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Percolation theory and the associated conductance networks have provided deep insights into the flow and

transport properties of a vast number of heterogeneous materials and media. In practically all cases, however, the

conductance of the networks’ bonds remains constant throughout the entire process. There are, however, many

important problems in which the conductance of the bonds evolves over time and does not remain constant.

Examples include clogging, dissolution and precipitation, and catalytic processes in porous materials, as well

as the deformation of a porous medium by applying an external pressure or stress to it that reduces the size

of its pores. We introduce two percolation models to study the evolution of the conductivity of such networks.

The two models are related to natural and industrial processes involving clogging, precipitation, and dissolution

processes in porous media and materials. The effective conductivity of the models is shown to follow known

power laws near the percolation threshold, despite radically different behavior both away from and even close to

the percolation threshold. The behavior of the networks close to the percolation threshold is described by critical

exponents, yielding bounds for traditional percolation exponents. We show that one of the two models belongs to

the traditional universality class of percolation conductivity, while the second model yields nonuniversal scaling

exponents.

DOI: 10.1103/PhysRevE.108.024132

I. INTRODUCTION

Percolation theory [1,2] has provided deep insights into

the flow and transport properties of a vast number of het-

erogeneous materials and media and has found numerous

applications [3] in a variety of contexts. In many cases the

heterogeneous materials are represented by conductance net-

works [4], if a scalar transport process is to be studied; by a

network of elastic elements, such as springs [5–7] or beams

[8], if vector transport processes are investigated; or by a net-

work of interconnected pores [9], if one is to examine various

fluid flow phenomena in porous materials and media. When

representing natural and industrial heterogeneous materials,

the conductance of the bonds or pores might be distributed

according to some probability distribution function that repre-

sents the morphology of the materials [10,11]. In practically

all cases, however, the conductance of the network elements is

modeled as constant throughout the percolation process under

study.

There are, however, many important problems in which

the conductance of the bonds in the networks that represent
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the morphology of the system of interest evolves over time

and, therefore, does not remain constant. One example is

noncatalytic gas-solid reactions with solid products, such as

sulphation of calcined limestone particles that are highly

porous and contain a range of pore sizes,

CaO(s) + SO2(g) + 1
2
O2(g) → CaSO4(s).

Numerous experiments indicate [12,13] that during the reac-

tion the solid volume increases, and the pores are gradually

plugged. Another example is the important problem of cata-

lyst deactivation [14] in which a reactant reacts within the pore

space of the catalyst and produces products that not only cover

the catalyst’s active sites but also precipitate on the solid sur-

face of the pores and plug them, leading to deactivation of the

catalyst. A third example is the transport of colloidal particles

and stable emulsions in flow through a porous medium, during

which the particles and emulsions precipitate on the surface of

the pores and reduce their flow capacity [15–17]. The pore

space of rock and other natural porous media evolve due

to dissolution or precipitation. The fourth example is quartz

cementation in sandstone that yields a pore space with a con-

tinuous range of various porosity and the corresponding flow

and transport properties, such as permeability and electrical

conductance. Another example is the evolution of sandstone

pore structure in the near-well region by salt precipitation

during CO2 injection for its sequestration [18,19], as well as

during evaporation of brine and the resulting salt precipitation

[20–22]. Pore structure evolution is also observed in systems

where the pore sizes of porous materials and, hence, their con-
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ductances are reduced mechanically by, for example, applying

an external stress or pressure to the material [23,24]. In all

such cases, and numerous other examples, such as clogging

of nanopores by transport of DNA [25], one has an evolving

network.

Thus, the purpose of the present paper is to study the trans-

port properties of evolving networks, particularly near their

percolation threshold pc. The goal of our study is twofold.

One is to understand how the transport properties evolve in

such networks, and how their evolution depends on the man-

ner by which the conductances decrease. The second goal is

to see whether the power law of percolation theory, according

to which the effective conductivity Ãe follows the universal

power law,

Ãe ∝ (p − pc)t , (1)

is also satisfied by the effective conductivity of evolving net-

works, where p is the fraction of the bonds with a nonzero

conductance, and t is the critical exponent whose value is

largely universal with t � 1.3 in two dimensions.

