p) = ¢ 'L’(x, p). We note that since
the time-dependence of the electromagnetic potentials (@, A) is not
relevant to our discussion, it will, therefore, be ignored in what follows.
In addition, while e ~ ¢, these dimensionless parameters play very
different roles, i.e., the particle Lagrangians (2) and (3) are still mean-
ingful in the case of a uniform magnetic field (where ez = 0) or time-
independent electromagnetic fields. Moreover, the ordering parameter
€ is the same dimensionless ordering parameter that appears in the
dimensionless equation of motion ¢x” = %’ x B initially studied by
Kruskal.””

As a result of the Lie-transform perturbation analysis, once again
based on a definite choice for € (independent of €3), the guiding-center

Phys. Plasmas 30, 104701 (2023); doi: 10.1063/5.0167236
Published under an exclusive license by AIP Publishing

30, 104701-1

€2:21:2l €20T 1890100 90


https://doi.org/10.1063/5.0167236
https://doi.org/10.1063/5.0167236
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0167236
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0167236&domain=pdf&date_stamp=2023-10-04
https://orcid.org/0000-0002-0192-6273
mailto:abrizard@smcvt.edu
https://doi.org/10.1063/5.0167236
pubs.aip.org/aip/php

Physics of Plasmas COMMENT

Lagrangian can also either be expressed according to the charge-
. . . 4-6,13,14
renormalization ordering” " as

Lgc(X7pH7:u7C) = (E_ec A+pHB) : X _ch(vaHnu)
+ e (me/e)u(l - R - X), @

where the explicit expression for the guiding-center Hamiltonian Hy,
is not important in what follows, or, according to the mass-
renormalization ordering,13 as

L/gc(xva:#7Z.:) = (§A+6P\\B) ) X_€HgC(X7PH7,U)
+é (mefe)u({ - R - X), (5)

where Lo (X, py, 1, () = e‘lLéc(X,pH,,u, {). In both cases, the
guiding-center Lagrangian is independent of the gyroangle { (up to a
specified truncated order in ¢), and, according to Noether’s theorem,'”
the canonically conjugate gyroaction OLg/ ot = e(mc/e)u is a
guiding-center invariant (up to that specified truncated order). Once
an ordering choice is made (i.e., using either the renormalizations e/¢
or em), the e-expansion of the guiding-center Lagrangian has to be
consistent with this choice. We note that, with the choice e = m
= ¢ = 1 used by Littlejohn,” the guiding-center Lagrangian (4) corre-
sponds exactly to Eq. (29) obtained by Littlejohn4 by Lie-transform
perturbation method, with the substitution ® — ¢ ®.

In the guiding-center Lagrangians (4) and (5), the higher-order
correction —(mc/e)uR* - X involves the vector field," """

R*E’R,Jr%VxB, (6)

which includes the gyrogauge vector field R = Vé, - &, that is
defined in terms of the local fixed unit-vector basis (&;,é,b
=& X &), as well as the term % V x b that modifies the standard
correction 1(b - V x b)b” in order to take into account guiding-
center polarization.”” While this higher-order correction is absent
from Zheng’s work, the gyrogauge vector field R is needed in the
guiding-center Lagrangians (4) and (5) in order to ensure the gyro-
gauge invariance of the guiding-center equations of motion” "~ (i.e., the
guiding-center Lagrangian dynamics should not only be independent
of the gyroangle {, but it should also be independent of how the gyro-
angle is measured in terms of the local perpendicular unit vectors é;
and &;). Hence, a proper guiding-center Lagrangian must, at least,
include the combination { — R - X, which is gyrogauge-invariant*
under the transformation { — {4 /(X), where (X) denotes a
locally defined gyrogauge angle, with R — R+ Vy and { — (
+X - V. The case for time-dependent fields is further discussed in
Refs. 3 and 16, while the importance of the vector field (6) in establish-
ing the faithfulness of the guiding-center representation of particle
orbits in nonuniform magnetic fields was recently demonstrated for
the case of axisymmetric magnetic geometries."*

In his critique of standard Lie-transform perturbation analysis,
and without explicitly displaying the dimensionless ordering parame-
ter ¢ upon which it is to be based, Zheng' mistakenly proceeds to com-
pare the guiding-center Lagrangians (4) and (5), derived with different
renormalization orderings, and concludes that, when the guiding-
center Lagrangian (5) is truncated at first order, the term €*(mc/e)u {

pubs.aip.org/aip/pop

disappears, while the term ¢ (mc/e)u{ remains in the guiding-center
Lagrangian (4), although it is still a second-order term compared to
the lowest order term appearing at ¢ '. However, Zheng seems to be
unaware that the guiding-center Lagrangian (4), which was derived
without Lie-transform perturbation method by Cary and Brizard® in
what Zheng calls the direct method, was also derived by Lie-transform
perturbation method by Littlejohn,” Brizard,” and Tronko and
Brizard."”

More importantly, Zheng argues that, in contrast to the e-ordering
scalings displayed in the guiding-center Lagrangians (4) and (5), the
terms pHB - X and (mc/e) u& must appear at the same order in a
modified guiding-center perturbation expansion, which leads him to
construct a completely unnecessary (and nonsensical) modification of
Lie-transform perturbation theory. However, this modified ordering is
clearly inconsistent with the property of gyrogauge invariance based on
the following argument. First, by momentarily hiding the e-ordering
scalings in Egs. (4) and (5), the guiding-center Lagrangian can be
written as

e - .
Lec(X, pyj, 1, 0) = EAerHb*(mc/e)u’R, - X

+(mf/e)ﬂé—ch(X7PH»ﬂ)7 (7)

where we have combined the gyrogauge-correction term
—(mc/e) WR*, omitted in Zheng’s work," with the spatial components

(e/c)A + pHB. Here, we clearly see that these spatial components satisfy

the following ordering ¢! > 1> ¢."” Hence, after restoring the
e-ordering scalings of the spatial components in Eq. (7), we obtain

e . . .
Lee(X, pys 11, 0) = ;A+pubfe(mc/e),u7{ - X

+ 8 (mefe) u& — Hoe(X, pys 1), (8)

where we have also introduced a dimensionless ordering parameter o
for the gyromotion term (mc/e) 1. Next, we note that the guiding-
center Lagrangian (8) now contains the gyrogauge combination

(mc/e)u(3¢ —eR - X),

which is gyrogauge invariant only if 6 = € (and not 6 =1 as proposed
by Zheng'), i.e., the term (mc/e) uu{ must appear at one order higher
than p”B - X in a perturbation expansion leading to a gyrogauge-
invariant guiding-center Lagrangian theory, based on either Eq. (4) or
Eq. (5). The ordering é = € in Eq. (8) is, therefore, entirely consistent
with the renormalization m/e — em/e of the mass-to-charge ratio
used (either implicitly™” or explicitly”'”) in previous works as the con-
sistent basis for applications of the standard Lie-transform perturba-
tion analysis.

In conclusion, the standard Lie-transform perturbation method”
does not need to be modified in its applications to guiding-center the-
ory4‘(’ and, fortunately, the modified Lie-transform perturbation
method proposed by Zheng' will not be needed in deriving a modified
nonlinear gyrokinetic theory.'® The paper by Zheng' reminds us that
perturbation theory relies on a well-defined dimensionless ordering
parameter € < 1, followed by a rigorous algorithm (e.g., Lie-transform
perturbation theory) that allows terms to be computed at arbitrary
order.
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