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Percolation and conductivity in evolving disordered media
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Percolation theory and the associated conductance networks have provided deep insights into the flow and
transport properties of a vast number of heterogeneous materials and media. In practically all cases, however, the
conductance of the networks’ bonds remains constant throughout the entire process. There are, however, many
important problems in which the conductance of the bonds evolves over time and does not remain constant.
Examples include clogging, dissolution and precipitation, and catalytic processes in porous materials, as well
as the deformation of a porous medium by applying an external pressure or stress to it that reduces the size
of its pores. We introduce two percolation models to study the evolution of the conductivity of such networks.
The two models are related to natural and industrial processes involving clogging, precipitation, and dissolution
processes in porous media and materials. The effective conductivity of the models is shown to follow known
power laws near the percolation threshold, despite radically different behavior both away from and even close to
the percolation threshold. The behavior of the networks close to the percolation threshold is described by critical
exponents, yielding bounds for traditional percolation exponents. We show that one of the two models belongs to
the traditional universality class of percolation conductivity, while the second model yields nonuniversal scaling

exponents.
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I. INTRODUCTION

Percolation theory [1,2] has provided deep insights into
the flow and transport properties of a vast number of het-
erogeneous materials and media and has found numerous
applications [3] in a variety of contexts. In many cases the
heterogeneous materials are represented by conductance net-
works [4], if a scalar transport process is to be studied; by a
network of elastic elements, such as springs [5-7] or beams
[8], if vector transport processes are investigated; or by a net-
work of interconnected pores [9], if one is to examine various
fluid flow phenomena in porous materials and media. When
representing natural and industrial heterogeneous materials,
the conductance of the bonds or pores might be distributed
according to some probability distribution function that repre-
sents the morphology of the materials [10,11]. In practically
all cases, however, the conductance of the network elements is
modeled as constant throughout the percolation process under
study.

There are, however, many important problems in which
the conductance of the bonds in the networks that represent
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the morphology of the system of interest evolves over time
and, therefore, does not remain constant. One example is
noncatalytic gas-solid reactions with solid products, such as
sulphation of calcined limestone particles that are highly
porous and contain a range of pore sizes,

CaO(s) 4+ SOx(g) + 102(g) — CaSO4(s).

Numerous experiments indicate [12,13] that during the reac-
tion the solid volume increases, and the pores are gradually
plugged. Another example is the important problem of cata-
lyst deactivation [14] in which a reactant reacts within the pore
space of the catalyst and produces products that not only cover
the catalyst’s active sites but also precipitate on the solid sur-
face of the pores and plug them, leading to deactivation of the
catalyst. A third example is the transport of colloidal particles
and stable emulsions in flow through a porous medium, during
which the particles and emulsions precipitate on the surface of
the pores and reduce their flow capacity [15—-17]. The pore
space of rock and other natural porous media evolve due
to dissolution or precipitation. The fourth example is quartz
cementation in sandstone that yields a pore space with a con-
tinuous range of various porosity and the corresponding flow
and transport properties, such as permeability and electrical
conductance. Another example is the evolution of sandstone
pore structure in the near-well region by salt precipitation
during CO, injection for its sequestration [18,19], as well as
during evaporation of brine and the resulting salt precipitation
[20-22]. Pore structure evolution is also observed in systems
where the pore sizes of porous materials and, hence, their con-
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ductances are reduced mechanically by, for example, applying
an external stress or pressure to the material [23,24]. In all
such cases, and numerous other examples, such as clogging
of nanopores by transport of DNA [25], one has an evolving
network.

Thus, the purpose of the present paper is to study the trans-
port properties of evolving networks, particularly near their
percolation threshold p.. The goal of our study is twofold.
One is to understand how the transport properties evolve in
such networks, and how their evolution depends on the man-
ner by which the conductances decrease. The second goal is
to see whether the power law of percolation theory, according
to which the effective conductivity o, follows the universal
power law,

oe X (p—pe) s (1)

is also satisfied by the effective conductivity of evolving net-
works, where p is the fraction of the bonds with a nonzero
conductance, and ¢ is the critical exponent whose value is
largely universal with  ~ 1.3 in two dimensions.