The rest of this paper is organized as follows. In the next

section, we introduce the models that we study and explain

how they are employed in our numerical simulations. In

Sec. III we present the details of the numerical simulations.

Section IV presents the results for the power laws that the

effective conductivity of the proposed models follow near the

percolation threshold and compares them to the traditional

models of random conductance networks. In Sec. V the im-

plications of the results are discussed in detail, while the last

section summarizes the results.

II. THE MODELS

The main motivation for this work is transport in evolving

porous media, which typically occurs in complex three-

dimensional pore networks. For the sake of more efficient

simulations of very large networks, however, we restrict our

study to the square lattice, which allows us to make precise

comparisons with the existing models.

The simplest network we consider is the traditional square

lattice in which we remove bonds by a probability p and where

the remaining bonds have unit conductance. For straightfor-

ward comparison with models that will be introduced below,

we define these networks in the following way [26]: We at-

tribute a random number p(e) ∈ [0, 1] to each bond e ∈ E ,

where E is the set of bonds in the initial graph, in our case the

square lattice. This gives rise to a conductance map go : E →

R
+ by letting

go(p, e) =

{

1 if p(e) � p

0 if p(e) > p
. (2)

Thus, we attribute unit conductance to all the bonds with a

random number smaller than p, and zero conductance to the

remaining bonds. A conductance map g defines a network, i.e.,

a weighted graph where the weights represent conductances.

To simplify notation we let g represent both the conductance

map and the network defined by this map. Networks go in

which the bonds (or sites) are removed (make no contribution

to transport) by a certain probability have been widely studied

in the classical percolation theory and are well covered in the

literature [1–3]. They have many interesting properties with

known behavior close to the percolation threshold pc.

In the model above all bonds have unit conductance. Dif-

ferent transport processes have different relations to, e.g., the

cross-sectional area available for transport. For example, the

electrical conductance of a cylindrical pipe with a constant

cross-sectional area and filled with an electrolyte is propor-

tional to the cross-sectional area, whereas, according to the

Hagen-Poiseuille equation, the fluid flow rate through the

same cylindrical pipe due to a pressure difference is propor-

tional to the cross-sectional area squared. If we view a bond as

a cylindrical pipe of unit length and a variable volume Vb, then

the cross-sectional area will be proportional to the volume,

Ab ∝ Vb. If a bond weight is assumed to represent its volume

or mass, then different transport processes can be represented

by raising the weight to a power. In this article we use mass

instead of volume. For a porous medium, this can be thought

of as the mass of the electrolyte or a fluid filling the volume,

thereby equating the two through a constant electrolyte of

fluid density.

Motivated by evolving porous media, we introduce two

types of evolving networks. The first is similar to the networks

defined by Eq. (2), but where we have a link weight that

is inversely proportional to the probability that the bond is

removed. The link weight is set to be equal to the mass and

is expressed as

mp(p, e) =

{

1 − p(e) if p(e) � p

0 if p(e) > p
. (3)

This type of network is related to clogging of a porous

medium, such as a filter or membrane. The model also has

a close correspondence with the aforementioned noncatalytic

gas-solid reactions and catalyst deactivation when diffusion

limits the rate of reaction. As a result, the sizes of the pores are

not reduced uniformly. In all such processes, the phenomena

begin in a fully connected network, but, over time, the size of

the pores gradually decreases due to either a chemical reaction

that produces solid products (as in diffusion-limited catalytic

or noncatalytic reactions) or by the precipitation of particles

on surface of the pores due to the physical interactions be-

tween the particles and the pore surface, as in the clogging

problems.

The initial network before the onset of the closure process

has a mass distribution where 1 − p(e) is the mass of bond

e, and the blocking of a bond tends to happen at the least

conductive bonds, i.e., the bonds with the smallest mass, thus

the smallest 1 − p(e) values. As discussed above, when the

link weight is considered as a mass (or volume), then the

weight can be related to various types of transport processes

through an exponent Ä as gÄ
p(p, e) = mp(p, e)Ä . As described

above, Ä = 1 is related to electrical conductance, while Ä = 2

is related to fluid flow. For this type of network, the values

of the bond conductance have constant value [1 − p(e)]Ä until

removed depending on p. The conductance distribution for the

network evolves, however, with p.

