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ABSTRACT

Extended guiding-center Vlasov–Maxwell equations are derived under the assumption of time-dependent and inhomogeneous electric and
magnetic fields that obey the standard guiding-center space-timescale orderings. The guiding-center Vlasov–Maxwell equations are derived
up to second order, which contains dipole and quadrupole contributions to the guiding-center polarization and magnetization that include
finite-Larmor-radius corrections. Exact energy-momentum conservation laws are derived from the variational formulation of these higher-
order guiding-center Vlasov–Maxwell equations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161171

I. INTRODUCTION

The adiabatic invariance of the magnetic moment along a
charged-particle orbit (with mass m and charge e) in a nonuniform
magnetic field B ¼ B b̂ plays a crucial role in our understanding of the
physical basis of the spatial confinement of a magnetized plasma over
long time scales.1,2

In guiding-center theory,3,4 the mathematical construction of the
magnetic moment relies on the space-time scales ðLB;x�1Þ of the con-
fining magnetic field to be long compared to the characteristic gyrora-
dius q and the gyroperiod X�1 ¼ mc=eB, respectively, leading to the
small dimensionless ordering parameter4

�B � q=LB � x=X � 1: (1)

The traditional derivation of guiding-center theory relies on the exis-
tence of an ordering parameter defined by the dimensional mass-to-
charge ratiom/e3,5 so that the gyroperiod X�1 / m=e is assumed to be
the shortest timescale. For practical applications in perturbation the-
ory,6 however, it is convenient to replace the ratio m/e with �m=e
¼ ð�mÞ=e ¼ m=ð��1eÞ so that the dimensionless ordering parameter
� � 1 can either be viewed as a renormalization of the particle’s mass
m ! �m or the particle’s charge e ! e=� and it is quite common to
assume � � �B. It is noteworthy, however, that the guiding-center
approximation is still valid when the spatial ordering q=LB � 1 is not
extremely small (as recently demonstrated in Ref. 7).

In earlier derivations of the guiding-center Vlasov equation
(sometimes referred to as the drift-kinetic equation), a recursive solu-
tion of the Vlasov kinetic equation8–11 led to the drift-kinetic equation

through an expansion of the Vlasov distribution function f ¼ f0 þ � f1
þ�2 f2 þ � � �, which yielded functional solutions fn½ f0� (n � 1) in terms
of the lowest-order gyroangle-independent solution f0. It was later
shown that this recursive derivation is completely analogous to the
Lie-transform derivation of the guiding-center Vlasov equation12 in
the electrostatic limit. It is precisely because of their power and sim-
plicity that Lie-transform perturbation methods are used here to derive
higher-order guiding-center equations of motion. We also note that,
when Lie-transform perturbation methods are combined with varia-
tional formulations for the reduced Vlasov–Maxwell equations,13 the
reduced Maxwell equations naturally incorporate reduced polarization
and magnetization effects while exact energy-momentum conservation
laws are derived by the Noether method.14

A. Motivation

The inclusion of nonuniform, time-dependent electric fields in
guiding-center theory has a long and rich history in plasma physics.3,4

In the present work, we use the standard ordering11 for the electric
field E ¼ E? þ � Ek b̂, where the parallel component Ek ! � Ek of the
electric field is considered small compared to the perpendicular com-
ponents E?. In addition, we assume that the E	B velocity cjE?j=B is
comparable to particle’s thermal velocity.

The ability of electric fields to fundamentally modify the magnetic
geometry that confines a laboratory plasma (e.g., by creating transport
barriers15–19 or in setting up rotating mirror magnetic geometries20)
motivates the need to construct a guiding-center Vlasov–Maxwell the-
ory that includes self-consistent time-dependent electric and magnetic
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fields, in which the transfer of energy and momentum between the
electromagnetic fields and the confined plasma plays a crucial role.

In addition, for many situations of practical interest, the presence
of a strong electric field is associated with strong plasma flows with
steep sheared rotation profiles for which second-order effects (includ-
ing finite-Larmor-radius effects), which must be included in a self-
consistent guiding-center theory.15,19,21–24 Guiding-center equations of
motion with second-order corrections in the presence of time-
independent electric and magnetic fields were derived using Lie-
transform perturbation method by Brizard25 and Hahm,15 following
the earlier work of Littlejohn.6 More recently, these perturbation meth-
ods were also used by Miyato et al.26 and Madsen,27 who derived self-
consistent guiding-center Vlasov–Maxwell equations that included
guiding-center polarization and magnetization effects. Not all second-
order effects were included in these models, however, and it is the
purpose of the present work to derive a more complete higher-order
guiding-center Vlasov–Maxwell theory based on the Lie-transform
perturbation derivation of higher-order guiding-center Lagrangian
dynamics28 for the case of time-dependent, nonuniform electric and
magnetic fields that satisfy the guiding-center ordering (1).

We note that a key difference between guiding-center
Vlasov–Maxwell models considered here and gyrokinetic Vlasov–
Maxwell models considered elsewhere (see Ref. 29 for a review) is that
the electromagnetic fields ðE;BÞ considered here are not separated
into time-independent weakly-nonuniform background fields and
time-dependent fluctuating (i.e., turbulent) fields that may possibly
have short spatial scales (satisfying the gyrokinetic ordering29). Hence,
the guiding-center Vlasov–Maxwell energy and momentum are exactly
conserved despite the fact that guiding-center Vlasov–Maxwell fields
are time-dependent and nonuniform, with space-time scales (1) that
satisfy the guiding-center orderings.4

B. The need for higher-order guiding-center theory

The previous variational derivations of a self-consistent guiding-
center Vlasov–Maxwell model have been carried out up to first order in
the dimensionless ordering parameter �.30–35 In Ref. 35, for example,
the Hamiltonian structure of the first-order guiding-center Vlasov–
Maxwell equations was given in terms of a guiding-center Hamiltonian
functional and a functional bracket that satisfies the Jacobi property.
The variational and Hamiltonian structures of the guiding-center
Vlasov–Maxwell equations may prove useful in the implementation of
structure-preserving numerical algorithms.36–40

Recently, second-order terms in guiding-center Hamiltonian the-
ory (in the absence of an electric field) were shown to be crucial41 in
assessing the validity of the guiding-center representation in determin-
ing whether guiding-center orbits were numerically faithful to the par-
ticle orbits in axisymmetric magnetic geometries, which partially
confirmed earlier numerical studies in axisymmetric tokamak plas-
mas.42 In particular, it was shown that a second-order correction asso-
ciated with guiding-center polarization43–45 was needed in order to
obtain faithful guiding-center orbits.

Indeed, without the inclusion of second-order effects, it was shown
that, within a few bounce periods after leaving the same physical point
in particle phase space, a first-order guiding-center orbit deviated notice-
ably from its associated particle orbit, while a second-order guiding-
center orbit followed the particle orbit to a high degree of precision.41 In
addition, as initially reported by Belova et al.,42 the guiding-center

Hamiltonian formulation41,45 is a faithful representation of the particle
toroidal angular momentum, which is an exact particle constant of
motion in an axisymmetric magnetic field, only if second-order effects
are included. See additional comments included in Sec. IIC regarding
the faithfulness of the guiding-center representation.

