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Federated Gaussian Process:
Convergence, Automatic Personalization and
Multi-fidelity Modeling

Xubo Yue, and Raed Kontar

Abstract—In this paper, we propose FGPR: a Federated Gaussian process (GP) regression framework that uses an averaging strategy
for model aggregation and stochastic gradient descent for local computations. Notably, the resulting global model excels in
personalization as FGPR jointly learns a shared prior across all devices. The predictive posterior is then obtained by exploiting this shared
prior and conditioning on local data, which encodes personalized features from a specific dataset. Theoretically, we show that FGPR
converges to a critical point of the full log-marginal likelihood function, subject to statistical errors. This result offers standalone value as it
brings federated learning theoretical results to correlated paradigms. Through extensive case studies on several regression tasks, we
show that FGPR excels in a wide range of applications and is a promising approach for privacy-preserving multi-fidelity data modeling.

Index Terms—Federated Learning, Gaussian Process Regression, Personalization, Multi-fidelity Modeling, Convergence Rates.

1 INTRODUCTION

HE modern era of computing is gradually shifting

from a centralized regime where data is stored in a
centralized location, often a cloud or central server, to a
decentralized paradigm that allows devices to collaboratively
learn models while keeping their data stored locally [1].
This paradigm shift was set forth by the massive increase
in compute resources at the edge device and is based on
one simple idea: instead of learning models on a central
server, edge devices execute small computations locally and
only share the minimum information needed to learn a
model. This modern paradigm is often coined as federated
learning (FL). Though the prototypical idea of FL dates
back decades ago, to the early work of Mangasarian and
Solodov [2], it was only brought to the forefront of deep
learning after the seminal paper by McMahan et al. [3]. In
their work, McMahan et al. [3] propose Federated Averaging
(FedAvg) for decentralized learning of a deep learning
model. In FedAvg, a central server broadcasts the network
architecture and a global model (e.g., initial weights) to
selected devices; devices perform local computations (using
stochastic gradient descent - SGD) to update the global model
based on their local data, and the central server then takes
an average of the resulting local models to update the global
model. This process is iterated until an accuracy criterion is
met.

Despite the simplicity of taking averages of local estima-
tors in deep learning, FedAvg [3] has seen immense success
and has since generated an explosive interest in FL. To date,
FedAvg for decentralized learning of deep neural networks
(NN) was tailored to image classification, text prediction,
wireless network analysis, and condition monitoring &
failure detection [4, 5, 6, 7, 8, 9]. Besides that, building upon
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FedAvg’s success, literature has been proposed to: (i) tackle
adversarial attacks in FL [10, 11]; (ii) allow personalization
whereby each device retains its own individualized model
[12]; (iii) ensure fairness in performance and participation
across devices [13, 14, 15, 16]; (iv) develop more complex
aggregation strategies that accommodate deep convolution
network [17]; (v) accelerate FL algorithms to improve con-
vergence rate or reduce communication cost [18, 19]; (vi)
improve generalization through model ensembling [20].

Despite the aforementioned ubiquitous application of
FL, most, if not all, FL literature lies within an empirical
risk minimization (ERM) framework - a direct conse-
quence of the focus on deep learning. To date, very few
papers study FL beyond ERM, specifically when correlation
exists. In this paper, we go beyond ERM and focus on
the Gaussian process (GP) regression. We investigate both
theoretically and empirically the (i) plausibility of federating
model/parameter estimation in GPs and (ii) applications
where federated GPs can be of immense value. Needless to
say, the inherent capability to encode correlation, quantify
uncertainty, and incorporate highly flexible model priors has
rendered GPs a key inference tool in various domains such as
multi-fidelity modeling, experimental design [21, 22, 23, 24],
manufacturing [25, 26], healthcare [27, 28], autonomous
vehicles [29] and robotics [30, 31]. Therefore, the success
of FL within GPs may help pave the way for FL to infiltrate
many new applications and domains.

The central challenge is that, unlike empirical risk mini-
mization (see Sec. 3 for a formal definition), GPs feature
correlations across all data points such that any finite
collection of which has a joint Gaussian distribution [32, 33].
As a result, the objective function does not simply sum over
the loss of individual data points. Adding to that, mini-
batch gradients become biased estimators when correlation
exists. The performance of FL in such a setting is yet to be
understood and explored.

To this end, we propose FGPR: a Federated GP
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Regression framework that uses FedAvg (i.e., averaging
strategy) for model aggregation and SGD for local devices
computations. First, we show that, under some conditions,
FGPR converges to a critical point of the full log-marginal
likelihood function and recovers true parameters (or mini-
mizes the global objective function) up to statistical errors
that depend on the device’s mini-batch size. Our results hold
for kernel functions that exhibit exponential or polynomial
eigendecay, which is satisfied by a wide range of kernels
commonly used in GPs such as the Matérn and radial
basis function (RBF) kernels. Our proof offers standalone
value as it is the first to extend the theoretical results of
FL beyond ERM and to a correlated paradigm. In turn,
this may help researchers further investigate FL within
alternative stochastic processes built upon correlations, such
as Lévy processes. Second, we explore FGPR within various
applications to validate our results. Most notably, we propose
FGPR as a privacy-preserving approach for multi-fidelity data
modeling and show its advantageous properties compared
to the state-of-the-art benchmarks. In addition, we find an
interesting yet unsurprising observation. The global model in
FGPR excels in personalization. This feature is due to the fact
that ultimately FGPR learns a shared prior across all devices.
The predictive posterior then is obtained by exploiting this
shared prior and conditioning on local data, which encodes
personalized features from a specific device. This notion of
automatic personalization is closely related to meta-learning,
where the goal is to learn a model that can achieve fast
personalization.

1.1

We briefly summarize our contributions below:

Summary of Contributions & Findings

o Convergence: We explore two data-generating sce-
narios. (1) Homogeneous setting where local data
is generated from the same underlying distribution
or stochastic process across all devices; (2) Heteroge-
neous setting where devices have distributional dif-
ferences. Under both scenarios and for a large enough
batch size M, we prove that the signal variance and
noise parameters of FGPR converge to a critical point
of the full log-marginal likelihood function (from
all data) for kernels that exhibit an exponential or
polynomial eigendecay. We also provide uniform
error bounds on parameter estimation errors and
highlight the ability of FGPR to recover the underlying
noise variance.

— Interestingly, our derived bounds not only de-
pend on iteration 7', but also explicitly depend
on batch size M, which is a direct consequence
of correlation. Our results do not assume any
specific functional structure, such as convexity,
Lipschitz continuity, or bounded variance.

e Automatic Personalization Capability: We demon-
strate that FGPR can automatically personalize the
shared global model to each local device. Learning
a global model by FGPR can be viewed as jointly
learning a global GP prior. On the other hand, the
posterior predictive distribution of a GP depends
both on this shared prior and the local training

2

data. The latter can be viewed as a personalized
feature encoded in the GP model. This important
personalization feature allows FGPR to excel in the
scenario where data among each local device is
heterogeneous (Sec. 6 and Sec. 7).

- In addition to the personalization capability,
we find that the prior class learned from FGPR
excels in transfer learning (Appendix 0). This
idea is similar to meta-learning, where one tries
to learn a global model that can quickly adapt
to a new task.

e Multi-fidelity modeling and other applications:
We propose FGPR as a privacy-preserving approach
for multi-fidelity data modeling, which combines
datasets of varying fidelities into one unified model.
We find that in such settings, not only does FGPR
preserve privacy but also can improve generalization
power across various existing state-of-the-art multi-
fidelity and distributed learning (DL) approaches.
We also validate FGPR on various simulated datasets
and real-world datasets to highlight its advantageous
properties.