A third type of network is given by the following function:

ms(p, e) =

{

p − p(e) if p(e) � p

0 if p(e) > p
, (4)
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which is a simple representation of a precipitation or dis-

solution process, where the precipitation (or, equivalently,

the dissolution) is similar throughout the network. This

corresponds to the aforementioned catalytic or noncatalytic

gas-solid in which diffusion plays no role, and only the ki-

netics of the reactions are important. For a porous medium,

the precipitation reduces the volume of the pores, thereby

reducing the original mass 1 − p(e) by the same mass 1 − p

throughout the network, resulting in a mass of [1 − p(e)] −

(1 − p) = p − p(e). Once again, we relate the mass to trans-

port through the exponent Ä as gÄ
s (p, e) = ms(p, e)Ä . For this

type of network, both the bond conductances and their distri-

bution evolve with p.

For comparison to the evolving networks that we have

introduced, we also consider more traditional networks with a

uniform mass distribution between endpoints a and b, U (a, b),

with 0 � a < b � 1. Each bond e has two associated proba-

bilities, one for the probability p(e) ∈ [0, 1] of being removed,

and one for the mass m(e) ∈ [a, b] being a random number

between a and b. The model is then defined by

mr (a, b) =

{

m(e) if p(e) � p

0 if p(e) > p
. (5)

Here we keep only the end points from the distribution U (a, b)

in our notation. This mass model then gives rise to the conduc-

tance model gÄ
r (a, b) = mr (a, b)Ä , so that the mass distribution

stays equal to U (a, b) for all p, and, as a consequence, the

conductance distribution does not evolve with p. Later in

this paper, we will demonstrate that this type of network is

similar to our evolving networks for a restricted range of p.

As the properties of the gÄ
r (a, b) models are known in the

literature [27–29], they will be valuable for comparison with

our evolving networks.

Note that the unit conductance in the g0 model means that

we can equate the conductance map gÄ
0(p, e) to a mass model

m0(p, e) for all Ä . We drop the superscript Ä for the g0 models,

as they are all equal.

III. COMPUTER SIMULATIONS

All calculations in this study were carried out using the

Python programming language. The networks were stored

as two lists, one for the vertices, or sites, and one for the

edges, or bonds. The reason for using lists instead of, e.g.,

NumPy arrays (a Python library) is that they are used in

several loops, where retrieving values from lists is faster

than from arrays. The vertex list stores for each vertex the

coordinates, the number of edges connected to the vertex,

and the edges identification numbers. The edge list stores

the edge identity, the associated random number p(e) ∈

[0, 1], and the identification numbers for the two connected

vertices.

Two opposite sides of the networks were considered as

the inlet and outlet. For each network, we first determine

the percolation threshold pc, i.e., the smallest value of p

such that the network go(p) connects the inlet to the outlet.

The threshold was computed by a binary search algorithm:

The links are ordered according to their value of p(e). We

start the binary search by checking if go(p) is connected when

p equals the link value p(e) in the middle of the stack. If

it is connected, we remove the upper half of the link stack;

if not, we remove the lower half. We then check if go(p) is

connected for p equal to the link value p(e) in the middle of

the remaining stack. This process is continued until there is

only one link left in the stack, yielding the bridging link at the

percolating threshold. In addition, we check during the binary

search whether the network is connected by first performing

two breadth-first searches [30,31], one from the inlet and

one from the outlet, and then checking the intersection of

the resulting two searches; the network is connected if the

intersection is nonzero.