From a purely theoretical point of view, it is, therefore, interesting
to derive higher-order guiding-center Vlasov–Maxwell equations with
accurate expressions for the guiding-center polarization and magnetiza-
tion, which include finite-Larmor-radius (FLR) corrections. Through
the application of the Noether method,14 we will also be able to explore
how these higher-order effects modify the guiding-center energy-
momentum conservation laws, e.g., how the Chew–Goldberger–Low
(CGL) pressure tensor8–11 is modified [see Eq. (99)].

C. Organization

The remainder of the present work is organized as follows. In Sec. II,
the extended guiding-center Hamilton equations of motion are derived in
terms of the extended guiding-center Hamiltonian and the extended
guiding-center Poisson bracket (derived by Lie-transform perturbation
method in Ref. 28), while the higher-order guiding-center Vlasov–Maxwell
equations are derived from an Eulerian variational principle14 in Sec. III,
from which guiding-center polarization and magnetization are derived
with FLR corrections. Here, our guiding-center variational principle
expressly imposes plasma quasineutrality by omitting the electric energy
density from the guiding-center Lagrangian density,46–50 which also
removes the displacement current ðc�1@E=@tÞ fromMaxwell’s equation.

In Sec. IV, the exact energy-momentum conservation laws are
derived from the guiding-center Noether equation obtained from the
guiding-center Eulerian variational principle. The symmetry properties
of the guiding-center stress tensor are also briefly discussed, and the
guiding-center angular-momentum conservation law is derived at the
lowest order, while a more extensive discussion of the asymmetry of
the guiding-center stress tensor at higher order is left for future work.

Finally, in Appendix A, we present a brief discussion of the concept
of gyrogauge invariance,6,51,52 which states that our guiding-center equa-
tions of motion should not only be independent of the gyroangle but
also how the angle is measured. Gyrogauge terms appear at second order
in the guiding-center perturbation analysis and were shown to be crucial
in previous works.41,42 In Appendix B, we show how the standard linear
finite-beta electromagnetic gyrokinetic equations29 form a subset of our
guiding-center Vlasov–Maxwell equations in the limit of a uniform
background magnetized plasma. In particular, we show how well-
known spurious high-frequency modes found in electrostatic gyrokinetic
models53–56 disappear when electromagnetic effects are included.

II. GUIDING-CENTER HAMILTONIAN DYNAMICS

In this section, we make use of the results of the Lie-transform
perturbation analysis presented in Ref. 28 that yield the guiding-center
phase-space extended one-form (expanded in terms of the mass-
renormalization orderingm ! �m)

Cgc ¼ e
c
Aþ �Pgc

� �
� dX �W dt

þ �2 J dh� R � dX � S dtð Þ
� e

c
A
 � dX þ �2 J dh�W
 dt; (2)

where we introduced the definitions
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e
c
A
 � e

c
Aþ �P0 � �2 J R
; (3)

W
 � W þ �2 J S; (4)

where

P0 ¼ Pk b̂ þ E	 eb̂=X (5)

is the lowest guiding-center momentum and R
 � Rþ 1
2 r	 b̂

includes the second-order polarization correction Ppol � � 1
2 Jr	 b̂

introduced by Tronko and Brizard45 in order to obtain an exact Lie-
transform derivation of the guiding-center polarization derived by
Kaufman.43 In addition, the presence of the gyrogauge fields ðS;RÞ in
Eqs. (2)–(4) guarantee gyrogauge invariance.6,52

The extended guiding-center Hamiltonian, on the other hand, is
expressed as

Hgc ¼ eUþ �Kgc þ �2 J S
 �W
 � eU
 �W
; (6)

where the guiding-center kinetic energy in the drifting frame is

Kgc ¼ lBþ
P2
k

2m
þm

2
juEj2; (7)

S
 ¼ S �r � b̂

2
	 uE

� �
; (8)

which includes the second-order FLR correction to the electrostatic
potential energy eU. This FLR correction may be decomposed as

�r � 1
2
Jb̂ 	 uE

� �
¼ � J

2
r	 b̂ � uE � b̂ � r 	 uE
� �

;

which includes the standard second-order guiding-center Hamiltonian
1
2 J b̂ � r 	 uE,

6,15,27,51 and the new guiding-center polarization correc-
tionPpol � uE, which is ignored by these previous works.

In the remainder of the paper, we will remove the ordering param-
eter � and return to the physical mass �m ! m, while we may occasion-
ally refer to this mass-renormalization ordering in what follows.

A. Extended guiding-center Poisson bracket

The extended guiding-center Poisson bracket f ; ggc is obtained
by first, constructing an 8	 8 matrix out of the components of the
extended guiding-center Lagrange two-form xgc ¼ dCgc and, then,
invert this matrix to obtain the extended guiding-center Poisson
matrix, whose components are the fundamental brackets fZa;Zbggc.

From these components, we obtain the extended guiding-center
Poisson bracket28

fF ;Gggc ¼
B


B

k
� r
F @G

@Pk
� @F
@Pk

r
G
 !

� cb̂
eB


k
� r
F 	r
G þ @F

@h
@G
@J

� @F
@J

@G
@h

� �

þ @F
@W

@
G
@t

� @
G
@t

@G
@W

� �
; (9)

where

e
c
B
 ¼ e

c
Bþr	 P0 � Jr	 R
; (10)

and the guiding-center Jacobian is J gc ¼ ðe=cÞB

k, where B



k � b̂ � B
.

In addition, we introduced the definitions

@


@t
� @

@t
þ S @

@h
; (11)

r
 � rþ R
 @

@h
� e

c
@A


@t
þ JrS

� �
@

@W
: (12)

We note that the Poisson bracket (9) can be expressed in divergence
form as

fF ;Gggc ¼
1
B

k

@

@Za
B

kF Za; Gf ggc

� �
(13)

and that it automatically satisfies the Jacobi identity

F ; fG;Kgf g þ G; fK;Fgf g þ K; fF ;Ggf g ¼ 0: (14)

Next, we note that the operators (11) and (12) contain the gyrogauge-
invariant combinations @=@t þ S @=@h and rþ R @=@h, while Eqs.
(10) and (12) include the gyrogauge-independent vector fields (see
Appendix A)

r	 R ¼ � 1
2
�ijk b

i rbj 	rbk; (15)

rS � @R
@t

¼ �rb̂ 	 b̂ � @b̂
@t

; (16)

where �ijk denotes the completely antisymmetric Levi–Civita tensor.