The remainder of this paper is organized as follows. A
detailed literature review can be found in Sec. 2. In Sec. 3,
we present the FGPR algorithm. We study the theoretical
properties of FGPR in Sec. 4. In Sec. 5-7, we present several
empirical results over a range of simulated datasets and real-
world datasets. We conclude our paper in Sec. 8 with a brief
discussion. Codes are available on the following GitHub
link: https://github.com/UMDataScienceLab/Federated_
Gaussian_Process.

2 RELATED WORK
2.1 Federated Learning

Most of the existing FL literature has focused on developing
deep learning algorithms and their applications in image
classification and natural language processing. Please refer to
[1] for an in-depth review of FL literature. Here, we briefly re-
view some related papers that tackle data heterogeneity. One
popular trend [34, 35] uses regularization techniques to allay
heterogeneity. For instance, FedProx [34] adds a quadratic
regularizer to the device objective to limit the impact of
heterogeneity by penalizing local updates that move far from
the global model. Alternatively, personalized models were
proposed. Such models usually follow an alternating train-
then-personalize approach where a global model is learned,
and the personalized model is regularized to stay within its
vicinity [12, 36, 37]. Other approaches [38, 39] use different
layers of a network to represent global and personalized
solutions. More recently, researchers have tried to remove
the dependence on a global model for personalization by
following a multi-task learning philosophy [40]. Yet, such
models can only handle simple convex formulations.

2.2 Distributed Learning

Our work focuses on developing federated models, specifi-
cally for GPs, that go beyond deep learning. To date, little
to no literature exists along this line. Perhaps the closest
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TABLE 1
Comparison between benchmark DL methods and our proposed FL approach. For Modular GP, sparse representation of data entails the
pseudo-targets, variational density, model parameters, and lower bound value [41].

Models Theory Objective Comm. Frequency Comm. Load
DVI [42] X Lower bound Every Iteration Gradient Tensor
DGP [43] X PoE Approximate One-Shot Predicted Output
Modular GP [41] X Lower bound One-Shot Sparse Representation of Data
FGPR v Exact Multiple local steps Model Parameters

field where various regression approaches were investigated
is DL for distributed systems. Distributed approaches for
MCMC, GPs, PCA, logistic, and quantile regression have
been proposed [44, 45, 46, 47, 48, 49, 50, 51]. However, DL
and FL have several fundamental differences.

Distributed learning is a centralized computation ap-
proach where devices are compute nodes connected by a
large bandwidth. Nodes can communicate often and access
any part of a dataset, as data partitions can be continuously
adjusted. DL aims to parallelize computation tasks across
different compute nodes to improve computational efficiency.
In FL, data resides at the edge where the goal is to process
more of the data at the origin of creation (the edge) and
only share updated model parameters rather than entire
datasets. In FL, we do not have the luxury to partition,
shuffle, and randomize the data. In essence, each device in
FL has its own model, and all devices borrow strength from
each other to improve model learning. One critical bottleneck
in FL is communication [52]. Unlike centralized regimes,
aggregation of local models cannot be done after every single
optimization iteration, as this incurs huge communication
needs between edge devices and the central server. Instead,
each device runs multiple local optimization iterates before
uploading the data. Indeed, the FedAvg algorithm that we
discussed earlier [3] was motivated by the ability to perform
multiple optimization iterations locally before updating
the global model - hence reducing communication needs.
Interestingly, the number of local updates cannot be very
large, as we will discuss in Sec. 4.

Along the line of DL, distributed GPs are closely related
to our proposed algorithm FGPR. [53] proposed a distributed
GP approach that uses the product-of-experts (PoE) approxi-
mation [54] to partition a central dataset into several blocks
so that the inference can be made in a distributed fashion.
This approach often overestimates predictive variance. [43]
proposed a new distributed GP counterpart (denoted as DGP)
that alleviates the aforementioned drawback. The product-
of-experts approximation assumes the independence of local
experts and, therefore ignores correlation among them. [55]
overcame the limitation of PoE using vector quantization
to learn correlation among experts. However, the proposed
approach requires different nodes to transmit data to each
other. [42] resorted to variational inference (VI) to draw a
lower bound on the GP log-marginal likelihood function and
developed a distributed variational inference (DVI) frame-
work that parallelizes inference procedures. [41] developed
a Modular GP that extended the VI-based framework into
a multi-output scenario where one can model data from
multiple sources. Due to space limitation, please refer to [56]
for a comprehensive review of the distributed GP methods.

That said, the methods described above and our approach
FGPR feature key differences. The differences are highlighted
in Table 1.

First, DGP and Modular GP are one-shot approaches.
Whereas our model FGPR is a collaborative process where
the global model is updated over multiple communication
rounds. Our model balances communication costs and local
training steps. In FL, a one-shot approach, where each device
trains till convergence and then model aggregation happens,
is sub-optimal. This is due to the well-known “Client-drift”
phenomenon [18] where many local steps can push the
local solutions to different neighborhoods, and then the
aggregation becomes sub-optimal, often giving meaningless
predictions. This has also been shown from a theoretical
perspective. For instance, in FedAvg, the number of local
optimization steps at each communication round should be
less than the order of communication rounds for convergence.
A similar result is shown for our model in Sec. 4. Whilst
Modular GP and DGP require only one-shot communication,
DVI requires communication after every single optimization
iterate. This is clearly not viable in FL. Adding to that, DVI
needs to send a high-dimension tensor to a central server.
This further amplifies communication loads and costs. FGPR,
on the other hand, only shares model parameters.

Second, FGPR aims to optimize the exact marginal like-
lihood function. We alleviate the computational burden by
using mini-batch SGD and accordingly show convergence
on the exact likelihood. In contrast, DGP resorts to the PoE
approximation, and DVI and Modular GP draw lower
bounds on the exact log-marginal likelihood function and
optimize the lower bounds. When optimizing the lower
bound in a VI-based approach, it does not imply that
the resulting solution optimally maximizes the exact log-
marginal likelihood.

Third, our paper presents the first successful try at
extending the theoretical results of FL beyond ERM and
to a correlated paradigm, while existing work [41, 42, 43]
did not study the theoretical properties of their proposed
algorithms.

More detailed explanations that shed light on the differ-
ences between all models can be found in our experiments
(Sec. 6 and Sec. 7), where we benchmark our approach with
DGP, DVI, and the Modular GP amongst others.

3 THE FGPR ALGORITHM

In this section, we describe the problem setting in Sec. 3.1
and introduce FGPR - a federated learning scheme for GPs in
Sec. 3.2. We then provide insights on the advantages of FGPR
in Sec. 3.3. Specifically, we will show that FGPR is capable of
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automatically personalizing the global model to each local
device. This property allows FGPR to excel in many real-
world applications, such as multi-fidelity modeling, where
heterogeneity exists. The primary scope of our paper is to
focus on regression tasks and provide rigorous theoretical
guarantees.

3.1 Background

We consider the Gaussian process regression. We first briefly
review the centralized GP model. Suppose the training
dataset is given as D = {X,y}, where y = [y1,...,yn]",
X = [z],...,z];] and N denotes the number of observations.
In this paper, we use |D| = N to denote the cardinality of set
D. Here, x € R? is a d-dimensional input and y € R is the
output. We decompose the output as y; = f(z;) + €;, where

f~GPO.K(-,:0k)), €

and K (-, -; Ox) is the prior kernel function parameterized by
kernel parameters @x.. The prior encodes a belief about the
data-generating process and incurs correlations across all
data points.

Given a new observation z*, the goal of GP regression
is to predict f(z*). By definition, any finite collection of
observations from a GP follows a multivariate normal
distribution. Therefore, the joint distribution of y and f(x*)
is given as

]~ (oG5 k)

iid.
~

(0,0%),

where K (-,-) : R? x R? — R is a covariance matrix whose
entries are determined by the kernel function K(:,-;0x).
Therefore, the conditional distribution (also known as
the posterior predictive distribution) of f(z*) is given as
N(Mpred(x*)vo'Q

ored(T”) ), where

pprea(a®) = K(*, X) (K(X, X) +0%I) 'y,
Jgred(‘r*)
— K(a",2") - K(z*, X) (K(X,X) + 0?I) ' K(X,2").