The rest of this paper is organized as follows. In the next
section, we introduce the models that we study and explain
how they are employed in our numerical simulations. In
Sec. III we present the details of the numerical simulations.
Section IV presents the results for the power laws that the
effective conductivity of the proposed models follow near the
percolation threshold and compares them to the traditional
models of random conductance networks. In Sec. V the im-
plications of the results are discussed in detail, while the last
section summarizes the results.

II. THE MODELS

The main motivation for this work is transport in evolving
porous media, which typically occurs in complex three-
dimensional pore networks. For the sake of more efficient
simulations of very large networks, however, we restrict our
study to the square lattice, which allows us to make precise
comparisons with the existing models.

The simplest network we consider is the traditional square
lattice in which we remove bonds by a probability p and where
the remaining bonds have unit conductance. For straightfor-
ward comparison with models that will be introduced below,
we define these networks in the following way [26]: We at-
tribute a random number p(e) € [0, 1] to each bond ¢ € E,
where E is the set of bonds in the initial graph, in our case the
square lattice. This gives rise to a conductance map g, : E —
R* by letting

I ifple)<p

0 ifpe)>p @

go(p7 6‘) = {
Thus, we attribute unit conductance to all the bonds with a
random number smaller than p, and zero conductance to the
remaining bonds. A conductance map g defines a network, i.e.,
a weighted graph where the weights represent conductances.
To simplify notation we let g represent both the conductance
map and the network defined by this map. Networks g, in
which the bonds (or sites) are removed (make no contribution
to transport) by a certain probability have been widely studied
in the classical percolation theory and are well covered in the

literature [1-3]. They have many interesting properties with
known behavior close to the percolation threshold p..

In the model above all bonds have unit conductance. Dif-
ferent transport processes have different relations to, e.g., the
cross-sectional area available for transport. For example, the
electrical conductance of a cylindrical pipe with a constant
cross-sectional area and filled with an electrolyte is propor-
tional to the cross-sectional area, whereas, according to the
Hagen-Poiseuille equation, the fluid flow rate through the
same cylindrical pipe due to a pressure difference is propor-
tional to the cross-sectional area squared. If we view a bond as
a cylindrical pipe of unit length and a variable volume V},, then
the cross-sectional area will be proportional to the volume,
Ap < Vp. If a bond weight is assumed to represent its volume
or mass, then different transport processes can be represented
by raising the weight to a power. In this article we use mass
instead of volume. For a porous medium, this can be thought
of as the mass of the electrolyte or a fluid filling the volume,
thereby equating the two through a constant electrolyte of
fluid density.

Motivated by evolving porous media, we introduce two
types of evolving networks. The first is similar to the networks
defined by Eq. (2), but where we have a link weight that
is inversely proportional to the probability that the bond is
removed. The link weight is set to be equal to the mass and
is expressed as

1—pe) ifple)<p

0 if ple) > p’ )

mp([?, e)= {

This type of network is related to clogging of a porous
medium, such as a filter or membrane. The model also has
a close correspondence with the aforementioned noncatalytic
gas-solid reactions and catalyst deactivation when diffusion
limits the rate of reaction. As a result, the sizes of the pores are
not reduced uniformly. In all such processes, the phenomena
begin in a fully connected network, but, over time, the size of
the pores gradually decreases due to either a chemical reaction
that produces solid products (as in diffusion-limited catalytic
or noncatalytic reactions) or by the precipitation of particles
on surface of the pores due to the physical interactions be-
tween the particles and the pore surface, as in the clogging
problems.