B. Guiding-center Hamilton equations

The guiding-center Hamilton equations include the guiding-
center velocity

_X � fX; Hgcggc ¼
Pk
m

B


B

k
þ E
 	 cb̂

B

k
; (17)

where

b̂ � _X ¼ @Hgc=@Pk ¼ Pk=m; (18)

defines the parallel guiding-center velocity, the guiding-center parallel
force

_Pk � fPk; Hgcggc ¼ eE
 � B



B

k
; (19)

where the modified electric field is represented as

eE
 ¼ �erU
 � e
c
@A


@t

¼ eE� @P0

@t
�rKgc þ J

@R


@t
�rS


� �
(20)

and the gyroangle angular velocity

_h � fh; Hgcggc ¼
@Kgc

@J
þ S
 þ _X � R


¼ X� 1
2
r � b̂ 	 uE
� �

þ S þ _X � R
: (21)
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We note that the guiding-center Hamilton equations (17) and (19) can
also be derived from the guiding-center Lagrangian28

Lgc ¼ e
c
A
 � _X þ J _h � eU
: (22)

as the guiding-center Euler–Lagrange equation

_Pk b̂ ¼ eE
 þ e
c
_X 	 B
; (23)

together with Eq. (18). If we omit the terms ðR
;S
Þ in Eqs. (10) and
(20), we also note that the guiding-center velocity can be expressed as

_X ¼ P0

m
þ cb̂
eB


k
	 d0P0

dt
þ lrB

� �
; (24)

where P0 � Pk b̂ þ E	 eb̂=X denotes the lowest-order guiding-cen-
ter momentum and d0=dt � @=@t þ ðP0=mÞ � r, while the higher-
order corrections to the guiding-center velocity include the standard
magnetic-drift velocity ðcb̂=eB


kÞ 	 ½ðP2
k=mÞb̂ � rb̂ þ lrB�, as well

as the total polarization drift ðmcb̂=eB

kÞ 	 d0uE=dt.

Finally, we note that the guiding-center Jacobian J gc ¼ ðe=cÞB

k

satisfies the guiding-center Liouville equation

@B

k

@t
¼ �r � B


k _X
� �

� @

@Pk
B

k _Pk

� �
; (25)

where

r � B

k _X

� �
¼ r	 E
 � cb̂ � eE
 � c

e
r	 b̂

¼ �b̂ � @B



@t
� eE
 � @B




@Pk
and

@

@Pk
B

k _Pk

� �
¼ eE
 � @B




@Pk
þ B
 � e @E




@Pk

¼ eE
 � @B



@Pk
� B
 � @b̂

@t
;

where we made use of the modified Faraday’s law
@B
=@t ¼ �cr	 E
.

C. Guiding-center canonical toroidal angular
momentum

By applying Noether’s method57 on the guiding-center
Lagrangian (22), we immediately find that, in the case of an axisym-
metric magnetized plasma (i.e., @Lgc=@/ � 0), the guiding-center
canonical toroidal angular momentum

P/ � @Lgc

@ _/
¼ e

c
A
 � @X

@/

¼ e
c

A/ � qE � rA/ð Þ þ Pk b/

� J bz þ 1
2
r	 b̂ � @X

@/

� �
; (26)

is a constant of the guiding-center motion, where ðA/; b/Þ denote
covariant toroidal components and we used the identity
R � @X=@/ � bz ,

51 which makes P/ gyrogauge invariant. Here, we

used the identity B	 @X=@/ ¼ �rA/ and we introduced the elec-
tric polarization displacement qE � ðc=BXÞE? in writing PE � @X=
@/ ¼ �ðe=cÞ qE � rA/.

We note that the issue of the faithfulness of the guiding-center
representation, which was initiated by Belova et al.42 in their numerical
studies of particle and guiding-center orbits of energetic ions in axi-
symmetric tokamak geometry (in the absence of an electric field),
focused on whether the guiding-center pull-back of the guiding-center
canonical toroidal angular momentum TgcP/ accurately describes the
particle canonical toroidal angular momentum p/ � @L=@ _/ defined
in terms of the particle Lagrangian L.

Belova et al.42 noted that the numerical plot of TgcP/ for ener-
getic ions (with �B � 0:2) shows excellent invariance properties equal
to the true particle invariant p/ (within numerical accuracy) only
when second-order ð�2Þ corrections are included in the guiding-center
canonical toroidal angular momentum (26) and the guiding-center
pull-back operator Tgc (defined in terms of generators of the guiding-
center phase-space transformation). These results were recently
confirmed analytically by Brizard and Hodgeman41 for general axi-
symmetric magnetic geometry.

III. VARIATIONAL FORMULATION OF THE
GUIDING-CENTER VLASOV–MAXWELL EQUATIONS

In this section, we present the variational formulation of the
guiding-center Vlasov–Maxwell equations based on the Eulerian
guiding-center action functional46–50

Agc ¼ �
ð
F gcHgc d

8Z �
ð jBj2
8p

d4X; (27)

where the electric-field Lagrangian density jEj2=8p has been
removed,14 which explicitly imposes quasineutrality and eliminates the
displacement current density c�1@E=@t from the guiding-center
Maxwell equations, while the negative signs in Eq. (27) are consistent
with the energy-momentum conservation laws. Here, the extended
guiding-center Vlasov phase-space density

F gc � J gc F dðW � HgcÞ; (28)

includes the guiding-center Vlasov function F and the guiding-
center Jacobian J gc, while the delta-function ensures that the
extended guiding-center Hamiltonian motion takes place on the
energy surface Hgc ¼ Hgc �W � 0. This expression leads to the
integral constraint ð

F gc Hgc G d8Z � 0; (29)

where G is an arbitrary extended phase-space function.
The variation of the guiding-center action functional (27) is

expressed as

dAgc ¼ �
ð
dF gc Hgc þ F gc dHgc
� �

d8Z �
ð
B
4p

� dB d4X; (30)

where the Eulerian variation of the extended guiding-center Vlasov
phase-space density is expressed as

dF gc � � @

@Za
F gc dZ

a� �
; (31)

where the virtual phase-space displacement
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dZa � Za; dSf ggc �
e
c
dA
 � X; Zaf ggc (32)

is generated by the virtual canonical generating function dS, while the
Eulerian variation of the extended guiding-center Hamiltonian is
expressed as

dHgc ¼ e dUþ dKgc þ J dS; (33)

while

e
c
dA
 ¼ e

c
dAþ dPgc � J dR: (34)

Here, the variations dKgc and dPgc are expressed as

dKgc ¼ l b̂ � dBþ uE � dPE �r � J
2

db̂ 	 uE þ b̂ 	 duE
� �� 	

; (35)

dPgc ¼ Pk db̂ þ dPE �r	 J
2
db̂

� �
; (36)

which contain the Eulerian variations

dPE ¼ dE	 ðeb̂=XÞ þmcE	 d b̂=B
� �

¼ dE	 ðeb̂=XÞ � b̂PE þPE b̂
� �

� dB=B (37)

and

db̂ ¼ dðB=BÞ � I� b̂b̂ð Þ � dB=B; (38)

while the gyrogauge-field variations

dS; dRð Þ ¼ � @b̂

@t
	 b̂

B
� dB;�rb̂ 	 b̂

B
� dB

� �
(39)

are included in Eqs. (33) and (34).
When Eqs. (31) and (33) are inserted in Eq. (30), we obtain

d F gc Hgc
� � ¼ �F gc dLgc þ B


k dS F gc=B


k;Hgc

n o
gc

� @

@Za
F gc dS Za;Hgc


 �
gc

� �
; (40)

where the variation of the guiding-center Lagrangian (22) is expressed
as

dLgc � e
c
dAþ dPgc

� �
� _X � e dUþ dKgc

� �� J dS þ _X � dRð Þ;