M

Here, fiprea(2*) is often used as a point estimate of f(z*)
and 02,.,(z*) quantifies the variance. It can be seen that
our predictions will depend on the kernel parameters that
parameterize K (-,-) and on the noise parameter o2. In this
paper, we denote by 6 := (6x, 0?) the GP model parameters.
Therefore, predicting an accurate output f(z*) critically
depends on finding a good estimate of 6. To estimate 0,
the most popular approach is to minimize the negative log-
marginal likelihood in the form of

“log p(y|X:0) = — log / (Y X, £:0)p(f|X; 0)df

= WK (X, X) +0°D) 'y

+log |K (X, X)+ o*I| + Nlog(2m)], )

where f = (f(z1),.... f(azn)), yIX, f ~ N(0,0%I) and
p(f|X;0) is a prior density function. There are numer-
ous optimizers that are readily available to minimize

4

—logp(y|X;@). In this paper, we resort to stochastic op-
timization methods such as SGD or Adam [57].

Remark 1. Needless to say, a current critical challenge in FL is
that edge devices have limited compute power. SGD offers an
excellent scalability solution to the computational complexity
of GPs, which has been a long-standing bottleneck since GPs
require inverting a covariance matrix K (-, -) at each iteration of
an optimization procedure (see Eq. (2)). This operation, in general,
incurs a O(N3) time complexity. In SGD, only a mini-batch
with a size of M < N is taken at each iteration; hence allowing
GPs to scale to big data regimes. Besides that, and as will become
clear shortly, our approach only requires edge devices to do a
few steps on SGD on their local data. Another notable advantage
of SGD is that it offers good generalization power [58]. In deep
learning, it is well-known that SGD can drive solutions to a flat
minimizer that generalizes well [59]. Although this statement is
still an open problem in GP, Chen et al. [60] empirically validate
that the solution obtained by SGD generalizes better than other
deterministic optimizers.

In the non-federated setting, applying stochastic inference
to G'P is not new. Indeed, prior work [61] introduced N, < N
inducing points and employed stochastic VI that optimizes
a lower bound of log-marginal likelihood function. As a
result, the computation burden is reduced to O(N2ZN).
Unfortunately, [62, 63] show that the VI does not work well
when the underlying process is not smooth and requires
many inducing points to achieve a satisfactory performance.
Even for a smooth kernel such as the RBF kernel, O(log? N')
inducing points are needed. On the other hand, our work
directly applies SGD to the exact log-marginal likelihood
function without using an approximation. In Sec. 4, we also
support our approach with theoretical guarantees.

Now to use SGD on the exact log-marginal likelihood in
Eq. (2) in a centralized regime, we can derive the stochastic
gradient given mini-batch of size M as

9(0;¢)

1 _ 0K (X¢, X _
=§{—y§K 1(X5,X5)%K HXe, Xe)ye
+Tr (K*l(xg, Xg)iax();g, = ) }

_ _ OK (Xe,X
T {K H(Xe Xe) (1 - yeyl K1 (Xe, X)) 25550 5)}

2

where ¢ is the set of indices corresponding to a subset of
training data with mini-batch size M and X¢,y, is the
respective subset of inputs and outputs indexed by . At
each iteration ¢, a subset of training data is taken to update
model parameters as

OFD 91 — M g(e®); M),

where 7*) is the learning rate at iteration ¢. This step is
repeated several times till some exit condition is met.
Although SGD was a key propeller for deep learning,
it faces a fundamental challenge in GPs. In deep learn-
ing, the empirical risk function is given as R(6; D)
> Zi]il ((fo(x:),y:), where D = {(x,y;)}1L, is the train-
ing dataset, fg is the neural network to be learned and

~
~
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¢(-,-) is a loss function. Therefore, the stochastic gradient
of R(#;D) evaluated using a batch of data, indexed by
a set & is VRy(6;¢) = % >ice U(fo(wi), yi). As a result,
E[VR(6;¢)] = VR(8;D), which means the stochastic
gradient is an unbiased estimator of the full gradient.
This is a direct consequence of the fact that the objective
R(G; D) is given as a summation over the training data. On
the other hand, GPs feature correlations where any finite
collection of data points has a joint Gaussian distribution.
Therefore, the objective, — log p(y|X; 0), to be minimized
in a GP does not simply sum over individual data points.
Consequently, stochastic gradients become biased estima-
tors when correlation exists. Mathematically, this implies
Elg(8;¢)] # V(—logp(y| X 0)).

Despite this challenge, we will show in the following
sections that our federated SGD approach for learning a
GP converges to a critical point of log p(y|X; 8), subject to
statistical errors.

3.2 The FGPR Framework

Suppose there exists K > 2 local devices. In this paper,
we will use (edge) devices and clients interchangeably. For
client k € [K], the local dataset is given as Dy, = { Xy, yi}
with cardinality Ni. We let N = Zszl Nj. Denote by
L;(6; Dy) = —logp(yr|Xy;0) the negative log-marginal
likelihood function for device k and g (0; i) the SG of this
negative log-marginal function with respect to a mini-batch
of size M indexed by &.

In FL, our goal is to collaboratively learn a global
parameter 6 that minimizes the global objective function
in the form of

K
L(6) =Y peLi(6; D) ©)
k=1

where p;, = is the weight parameter for device

N,
ZK:f Ny,
k such that Y, , pr = 1. To fulfill this goal, during each
communication period, each local device k runs E steps of

SGD and updates model parameters as
oY 0 —nWg(0";€").

At the end of each communication round, the central server
aggregates model parameters as

_ K
0= Z pkgk-
k=1

The aggregated parameter 0 is then distributed back to local
devices. This cycle is repeated several times till convergence.
In this training framework, all devices participate during
each communication round. We define this framework
as synchronous updating. In reality, however, some local
devices are frequently offline or reluctant/slow to respond
due to various unexpected reasons. To resolve this issue,
we develop an asynchronous updating scheme. Specifically,
at the beginning of each communication round (c), we
select Ksmple € [1, K) clients by sampling probability py
and denote by S the indices of these clients. During the

5

communication round, the central server aggregates model
parameters as

- 1
0=—"" 0y..
K sample %

The detailed procedure is given in Algorithm 1. Although
FGPR is primarily a regression framework, it can be extended
to handle classification tasks. Due to space limitations, we
defer the details to Appendix 1.

Remark 2. The aggregation strategy used in Algorithm 1 is
known as FedAvg [3]. Despite being the first proposed aggregation
scheme for FL, FedAvg has stood the test in the past couple of
years as one of the most robust and competitive approaches for
model aggregation. That being said, it is also possible to extend
our algorithm to different strategies, such as different sampling or
weighting schemes.

Algorithm 1: The FGPR algorithm

Data: number of sampled devices Kgample, number of
communication rounds R, initial model
parameter 8, number of local SGD steps E

forc=0:(R—1)do

Select Ksample clients by sampling probability py,

and denote by S the indices of these clients;

Server broadcasts 6;

for k € S do

0" = o;
Update model parameter (e.g., using
Algorithm 2);
end

Aggregation 0, = 3", ¢ BI(CE), Set 0 = 0,;

sample

end ~
Return @p.

Algorithm 2: Local update using SGD

Data: index of device k, number of local updates E,
SGD learning rate schedule {n®} ., initial
(0)
model parameter 6,
fort=0:(F—1)do
Randomly sample a subset of data from Dy, and
denote it as f(t)'
k 7
oy = o) — 0 gu(0);") ;
end
Return BI(CE) ;

3.3 Why a Single Global GP Model Works?

In this paper, we will demonstrate the viability of FGPR
in cases where data across devices are both homogeneous
or heterogeneous. In heterogeneous settings, it is often the
case that personalized FL approaches are developed where
clients eventually retain their own models while borrowing
strength from one another. Popular personalization methods
usually fine-tune the global model based on local data while
encouraging local weights to stay in a small region in the
parameter space of the global model [12]. This allows a
balance between the client’s shared knowledge and unique
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characteristics. This literature, however, is mainly focused on
deep learning.