The initial network before the onset of the closure process
has a mass distribution where 1 — p(e) is the mass of bond
e, and the blocking of a bond tends to happen at the least
conductive bonds, i.e., the bonds with the smallest mass, thus
the smallest 1 — p(e) values. As discussed above, when the
link weight is considered as a mass (or volume), then the
weight can be related to various types of transport processes
through an exponent 7 as g7(p, €) = m,(p, e)*. As described
above, T = 1 is related to electrical conductance, while T = 2
is related to fluid flow. For this type of network, the values
of the bond conductance have constant value [1 — p(e)]* until
removed depending on p. The conductance distribution for the
network evolves, however, with p.

A third type of network is given by the following function:

p—ple) ifple)<p

0 if ple) > p’ @)

ms(pv e) = {
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which is a simple representation of a precipitation or dis-
solution process, where the precipitation (or, equivalently,
the dissolution) is similar throughout the network. This
corresponds to the aforementioned catalytic or noncatalytic
gas-solid in which diffusion plays no role, and only the ki-
netics of the reactions are important. For a porous medium,
the precipitation reduces the volume of the pores, thereby
reducing the original mass 1 — p(e) by the same mass 1 — p
throughout the network, resulting in a mass of [1 — p(e)] —
(1 — p) = p — p(e). Once again, we relate the mass to trans-
port through the exponent 7 as g (p, ) = my(p, e)*. For this
type of network, both the bond conductances and their distri-
bution evolve with p.

For comparison to the evolving networks that we have
introduced, we also consider more traditional networks with a
uniform mass distribution between endpoints a and b, U (a, b),
with 0 < a < b < 1. Each bond e has two associated proba-
bilities, one for the probability p(e) € [0, 1] of being removed,
and one for the mass m(e) € [a, b] being a random number
between a and b. The model is then defined by

m(e) ifp(e) <p

0 if ple) > p’ ®)

my(a, b) = {
Here we keep only the end points from the distribution U (a, b)
in our notation. This mass model then gives rise to the conduc-
tance model g% (a, b) = m,(a, b)*, so that the mass distribution
stays equal to U(a, b) for all p, and, as a consequence, the
conductance distribution does not evolve with p. Later in
this paper, we will demonstrate that this type of network is
similar to our evolving networks for a restricted range of p.
As the properties of the gl.(a, b) models are known in the
literature [27-29], they will be valuable for comparison with
our evolving networks.

Note that the unit conductance in the go model means that
we can equate the conductance map gq(p, e) to a mass model
mgy(p, e) for all . We drop the superscript t for the go models,
as they are all equal.

III. COMPUTER SIMULATIONS

All calculations in this study were carried out using the
Python programming language. The networks were stored
as two lists, one for the vertices, or sites, and one for the
edges, or bonds. The reason for using lists instead of, e.g.,
NumPy arrays (a Python library) is that they are used in
several loops, where retrieving values from lists is faster
than from arrays. The vertex list stores for each vertex the
coordinates, the number of edges connected to the vertex,
and the edges identification numbers. The edge list stores
the edge identity, the associated random number p(e) €
[0, 1], and the identification numbers for the two connected
vertices.

Two opposite sides of the networks were considered as
the inlet and outlet. For each network, we first determine
the percolation threshold p., i.e., the smallest value of p
such that the network g,(p) connects the inlet to the outlet.
The threshold was computed by a binary search algorithm:
The links are ordered according to their value of p(e). We
start the binary search by checking if g,(p) is connected when
p equals the link value p(e) in the middle of the stack. If

it is connected, we remove the upper half of the link stack;
if not, we remove the lower half. We then check if g,(p) is
connected for p equal to the link value p(e) in the middle of
the remaining stack. This process is continued until there is
only one link left in the stack, yielding the bridging link at the
percolating threshold. In addition, we check during the binary
search whether the network is connected by first performing
two breadth-first searches [30,31], one from the inlet and
one from the outlet, and then checking the intersection of
the resulting two searches; the network is connected if the
intersection is nonzero.

