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Abstract:  In this paper, we present a modified algorithm based on topological data analysis (TDA) for object localization, and 
compare its performance with two well-known supervised models, Vision Transformer (ViT) and Yolov7, on two different datasets. 
Our TDA-based approach returns an IOU (intersection over union) score of 64% and 66% on the two datasets, respectively. We 
find that both ViT and Yolov7 outperform our unsupervised algorithm, with ViT achieving a better performance on one dataset at 
90%, while Yolov7 performs better on the other dataset at 89%. Our results suggest that while TDA-based approaches show promise 
for object localization, there is still room for improvement in comparison with supervised models. 
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1. Introduction 

Object localization is a fundamental problem in computer vision that involves identifying the location of objects 
within an image or video. The purpose of doing research on object localization is to develop algorithms and 
techniques that can accurately and efficiently locate objects within an image or video. 

There are several reasons why object localization is an important area of research. Firstly, accurate object 
localization is a crucial component of many computer vision applications such as autonomous vehicles, robotics, and 
surveillance systems. Secondly, object localization is a challenging task due to the complexity of real-world images 
and videos, making it an interesting and intellectually stimulating research problem. Additionally, advances in object 
localization can also lead to improvements in related areas such as object recognition and image segmentation. 
 Object localization is the process of determining the location of an object within an image, which is usually 
represented as a bounding box. This bounding box is defined by a set of four numbers, namely, the x and y 
coordinates of the top-left corner of the box, as well as its width and height. Object localization algorithms predict 
these four parameters in order to draw a bounding box around the object of interest in an image. 

Two famous deep learning models for object recognition are R-CNN [1] and Fast R-CNN [2]. However, 
Yolov (You Only Look Once) has emerged as the State-of-the-Art Object Detection model [3] since its introduction. 
At the same time, Vision Transformer (ViT) has gained popularity in various machine learning applications. The 
ViT model [4] is built on the self-attention-based Transformer architecture [5], which has become the preferred 
model for natural language processing (NLP). In ViT, the Transformer architecture with self-attention is applied to 
sequences of image patches, making it powerful in image classification and other machine learning domains. 

Yolov7 and ViT are supervised learning models that rely on annotated images for training. During training, 
the models learn from the annotated images to make predictions. The performance of the models is evaluated using 
the IOU (intersection over union) metric, which compares the predicted bounding boxes to the annotated ones. 

Vandaele[6] introduced a Topological Data Analysis (TDA)-based method for object detection called 
Topological Image Modification (TIM) and Topological Image Processing (TIP). Our research aims to extend this 
method as an unsupervised algorithmfor object localization and evaluate its performance. In addition, we will 
compare the results with Yolov7 and ViT to determine which model performs better. We will assess the 
performance of Yolov7 and ViT and compare which one outperforms the other. 



2. Background 

1.1 Topological Image Processing 

Topological image processing (TIP) is a method that uses topological data analysis (TDA)[7,8] to extract features 
from images. TDA relies on a tool called persistent homology to identify the number of connected components, cycles, 
and voids in an image, as well as their birth and death during an iterative process called a filtration. Fig. 1 shows a 
motocycle image with its persistent diagram. TIP works by iterating over all the lifetimes in the image, using persistent 
diagrams to select a threshold by averaging the two lifetimes with the largest difference. Any birth and death pairs 
with a lifetime above this threshold are processed, and components are merged using the elder rule. This rule 
determines that when constructing the persistence diagram, the youngest component or hole is considered dead when 
two are merged. The output of TIP is a binary image that marks objects from the original image with inferred 
components through its persistence diagram. 

 
  
Fig. 1. Left: A motocyle image in grayscale   Right: A 0-D Persistence Diagram of the image  

First, the images are transformed into grayscale format. Then, the gray scale image data undergoes a 
filtration process, specifically the Low Star filtration [9], also known as sublevelset filtration. This filtration method 
identifies local minimums as birth times and saddle points as death times, resulting in a 0-dimensional persistence 
diagram. Next, a sparse distance matrix is generated, where each pixel in the image serves as a vertex, connected to 
its 8 spatial neighbors (except for those at the boundary). The edge weights are determined by selecting the 
maximum value between the two connected pixels. Finally, a threshold is chosen. 

The filtration F for image M is defined as  
𝐾𝑖 ≔ ({𝜎 ∈ 𝐾: 𝑓(𝐾) ≤ 𝑖}) 

Where  
𝑓: 𝐾 → 𝑅: 𝜎 → max

𝑝∈𝜎
𝑔𝑟𝑎𝑦𝑀 (𝑝) 

 
And 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 … ⊆ 𝐾𝑇 = 𝐾. For each pixel in Ki, its corresponding pixel value in image I is set to 1 if it 

is a member of Ki, and 0 otherwise. Connected components of Ki, where i is an integer from 1 to T, represent 
clusters of pixels with the same value of 1 that are maximally connected. The elder rule governs the merging of 
components and states that when constructing the persistence diagram, if two components or holes are merged, the 
one with the highest birth-time is eliminated.  
 



