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ABSTRACT

A recent paper by L. Zheng [Phys. Plasmas 30, 042515 (2023)] presented a critical analysis of standard Lie-transform perturbation theory
and suggested that its application to the problem of charged-particle motion in a magnetic field suffered from ordering inconsistencies. In the
present Comment, we suggest that this criticism is unjustified and that standard Lie-transform perturbation theory does not need to be modi-
fied in its application to guiding-center theory.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0167236

In a recent paper, Zheng1 suggested that when standard Lie-
transform perturbation theory2 is applied to the guiding-center theory
of charged-particle motion in a magnetic field,3–5 ordering inconsisten-
cies arise. Unfortunately, Zheng never defined an ordering parameter
(denoted � in the present Comment) in his critique of standard Lie-
transform perturbation theory and, here, it is argued that his proposed
modification of Lie-transform perturbation theory is completely
unnecessary.

In guiding-center theory,6,8 the mathematical construction of the
magnetic moment relies on the space-time scales ðLB;x�1Þ of the con-
fining magnetic field B ¼ B b̂ to be long compared to the characteristic
gyroradius q and the gyroperiod X�1 ¼ mc=eB, respectively, leading
to the small dimensionless small parameter6

�B � q=LB � x=X � 1; (1)

which is also used in Zheng’s paper. While this dimensional parameter
makes physical sense, it is not an ordering parameter per se to be used
in a perturbation expansion.

In early formulations of guiding-center theory,7–11 the dimen-
sional ratio m/e was proposed as an ordering parameter in deriving
guiding-center equations of motion, which is consistent with Eq. (1),
i.e., �B / m=e. In previous Hamiltonian guiding-center models,6,12–14

on the other hand, a dimensionless ordering parameter � was intro-
duced either as a mass renormalization m ! �m12 or as a charge
renormalization e ! e=�,6,13,14 so that the dimensional ratio m=e
! �m=e is indeed considered small in both cases (i.e., �B � �). These

renormalization orderings can then form the basis for a well-defined
perturbation-expansion analysis of charged-particle motion in a mag-
netic field by Lie-transform perturbation methods.2

Depending on the renormalization ordering used, we can begin
our guiding-center perturbation analysis with the particle Lagrangian,
either expressed according to the charge renormalization as

Lðx; pÞ ¼ e
�c

Aþ p
� �

� _x � ��1 eUþ jpj2
2m

� �
; (2)

or, according to the mass renormalization, as

L0ðx; pÞ ¼ e
c
Aþ � p

� �
� _x � eUþ �

jpj2
2m

� �
; (3)

which are simply related as Lðx; pÞ � ��1L0ðx; pÞ. We note that since
the time-dependence of the electromagnetic potentials ðU;AÞ is not
relevant to our discussion, it will, therefore, be ignored in what follows.
In addition, while �B � �, these dimensionless parameters play very
different roles, i.e., the particle Lagrangians (2) and (3) are still mean-
ingful in the case of a uniform magnetic field (where �B ¼ 0) or time-
independent electromagnetic fields. Moreover, the ordering parameter
� is the same dimensionless ordering parameter that appears in the
dimensionless equation of motion � �x 00 ¼ �x 0 � �B initially studied by
Kruskal.7,9

As a result of the Lie-transform perturbation analysis, once again
based on a definite choice for � (independent of �B), the guiding-center
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Lagrangian can also either be expressed according to the charge-
renormalization ordering4–6,13,14 as

LgcðX; pjj; l; fÞ ¼ e
�c

Aþ pjj b̂
� �

� _X � HgcðX; pjj; lÞ

þ � ðmc=eÞl _f �R� � _X
� �

; (4)

where the explicit expression for the guiding-center Hamiltonian Hgc

is not important in what follows, or, according to the mass-
renormalization ordering,12 as

L0gcðX; pjj; l; fÞ ¼
e
c
Aþ � pjj b̂

� �
� _X � �HgcðX; pjj; lÞ

þ �2 ðmc=eÞl _f �R� � _X
� �

; (5)

where LgcðX; pjj; l; fÞ � ��1L0gcðX; pjj; l; fÞ. In both cases, the

guiding-center Lagrangian is independent of the gyroangle f (up to a
specified truncated order in �), and, according to Noether’s theorem,15

the canonically conjugate gyroaction @Lgc=@ _f ¼ � ðmc=eÞl is a
guiding-center invariant (up to that specified truncated order). Once
an ordering choice is made (i.e., using either the renormalizations e=�
or �m), the �-expansion of the guiding-center Lagrangian has to be
consistent with this choice. We note that, with the choice e ¼ m
¼ c ¼ 1 used by Littlejohn,4 the guiding-center Lagrangian (4) corre-
sponds exactly to Eq. (29) obtained by Littlejohn4 by Lie-transform
perturbation method, with the substitutionU ! �U.