To calculate the effective conductance of the networks, we

follow the standard approach, namely, applying Kirchhoff’s

circuit laws. For each node i we have the equation

∑

j

g(e)(φ j − φi ) = 0, (6)

where φi is the potential at node i, and e is the edge (i, j) for

the set of nodes { j} connected to i. The effective conductance

is computed by representing the set of equations given by

Eq. (6) in matrix form M� = B [4]. Here B is the vector

representing the boundary conditions. As the boundary con-

ditions, we applied a potential difference between the inlet

and outlet. The matrix M represents the discretized Laplacian

matrix for the network with the conductance values as weights

for the bonds and is stored in compressed sparse column ma-

trix format using the SciPy library. The matrix M was inverted

using either the conjugate-gradient or the LU-decomposition

method, both in the SciPy library, depending on the bandwidth

of the matrix. We then obtained the solution vector � =

M−1B, which yields the potentials φi in the nodes, from which

the total current through the network and, hence, the effective

conductance is computed. Dividing the effective conductance

by the network size we obtain the effective conductivity

Ãe [1,3].

For well-connected networks, the approach was efficient

and accurate. Close to the percolation threshold, however,

where, due to the tortuous and constricted nature of the

conducting paths, the current is very unevenly distributed in

the network, the matrix inversion is susceptible to numer-

ical errors. To reduce such numerical issues, we construct

the Laplacian matrix M of the backbone, where we identify

the backbone of the network by a method similar to Tar-

jan’s strongly connected components algorithm [30,31], but

with a nonrecursive implementation in order to avoid stack

overflow problems for large network sizes. For each network

size, we generated at least 100 realizations and averaged the

results.

IV. RESULTS AND DISCUSSION

We now investigate the evolving networks introduced in

Sec. II, both theoretically and numerically. We carried out ex-

tensive simulations in order to observe and study the behavior

of the effective conductivity of the networks as they evolve.

A. Conductance functions go and g
τ

p

As is well known, near the percolation threshold pc, the

effective conductivity of the network go (i.e., the network
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FIG. 1. Average effective conductivity Ãe for 100 realizations for each conductance map g1 in (a)–(d), with the corresponding derivatives

in (e) and (f). Note that for each of the 100 realizations we have used the same p(e) distribution for the four different conductance maps.

The slope is estimated in the range marked by the dotted line in the derivative plots, with the error estimates for the slopes being simply the

difference between the minimal and maximal derivative value inside the given range. There is no plateau for the g1
s model, and the dashed line

range for model g1
s in (g) was chosen to obtain a slope similar to the slope for model g1

r .

resulting from the conductance map go) follows the power law

given in Eq. (1) with a critical exponent t � 1.3. Figure 1(a)

presents the dependence of the average of the effective con-

ductivity Ã o
e (p, L) of 100 realizations of the networks of type

go(p), the standard percolation conductivity model, on both L,

the linear size of the network, and (p − pc). Figure 1(e) shows

the numerical derivatives of the curves in Fig. 1(a). We see

that by increasing the size of the network the gradient reaches

a plateau with a value close to 1.3 and, thus, go converge to a

power law of type (1) with a slope t � 1.3, in agreement with

the theoretical expectation.

Next, we investigate the critical exponent for the conduc-

tance model gÄ
p by identifying an upper and lower bound

for the exponent value. The individual bond conductances

of go are always larger or equal to the bond conductances

of gÄ
p for all Ä � 0, i.e., go � gÄ

p for Ä � 0. As a conse-

quence of [32, Lemma 11.4], go � gÄ
p implies that Ã o

e (p, L) �

Ã
p

e (p, L). If gÄ
p follows a universal power law of type (1)

with exponent tp, then Ã
p

e (p, L) � Ã o
e (p, L) implies that tp �

t = 1.3. Thus, we have identified a lower bound for the

exponent tp.

We now derive an upper bound for tp. For all p > 0, the

smallest bond conductance value in gÄ
p is (1 − p)Ä . If we let

pgo denote the network with all bond conductances equal to

p, then gÄ
p(p, L) > (1 − p)Ä go(p, L) for all pc � p < 1. For

each Ä , since Ã
p

e (1, L) > 0, there exists an ε > 0 such that

gÄ
p(p, L) > εgo(p, L) for all pc � p � 1. The effective con-

ductivity of εgo is εÃ o
e , where Ã o

e is the effective conductivity

of go. As the effective conductivity of εgo and go are equal up

to a scaling with ε, then εgo has the same power-law exponent

in Eq. (1) as go, namely, t � 1.3. Using the same argument

that was utilized for the lower bound, Ã
p

e (p, L) � εÃ o
e (p, L)

implies that tp � t = 1.3. Since we then have the same lower

and upper bound for tp, namely, t � tp � t , we have tp = t �

1.3. Thus, networks of type gÄ
p follow the traditional critical

behavior when p → pc.