(41)

with the effective gyrogauge variation

dS þ _X � dR ¼ � @b̂

@t
þ _X � rb̂

� �
	 b̂

B
� dB; (42)

¼ � db̂
dt

	 b̂

B
� dB: (43)

Finally, when Eq. (40) is inserted in Eq. (30), the variation of the
guiding-center action functional may be expressed as
dAgc �

Ð
dLgc d3Xdt, where the variation of the guiding-center

Lagrangian density is expressed as

dLgc ¼
ð

F gc dLgc � B

k dS F gc=B



k;Hgc

n o
gc

� �
d4P

� B
4p

� dBþ dKgcV; (44)

where d4P � 2p dPkdJ dW (which excludes the guiding-center
Jacobian J gc), the guiding-center position X is now the location where
the electromagnetic fields E and B are evaluated, and the last term in
Eq. (44) represents the space-time derivative of the guiding-center
Vlasov action-density variation

dKgcV � @

@t

ð
F gc dS d4P

� �
þr �

ð
F gc dS _X d4P

� �
; (45)

generated by dS.

A. Guiding-center Vlasov equation

Variation of the guiding-center action functional dAgc with
respect to dS yields the extended guiding-center Vlasov equation

0 ¼ B

k F gc=B


k;Hgc

n o
gc
¼ @

@Za
F gc Za;Hgc


 �
gc

� �
: (46)

When this extended Vlasov equation is integrated over the guiding-
center energy coordinateW, using Eq. (28), we obtain the phase-space
divergence form of the guiding-center Vlasov equation

@Fgc
@t

þr � Fgc _X
� �

þ @

@Pk
Fgc _Pk
� �

¼ 0; (47)

which yields the guiding-center Vlasov equation

@F
@t

þ _X � rF þ _Pk
@F
@Pk

¼ 0; (48)

when we substitute the definition of the guiding-center Vlasov density
Fgc � J gcF and make use of the guiding-center Liouville equation (25).

B. Guiding-center Maxwell equations

Variations of the guiding-center action functional dAgc with
respect to dU and dA in Eq. (41), respectively, yield the guiding-center
charge and current densities

ð.gc; JgcÞ ¼
ð
P
Fgc e; e _X
� �

; (49)

where we use the notation
Ð
Pð� � �Þ �

Ð ð� � �Þ 2p dPkdJ . We note that, in
Eq. (41), the guiding-center Lagrangian (22) also depends on the electric
and magnetic fields ðE;BÞ, which introduces guiding-center polariza-
tion and magnetization charge and current densities in the guiding-
center Maxwell equations.13

1. Guiding-center polarization

When a virtual electric variation dELgc of the guiding-center
Lagrangian (22) associated with dE is considered in Eq. (41), we find

dELgc ¼ pgc � dEþr � Qgc � dE
� �

; (50)

where the guiding-center electric dipole moment30,31

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 102106 (2023); doi: 10.1063/5.0161171 30, 102106-5

Published under an exclusive license by AIP Publishing

 20 O
ctober 2023 11:47:16

pubs.aip.org/aip/php


pgc � eb̂
X

	 _X � uE
� �

; (51)

which, when Eq. (24) is substituted, is approximated as

pgc ¼ � c
B

kX

d0P0

dt
þ lrB

� �
?
; (52)

and the guiding-center electric quadrupole moment is defined by the
symmetric dyadic tensor

Qgc � e
2
hq0q0i ¼

J c
2B

I� b̂ b̂ð Þ: (53)

We can, thus, define the guiding-center polarization as

Pgc �
ð
P
Fgc pgc �Qgc � rFgc
� �

; (54)

which includes a finite-Larmor-radius (FLR) correction on the guiding-
center Vlasov phase-space density Fgc. Hence, in Eq. (44), we findð

P
Fgc dELgc ¼ Pgc � dEþ dKgcP; (55)

with the polarization spatial divergence defined as

dKgcP � r �
ð
P
Fgc Qgc � dE

� �
: (56)

2. Guiding-center magnetization

When a virtual magnetic variation dBLgc of the guiding-center
Lagrangian (22) associated with dB is considered in Eq. (41), we find

dBLgc ¼ lgc þ pgc 	 P0

mc

� �
� dB

þr � Qgc �
uE
c
	 dBþ Qgc � dB

� �	 uE
c

� 	

� 1
c
_X � r 	 Qgc � dB

� �
; (57)

where the intrinsic magnetic dipole moment

lgc � l �b̂ þ 1
X

db̂
dt

	 b̂

� �
; (58)

includes the effective gyrogauge contribution (43), and the moving
electric-dipole contribution58

pgc 	 P0

mc
¼ b̂

B
	 _X � uE
� �� 	

	 P0 (59)

is defined in terms of the guiding-center electric dipole moment (51),
which can be approximated with Eq. (52). We can, thus, define the
guiding-center magnetization as

Mgc �
ð
P
Fgc lgc þ pgc 	 P0=mc
� �

�
ð
P
rFgc � Qgc 	

uE
c
� uE

c
	Qgc

� �

�
ð
P
Qgc � r 	 Fgc _X=c

� �
; (60)

which also includes FLR corrections. Hence, in Eq. (44), we find

ð
P
Fgc dBLgc ¼ Mgc � dBþ dKgcM; (61)

where the magnetization spatial divergence dKgcM is defined as

dKgcM � r �
ð
P
Fgc Qgc 	

uE
c

� �
� dB

�

�
ð
P
Fgc Qgc � dB
� �	 1

c
ð _X � uEÞ

	
: (62)

3. Guiding-center Maxwell equations

By substituting the variations (55) and (61) into Eq. (44), we find

dLgc ¼ dKgcV þ dKgcPM � .gc dU� Jgc
c
� dA

� �

þPgc � dE�Hgc

4p
� dB; (63)

where the guiding-center displacement field Dgc is replaced with
4pPgc, which follows from the removal of the electric-field Lagrangian
density in Eq. (27), and the guiding-center magnetic field is defined as

Hgc � B� 4pMgc; (64)

while the quadrupole contributions yield an additional polarization–
magnetization spatial divergence

dKgcPM ¼ r �
ð
P
Fgc Qgc � dEþ uE

c
	 dB

� ��

�
ð
P
Fgc Qgc � dB
� �	 1

c
_X � uE
� �	

: (65)

If we now introduce the constrained variations dE ¼ �rdU
� c�1@dA=@t and dB ¼ r	 dA into Eq. (63), we obtain the guiding-
center Lagrangian variation

dLgc ¼ dKgc þ dU r �Pgc � .gc
� �

þ 1
c
dA � Jgc þ

@Pgc

@t
� c
4p

r	Hgc

� �
; (66)

where the total guiding-center space-time divergence is

dKgc � @

@t

ð
F gc dS d4P � 1

c
dA �Pgc

� �

þr �
ð
F gcdS _X d4P � dUPgc � dA

4p
	Hgc

� �

þr �
ð
P
Fgc Qgc � dEþ uE

c
	 dB

� ��

�
ð
P
Fgc Qgc � dB
� �	 1

c
_X � uE
� �	

: (67)