1.2 Vision Transformer 

Although Transformers are relatively new to computer vision, recent studies have demonstrated their potential. 
Originally developed for language processing, Transformers analyze the relationships between words in a sentence 
to establish "context." This approach can be applied to images, considering each image as a "sentence" for the 
Transformer to interpret.  

Alexey Dosovitskiy [4] introduced attention-based image processing in the Vision Transformer (ViT) 
models. ViT treats images as a list of "words" and divides them into patches with assigned positions. Fig. 2 shows 
this process. These patches are encoded through Transformer blocks that relate one patch to another via self-
attention. A MultiHeadAttention layer is applied to the sequence of image patches. The encoded patches and self-
attention layer outputs are normalized and then processed through a multilayer perceptron (MLP). The model's 
output is a set of four-dimensional coordinates representing the object's bounding box. 

 
Fig. 2: Left: ViT Model, Right: A MotorCycle split into 49 patches 

1.3 YOLO (You Only Look Once) 

 
 
 
 
 
 
 
 
 
 
 
 
 
YOLO stands for You Only Look Once, referring to its use of single-shot object detection [3]. Single-shot detection 
only processes the image once, which is less demanding computationally. YOLO predicts bounding boxes and 
classes at the same time, making it faster and more efficient than previous real-time detection algorithms. See Fig. 3. 

YOLO first resizes the image to a set number of pixels and divides images into a grid of equal proportions. 
Each grid cell that contains the center of an object will attempt to predict the area of the bounding box and the class 
of the object. There have been multiple versions of YOLO, each faster and more accurate than the previous one. 
YOLO v7, the newest version, introduces “focal loss”, which focuses more on objects that are harder to detect. In 
turn, the function focuses less on objects that were already well-classified. It also detects smaller objects better due 
to its higher resolution at 608 by 608 pixels, an improvement over the previous 416 by 416 pixels. It is also faster 
than its previous versions, processing images at 155 frames a second. The first version of YOLO processed images 
at 45 frames a second. However, YOLO v7 still struggles to detect objects that are small and in crowded scenes 

Fig. 3. Summary of Predictions made by YOLO Model [3] 



accurately. Even though it is not perfect, YOLO v7 still outperforms many other object detection algorithms in terms 
of speed and results.  

 
1.4 IOU (Intersection over Union) 

Intersection over Union (IoU), is the most popular evaluation measure for tasks like object localization. 
Localization, which is determining the location of an object in an image. IOU is defined as area of intersection over 
area of union.  

A bounding box B is defined by its four components: x1,y1.x2, y2 which represent two points of upper left (x1, 
y1) and bottom right (x2, y2) on the diagonal.  IOU can be calculated using predicted box P and annotated box A as 
following: 

𝑥1 = max (𝑃. 𝑥1, 𝐴. 𝑥1) 
𝑦1 = max (𝑃. 𝑦1, 𝐴. 𝑦1) 
𝑥2 = min(𝑃. 𝑥2, 𝐴, 𝑥2) 
𝑦2 = min( 𝑃. 𝑦2, 𝐴. 𝑦2) 

𝑎𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = (max (𝑥2 − 𝑥1,0) + 1) ∗ (max (𝑦2 − 𝑦1,0) + 1) 
𝑎𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛 = 𝑎𝑟𝑒𝑎𝑃 + 𝑎𝑟𝑒𝑎𝐴 − 𝑎𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  

𝐼𝑂𝑈 =
𝑎𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

𝑎𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛

 

 

3. Dataset Description 

 
We experiment with two sets of images from dataset Caltech-101 [10]. One set has 800 images of airplane and the 
other has 798 images of motorcycles. Fig. 4 shows some sample images from two sets of data. Each image has an 
annotation file in mat format. We could easily retrieve four numbers as x and y coordinates of the upper left corner 
and lower right corner of the bounding box from each annotation file. 
 
 

 

 

 

 

4. Object Localization Based on Topological Data Analysis  

We use the extend algorithm1 from [6] to generate a bounding box of interest in an image, and a segmented image as following: 
Input: Image I 
Result: Bounding Box and Processed Image, Segmented Image 
G=Gray_Scale (I)  
J=Zeros_like(I) 
D= Persistent Diagram of G 
Lifetimes = D.death-D.birth 

Fig. 4 Sample pictures from Caltech 101  



Sort Lifetimes in descending order 
Threshold=average of the two lifetimes with the largest difference 

 for birth,death as lifetimes>Threshhold and lifetime<inf 
     C=All pixels connected between birth and death 
     J[C]=1 
Let col and row as two lists which holds maximum in each column and row of matrix J   
We determine top bound using a loop: 
 t=0 
 while not row[t]: 
      t+=1 
We could bottom bound b, left bound l and right bound r in similar ways 
B=[l, t, r, b] 
𝐽=̅Invert(J) 
G[𝐽]̅=0 
S=I[𝐽]̅=0 
End 
Return B, G, S 
TDA Algorithm: pseudocode to generate bounding box of an image based on its persistent diagram 
  

An image is first converted in a GrayScale image, we then processed to generate a mask based homology diagram. 
We then use the mask to generate a box, a processed image , and a segmented the original image as shown in Fig. 5. 
 