Next, we consider an alternative method for estimating tp.

As p → pc, the mass distribution of gÄ
p will converge towards

the distribution pc − p(e), where p(e) ∈ U (pc, 1). Thus, the

mass distribution of gÄ
p converges towards the mass distribu-

tion of a network of type gÄ
r (pc, 1), i.e., a gÄ

r function with

m(e) ∈ U (pc, 1). The networks gÄ
r (pc, 1) and gÄ

p are therefore
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FIG. 2. Average effective conductivity Ãe for 100 realizations for each conductance map g2 in (a)–(d), with the corresponding derivatives

in (e) and (f). The slope is estimated in the range marked by the dotted line in the derivative plots, with the error estimates for the slopes being

simply the difference between the minimal and maximal derivative value inside the given range. Note that the plots for go in (a) and (e) are

equal to the corresponding ones in Fig. 1; however, their y scales differ. As with g1
s , there is no plateau for the g2

s model, and the dashed line

range for model g2
s was chosen to obtain a slope similar to the slope for model g2

r .

expected to have the same properties when p → pc, including

a similar critical exponent (this will be substantiated further in

the discussion on gs below). We have conducted simulations

to confirm such a convergence.

We now use gÄ
r (pc, 1) to obtain the power-law description

for gÄ
p. The effective conductivity of gÄ

r (pc, 1) is bounded from

above by go and by pÄ
cgo from below. Since pÄ

cgo has the same

critical exponent t � 1.3 as go, then the critical exponent for

gÄ
r (pc, 1) is bounded from both above and below by t � 1.3,

and, thus, the exponent for gÄ
r (pc, 1) is also t � 1.3. As gÄ

p and

gÄ
r (pc, 1) converge when p → pc, they have the same critical

exponents, which provides an alternative proof that tp � 1.3.

The results for tp were verified by the simulations. Fig-

ures 1(b) and 1(f) present the average effective conductivity

Ã
p

e (p, L) and its gradients for the model g1
p. Similarly, we

show the average effective conductivity and gradients for g2
p in

Figs. 2(b) and 2(f). The inequality Ã o
e (p, L) � Ã

p
e (p, L) used

to obtain the lower bound for tp can be verified by compar-

ing Fig. 1(a) with Fig. 1(b) and Fig. 2(b). The slope of the

Ã
p

e (p, L) curves, both for Ä = 1 in Fig. 1(f) and for Ä = 2 in

Fig. 2(f), converge towards a plateau. While the Ã o
e and Ã

p
e

curves have different heights, the plateaus of their gradients

have similar heights. It is seen that the plateau values for g1
p

and g2
p are in good agreement with the theoretical value of 1.3.

Note that the plots of the derivatives for the go and gÄ
p models

have clear similarities, both for Ä = 1 and 2, as we use the

same p(e) distribution for the go and gÄ
p networks.

To further investigate the power laws for the various g func-

tions, and in particular gp, we consider finite-size scaling at

pc [1,3], namely, ge(pc) ∝ L−t/ν , where ge(pc) is the average

effective conductivity Ãe(pc) at the percolation threshold pc

of a large number of network realizations, and ν is the critical

exponent of percolation correlation length with ν = 4/3 in

two dimensions. We tested linear regression using both L−ζ

and curves with three free parameters of types suggested

in [33]. The curve type yielding the best fit is of the form

L−ζ (a1 − a2/L) and is the plot type included in Fig. 3. Note

that the other curve types, including L−ζ , yielded similar ζ

exponents.