Variations of the guiding-center action functional dAgc

¼ Ð dLgc d3X dt with respect to dU and dA yield, respectively, the
guiding-center quasineutrality condition

0 ¼ .gc �r �Pgc (68)

and the guiding-center Maxwell equation
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r	Hgc ¼ 4p
c

Jgc þ
@Pgc

@t

� �
; (69)

which excludes the displacement current density c�1@E=@t following
the removal of the electric-field Lagrangian density in Eq. (27). In addi-
tion, the electromagnetic fields ðE;BÞ satisfy Faraday’s law

@B=@t ¼ �cr	 E (70)

and Gauss’s law r � B ¼ 0. Finally, the guiding-center charge-current
densities (49) satisfy the charge conservation law

@.gc
@t

þr � Jgc ¼ 0; (71)

which can be obtained directly from Eqs. (68) and (69).

IV. GUIDING-CENTER NOETHER EQUATION
AND EXACT CONSERVATION LAWS

Once the guiding-center Vlasov–Maxwell equations (47) and
(68) and (69) are derived from the action functional (27), we are left
with the guiding-center Noether equation

dLgc ¼ @

@t

ð
F gc dS d4P � 1

c
dA �Pgc

� �

þr �
ð
F gcdS _X d4P � dUPgc � dA

4p
	Hgc

� �

þr �
ð
P
Fgc Qgc � dEþ uE

c
	 dB

� ��

�
ð
P
Fgc Qgc � dB
� �	 1

c
_X � uE
� �	

; (72)

from which exact energy-momentum conservation laws are derived.
For this purpose, we use the expressions

dS ¼ ðe=cÞA
 � dX þ J dH�W
 dt; (73)

dU ¼ E � dX � c�1@du=@t; (74)

dA ¼ E c dt þ dX 	 Bþrdu; (75)

where dS is gyrogauge-independent, with the virtual gauge variations
dH � R � dX þ S dt and du � U c dt � A � dX. The gauge terms
associated with du can be used to obtain the identity

� @

@t
rdu �Pgc
� �þr � @du

@t
Pgc �rdu	 cHgc

4p

� �

� @

@t
du.gc
� �þr � duJgc

� �
; (76)

where we have used the guiding-center Maxwell equations (68) and
(69) in order to obtain the last equality.

A. Guiding-center Noether equation

By substituting the gauge identity (76) into Eq. (72), the guiding-
center Noether equation becomes

dLgc � @dN gc=@t þr � dFgc; (77)

where the guiding-center action-density variation is defined as

dN gc �
ð
P
Fgc dSþ e

c
du

� �
� 1

c
E c dt þ dX 	 Bð Þ �Pgc (78)

and the guiding-center action-density-flux variation is defined as

dFgc �
ð
P
Fgc dSþ e

c
du

� �
_X � dX � EPgc

� �
� E c dt þ dX 	 Bð Þ 	Hgc

4p

þ
ð
P
Fgc Qgc � dEþ uE

c
	 dB

� �

�
ð
P
Fgc Qgc � dB
� �	 1

c
_X � uE
� �

: (79)

Here, the electric and magnetic variations are

dE

dB

 !
¼ �dt @E=@t � dX � rE

�dt @B=@t � dX � rB

 !
; (80)

while the combination

dSþ e
c
du � Pgc � dX � Kgc dt (81)

is gauge invariant, where the guiding-center momentum P0 and the
guiding-center kinetic energy Kgc are defined in Eqs. (5) and (7), respec-
tively. Finally, the constrained Lagrangian variation is expressed as

dLgc � dt
@

@t
jBj2
8p

� �
þ dX � r jBj2

8p

� �
; (82)

while the Vlasov contribution in Eq. (27) vanishes because of the con-
straint (29).

B. Exact guiding-center energy-momentum
conservation laws

By considering a virtual time displacement dt in the guiding-
center Noether equation (77), we obtain the guiding-center
Vlasov–Maxwell energy conservation law

@Egc=@t þr � Sgc ¼ 0; (83)

which is expressed in terms of the guiding-center Vlasov–Maxwell
energy density Egc � �dN gc=dt � LM and the guiding-center
Vlasov–Maxwell energy density-flux Sgc � �dFgc=dt, where

Egc ¼
ð
P
Fgc Kgc þ E �Pgc þ jBj2=8p (84)

and

Sgc ¼
ð
P
Fgc Kgc _X þ cE

4p
	Hgc

þ
ð
P
Fgc Qgc �

@E
@t

þ uE
c
	 @B

@t

� �

�
ð
P
Fgc Qgc �

@B
@t

� �
	 1

c
_X � uE
� �

; (85)

which includes FLR corrections involving Qgc. We note that, in the
case of static electric and magnetic fields, only the terms on the first
line on the right side of Eq. (85) remain.
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Next, by considering a virtual spatial displacement dXk in the
guiding-center Noether equation (77), we obtain the guiding-center
Vlasov–Maxwell momentum conservation law

@Pgck=@t þr � Tgck ¼ 0 (86)

in the Xk-direction is expressed in terms of the guiding-center
Vlasov–Maxwell momentum density

Pgc ¼
ð
P
Fgc Pgc þPgc 	 1

c
B; (87)

where Pgck � dN gc=dXk ¼ Pgc � @kX, and the guiding-center
Vlasov–Maxwell momentum-density flux Ti

gck � dFi
gc=dX

k þ dik LM,
where

Tgck � Tgc � @kX

¼
ð
P
Fgc _XPgck � Pgc Ek þ B

4p
Hgck

� �

þ 1
4p

@kX B �Hgc � 1
2
jBj2

� �

�
ð
P
Fgc Qgc � @kEþ uE

c
	 @kB

� ��

� Qgc � @kB
� �	 1

c
_X � uE
� �	

; (88)

with the notation @k � ð@X=@XkÞ � r. We note that guiding-
center Vlasov–Maxwell stress tensor Tgc defined in Eq. (88) is
manifestly not symmetric, which is quite common in reduced
Vlasov–Maxwell systems.30,31 The symmetry properties of the
lowest-order guiding-center Vlasov–Maxwell stress tensor are
briefly discussed in Sec. IV C.

The proofs of the energy-momentum conservation laws (83) and
(86) proceed by taking the partial time derivative of the guiding-center
Vlasov–Maxwell energy density (84) and the guiding-center
Vlasov–Maxwell momentum density (87) which, after substituting the
guiding-center Vlasov–Maxwell equations (47) and (68) and (69),
yield

@Egc

@t
¼ �r �

ð
P
Fgc Kgc _X þ cE

4p
	Hgc

� �

þ
ð
P
Fgc

dKgc

dt
� eE � _X

� �
þ @E

@t
�Pgc þ @B

@t
�Mgc; (89)

@Pgck
@t

¼ �r �
ð
P
Fgc _XPgck � Pgc Ek þ B

4p
Hgck

� �" #

� @k
B
4p

�Hgc � jBj2
8p

� �

þ
ð
P
Fgc

dPgck

dt
� @kX � eEþ e

c
_X 	 B

� �" #

� @kE �Pgc þ @kB �Mgc
� �

: (90)

The last steps in deriving the energy-momentum conservation
laws (83) and (86) involve using the guiding-center
Euler–Lagrange equation (23) and substituting the expressions
(54) and (60) for the guiding-center polarization and magnetiza-
tion, respectively.