To calculate the effective conductance of the networks, we
follow the standard approach, namely, applying Kirchhoff’s
circuit laws. For each node i we have the equation

> sle); — ¢) =0, 6)
J

where ¢; is the potential at node i, and e is the edge (i, j) for
the set of nodes {j} connected to i. The effective conductance
is computed by representing the set of equations given by
Eq. (6) in matrix form M® = B [4]. Here B is the vector
representing the boundary conditions. As the boundary con-
ditions, we applied a potential difference between the inlet
and outlet. The matrix M represents the discretized Laplacian
matrix for the network with the conductance values as weights
for the bonds and is stored in compressed sparse column ma-
trix format using the SciPy library. The matrix M was inverted
using either the conjugate-gradient or the LU-decomposition
method, both in the SciPy library, depending on the bandwidth
of the matrix. We then obtained the solution vector ® =
M~!'B, which yields the potentials ¢; in the nodes, from which
the total current through the network and, hence, the effective
conductance is computed. Dividing the effective conductance
by the network size we obtain the effective conductivity
o, [1,3].

For well-connected networks, the approach was efficient
and accurate. Close to the percolation threshold, however,
where, due to the tortuous and constricted nature of the
conducting paths, the current is very unevenly distributed in
the network, the matrix inversion is susceptible to numer-
ical errors. To reduce such numerical issues, we construct
the Laplacian matrix M of the backbone, where we identify
the backbone of the network by a method similar to Tar-
jan’s strongly connected components algorithm [30,31], but
with a nonrecursive implementation in order to avoid stack
overflow problems for large network sizes. For each network
size, we generated at least 100 realizations and averaged the
results.

IV. RESULTS AND DISCUSSION

We now investigate the evolving networks introduced in
Sec. II, both theoretically and numerically. We carried out ex-
tensive simulations in order to observe and study the behavior
of the effective conductivity of the networks as they evolve.

A. Conductance functions g, and g,

As is well known, near the percolation threshold p., the
effective conductivity of the network g, (i.e., the network
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FIG. 1. Average effective conductivity o, for 100 realizations for each conductance map g' in (a)—(d), with the corresponding derivatives
in (e) and (f). Note that for each of the 100 realizations we have used the same p(e) distribution for the four different conductance maps.
The slope is estimated in the range marked by the dotted line in the derivative plots, with the error estimates for the slopes being simply the
difference between the minimal and maximal derivative value inside the given range. There is no plateau for the g! model, and the dashed line
range for model g! in (g) was chosen to obtain a slope similar to the slope for model g'.

resulting from the conductance map g,) follows the power law
given in Eq. (1) with a critical exponent ¢t ~ 1.3. Figure 1(a)
presents the dependence of the average of the effective con-
ductivity o?(p, L) of 100 realizations of the networks of type
go(p), the standard percolation conductivity model, on both L,
the linear size of the network, and (p — p.). Figure 1(e) shows
the numerical derivatives of the curves in Fig. 1(a). We see
that by increasing the size of the network the gradient reaches
a plateau with a value close to 1.3 and, thus, g, converge to a
power law of type (1) with a slope ¢ >~ 1.3, in agreement with
the theoretical expectation.

Next, we investigate the critical exponent for the conduc-
tance model g}, by identifying an upper and lower bound
for the exponent value. The individual bond conductances
of g, are always larger or equal to the bond conductances
of g’p for all t >0, ie., g, > gfp for T > 0. As a conse-
quence of [32, Lemma 11.4], g, > g, implies that o/(p, L) >
ol (p,L). If g, follows a universal power law of type (1)
with exponent 7, then o/ (p, L) < 62(p, L) implies that 7, >
t = 1.3. Thus, we have identified a lower bound for the
exponent .