One natural question is: why does a single global model,
learned by Algorithm 1, work in FGPR? Here, it is critical
to note that, unlike deep learning, estimating € in a GP is
equivalent to learning a prior through which predictions
are obtained by conditioning on the observed data, and the
learned prior. By “learning a prior”, we refer to estimating
hyper-parameters of GPs by maximizing the global objective.

More specifically, in the GP, we impose a prior on f,
such that fi, ~ GP(0,K(-,-;0x)). The kernel function is
parameterized by . Therefore, learning a global model by
FGPR can be viewed as learning a common model prior
over fi,Vk. On the other hand, the posterior predictive
distribution at a testing point z* is given as

p(fel Xk Yy, 2*) = /p(flj‘x*;fk)p(fk‘Xkayk)dfk

prior
(Y| X, fr) p(fr)

= N(/lk,pred(x*)v Jl%,pred(x*))7

where fj, is defined in Eq. (2), the predictive mean pij; pred (™)
and the predictive variance o} ,,..,(*) are defined in Eq. (1).
From this posterior predictive equation, one can see that
the predicted trajectory (and variance) of GP in device k is
affected by both prior distribution and training data (X, yx)
explicitly. For a specific device, the local data themselves
embody the personalization role. Therefore, FGPR can au-
tomatically tailor a shared global model to a personalized
model for each local device. This idea is similar to meta-
learning, where one tries to learn a global model that can
quickly adapt to a new task.

To see this, we create a simple and stylized numerical
example. Another example can be found in the Appendix
2. Suppose there are two local devices. Device 1 has data
that follows y = sin(z) while device 2 has data that
follows y = —sin(x). Each device has 100 training points
uniformly spread in [0, 10]. We use FedAvg to train a 2-layer
neural network. Unfortunately, a single global model of a
neural network simply returns a line, as shown in Figure 1.
Mathematically, this example solves

dfk

i fo — sin(@)]3 + o +sina)3 )

where fg is a global neural network parametrized by 8 and
HHg is a functional on [0, 10] defined as ||f||§ = 010 f(x)%dx.

By taking the derivative of the above objective and setting
it to zero, we can find that the solution is f¢ = 0. This implies
that the global model cannot provide meaningful predictions
on both devices.

To remedy this issue, one needs to implement an addi-
tional personalization step that fine-tunes the global model
from local data. This comes with its own challenges, such
as starting with a bad global model (as is the case above)
and introducing extra computational costs and parameters.
On the other hand, a single GP model learned from FGPR
can provide good interpolation performance for both devices.
This demonstrates the advantage of automatic personaliza-
tion intrinsic to FGPR.

6

Remark 3. Despite FGPR being a global modeling approach, in
our empirical section, we will compare with personalized FL using
NNs when the data distributions are heterogeneous.

Federated GPR

' Device 2

Federated Neural Network

" Device 1 | Device 2 ! Device 1

Fig. 1. A simple example used to demonstrate the automatic personaliza-
tion ability of FGPR. In the plot, the black dots are original data, and the
red lines are fitted curves.

4 THEORETICAL RESULTS

Proving convergence of FGPR introduces new challenges
due to correlation and the decentralized nature of model
estimation.

In G'Ps, the objective function cannot be approximated by
a summation form since all data points are correlated. This
correlation renders the stochastic gradient a biased estimator
of the full gradient. To the best of our knowledge, only a
recent work from [60] has shown theoretical convergence
results of centralized GP in a correlated setting. Adding to
that, FGPR aggregates parameters that are estimated on only
a partial dataset.

In this section, we take a step forward in understanding
the theoretical properties of G'P estimated in a federated fash-
ion. Specifically, we provide several probabilistic convergence
results of FGPR under both homogeneous and heterogeneous
clients and under both full and partial device participation
settings. Our theoretical results are built upon [60], yet it is
not a simple extension of [60] since in the federated setting,
partial device participation, non-i.i.d. data, infrequently com-
munication (multiple steps of SGD), parameter aggregation,
and the inherent bias stochastic gradient from GP will further
complicate the theoretical analysis. To our knowledge, this is
the first paper that theoretically studies FL. when correlation
exists.

To proceed, we define O = (61,1) such that 8 =
(01,02,1). Here, 0; is the signal variance parameter, 3 = o
is the noise parameter, and [ is the length parameter. Denote
by 0" = (67,05,0*) the true data-generating parameter.
We impose a structure on the kernel function such that
K(-,+;0x) = 03k¢(-,-) where ky(-,-) is a known function.
Now, we define C(z1,72) = K(x1,72;0x) + 051, =z, as
a covariance function, where I is an indicator function.
This form of covariance function is ubiquitous and widely
adopted. For instance, the Matérn covariance is in the form
of

Cv(9617$2)
2t 21 — 2] \" lz1 — 22|
= ¢? V2 K, (V22— ==1
'T(v) < T ) ’ ( Y )
+ 051z, =,

where v is a positive scalar and K, is the modified Bessel
function of the second kind. In this example, kf(z1,2z2) =
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gl—v

) (\/ QUHU“Z;IQH) K, (\/ 21;“11?7”“) Another example
is the RBF covariance:
) + 031, =, -

There are also many other examples, such as the Orn-
stein-Uhlenbeck covariance and the periodic covariance [64].

-z
Crpr(x1,2) = 07 exp ( o 2|

Remark 4. A more general setting is to consider the compound ker-
nel function that is in the form of K(-, - 0x) = St 02k, (-, ).
For simplicity, in the theoretical analysis, we assume A =
However, our proof techniques can be easily extended to the scenario
where A > 1.

In the theoretical analysis, we will show the explicit
convergence bounds on #; and 6. The convergence behavior
of the length parameter [ is still an open problem [60]. The
key reason is that one needs to apply the eigendecomposition
technique to the kernel function and carefully analyze the
lower and upper bounds of eigenfunctions. The length
parameter [, however, lies in the denominator of a kernel
function. In this case, it is extremely challenging to write
the kernel function in the form of eigenvalues and bound
them. To the best of our knowledge, the work that studies
convergence results of [ is still vacant even in centralized
regimes.

4.1

To derive our convergence results, we make the following
assumptions.

Assumptions

Assumption 1. The parameter space © is a compact
and convex subset of R?. Moreover, (05,05)T € ©° and
Sup(g, g,)reo |[(01,02)T — (67,05)T|| > 0, where ©° is the
interior of set ©.

This assumption indicates that all parameter iterates are
bounded, and the global minimizer (67, 65)T exists. Without
loss of generality, assume the lower (or upper) bound of the
parameter space on each dimension is 8,5, (0T 0y,4z). The
convexity of the parameter space (not the objective function)
implies that for any parameters  and ' within a bounded
region, their convex combination also falls within the same
boundary.

Assumption 2. The norm of the stochastic gradient is bounded.
Specifically,

0< Hgk(-;g,@)H <G, forall k € [K],t € [T).

Here T is defined as the total number of iteration indices
on each device. Mathematically, T’ = RE — 1 and [T] =

{0,...,T}.

Remark 5. It is very common to assume the local functions are L-
smooth, (strongly-)convex, or the variance of the stochastic gradient
is bounded. However, we do not make those assumptions. More
specifically, in Assumption 1, we only assume that the parameter
space (rather than the objective function) is a compact and convex
subset. This assumption implies that the SGD parameter iterates
are bounded within a specific region. Otherwise, the minimizer does
not exist, and SGD will not converge. Assumptions 2 introduces
conditions related to the boundedness of stochastic gradients. This

7

assumption does not pertain to the L-smoothness of the objective
function.