Finally, we note that the definitions [(84) and (85)] and [(87) and
(88)] associated with the guiding-center energy and momentum con-
servation laws (83) and (86), respectively, are not uniquely defined.
Indeed, under the following transformations E0

gc ¼ Egc þr � C and

S0gc ¼ Sgc � @C=@t þr	 K, the guiding-center energy conservation

law (83) remains invariant, where the fields ðC;KÞ are arbitrary.
Likewise, under the transformations P0

gck ¼ Pgck þr � Gk and

T0
gck ¼ Tgck � @Gk=@t þr �Kk, the guiding-center momentum con-

servation law (86) remains invariant, where the fields Gk � G � @kX
are defined in terms of an arbitrary second-rank tensor G, while the
third-rank tensor K has the following antisymmetry property:

Kji
k ¼ �Kij

k (so that @2
ijK

ij
k � 0). Here, we note that the vector fields

C � ÐPFgcQgc � E andGk � 1
2

Ð
PFgc Jb̂

� �
	 @kX �G � @kX completely

remove the FLR corrections in the definitions (84) and (87).

C. Symmetry properties of the guiding-center stress
tensor

We now make a few remarks about the symmetry properties of
the guiding-center stress tensor (88). These symmetry properties are
most relevant when considering the conservation law of guiding-
center toroidal angular momentum, where the guiding-center toroidal
angular momentum density

Pgc/ �
ð
P
Fgc Pgc � @X

@/
þ 1

c
Pgc � B	 @X

@/
(91)

is defined as the covariant component of the guiding-center momen-
tum density Pgc associated with the toroidal angle /.

First, we derive the guiding-center angular momentum
transport equation from the guiding-center momentum conservation
law

@Pgc/
@t

þr � Tgc � @X
@/

� �
¼ T>

gc : r
@X
@/

� �
� ẑ � T gc; (92)

where T>
gc denotes the transpose of Tgc. Since the dyadic tensor

rð@X=@/Þ is anti-symmetric, with the rotation axis directed along
the z-axis, the anti-symmetric part of the guiding-center stress tensor
(88) generates the guiding-center Vlasov–Maxwell torque T gc. We
note that this equation can also be derived by substituting the virtual
displacement dX ¼ d/ @X=@/ in Eq. (77).

At the lowest order (i.e., keeping terms only up to gyrogauge cor-
rections), the guiding-center Vlasov–Maxwell torque is defined as
T gc ¼

Ð
PFgc sgc, where, using the dyadic identity (for two arbitrary

vector fields F andG)

F � rð@X=@/Þ � G ¼ ẑ � ðF	 GÞ;

we find

sgc ¼ _X 	Pgc þ E	 pgc þ B	 lgc þ pgc 	 P0=mc
� �

; (93)

which is calculated below in the dipole approximation. First, each term
is expressed as
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_X 	Pgc ¼ _X 	 Pk b̂ þ E	 eb̂
X

� �

¼ Pk _X 	 b̂ þ cE
B

� �
� _X � eE

X

� �
b̂;

E	 pgc ¼ E	 eb̂
X

	 _X � uE
� �� 	

¼ _X � eE
X

� �
b̂

and

B	 lgc ¼ B	 l �b̂ þ 1
X
db̂
dt

	 b̂

� �
¼ J

db̂
dt

;

B	 pgc 	 P0

mc

� �
¼ Pk b̂ 	 _X � uE

� �
¼ Pk b̂ 	 _X � cE

B

� �
;

where we used B � pgc ¼ 0. Next, by combining these terms in Eq.
(93), several cancelations occur and the lowest-order torque density is

sgc ¼ J
db̂
dt

¼ J
@b̂

@t
þ _X � rb̂

� �
; (94)

which recovers a result derived by Ye and Kaufman.32 Hence,
substituting Eq. (94) into the right-hand side of Eq. (92), we obtain

ẑ � T gc ¼ @

@t

ð
P
Fgc J bz

� �
þr �

ð
P
Fgc _X J bz

� �
; (95)

which adds a gyrogauge-independent contribution

�J bz � �JR � @X=@/ (96)

to the guiding-center toroidal angular momentum density (91). Hence,
we note that, in the presence of an axisymmetric magnetic field, we
can use the definition (5) and the identity B	 @X=@/ � �rA/; the
guiding-center toroidal angular momentum density (91) can then be
written as

Pgc/ ¼
ð
P
Fgc P/ � e

c
A/ þ J bz

� �
� 1

c
Pgc � rA/

¼
ð
P
Fgc P/ þ J bzð Þ � r � 1

c
A/ Pgc

� �
; (97)

where we used the definition (26) for the guiding-center canonical
toroidal angular momentum and the guiding-center quasineutrality
condition (68). By using the guiding-center torque correction (95) and
the transformation P0

gc/ ¼ Pgc/ þr � G/, where G/ ¼ ðA/=cÞPgc,
we obtain the exact guiding-center toroidal angular momentum con-
servation law

@

@t

ð
P
Fgc P/

� �
¼ �r �

ð
P
Fgc _X P/

� �
þ
ð
P
Fgc _P/

¼ �r �
ð
P
Fgc _X P/

� �
; (98)

which follows from applying the Noether theorem to the guiding-
center Euler–Lagrange equation dP/=dt ¼ @Lgc=@/ � 0 associated
with magnetic axisymmetry.

Finally, returning to the case of a general magnetic field, and
omitting the gyrogauge terms and FLR corrections, the guiding-center
stress tensor (88) can be expressed in symmetric form as

Tgc ¼ PCGL þ
ð
P
Fgc Pk b̂ _X? þ _X? b̂

� �

þ jBj2
8p

I� BB
4p

� �
þ vgc ðE	 b̂Þ ðE	 b̂Þ

þ I� b̂b̂ð ÞPgc � EþPgc 	 b̂ E	 b̂ �Pgc E; (99)

wherePCGL denotes the Chew–Goldberger–Low (CGL) pressure tensor8

PCGL ¼
ð
P
Fgc

P2
k
m

b̂b̂ þ I� b̂b̂ð ÞlB
� 	

;

which appears naturally in lowest-order guiding-center Vlasov–Maxwell
theory4 and several kinetic-magnetohydrodynamic models,9,11,59 while
vgc �

Ð
PFgcðmc2=B2Þ denotes the guiding-center electric susceptibility.3

The remaining terms in Eq. (99) involve the off diagonal terms
Pkðb̂ _X? þ _X? b̂Þ, which have appeared in previous works,33,34 and
contributions from the guiding-center polarization (54). Future work
will explore the symmetry properties of the remaining higher-order
terms in the guiding-center stress tensor defined in Eq. (88).