We now derive an upper bound for ¢,. For all p > 0, the
smallest bond conductance value in gj, is (1 — p)©. If we let
pg, denote the network with all bond conductances equal to
p, then g,(p, L) > (1 — p)'g,(p, L) for all p. < p < 1. For
each 7, since o/(1, L) > 0, there exists an € > 0 such that
8p(p, L) > €go(p, L) for all p. < p < 1. The effective con-
ductivity of €g, is ea?, where o is the effective conductivity
of g,. As the effective conductivity of €g, and g, are equal up
to a scaling with €, then €g, has the same power-law exponent
in Eq. (1) as g,, namely,  ~ 1.3. Using the same argument
that was utilized for the lower bound, o/ (p, L) > eol(p, L)
implies that t, < ¢t = 1.3. Since we then have the same lower
and upper bound for #,, namely, t <1, <t, we havet, =1 =~
1.3. Thus, networks of type g}, follow the traditional critical
behavior when p — p,.

Next, we consider an alternative method for estimating ¢,,.
As p — pe, the mass distribution of g, will converge towards
the distribution p. — p(e), where p(e) € U(p,, 1). Thus, the
mass distribution of g, converges towards the mass distribu-
tion of a network of type g7(p., 1), i.e., a g\ function with
m(e) € U(pe, 1). The networks g.(p¢, 1) and g; are therefore
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FIG. 2. Average effective conductivity o, for 100 realizations for each conductance map g> in (a)—(d), with the corresponding derivatives
in (e) and (f). The slope is estimated in the range marked by the dotted line in the derivative plots, with the error estimates for the slopes being
simply the difference between the minimal and maximal derivative value inside the given range. Note that the plots for g, in (a) and (e) are
equal to the corresponding ones in Fig. 1; however, their y scales differ. As with g!, there is no plateau for the g model, and the dashed line
range for model g> was chosen to obtain a slope similar to the slope for model g>.

expected to have the same properties when p — p., including
a similar critical exponent (this will be substantiated further in
the discussion on g; below). We have conducted simulations
to confirm such a convergence.

We now use g7(p., 1) to obtain the power-law description
for g),. The effective conductivity of g; (p., 1) is bounded from
above by g, and by p7 g, from below. Since p{ g, has the same
critical exponent t >~ 1.3 as g,, then the critical exponent for
g.(pc, 1) is bounded from both above and below by ¢ >~ 1.3,
and, thus, the exponent for g} (p., 1)isalsot >~ 1.3. As g; and
& (pc, 1) converge when p — p., they have the same critical
exponents, which provides an alternative proof that 7, ~ 1.3.

The results for 7, were verified by the simulations. Fig-
ures 1(b) and 1(f) present the average effective conductivity
ol(p,L) and its gradients for the model g},. Similarly, we
show the average effective conductivity and gradients for g?, in
Figs. 2(b) and 2(f). The inequality ”(p, L) > o/ (p, L) used
to obtain the lower bound for 7, can be verified by compar-
ing Fig. 1(a) with Fig. 1(b) and Fig. 2(b). The slope of the
ol(p, L) curves, both for T = 1 in Fig. 1(f) and for Tt =2 in
Fig. 2(f), converge towards a plateau. While the ¢ and o/

curves have different heights, the plateaus of their gradients
have similar heights. It is seen that the plateau values for g},

and gé are in good agreement with the theoretical value of 1.3.
Note that the plots of the derivatives for the g, and g}, models
have clear similarities, both for T = 1 and 2, as we use the
same p(e) distribution for the g, and g}, networks.

To further investigate the power laws for the various g func-
tions, and in particular g,, we consider finite-size scaling at
pe [1,3], namely, g,(p.) « L7V where g.(pc) is the average
effective conductivity o,(p.) at the percolation threshold p,
of a large number of network realizations, and v is the critical
exponent of percolation correlation length with v =4/3 in
two dimensions. We tested linear regression using both L%
and curves with three free parameters of types suggested
in [33]. The curve type yielding the best fit is of the form
L™%(a; — ap/L) and is the plot type included in Fig. 3. Note
that the other curve types, including L™¢, yielded similar ¢
exponents.