In the guiding-center Lagrangians (4) and (5), the higher-order
correction�ðmc=eÞlR� � _X involves the vector field,13,14

R� � Rþ 1
2
r� b̂; (6)

which includes the gyrogauge vector field R � rê1 � ê23,4 that is
defined in terms of the local fixed unit-vector basis ðê1; ê2; b̂
� ê1 � ê2Þ, as well as the term 1

2 r� b̂ that modifies the standard
correction 1

2 ðb̂ � r � b̂Þ b̂5 in order to take into account guiding-
center polarization.13 While this higher-order correction is absent
from Zheng’s work,1 the gyrogauge vector field R is needed in the
guiding-center Lagrangians (4) and (5) in order to ensure the gyro-
gauge invariance of the guiding-center equations of motion3–5 (i.e., the
guiding-center Lagrangian dynamics should not only be independent
of the gyroangle f, but it should also be independent of how the gyro-
angle is measured in terms of the local perpendicular unit vectors ê1
and ê2). Hence, a proper guiding-center Lagrangian must, at least,
include the combination _f �R � _X , which is gyrogauge-invariant4

under the transformation f ! fþ wðXÞ, where wðXÞ denotes a
locally defined gyrogauge angle, with R ! Rþrw and _f ! _f
þ _X � rw. The case for time-dependent fields is further discussed in
Refs. 3 and 16, while the importance of the vector field (6) in establish-
ing the faithfulness of the guiding-center representation of particle
orbits in nonuniform magnetic fields was recently demonstrated for
the case of axisymmetric magnetic geometries.14

In his critique of standard Lie-transform perturbation analysis,
and without explicitly displaying the dimensionless ordering parame-
ter � upon which it is to be based, Zheng1 mistakenly proceeds to com-
pare the guiding-center Lagrangians (4) and (5), derived with different
renormalization orderings, and concludes that, when the guiding-
center Lagrangian (5) is truncated at first order, the term �2ðmc=eÞl _f

disappears, while the term � ðmc=eÞl _f remains in the guiding-center
Lagrangian (4), although it is still a second-order term compared to
the lowest order term appearing at ��1. However, Zheng seems to be
unaware that the guiding-center Lagrangian (4), which was derived
without Lie-transform perturbation method by Cary and Brizard6 in
what Zheng calls the direct method, was also derived by Lie-transform
perturbation method by Littlejohn,4 Brizard,5 and Tronko and
Brizard.13

More importantly, Zheng argues that, in contrast to the �-ordering
scalings displayed in the guiding-center Lagrangians (4) and (5), the

terms pjjb̂ � _X and ðmc=eÞl _f must appear at the same order in a
modified guiding-center perturbation expansion, which leads him to
construct a completely unnecessary (and nonsensical) modification of
Lie-transform perturbation theory. However, this modified ordering is
clearly inconsistent with the property of gyrogauge invariance based on
the following argument. First, by momentarily hiding the �-ordering
scalings in Eqs. (4) and (5), the guiding-center Lagrangian can be
written as

LgcðX; pjj; l; fÞ ¼ e
c
Aþ pjj b̂ � ðmc=eÞlR�

� �
� _X

þ ðmc=eÞl _f � HgcðX; pjj; lÞ; (7)

where we have combined the gyrogauge-correction term
�ðmc=eÞlR�, omitted in Zheng’s work,1 with the spatial components

ðe=cÞAþ pjjb̂. Here, we clearly see that these spatial components satisfy
the following ordering ��1 	 1 	 �.17 Hence, after restoring the
�-ordering scalings of the spatial components in Eq. (7), we obtain

LgcðX; pjj; l; fÞ ¼ e
�c

Aþ pjj b̂ � � ðmc=eÞ lR�
� �

� _X

þ d ðmc=eÞl _f � HgcðX; pjj; lÞ; (8)

where we have also introduced a dimensionless ordering parameter d
for the gyromotion term ðmc=eÞl _f. Next, we note that the guiding-
center Lagrangian (8) now contains the gyrogauge combination

ðmc=eÞl d _f � �R � _X
� �

;

which is gyrogauge invariant only if d ¼ � (and not d¼ 1 as proposed
by Zheng1), i.e., the term ðmc=eÞ l _f must appear at one order higher

than pjjb̂ � _X in a perturbation expansion leading to a gyrogauge-
invariant guiding-center Lagrangian theory, based on either Eq. (4) or
Eq. (5). The ordering d ¼ � in Eq. (8) is, therefore, entirely consistent
with the renormalization m=e ! �m=e of the mass-to-charge ratio
used (either implicitly4,5 or explicitly6,13) in previous works as the con-
sistent basis for applications of the standard Lie-transform perturba-
tion analysis.

In conclusion, the standard Lie-transform perturbation method2

does not need to be modified in its applications to guiding-center the-
ory4,6 and, fortunately, the modified Lie-transform perturbation
method proposed by Zheng1 will not be needed in deriving a modified
nonlinear gyrokinetic theory.18 The paper by Zheng1 reminds us that
perturbation theory relies on a well-defined dimensionless ordering
parameter � � 1, followed by a rigorous algorithm (e.g., Lie-transform
perturbation theory) that allows terms to be computed at arbitrary
order.
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