 
 
 
 
 

       Fig. 5: The procedure of TDA algorithm 

5. Experiments and Results 

We conducted experiments using three different algorithms: TDA, Yolov7, and ViT. For each algorithm, we 
measured the average IOU for all images in the test set, and we also generated plots for a number of randomly 
selected images that showed the predicted box, annotated box, and IOU. 

To experiment with Yolov7, we developed a Python program that generated an XML file similar to Fig. 6 
for each annotation file in MAT format. We then loaded both the images and XML files into Roboflow [11] and 
trained them using Yolov7 [12] on Google Colab. We used the best.pt file from the training as the weights for our 
modified detection program, which calculated the IOU for each image and the average IOU for all images in the test 
set. 
            
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6: Sample of Annotation File in XML 



Finally, we experimented with Vision Transformer [13]. We resized each image to 224 by 224 and used a 
patch size of 32 by 32. Each image was divided into 49 patches, and each patch had 3072 elements. We used the 
PatchEncoder layer to transform each patch into a vector with position embedding. The ViT model had multiple 
Transformer blocks, and we used the MultiHeadAttention layer for self-attention, which was applied to the sequence 
of image patches. The encoded patches and self-attention layer outputs were normalized and fed into a multilayer 
perceptron (MLP). The model outputted a vector representing the bounding box coordinates of an object with four 
coordinates. 

We used the same training and testing sets for ViT as we did for Yolov7. The table 1 below shows the 
results of our experiments. 

Table 1. Average IOU. 
Data Set TDA                    ViT Yolov7 
Airplane 66%                   90% 82% 
Motorcycle 64%                   83% 89%                    

 
Our TDA algorithm achieved similar IOU results in both datasets, with 64% and 66%. Some samples are shown 

in Fig. 7. These are decent results considering that our algorithm is unsupervised and does not require any training. 
Both Yolov7 and ViT also returned good results. ViT performed better on the Airplane dataset, while Yolov7 
performed better on the Motorcycle dataset. However, it is important to note that both Yolov7 and ViT are supervised 
models that require annotated training sets. 

 
 

Fig. 7: Sample Results Using TDA (predicted boxes are in green lines and annotated boxes in red lines) 

   
We have included 12 randomly selected examples from our test sets below in Fig. 8. The first row shows 

the results from Yolov7, where we have replaced the confidence number with an IOU number displayed in green on 
the top left. The second row displays the results from ViT, where we have printed the IOU in red on the bottom left. 

 
 

 

Fig. 8: Samples Results with Yolov7 on the top and ViT on the bottom (predicted boxes are in green lines and annotated boxes in red lines) 



6. Conclusion and Future Work 

Our experiment has shown object localization based on topological data analysis has a good potential but its 
performance is still far below to results from supervised trained models such as YOLO or ViT. That is understandable, 
as supervised models are trained on a large amount of annotated data and are able to learn rich representations of the 
objects they are trained on. On the other hand, object localization based on topological data analysis is a relatively 
new approach that has not yet been widely used or researched, and its performance is still being improved. 

We believe improving the TDA algorithm for object localization is a promising area of research, and there 
may be many ways to achieve this. For example, exploring different types of filtration could lead to new insights into 
the structure of the data and how it relates to object localization.  

YOLOv7 is generally considered to be a faster and more efficient model for object detection, due to its single-
shot design and anchor-based approach. However, ViT has a more powerful transformer-based architecture that allows 
it to learn rich representations of the objects it is detecting, and it has been shown to outperform YOLOv7 on one 
dataset in our experiments. We could not conclude which of Yolov7 and ViT is better in terms of object localization 
as each outperform the other in one set of images.  

Ultimately, the best model for object localization depends on the specific requirements of our use case, such 
as the size of the objects we are detecting, the speed at which we need detections to be made, and the amount of 
computational resources we have available. If we have time and computational resources, it might be a good idea to 
try both models and compare their performance on your specific dataset, to see which one is best suited to our needs. 

Similarly, experimenting with different variations of ViT is also a good idea. There have been many recent 
advancements in the field of transformer-based models, and these may provide new ideas for how to improve the 
performance of ViT for object localization. We could try using different types of self-attention mechanisms, or 
integrating other techniques such as convolutional neural networks or recurrent neural networks, to see if this leads to 
improved performance. 
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