Figure 3 indicates that finite-size scaling yields an ex-
ponent of ¢ =1t¢/v >~ 0.982 for the standard percolation
conductivity, corresponding to g,, close to the expected value
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FIG. 3. Average effective conductivity o, at the theoretical per-
colation threshold p. = 0.5 for more than 5000 realizations of each
network size L. Note that the curve for g/ is covered by the curve for
g%, as they are basically indistinguishable.

of t/v >~ 0.975. Note that m,, > mlz7 since 1 — p(e) < 1 (see

Eq. (3)) and, thus, g, > g}, > g%, as observed in Fig. 3. As
discussed above, we expect the same critical exponent for g,
as for g,. The models associated with g7, yield slopes similar
to that of g,, and the computed ¢ =~ 0.982 are consistent with
this expectation, yielding t = ¢v >~ 1.31 >~ 1.3.

B. Conductance function g}

A critical difference between models g, and g, is that the
conductance distribution of the bonds in g, diverge, which
can cause nonuniversal behavior [27,29]. Conductance distri-
butions and nonuniversal behavior will be discussed in the
next section. As in the alternative derivation of f,, we will
use functions of type g% to identify the critical exponents #,
for gt.

Let p'. be the individual percolation threshold for a given
network [one realization of p(e) values]. The link with
ple) = pl. is the bridging link, e,, which becomes a single

connection that keeps the network connected when approach-
ing the individual percolation threshold p.. When e, is
removed at p = p!, the remaining network will be discon-
nected. The conductance of the bridging link will be (p —
pL)" — 0 when p — pi, whereas for all other links the
conductance [p — p(e)]* converges to a positive constant.
Since the remainder of the network has finite conductance
when p — pi, the resistance of the bridging link will dom-
inate the resistance of the full network in the limit p —
p.. Thus, the effective conductivity scales as o, o (p —
p)L*~4, when p — pl. for networks of spatial dimension d.
In Fig. 4(a) we present the effective conductivity of both g!
and g!(0, p,), indicating that the conductivity of g% converges
to the slope given by 7, as expected from the derivation
above.

If we consider a two-dimensional network g’ in which all
other links than e, in g are replaced by superconductors, then
the network g’ will have a conductivity o, o (p — p’.)” when
p — p.. Thus, the development of the conductivity is of the
power-law type Eq. (1) with critical exponent t. Since the
effective conductivity of g is larger than the conductivity of
gk, ie., o, > o, we see that the critical exponent #, must be
bounded below as #; > 7. Note that, as the conductivity of
g is always smaller than the conductivity of g, when v > 0,
o) > o;,wealsohavet, >t = 1.3. Thus, in general, we have,
t, > max(t, 7), giving a lower bound for ¢;.

Consider the situation in which L > &, i.e., one in which
L is large compared to the correlation length & of percolation.
In this limit there are no singly-connected bonds; according
to [1] the minimum cut contains approximately L/& bonds.
As the network is well connected when L >> &, we can dis-
regard the effect of the conductance of e, vanishing when
p— p., as e, is then on one of many connected paths in
the infinite percolation cluster. The network will have a mass
distribution equivalent to that in g*(0, p’.) when p — p'. To
compare our network to gr.(0, p.), we need p >~ p. for the
distribution of bond conductances in g§ to be similar to that
in g7.(0, p.). This requirement does not, however, scale with
L, so that we can expect the two conductance distributions g
and g7.(0, p.) to converge at the same values of p, independent
of the size L. Therefore, for large L we can expect a re-
gion of p values where gt =~ g7.(0, p.), i.e., where L > & and
D = Pe-
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FIG. 4. (a) Average effective conductivity o, for the same 100 realizations as used in Fig. 1(c) and 1(d). They are, however, plotted for
the convergence towards their individual thresholds p — p'. (b) Numerical derivatives of the curves in (a), with the dashed line indicating the
plateau of the g'(p,, 1) curves. The plot in (c) is using the global percolation threshold p,, instead of the individual percolation thresholds p..
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In Fig. 4 we present the results for both g! and g!(0, p.).
As seen in the figure, g! and gl(0, p.) differ for both large
and small values of p — pi_; they are, however, similar for a
range of intermediate values that correspond to the region in
which L > & and p >~ p.. We also observe that the two curves
diverge when p — pi: In this case, we have L < & and, thus,
the link e, will become the single bridging link. Since the
weight g'(p, e,) — 0 when p — pi, this conductance will
begin dominating the overall conductance of the network
as described above, and the conductance will vanish by the
power law, o8 o (p — p.)", as p — p'. This is in contrast to
the g7 network, for which the bridging link e, has a finite
conductance, g;.(p, e,) > 0 and, thus, o, converges to a finite
value when p — pi. The two conductance descriptions g° and
g~ must, therefore, begin to diverge when p — p', and Fig. 4
indicates that they do.