In the GP setting, the explicit convergence bound de-
pends on the rate of decay of eigenvalues from a specific type
of kernel function. In this paper, we study two types of kernel
functions: (1) kernel functions with exponential eigendecay
rates; and (2) kernel functions with polynomial eigendecay
rates. Those translate to the following assumptions.

Assumption 3a. For each k € [K)|, the eigenvalues of function
ks with respect to probability measure p are {A\1;}52,
{Cre=t7}52 |, where by > 0 and Cy, < oo. Without loss of
generality, assume Cj, < 1.

Assumption 3b. For each k € [K|, the eigenvalues of function
ks with respect to probability measure p are {\1;}52, =
{Crj=2"%}32,, where by, > V23 gud ©), < oo. Without loss
of genemlzty, assume Cy, < 1.

Remark 6. Assumption 3a is satisfied by smooth kernels such
as RBF kernels and Assumption 3b is satisfied by the non-smooth
kernels such as Matérn kernels.

4.2 Homogeneous Setting

We first assume that data across all devices are generated
from the same underlying process or distribution (i.e.,
homogeneous data). Mathematically, it indicates [65]

K K

> peLe(0%:Dy) = > peLi(05: Dy)| = 0.
k=1 k=1

lim

Ni,...,Np—o0
We briefly parse this expression. Since the data distribution
across all devices is homogeneous, we know, for each k,
0, = 0" as N, — oo. Therefore, ZlepkLk(H*;Dk) =
ZszlpkLk(OZ; Dy). In Sec. 4.3 and Appendix 3, we will
consider the heterogeneous data settings, which are often
more realistic in real-world applications.

To derive the convergence result, we divide [gx(0; &;)]1
by a constant factor s1(My) = 7log My, and [gx(0;&k)]2 by
s2(My) = My, where [gi(0; &)]; is the i-th component in
the stochastic gradient. Those scaling factors are introduced
to ensure [g(0;&x)]1 and [gx(0; £k )]2 have the same scale in
the theoretical analysis.

Remark 7. The aforementioned scaling factors are only needed
for convergence results. In practice, we observe that those factors
s1(My), s2(My,) have minimal influence on the model perfor-
mance.

Our first Theorem shows that FGPR using RBF kernels
converges if all devices participated in the training.

Theorem 1. (RBF kernels, synchronous update) Suppose As-
sumptions 1-3a hold. At each communication round, assume
S| = K. If n® = O(}) (ie., a decay learning rate sched-
uler), then for some constants (1,Cp,co > 0,¢; € (0, %),
when My > Cg, at iteration T, with probability at least
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miny, (1 — CoT exp {—ce (log My,)** }),
_ 2
ot — 07
251 (8(&

_ 2
\9”)—9;

—1)2+2) G?
T+1

log M
+0 (m}gx O%@ k

and with probability at least

mkin (1 —Co (log (MZ’F%))LLTeXp {—Cngzek}> ,

26% (8(E —1)? +2) G2
T+ 1

1
—l—(’)(maxOg +Z M >

Here, constants B1,Co,ce only depend on Opip,0mas and
{or 3y

Remark 8. Recall that T is the number of iterations. Theorem
1 implies that, when the batch size is large enough, then with
a high probability, the parameter iterate converges to the global
optimal parameter at a rate of O( ). This is credited to the unique
structure of the G'P objective function, which we refer to as relaxed
convexity (See Lemma 4 and Lemma 5 in the Appendix 4).

K
+zmmmm%ﬁ’
k=1

, S

-

Remark 9. In the wupper bound, there is a term
2
261 (S(E 1) +2)G ~ (B +11) , where E is the number of local

SGD steps To ensure this term decreases with respect to T', one
needs to ensure E does not exceed Q(v/T). Otherwise, the FGPR
will not converge. For instance, if E =T, then the FGPR is equiv-

alent to the one-shot communication approuch [44]. Furthermor@,
sinceT = RE — 1, we also know (L;_:l) }éE 1) T E L
This hints that the number of communication round R should be

greater than E.

Remark 10. In addition to the O(%) term, there is also a

statistical error term O(maxy, loiM" + 8 PR M ) that
appeared in the upper bound. Them’etzcully, it indicates that a large
batch size is capable of reducing errors in parameter estimation.

Remark 1%. From Theorem 1, it can be seen that
_ _1

HH&T) -6 ) has smaller error term O (Zle pM" 2) than

(@] (Zle pr(log Mk)f’“’%). This implies that the noise pa-

rameter Oy is easier to estimate than 0,. This is intuitively

understandable due to the different eigenvalue structures dictated
by k¢ compared to I, —z,.

Next, we study the convergence behavior under the
asynchronous update (i.e., partial device participation) frame-
work. In this scenario, only a portion of devices is actively
sending their model parameters to the central server at each
communication round.

Theorem 2. (RBF kernels, asynchronous update) Suppose As-
sumptions 1-3a hold. At each communication round, assume |S| =
Ksampte < K number of devices are sampled according to the
sampling probability py,. If n®) = O(7), then for some constants
Co,co > 0,¢ € (0, %), when My, > Cg, at iteration T, with

probability at least miny, (1 — CoT exp (—
_ 2 2
Es {’9?) —60; + }

3 287 ([54E% + 8(B —1)? +2) G2
= T+1

K
+zmwwm%ﬂ’
k=1

co (log Mk)QEk))/

657~ 03

log M
+ 0 (m]?x O%@ k

and with probability at least

mkin <1 —Co (log (M;k7%>)4TeXp {—CgMgek}> ,

= {5 -

2% 4E? +8(E +2)G?
_ 2 (& (-1 +2)
- T+1
log Mj, at 1
+ O | max + MF7),
(s 5 )

where the expectation is taken over the set S, and please refer to
Appendix 5.3 for a rigorous definition.

Remark 12. Under the asynchronous update setting, a similar
convergence guarantee holds. The only difference is that the number
of active devices |S| plays a role in the upper bound. Numerically,
the ratio % enlarges the upper bound and impedes the convergence
rate. As |Sl grows (i.e., more devices participate in the training),
the ratio % decreases.

Our next theorem provides explicit convergences rate for
FGPR with Matérn kernels under both a synchronous and
asynchronous update scheme.

Theorem 3. (Matérn kernels) Suppose Assumptions 1-2 and 3b
hold,

(1) At each communication round, assume |S| = K. If
n® = (’)(l) then for some constants Cg,cg > 0, 1 > 0,bj, >
(W+3) and 0 < ay, < 2, when Mk > (g, with probability at

least ming (1 — CgT(log(M k= )) eXP{—CBlee’“}>,

267 (8(E —1)* +2) G2
T+1

867 —12b), —6—3ay —4day by
- 867 —4by,

<

o

+O ml?ka

K
O (ZpkM;ké) .
k=1
Additionally,

287 (8(F —1)* +2) G?
4031“1(T+1)

@top)@bts) K 1
- cr—1
+ 0 max ( M, IRETD N M TR )

k=1
(2) At each communication round, assume |S| = Kgample,
number of devices are sampled according to the sampling

oo™ <
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If n(t) =
stants Cg,co > 0, 1
o < 4, when M

miny, (1 — CoT (log (M,ik_%)f exp{—ceM,fE’“ }),

s {07 - i}

2ﬁ1( 4B+ 8(B - 1) +2) G2
T+1

_ 8b7—12by —6—3ay —dagby
8b2 —4by,

O(Y), then for some con-

¢
>O,bk>@and0<

> Cg, with probability at least

probability  py.