Figure 3 indicates that finite-size scaling yields an ex-

ponent of ζ = t/ν � 0.982 for the standard percolation

conductivity, corresponding to go, close to the expected value
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FIG. 3. Average effective conductivity Ãe at the theoretical per-

colation threshold pc = 0.5 for more than 5000 realizations of each

network size L. Note that the curve for gÄ
r is covered by the curve for

gÄ
s , as they are basically indistinguishable.

of t/ν � 0.975. Note that m1
p > m2

p since 1 − p(e) < 1 (see

Eq. (3)) and, thus, go > g1
p > g2

p, as observed in Fig. 3. As

discussed above, we expect the same critical exponent for gÄ
p

as for go. The models associated with gÄ
p yield slopes similar

to that of go, and the computed ζ ≈ 0.982 are consistent with

this expectation, yielding t = ζν � 1.31 � 1.3.

B. Conductance function g
τ

s

A critical difference between models gs and gp is that the

conductance distribution of the bonds in gs diverge, which

can cause nonuniversal behavior [27,29]. Conductance distri-

butions and nonuniversal behavior will be discussed in the

next section. As in the alternative derivation of tp, we will

use functions of type gÄ
r to identify the critical exponents ts

for gÄ
s .

Let pi
c be the individual percolation threshold for a given

network [one realization of p(e) values]. The link with

p(e) = pi
c is the bridging link, eb, which becomes a single

connection that keeps the network connected when approach-

ing the individual percolation threshold pi
c. When eb is

removed at p = pi
c, the remaining network will be discon-

nected. The conductance of the bridging link will be (p −

pi
c)Ä → 0 when p → pi

c, whereas for all other links the

conductance [p − p(e)]Ä converges to a positive constant.

Since the remainder of the network has finite conductance

when p → pi
c, the resistance of the bridging link will dom-

inate the resistance of the full network in the limit p →

pi
c. Thus, the effective conductivity scales as Ãe ∝ (p −

pi
c)Ä L2−d , when p → pi

c for networks of spatial dimension d .

In Fig. 4(a) we present the effective conductivity of both g1
s

and g1
r (0, pc), indicating that the conductivity of gÄ

s converges

to the slope given by Ä , as expected from the derivation

above.

If we consider a two-dimensional network g′ in which all

other links than eb in gs are replaced by superconductors, then

the network g′ will have a conductivity Ã ′
e ∝ (p − pi

c)Ä when

p → pi
c. Thus, the development of the conductivity is of the

power-law type Eq. (1) with critical exponent Ä . Since the

effective conductivity of g′ is larger than the conductivity of

gÄ
s , i.e., Ã ′

e > Ã s
e , we see that the critical exponent ts must be

bounded below as ts � Ä . Note that, as the conductivity of

gÄ
s is always smaller than the conductivity of go when Ä > 0,

Ã o
e > Ã s

e , we also have ts � t = 1.3. Thus, in general, we have,

ts � max(t, Ä ), giving a lower bound for ts.

Consider the situation in which L � ξ , i.e., one in which

L is large compared to the correlation length ξ of percolation.

In this limit there are no singly-connected bonds; according

to [1] the minimum cut contains approximately L/ξ bonds.

As the network is well connected when L � ξ , we can dis-

regard the effect of the conductance of eb vanishing when

p → pi
c, as eb is then on one of many connected paths in

the infinite percolation cluster. The network will have a mass

distribution equivalent to that in gÄ
r (0, pi

c) when p → pi
c. To

compare our network to gÄ
r (0, pc), we need p � pc for the

distribution of bond conductances in gÄ
s to be similar to that

in gÄ
r (0, pc). This requirement does not, however, scale with

L, so that we can expect the two conductance distributions gÄ
s

and gÄ
r (0, pc) to converge at the same values of p, independent

of the size L. Therefore, for large L we can expect a re-

gion of p values where gÄ
s � gÄ

r (0, pc), i.e., where L � ξ and

p � pc.

(a) (b) (c)

FIG. 4. (a) Average effective conductivity Ãe for the same 100 realizations as used in Fig. 1(c) and 1(d). They are, however, plotted for

the convergence towards their individual thresholds p − pi
c. (b) Numerical derivatives of the curves in (a), with the dashed line indicating the

plateau of the g1
r (pc, 1) curves. The plot in (c) is using the global percolation threshold pc, instead of the individual percolation thresholds pi

c.
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In Fig. 4 we present the results for both g1
s and g1

r (0, pc).