While the conductivities have clearly different trajectories
when plotted versus their individual percolation thresholds p',
the difference becomes insignificant when one uses instead
the traditional averaging p — p., where p,. is the percolation
threshold for an infinite network. Let p,, = (p’) be the aver-
age of the percolation thresholds for the individual networks,
and let A = \/{(p.)?) — (p.)? be the standard deviation of the
individual percolation thresholds. The two values are known
to scale as pgy — pe X LYY and A oc L7V [1, p- 73]. The
standard deviation of the individual percolation thresholds A
is larger than the difference between p,, and p.; thus, the
A o< L™V correspondence will be of importance to us. The
difference between the g and g%(0, p.) models when p — p'.
is expected to be reflected in the p — p. curves only if A is
smaller than the onset of divergence between the g; and g,
curves. In Fig. 4(c) we have plotted the results for p — p,.
There is no evident difference between the curves, indicating
that A is larger than the onset of the divergence observed in
Fig. 4(a) and 4(b).

Based on the above derivations, the power laws for g
and g, are expected to be the same, and should be bounded
from below by max(z, t). This is corroborated by the results
in Fig. 3, where the results for g7(0, p.) and g% are almost
identical for both values of t. For t = 1 they indicate ¢ =
t;/v >~ 1.034, which yields a nonuniversal scaling exponent
of t;, >~ 1.38 >t = max(z, 7). For Tt = 2 we have { >~ 1.535,
yielding ¢, >~ 2.05 > t = max(¢, 7).

The results for gi are presented in Figs. 1(c) and 1(g), and
those for gﬁ are shown in Figs. 2(c) and 2(g). Since g, > g; >
g%, we have 0 > o > 07(0, p.). It is evident from Fig. 1(g)
that even the largest network size, L = 2048, does not produce
a plateau for the gradient. We thus plot g (0, p.) in Figs. 1(d)
and I(h). The derivative indicates a plateau, however, at a
value around 7, ~ 1.43. This is higher than, #;, = 1.38, ob-
tained from the finite-size scaling above. For t = 2, as seen
in Figs. 1(d) and 1(h), we obtain a slope of #; >~ 2.05, which is
in agreement with the finite-size scaling above. These results
will be discussed further in the next section.

V. DISCUSSION

In the previous section, we investigated the power laws
for the effective conductivity of evolving networks, g}, and
g, introduced in this paper. We argued that the effective

1.0 1 Va 4
’ ’
’ ’
/ e
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C / 4
g ’/ e
> / Vi
E 0.6 1 / /’
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=] 7 ’
© 1 ’
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g I // —— 1
O 0.2 ’l R gs
P H(g) =glpc
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:/ ..... H(g) =g/
004 7 9)=9"/Pc
0.0 0.1 0.2 0.3 0.4 0.5

Bond conductance

FIG. 5. Cumulative conductance distribution for g§ for 100 real-
izations of size L = 512, together with the functional relationships
describing the distribution for g7.(0, p.). The functional relationships
are covered by distributions for g

conductivities of these networks follow the same power laws
as the networks g7 (p., 1) and g}.(0, p.), respectively.