V. SUMMARY

The results of the Lie-transform analysis leading to higher-order
guiding-center Hamiltonian dynamics yield the guiding-center
Hamiltonian

Hgc ¼ J Xþ Sð Þ þ jP0j2=2mþ eU�r � Qgc � E
� �

(100)

and the guiding-center Lagrangian

Lgc ¼ e
c
Aþ P0 � J Rþ 1

2
r	 b̂

� �� 	
� _X þ J _h � Hgc; (101)

where P0 � Pk b̂ þ E	 eb̂=X and the symmetric dyadic tensor (53)
generates a finite-Larmor-radius (FLR) correction to the electrostatic
potential energy eU in Eq. (100). The presence of the gyrogauge fields
ðS;RÞ guarantees that the guiding-center Hamiltonian dynamics
derived from the guiding-center Lagrangian (101) are gyrogauge
invariant (i.e., these equations are not only gyroangle-independent but
also independent of how the gyroangle is measured).

Next, the explicit dependence of the guiding-center Lagrangian
(101) on the electric and magnetic fields ðE;BÞ yields guiding-center
polarization and magnetization effects, represented by the vector fields
ðPgc;MgcÞ, in the guiding-center Maxwell equations (68) and (69).
The guiding-center Vlasov–Maxwell equations are, then, derived by an
Eulerian variational principle from which exact energy-momentum con-
servation laws are derived. Here, the guiding-center variational principle
(27) omitted the electric energy density from the guiding-center
Lagrangian density, which explicitly guaranteed quasineutrality (68) and
removed the displacement current density from the guiding-center
Maxwell equation (69). In particular, the explicit guiding-center quasi-
neutrality condition removes spurious high-frequency plasma oscilla-
tions that violate the guiding-center ordering x � X, while additional
spurious high-frequency modes are discussed in Appendix B.

Future work will explore the invariance properties of the energy-
momentum conservation laws as well as the symmetry properties of
the guiding-center stress tensor Tgc defined in Eq. (88). In addition,
the Hamiltonian formulation of the guiding-center Vlasov–Maxwell
equations will be constructed that generalizes the work of Brizard and
Tronci.33
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APPENDIX A: TIME-DEPENDENT GYROGAUGE
INVARIANCE

By introducing the fixed unit-vectors ð1̂; 2̂; b̂ � 1̂ 	 2̂Þ, we
write the definitions for the rotating unit-vectors

q̂ � cos h 1̂ � sin h 2̂

?̂ � �sin h 1̂ � cos h 2̂; (A1)

where the gyroangle h is measured clockwise from the 1̂-axis (for a
positively charged particle) so that^� @q̂=@h. We note that, while
the choice of the fixed unit-vectors ð1̂; 2̂Þ can be made arbitrary in
the plane locally perpendicular to b̂, we must ensure that the result-
ing guiding-center equations of motion do not depend on a specific
choice. Hence, our guiding-center Hamiltonian theory must be
gyrogauge-invariant in the following sense.

First, we allow the rotation of the unit-vectors ð1̂; 2̂Þ about the
magnetic unit-vector b̂ by an arbitrary angle wðx; tÞ that depends
on the field position x at time t so that

1̂
0

2̂
0

 !
¼ cosw sinw

�sinw cosw

� �
� 1̂

2̂

� �
: (A2)

Second, we require that the rotating unit-vectors (A1) be invariant
under this rotation, i.e., q̂ 0 ¼ q̂ and 0̂ ¼ ,̂ which implies that the
gyroangle h must transform as

h0ðh; x; tÞ ¼ hþ wðx; tÞ; (A3)

under the gyrogauge rotation (A2).
Third, we introduce the gyrogauge vector field

R � r?̂ � q̂ ¼ r1̂ � 2̂ (A4)

and the gyrogauge scalar field

S � @?̂
@t

� q̂ ¼ @1̂
@t

� 2̂; (A5)

which transform as R0 ¼ Rþrw and S0 ¼ S þ @w=@t under the
gyrogauge rotation (A2). We, therefore, readily see that a gyrogauge-
invariant guiding-center theory can only include the gyrogauge fields
ðR;SÞ as the one-form dh� R � dx � S dt, the gradient operator
rþ R @=@h, or the partial time derivative @=@t þ S @=@h, which are
all gyrogauge invariant. Finally, we note that the vector fields6

r	 R ¼ � 1
2
�ijk b

i rbj 	rbk;

@R
@t

�rS ¼ �rb̂ � b̂ 	 @b̂

@t

� � (A6)

are manifestly gyrogauge independent, since they are expressed
entirely in terms of b̂; rb̂, and @b̂=@t.

Finally, we note that since the magnetic unit vector b̂ � @x=@s
is defined as the rate of change of the position x of a point as
it moves along a magnetic-field line (with s defining distance
along that line), we may choose the perpendicular unit vectors
1̂ � j�1@b̂=@s (where j denotes the Frenet–Serret curvature57) and
2̂ � j�1b̂ 	 @b̂=@s. Hence, the parallel component of the gyro-
gauge vector field

b̂ � R ¼ @1̂
@s

� 2̂ ¼ j�2 @2b̂

@s2
� b̂ 	 @b̂

@s

� �
� s (A7)

is expressed in terms of the Frenet–Serret torsion s.

APPENDIX B: LINEARIZED GUIDING-CENTER
VLASOV–MAXWELL EQUATIONS

In this Appendix, we show how the standard linear finite-beta
electromagnetic gyrokinetic equations29,60 appear as a subset of our
guiding-center Vlasov–Maxwell equations. For this purpose, we
consider the linearized guiding-center Vlasov–Maxwell equations
derived for a uniform background magnetic field B0 ¼ B0 ẑ and a
uniform background Maxwellian distribution F0 (with density N0

¼ ÐPF0 and temperatures N0Tk0 ¼
Ð
PF0 mv2k and N0T?0 ¼

Ð
PF0 lB0)

for each particle species. Consistent with previous gyrokinetic mod-
els,29,60 a vanishing background electric field is considered so that the
electric and magnetic fields are expressed as

E ¼ ��d rdUþ ẑ c�1@dAk=@t
� �

; (B1)

B ¼ B0 ẑ þ �d rdAk 	 ẑ; (B2)

where k and ? refer to parallel and perpendicular directions with
respect to the z-axis and �d is a dimensionless ordering parameter
associated with the perturbation potentials ðdU; dAkÞ. The guiding-
center Vlasov–Maxwell equations (48) and [(68) and (69)] will now
be linearized up to first order in �d and the gyrogauge contributions
are unimportant in what follows since they are not irrelevant in the
case of a uniform magnetic field.