As seen in the figure, g1
s and g1

r (0, pc) differ for both large

and small values of p − pi
c; they are, however, similar for a

range of intermediate values that correspond to the region in

which L � ξ and p � pc. We also observe that the two curves

diverge when p → pi
c: In this case, we have L 	 ξ and, thus,

the link eb will become the single bridging link. Since the

weight gÄ
s (p, eb) → 0 when p → pi

c, this conductance will

begin dominating the overall conductance of the network

as described above, and the conductance will vanish by the

power law, Ã s
e ∝ (p − pi

c)Ä , as p → pi
c. This is in contrast to

the gÄ
r network, for which the bridging link eb has a finite

conductance, gÄ
r (p, eb) > 0 and, thus, Ã r

e converges to a finite

value when p → pi
c. The two conductance descriptions gÄ

s and

gÄ
r must, therefore, begin to diverge when p → pi

c, and Fig. 4

indicates that they do.

While the conductivities have clearly different trajectories

when plotted versus their individual percolation thresholds pi
c,

the difference becomes insignificant when one uses instead

the traditional averaging p − pc, where pc is the percolation

threshold for an infinite network. Let pav = 〈pi
c〉 be the aver-

age of the percolation thresholds for the individual networks,

and let 	 =
√

〈(pi
c)2〉 − 〈pi

c〉
2 be the standard deviation of the

individual percolation thresholds. The two values are known

to scale as pav − pc ∝ L−1/ν and 	 ∝ L−1/ν [1, p. 73]. The

standard deviation of the individual percolation thresholds 	

is larger than the difference between pav and pc; thus, the

	 ∝ L−1/ν correspondence will be of importance to us. The

difference between the gÄ
s and gÄ

r (0, pc) models when p → pi
c

is expected to be reflected in the p − pc curves only if 	 is

smaller than the onset of divergence between the gs and gr

curves. In Fig. 4(c) we have plotted the results for p − pc.

There is no evident difference between the curves, indicating

that 	 is larger than the onset of the divergence observed in

Fig. 4(a) and 4(b).

Based on the above derivations, the power laws for gs

and gr are expected to be the same, and should be bounded

from below by max(t, Ä ). This is corroborated by the results

in Fig. 3, where the results for gÄ
r (0, pc) and gÄ

s are almost

identical for both values of Ä . For Ä = 1 they indicate ζ =

ts/ν � 1.034, which yields a nonuniversal scaling exponent

of ts � 1.38 � t = max(t, Ä ). For Ä = 2 we have ζ � 1.535,

yielding ts � 2.05 � Ä = max(t, Ä ).

The results for g1
s are presented in Figs. 1(c) and 1(g), and

those for g2
s are shown in Figs. 2(c) and 2(g). Since go > gÄ

p >

gÄ
r , we have Ã o

e > Ã
p

e > Ã r
e (0, pc). It is evident from Fig. 1(g)

that even the largest network size, L = 2048, does not produce

a plateau for the gradient. We thus plot g1
r (0, pc) in Figs. 1(d)

and 1(h). The derivative indicates a plateau, however, at a

value around ts � 1.43. This is higher than, ts = 1.38, ob-

tained from the finite-size scaling above. For Ä = 2, as seen

in Figs. 1(d) and 1(h), we obtain a slope of ts � 2.05, which is

in agreement with the finite-size scaling above. These results

will be discussed further in the next section.

V. DISCUSSION

In the previous section, we investigated the power laws

for the effective conductivity of evolving networks, gÄ
p and

gÄ
s , introduced in this paper. We argued that the effective

FIG. 5. Cumulative conductance distribution for gÄ
s for 100 real-

izations of size L = 512, together with the functional relationships

describing the distribution for gÄ
r (0, pc ). The functional relationships

are covered by distributions for gÄ
s

conductivities of these networks follow the same power laws

as the networks gÄ
r (pc, 1) and gÄ

r (0, pc), respectively.