Nonuniversality has been observed for networks whose
distribution of bond conductances diverges when the con-
ductance values go to zero [27,29]. For g.(0, p.) we have a
uniform distribution of bond mass values in the range [0, p.],
and the conductance for a bond of mass m is g = m*. The
probability of having a mass smaller than m is m/p.. Thus,
the probability of having a conductance smaller than g = m"*
becomes m/p. = g'/*/p., and the cumulative conductance
distribution is given by

H(g)=g""/pe. (7)

for g € (0, pl). In Fig. 5 we present the conductance distri-
bution in g} for the backbone at p = p., together with the
distribution function in Eq. (7). We observe an equivalent
distribution for g7 as g%.(0, p;).

If we scale the conductances in the range (0, pl =277) to
the range (0,1) [with the above notation, we, thus, consider
D, 8.(0, p.)], we have the cumulative probability H(g) =
g'/*, which yields the probability distribution

M@=%éﬁ*=u—amw, ®)
where the last term is on the form used in [27], obtained from
o =1—1/7.For t > 1 we have a negative exponent for g in
Eq. (8), making h(g) diverge when the conductance g — O.
According to [27], we then have o, & (p — p.)", where t, =
t+o/(1 —a)=t+t — 1, witht being the standard conduc-
tivity exponent, with + ~ 1.3 for two-dimensional networks,
as mentioned above. Note also that other authors reported
different values for ¢,, with 0 < ¢, —¢ < 3/2 for t = 2 ac-
cording to [29]. In [28] the nonuniversal exponent is given
as t, = max(¢, (1 — @)~!) = max(¢, t), which is exactly the
lower bound we obtained for g, above.
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For v =1 the literature indicates that for the g, model
t, =t ~ 1.3. Our derivations above should have yielded ¢, =
t, = t, but our numerically computed values for #; are higher
than this, with #; ~ 1.38 by finite-size scaling and #; >~ 1.43
through investigating the gradient of the curves g,(L, p). It has
been reported that the universality constant for ¢, is difficult to
obtain as logarithmic corrections set in for T = 1 [28]. Our
computed values are, however, in excellent agreement with
estimates from similar numerical simulations for the g7 model
[34].

For t = 2, the literature differs on the value of 7., with
1.3 < t, < 2.8 according to [29], ¢, >~ 2.3 according to [27],
and t, = 2 according to [28]. Our estimate of #; >~ 2.05 is
within the spread of the #, values for the g7. model, as indicated
by the aforementioned authors.

VI. SUMMARY

We introduced two types of evolving networks that are
related to natural and industrial processes, such as clogging,
precipitation, and dissolution. One model, gj,, represents clog-
ging processes that tend to block the lowest conducting bonds.
The second model, g, represents precipitation processes that
reduce the conductance of all bonds similarly. The mass distri-
bution is linked to the conductance by the exponent 7, where
T = 1 represents electrical conductance or diffusion, while
T = 2 represents fluid flow.

The effective conductivity of the models that we in-
troduced behaves differently from that of the traditional
networks g, with constant bond conductance. We showed,
however, that the power laws of o (p — p.)" for g, still
belong to the standard universality class with exponent
t,=t>~13.

The effective conductivity of the gl model follows a power
law similar to g7.(0, p.). The effective conductivity of the
£,.(0, p.) model is known in the literature to have nonuniversal
power laws near the percolation threshold, and we have the
same nonuniversality for g;. The conductivity of the gf model
has, however, a radically different behavior than g7 (0, p.),
when we consider convergence towards individual percolation
thresholds, p — p'. In this limit the g% conductivity scales as
o; < (p— pi)f, which leads to a lower bound 7, > max(t, 7)
for the power law, o o (p — p.)". As the effective conductiv-
ity of both g; and g,(0, p.) follow the same power laws, this
yields the same lower bound for g7 (0, p.), namely, the lower
bound ¢, > max(¢, 7).
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