First, the guiding-center momentum is expressed as

P0 ¼ Pk ẑ þ �d
e ẑ
X0

	rdW; (B3)

where dW � dU� ðvk=cÞ dAk is the standard electromagnetic effec-
tive potential60 so that the guiding-center velocity (24) becomes
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_X ¼ vk ẑ þ �d c
B0

ẑ 	rdW� 1
X0

d0
dt

r?dW
� �

; (B4)

where d0=dt � @=@t þ vkẑ � r. Here, we note that, whenever a
term is multiplied by the factor 1=X0, its contribution comes mainly
from ions because of their larger masses compared to electrons. The
parallel guiding-center force equation (19), on the other hand, is

_Pk ¼ ��d e ẑ � rdUþ c�1@dAk=@t
� �

; (B5)

while the guiding-center Jacobian is

J gc ¼ e
c
B

k ¼

e
c
B0 1þ �dc

B0X0
r2

?dW
� �

; (B6)

which guarantees that the guiding-center Liouville equation is satis-
fied up to �2d. Using Eqs. (B4) and (B5), the linearized guiding-
center Vlasov equation (48) is

d0dF
dt

¼ e ẑ � rdUþ c�1@dAk=@t
� � @F0

@Pk
; (B7)

which follows from the assumption of a uniform background mag-
netized plasma.

Second, taking into account the guiding-center Jacobian (B6),
the guiding-center charge density is

.gc ¼ �d vgc r2
?dUþ �d

ð
P
e dF; (B8)

where
Ð
Pvk F0 ¼ 0, and the background Jacobian eB0=c is incorpo-

rated into
Ð
P . Here, the dominant contribution from the first term

(with 4p vgc ¼ c2=v2A ¼ 4pN0mic2=B2
0) comes from ions (because of

their larger masses compared to electrons) while the dominant con-
tribution from the second term will come from electrons. In what
follows, we will also need the parallel component of the guiding-
center current density

Jkgc ¼ ��d
cb
4p

r2
?dAk þ �d

ð
P
e vk dF; (B9)

where we assume equal background temperatures Tk0 ¼ T?0, with
b � 4pN0T0=B2

0, and the dominant contribution from the second
term will once again come from electrons. The perpendicular
guiding-center current density, on the other hand, is expressed as

J?gc ¼ ��dr? vgc
@dU
@t

� cb
4p

ẑ � rdAk

� �
; (B10)

which has no contribution from the perturbed Vlasov distribution
dF at first order in �d in a uniform magnetized plasma so that the
guiding-center charge conservation law yields

@.gc
@t

þr � Jgc ¼ �d e
ð
P

d0dF
dt

¼ 0; (B11)

where the right side vanishes because of Eq. (B7).
Third, up to first order in �d, the guiding-center polarization

(54) is expressed as

Pgc ¼ ��d
ẑ

X0
	r vgc

@dU
@t

� c b
4p

ẑ � rdAk

� �
; (B12)

while the guiding-center magnetization (60) is expressed as

Mgc ¼ � b
4p

ẑ B0 þ �dc
X0

r2
?dU

� �
þ �d rdAk 	 ẑ

� 	

� �d
cb

4pX0
r? ẑ � rU� 1

c

@dAk
@t

� �
: (B13)

Here, only ions contribute to the guiding-center polarization (B12),
while both ions and electrons contribute to the finite-beta term
�bB=4p in the guiding-center magnetization, with the remaining
magnetization is contributed by ions.

From Eqs. (B12) and (B13), we now construct the guiding-
center electromagnetic fields Dgc ¼ Eþ 4pPgc and Hgc ¼ B
� 4pMgc to be substituted into the guiding-center Maxwell equa-
tions (68) and (69). First, we see that the guiding-center polarization
charge density �r �Pgc vanishes in a uniform background magne-
tized plasma so that the guiding-center quasineutrality condition
(68) becomes

r �Pgc ¼ 0 ¼ .gc: (B14)

The parallel component of the guiding-center Maxwell equation
(69), on the other hand, yields

ẑ � r 	Hgc ¼ ð4p=cÞ Jkgc; (B15)

where the parallel component of the guiding-center polarization
(B12) is zero so that to the parallel guiding-center polarization cur-
rent vanishes ẑ � @Pgc=@t ¼ 0.

Finally, using the Fourier representation dv ¼ d~v exp ðik � x
�ixtÞ, we now derive the linear dispersion relation for the linear-
ized guiding-center Vlasov–Maxwell equations (B7) and (B14) and
(B15) derived for a uniform magnetized plasma. If we assume that
only the electron contributions are dominant for the guiding-center
charge and parallel current densities (in the limit x � xpe=�
� kkvthe), we find

�4p e
ð
P

d~Fe

vk d~Fe

 !
¼ kk �2

x �2

 !
kk d~U � x

c
d~Ak

� �
: (B16)

Hence, the guiding-center quasineutrality condition (B14) becomes

k2?
c2

v2A
� k2k �

2

 !
d~U ¼ � kkxpe

c

� �
� d~Ak; (B17)

while the parallel component of the guiding-center Maxwell equa-
tion (B15) becomes

k2? þ x2
pe

c2

� �
d~Ak ¼

kkxpe

c

� �
� d~U; (B18)

where finite-beta effects coming from the parallel magnetization
and guiding-center current densities have canceled out under the
assumption of temperature isotropy.

Next, we introduce the normalization K2 ¼ k2?q
2
s ; j ¼ kk=k?,

and ðkkx=cÞq2s ¼
ffiffiffi
r

p
jK=�, where r ¼ v2the=v

2
A ¼ be ðmi=meÞ

denotes a finite-beta parameter and q2s ¼ Te=ðmiX
2
i Þ so that the

coupled equations (B17) and (B18) for ðd~U; d~AkÞ become

K2 c2

v2A
� j2 �2

 !
d~U ¼ � ffiffiffi

r
p

jK � d~Ak;

K2 þ rð Þd~Ak ¼
ffiffiffi
r

p
jK � d~U:

(B19)
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In the electrostatic limit r ! 0 (i.e., d~Ak ! 0), we obtain the elec-
trostatic dispersion relation j2�2 ¼ c2=v2A, which yields the well-
known electrostatic H-mode frequency x ¼ j ðvAxpe=cÞ ¼ ðkk=
k?Þ ðmi=meÞ

1
2Xi, discovered in electrostatic gyrokinetic mod-

els.53–56,61 While this potentially high-frequency mode may violate
the fundamental ordering (1) used to derive the guiding-center
Vlasov–Maxwell equations, depending on the magnitude of
ðkk=k?Þðmi=meÞ

1
2, we will now show that this spurious mode disap-

pears when finite-beta electromagnetic gyrokinetic effects are
included (see, for example, Lee et al.62 or Belli and Hammett63).

Indeed, when finite-beta (r > 1) electromagnetic effects are
retained, the coupled equations (B19) yield the dispersion relation

c2

v2A
¼ j2 �2 1� r

K2 þ r

� �
¼ j2 �2 K2

K2 þ r
;

which yields the low-frequency gyrokinetically modified shear
Alfv�en wave62–64

x ¼ kk vA
1þ k2?q2s ðme=mibeÞ

; (B20)

where k2?q
2
s ðme=mibeÞ � k2?q

2
s ðme=miÞ

1
2 < k2?q

2
s for typical of elec-

tromagnetic gyrokinetic models60 with finite beta be � ðme=miÞ
1
2.
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