+0

K
O (Zpk-M;k2) .
k=1
Additionally,

so{ oo™

2533 ( or t8(E-1)° +2) G?
- 404 . (T +1)

(2tap) (@b +3) K o1
4bp (2b, —1 ¢ T 5
+ 0 max M, #(30k 1) +E pkMkk 2 .

k=1

max M,
k

Remark 13. It can be seen that the FGPR using Matérn kernel
has a larger statistical error than the one using RBF kernel.
In the RBF kernel, the statistical error is partially affected
by O (max log[h Le ) (Theorems 1,2) while this term becomes

 8b3—12by,—6-3ay, —dayby
P)
807 —4by,

O | maxy M, in the Matérn kernel. The

latter one is larger since by, > (\/Zﬂ and oy, € (0,0.5).
This difference arises from the fact that the Matérn kernel has
a slower eigenvalue decay rate (determined by by,) than the RBF
kernel (i.e., polynomial vs. exponential). This slow decay rate
leads to slower convergence and larger statistical error. When by,

becomes larger, the decay rate becomes faster, and the influence of
8b2 —12bj, —6—3ay, —dayby,
8b2 —4by,

O [ max M, & gets smaller. In this case,

_1
the statistical error is dominated by O (Zszl peM T2 ), which
is the same as the one in the RBF kernel.

Remark 14. In addition to the convergence bound on parameter
iterates, we also provide an upper bound on the full gradient

HVL
oo

Remark 15. For Matérn kernel, there is no explicit convergence
guarantee for parameter 0. The reason is that it is very hard to
derive the lower and upper bounds for the SG for Matérn kernel.
However, Theorem 3 shows that both 0y and the full gradient
converge at rates of O () subject to statistical errors.

H This bound scales the same as the bound for

4.3 Heterogeneous Setting

Besides the homogeneous setting, we further consider the
scenario where data from all devices are generated from

9

several different processes or distributions. Equivalently, this

indicates
K K
P ( > pkLi(07;Dy) = > prLi(64; Di)| = 0> =0.
k=1 k=1
Since the data are heterogeneous, we know 0} # 6*. As
a result, the weighted average of Ly (0}; D) can be very
different from L(6™). We here note that convergence results
for the heterogeneous setting are moved to Appendix 5.5,
due to space limitations.

Overall, in this theoretical section, we show that the FGPR
is guaranteed to converge under both homogeneous setting
(Sec. 4.2) and heterogeneous setting (Appendix 5), regardless
of the synchronous updating or the asynchronous updating.

5 PROOF OF CONCEPT

We start by validating the theoretical results obtained in Sec.
4.2. We also provide sample experiments that shed light on
key properties of FGPR.

Example 1: Homogeneous Setting with Balanced Data.
We generate data from a GP with zero-mean and both a
RBF and Matérn—3/2 kernel. We consider 6; € [0.1,10],
02 € [0.01,1] and a length parameter I € [0.01,1]¢. The
input space is a d-dimensional unit cube [0, 1]¢ in R? with
d € {1,...,10} and the dimension of the output is one. We
conduct 20 independent experiments. In each experiment,
we first randomly sample 61,0,l and d to generate data
samples from the GP. In each scenario, we set N, = %
This setting is homogeneous and balanced as the number of
data points across K clients is equal, and they all come from
the same underlying stochastic process. We consider three
scenarios: (1) K = 20, N = 5000, (2) K = 50, N = 2000,
(3) K = 100, N = 800. Results from the RBF kernel are
provided in Figure 2. Due to space limitation, we move
plots of the Matérn Kernel into Appendix 7. It can be seen
that the convergence rate follows a O(+) pattern. In some

runs, the values of ||§ — §* H; are very large at the beginning.
Those imply that initial parameters are far away from true
parameters. However, after 20-40 communication rounds,
those values quickly diminish. In 2, we also observe that
plots in (c) are more dispersed and fluctuated than (a) and
(b). This is because each device only has fewer data points
(N/K =2000/100 = 20).

Example 2: Homogeneous Setting with Unbalanced
Data. We use the same data-generating strategy as Example 1,
but the sample sizes are unbalanced. Specifically, the number
of data points in each device ranges from 10 to 10,000. The
histogram of data distribution from one experiment is given
in Figure 4. The convergence curves are plotted in Figure
3. Again, the convergence rate agrees with our theoretical
finding. This simple example reveals a critical property
of FGPR: FGPR can help devices with few observations
recover true parameters (subject to statistical errors) or
reduce prediction errors. We will further demonstrate this
advantage in the heterogeneous setting in Sec. 6.

Example 3: The Ability to Recover Accurate Predictions
for a Badly Initialized GP. When training an FL algorithm,
it is not uncommon to initialize the model parameters 6
near a bad stationary point. Here, we provide one toy
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Fig. 2. (RBF kernel) Evolution of ||§ —6* ||§ over training epochs. In the plot, each color represents an independent run. The input dimension d is
different for eachrunand d € {1,...,10}.
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Fig. 3. (RBF kernel) Evolution of ||6 — 6* ||§ over training epochs using unbalanced data. In the plot, each color represents an independent run. The
input dimension d is different for each runand d € {1, ...,10}.

example. We simulate data from y = sin(x) + ¢, where
e ~ N(0,0.2) and create two clients (K = 2). Each client

Histogram of Sample Sizes has 100 training data points and 1,000 testing data points

671 that are uniformly sampled from [0, 1]. We artificially find
5 a bad initial parameter 6 such that the fitted curve is just a
4l flat line. This can be achieved by finding a 8 whose noise
Frequency 3 | parameter 6, is large. In this case, 6 = (1,10,1) where the
GP interprets all data as noise and simply returns a flat line.
21 We evaluate the predictive performance of FGPR using the
1 averaged root-mean-square error (RMSE) metric. The RMSE
] for each device is evaluated on the local testing data, and the
2000 40b0| 6000 8000 10000 averaged RMSE averages RMSEs across all devices. We find
Sample Size

that FGPR is robust to parameter initialization. We plot the
evolution of averaged RMSE versus training epoch in Figure
Fig. 4. Histogram of Sample Sizes (Example 2). 5. It can be seen that even when the parameter is poorly
initialized, FGPR can still correct the wrong initialization
after several communication rounds. This credits to the
stochasticity in the SGD method. It is known that, in ERM,
SGD can escape bad stationary solutions and converge to

6 solutions with good generalization (often flat ones) [59].
5 Example 4: Scalability to big data. We followed the setup
4 presented in Sec. 4.1 (Regression) of Moreno-Mufioz et al.
Averaged 5 [41]. More specifically, Moreno-Mufioz et al. [41] define a
RMSE generating function
! 9 37 . 43T R
° G 200 400 600 800 1000 /(@) 2 cos(2ma + 2 ) — 3sin( 10 T 10)

Communication Round and define the client-specific data generating function

fr(z) = f(x) + € where ¢ ~ N(0,2). The input domain
is € [0,5.5]. We generated one million data points for
each device k € {1,...,50}. For each device, we randomly

Fig. 5. Evolution of the averaged RMSE in Example 3.
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selected 60% of the data points for the training dataset (0.6
million data points), while the remaining data points were
included in the testing data (0.4 million data points). This
results in a total of 30 million data points. We set the
batch size to 32, the learning rate to 0.1, and the number
of communication rounds to 50. We repeated the experiment
30 times. The Averaged RMSEs (line 1) and the standard
deviation of RMSEs (line 2) across all devices, along with
running times, are reported in Table 2.

Model FGPR Modular GP
1.56 (0.07) __ 1.95 (0.09)
Averaged RMSEs 0.12 (0.01)  0.13 (0.01)
Total Running Times (in seconds)  3846(+495) 5085(+605)
2

Experimental results on 30 million data

It can be seen that FGPR can efficiently handle large
datasets (30 million data points in total) while generating
satisfactory prediction performance. This credits to two
properties of FGPR: first, FGPR employs mini-batch SGD
that only takes a subset of data during each iteration. This
circumvents the need to invert a huge matrix. Second, FGPR
avoids using inducing points that scale with sample size.