Nonuniversality has been observed for networks whose

distribution of bond conductances diverges when the con-

ductance values go to zero [27,29]. For gÄ
r (0, pc) we have a

uniform distribution of bond mass values in the range [0, pc],

and the conductance for a bond of mass m is g = mÄ . The

probability of having a mass smaller than m is m/pc. Thus,

the probability of having a conductance smaller than g = mÄ

becomes m/pc = g1/Ä/pc, and the cumulative conductance

distribution is given by

H (g) = g1/Ä/pc, (7)

for g ∈ (0, pÄ
c ). In Fig. 5 we present the conductance distri-

bution in gÄ
s for the backbone at p = pc, together with the

distribution function in Eq. (7). We observe an equivalent

distribution for gÄ
s as gÄ

r (0, pc).

If we scale the conductances in the range (0, pÄ
c = 2−Ä ) to

the range (0,1) [with the above notation, we, thus, consider

p−Ä
c gÄ

r (0, pc)], we have the cumulative probability H (g) =

g1/Ä , which yields the probability distribution

h(g) =
1

Ä
g1/Ä−1 = (1 − α)g−α, (8)

where the last term is on the form used in [27], obtained from

α = 1 − 1/Ä . For Ä > 1 we have a negative exponent for g in

Eq. (8), making h(g) diverge when the conductance g → 0.

According to [27], we then have Ãe ∝ (p − pc)tr , where tr =

t + α/(1 − α) = t + Ä − 1, with t being the standard conduc-

tivity exponent, with t � 1.3 for two-dimensional networks,

as mentioned above. Note also that other authors reported

different values for tr , with 0 < tr − t < 3/2 for Ä = 2 ac-

cording to [29]. In [28] the nonuniversal exponent is given

as tr = max(t, (1 − α)−1) = max(t, Ä ), which is exactly the

lower bound we obtained for gs above.
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For Ä = 1 the literature indicates that for the gÄ
r model

tr = t � 1.3. Our derivations above should have yielded ts =

tr = t , but our numerically computed values for ts are higher

than this, with ts � 1.38 by finite-size scaling and ts � 1.43

through investigating the gradient of the curves gs(L, p). It has

been reported that the universality constant for tr is difficult to

obtain as logarithmic corrections set in for Ä = 1 [28]. Our

computed values are, however, in excellent agreement with

estimates from similar numerical simulations for the gÄ
r model

[34].

For Ä = 2, the literature differs on the value of tr , with

1.3 < tr < 2.8 according to [29], tr � 2.3 according to [27],

and tr = 2 according to [28]. Our estimate of ts � 2.05 is

within the spread of the tr values for the gÄ
r model, as indicated

by the aforementioned authors.

VI. SUMMARY

We introduced two types of evolving networks that are

related to natural and industrial processes, such as clogging,

precipitation, and dissolution. One model, gÄ
p, represents clog-

ging processes that tend to block the lowest conducting bonds.

The second model, gÄ
s , represents precipitation processes that

reduce the conductance of all bonds similarly. The mass distri-

bution is linked to the conductance by the exponent Ä , where

Ä = 1 represents electrical conductance or diffusion, while

Ä = 2 represents fluid flow.

The effective conductivity of the models that we in-

troduced behaves differently from that of the traditional

networks go with constant bond conductance. We showed,

however, that the power laws Ã
p

e ∝ (p − pc)tp for gÄ
p still

belong to the standard universality class with exponent

tp = t � 1.3.

The effective conductivity of the gÄ
s model follows a power

law similar to gÄ
r (0, pc). The effective conductivity of the

gÄ
r (0, pc) model is known in the literature to have nonuniversal

power laws near the percolation threshold, and we have the

same nonuniversality for gÄ
s . The conductivity of the gÄ

s model

has, however, a radically different behavior than gÄ
r (0, pc),

when we consider convergence towards individual percolation

thresholds, p → pi
c. In this limit the gÄ

s conductivity scales as

Ã s
e ∝ (p − pi

c)Ä , which leads to a lower bound ts � max(t, Ä )

for the power law, Ã s
e ∝ (p − pc)ts . As the effective conductiv-

ity of both gs and gr (0, pc) follow the same power laws, this

yields the same lower bound for gÄ
r (0, pc), namely, the lower

bound tr � max(t, Ä ).
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