6 APPLICATION I: MULTI-FIDELITY MODELING

For many computer experiments, high-fidelity numerical
simulations of complex physical processes typically require
a significant amount of time and budget. This limits the
number of data points researchers can collect and affects the
modeling accuracy due to insufficient data. A major work
trend has been proposed to augment the expensive data
source with cheaper surrogates to overcome this hindrance.
Multi-fidelity models are designed to fuse scant but accurate
observations (i.e., high-fidelity, HF) with cheap and biased
approximations (i.e., low-fidelity, LF) to improve the HF
model performance.

Denote by f, a high-fidelity function and f; a low-
fidelity function. Multi-fidelity approaches [66, 67, 68] aim
to use f; to better predict f,. During the past decades,
many multi-fidelity models have been proposed to fulfill
this goal. We refer to [69] and [70] for detailed literature
reviews. Among all the methods, GP-based approaches have
caught the most attention due to their ability to incorporate
prior beliefs, interpolate complex functional patterns, and
quantify uncertainties [69]. The last ability is critical to fuse
observations across different fidelities effectively.

Within many applications, two specific models have been
shown to be very competitive [68]; the auto-regressive (AR)
and the Deep GP (Deep) approaches. Both approaches model
fn as shown below

fu(@) = p(fi(), ) + A(z),

where p(+, -) is a space-dependent non-linear transformation
and A(x) is a bias term modeled through a GP.

More specifically, the AR model [71] sets the transforma-
tion as a linear mapping such that p(fi(z),z) = p.fi(z),
where p. is a constant. It then imposes a GP prior on f;
and accordingly obtains its posterior f;*. As a result, one can
derive the closed-form posterior distribution p(fx|f;", x,y)
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and obtain the posterior predictive equation of the high-
fidelity model. On the other hand, the Deep model [67]
treats p(fi(z),z) as a deep Gaussian process to uncover
highly complex relationships among f; and f, . Deep is one
of the state-of-the-art multi-fidelity models. For more details,
please refer to [68].

Nowadays, as data privacy gains increased importance,
having access to data across multiple fidelities is often im-
practical as multiple clients can own data. This imposes a key
challenge in multi-fidelity modeling approaches as effective
inference on expensive high-fidelity models often necessitates
the need to borrow strength from other information sources.
Fortunately, in such a case, FGPR is a potential candidate that
learns a GP prior without sharing data.

In this section, we test the viability of FGPR in multi-
fidelity modeling. We test our approach using settings where
local devices contain data with different fidelities. We then
use Algorithm 1 to train our FGPR algorithm. Specifically,
each device runs several steps of SGD and then sends its
model parameter to the central orchestrator. The orchestrator
then aggregates model parameters and sends the aggregated
parameter back to each device. This procedure is repeated
several times till some exit condition is met. Upon estimating
the model parameters, we then test the local predictive
accuracy using the predictive equation (1) for device k.

We benchmark FGPR with several state-of-the-art models.
Interestingly, our results (Table 3) show that FGPR not only
preserves privacy but also can provide superior performance
than centralized multi-fidelity approaches.

Below we detail the benchmark models: (1) Separate
which fits a single GP to the HF dataset without any
communication. This means the HF dataset does not use
any information from the LF dataset; (2) the AR method
[71]. AR is the most classical and widely-used multi-fidelity
modeling approach [66, 69, 72]; (3) the Deep model [73]
highlighted above; (4) Modular GP [41] that models each
fidelity-level as an output. For this method, we introduce 20
inducing points for each device and 3 global latent variables.
All output values are standardized to mean 0 and variance 1.

We start with two simple illustrative examples from [67]
and then benchmark all models on five well-known models
in the multi-fidelity literature.

Example 1: Linear Example - We first present a simple
one dimensional linear example where = € [0, 1]. The low
and high-fidelity models are given by [67]

1 1
(@) = Syn(z) +10(x = 5) +5,
yn(x) = (6 — 2)? sin(12x — 4),
where y;(+) is the output from the LF model and y(+) is the
output from the HF model. We simulate 100 data points from
the LF model and 20 data points from the HF model. The
number of testing data points is 1,000.
Example 2: Nonlinear Example - The one dimensional
non-linear example for z € [0, 2] is given as
yi(x) = cos(15z),
yn(z) = zexp¥(22702) 1,

We use the same data-generating strategy in Example 1.
The results from both examples are plotted in Figure
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Fig. 6. Results of Example 1 and 2. The solid black line denotes the
predicted mean, and the grey area is a 95% confidence interval.

Ex 2

Fig. 7. Results of Example 2 using separate on the HF data only.

6. The results provide a simple proof-of-concept that the
learned FGPR is able to accurately predict the HF model
despite sparse observations. Additionally, FGPR can also
adequately capture uncertainties (grey areas in Figure 6)
in predictions. The results also confirm our insights on
automatic personalization in Sec. 3.3 whereby a single global
model was able to adequately fit both HF and LF datasets.
Here, we conduct one additional comparison study on
Example 2. We train a GP model solely using a high-fidelity
dataset. The fitted curve is plotted in Figure 7. It can be seen
that, without borrowing any information from the LF dataset,
the fitted GP curve fails to recover the true underlying
pattern. This example further demonstrates the advantage
of FGPR: the shared global model parameter encodes key
information (e.g., trend, pattern) from the low-fidelity dataset
such that the high-fidelity dataset can exploit this information
to fit a more accurate surrogate model.

Next, we consider a range of benchmark problems widely
used in the multi-fidelity literature [67, 68]. We defer the full
specifications of those problems to the Appendix 8. For each
experiment, we generate 1,000 testing points uniformly on
the input domain.

e CURRIN: CURRIN [33, 74] is a two-dimensional func-
tion that is widely used for multi-fidelity computer
simulation models.

e PARK: The PARK function [74, 75] lies in a four-
dimensional space (x € (0, 1]*). This function is often
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used in testing for parameter calibration and design
of experiments.

o BRANIN: BRANIN is widely used as a test function
for metamodeling in computer experiments. In this
example, there are three fidelity levels [67, 76].

¢ Hartmann-3D: Similar to BRANIN, this is a 3-level
multi-fidelity dataset where the input space is [0, 1]°.

e Borehole Model: The Borehole model is an 8-
dimensional physical model that simulates water flow
through a borehole [74, 77, 78].

Each experiment is repeated 30 times, and we report
RMSEs of the model performance on the true HF model,
along with the standard deviations in Table 3. The training
data size is highlighted in the table.

First, it can be seen in Table 3, FGPR consistently yields
smaller RMSE than Separate. This confirms that FGPR is
able to borrow strength across multi-fidelity datasets. More
importantly, we find that FGPR can even achieve superior
performance compared to the AR and Deep benchmarks. This
implies that one can avoid centralized approaches without
compromising accuracy. Finally, the inferior performance
of Modular GPs is because: (1) Modular GP optimizes
a lower bound of log-marginal likelihood instead of the
exact likelihood. FGPR, on the other hand, directly performs
stochastic optimization on the exact likelihood; (2) Modular
GP is a one-shot approach. For instance, the convergence
bound of Fedavg follows O(E?/T) where E is the number
of local steps and T" = RE — 1 where R is the number
of communication rounds. Clearly, £ should be small (less
than the order of O(R)) to guarantee convergence. A similar
result is shown in FGPR in Sec. 4. Whereas our model FGPR
is a collaborative process where the global model is updated
over R communication rounds; (3) Modular GP require one
additional layer of approximation that sacrifices accuracy
[41]. As a side note, as mentioned in Table 1, in Modular
GP, a sparse representation of the local data is shared,
which entails the pseudo-targets, variational density, model
parameters, and lower bound value. Clearly, if the sparse
approximation is close to the true local posterior, there is an
infringement on local privacy. FGPR, on the other hand, only
shares model parameters.

In summary, the results show that FGPR can serve as a
compelling candidate for privacy-preserving multi-fidelity
modeling in the modern era of statistics and machine
learning.

Below, we also detail an interesting technical observation.

Remark 16. In our settings, the weight coefficient py, for the HF
is low compared to LF, as HF clients have fewer data. For instance,
in the CURRIN example, the HF coefficient is p; = % =0.17.
Therefore, the global parameter is averaged with higher weights for
the LF model. Yet, the model excels in predicting the HF model.
This again goes back to the fact that, unlike deep learning-based
FL approaches, FGPR is learning a joint prior on the functional
space. The scarce HF data alone cannot learn a strong prior, yet
with the help of the LF data, such prior can be learned effectively.
That being said, it may be interesting to investigate the adaptive
assignment of py,, yet this requires additional theoretical analysis.

On par with Remark 17, we conduct an ablation study
on p; using the CURRIN function. Specifically, we use the
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TABLE 3
RMSEs and standard deviations compared to the true HF model. Each experiment is repeated 30 times. The sample size is in a format of HF/MF/LF,
where MF represents a medium-fidelity model.

RMSE-HF Sample Size FGPR Separate AR Deep Modular GP
CURRIN 40/0/200 0.148 £ 0.056 0.301 £0.080 0.295 £ 0.052 0.252 + 0.064 0.243 + 0.033
PARK 50/0/300 0.012 £ 0.002 0.052 £ 0.006 0.035 £ 0.001 0.013 + 0.001 0.039 + 0.001
BRANIN 20/40/200 0.260 + 0.065 0.374 £0.089 0.335+0.070 0.213 £0.085 0.365 + 0.076
Hartmann-3D  50/100/200 0.365 £ 0.074  0.456 + 0.087  0.412 £ 0.067 0.383 + 0.092 0.438 + 0.085
Borehole 50/0/200 0.604 £ 0.006 0.633 £0.006 0.615 £ 0.005 0.622 + 0.007 0.621 + 0.004

same sample size (i.e., N1 = 40, N3 = 200), but we gradually
increase p; from 0.17 to 1 and decrease po from 0.83 to 0. We
plot the RMSE versus p; in Figure 8. It can be seen that the
RMSE remains consistent when we moderately increase p;.
However, once p; passes a threshold, the RMSE increases
sharply. Again this is because the increased weight to HF can
be misleading due to the scarcity of HF data.

CURRIN
RMSE

0.28+

0.24

0.22

0.18

0.14

0.10

0.17 1
pP1

Fig. 8. Ablation Study (CURRIN).

7 APPLICATION II: ROBOTICS

We now test the performance of FGPR on a robotic dataset
[Link].

To enable accurate robot movement, one needs to control
the joint torques [79]. Joint torques can be computed by
many existing inverse dynamics models. However, in real-
world applications, the underlying physical process is highly
complex and often hard to derive using first principles. Data-
driven models were proposed as an appealing alternative to
handle complex functional patterns and, more importantly,
quantify uncertainties [80]. The goal of this section is to
test FGPR as a data-driven approach to accurately compute
joint torques at different joint positions, velocities, and
accelerations.

To this end, we test FGPR using a Matérn-3 /2 kernel on
learning an inverse dynamics problem for a seven degrees-of-
freedom SARCOS anthropomorphic robot arm [64, 81]. This
task contains d = 21 dimensional input and 7 dimensional
output with 44,484 points for training and 4,449 points for
testing. Since FGPR is a single-output FL framework, we
only use one output each time (See Table 4). Our goal is to
accurately predict the forces used at different joints given
the joints” input information. We randomly partition the data
into 25 devices. Overall, each device has around 1850 training
points and 180 testing points each.

We benchmark FGPR with (1) neural network; (2) DGP
[43] that uses the product-of-experts approximation and

distributes learning tasks to different experts (i.e., nodes); (3)
DVTI [42] that performs distributed variational inference.
We found that a neural network trained from a simple
FedAvg failed. This is due to the large heterogeneity. To
resolve this issue, we train Neural using a state-of-the-art
personalized FL framework Ditto [12]. In Ditto, each local
device solves two optimization problems. The first is the
same as FedAvg and to find @, while the second derives
personalized parameters vy, for each client k by solving

. S A
qu;}cnhk(vk; 0) = Rk(vk;Dk) + 5 ||'Uk — 9”3

where ) is a regularization parameter and 0 is the shared
global parameter. The idea behind Ditto is clear: in addition
to updating a shared global parameter 6, each device
also maintains its own personalized solution vy. Yet, the
regularization term ensures that this v, should be close to
such that one can retain useful information learned from a
global model.

For DVI and DGP, we use Matérn-3/2 kernels and
introduce 1024 inducing points for the former method.

In Table 4, we present results for outputs 1, 3, 5, and 7.
Here, note that the RMSEs of DVI and DGP are evaluated on
the central location using all testing data rather than on each
node. This is because the goal of DVI or DGP is to distribute
learning tasks and speed up training rather than improve
the model performance on each local node. Whilst for FGPR
and Neural, we can additionally obtain the standard error
of RMSEs across devices since predictions are performed on
local devices.

Under the heterogeneous setting, FGPR still provides
lower averaged RMSE than the personalized Neural, DGP,
and DVI benchmark models. This credits to (1) the flexible
prior regularization in the GP regression that can avoid
potential model over-fitting; (2) the intrinsic personalization
capability of FGPR; (3) FGPR does exact inference whereas
DVI and DGP use lower bound and PoE approximate ob-
jectives, respectively. Recall that DGP uses the product-of-
experts approximation that induces a notion of independence
across local experts (devices). DVI uses VI that faces several
drawbacks, per our earlier discussion in Sec. 3; (4) DGP is a
one-shot approach that is not optimal, as discussed earlier.
Here, we note that DVI requires each device to send an
N, x N, x d dimension tensor to the server after every single
optimization step. This incurs very heavy communication
loads and high costs. Also, DGP shares local predicted output
to a central server, and the server can re-construct the data
pattern from each device. This clearly leaks the local data
information.

An additional case study on NASA Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) tools dataset
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TABLE 4
For FGPR & Neural we report averaged RMSE and the standard deviation (std) of RMSEs across all testing devices for the robotics data. Each
experiment is repeated 30 times. The standard deviation of each performance measure is reported in brackets. For DvVI/DGP, we report the RMSE on
a central server

Averaged RMSE x 10

std of RMSE x 10 Output 1 Output 3 Output 5 Output 7
I 2.75 (0.00)  2.42 (0.03)  2.20 (0.05) 2.38 (0.01)
1.84 (0.01) 1.57 (0.01) 1.29(0.02) 1.44 (0.02)
Neural 3.01 (0.01) 3.05 (0.06) 2.89 (0.09) 2.90 (0.02)
1.70 (0.00) 2.11 (0.02) 1.37 (0.02) 1.50 (0.01)
DVI 2.85 (0.02) 3.32 (0.06) 2.57 (0.03) 2.98 (0.02)
DGP 2.99 (0.03) 3.17 (0.04) 2.62 (0.01) 2.77 (0.02)

[82] that involves multiple engines is deferred to the Ap-
pendix 0 due to space limitation. In this case study, we also
benchmarked with federated polynomial regression models.

8 CONCLUSION

In this paper, we extend the standard G'P regression model
to a federated setting, FGPR. We use both theory and a wide
range of experiments to justify the viability of our proposed
framework. We highlight the unique capability of FGPR to
provide automatic personalization and strong transferability
on untrained devices.

FGPR may find value in meta-learning as it provides an
inherent Bayesian perspective on this topic. Other interest-
ing research directions include: (1) Extending the current
framework to a multi-output GP model. The challenge lies
in capturing the correlation across output in a federated
paradigm. (2) Enlightening theoretical perspective of FGPR.
In this work, we only provide theoretical guarantees on
noise/variance parameters and the gradient norm. Studying
the convergence behavior of length parameters is another
crucial but challenging future research direction. (3) Explor-
ing differential private FGPR. Despite federated learning
circumventing the need to share data, recent work [83] has
demonstrated the potential risk of data reconstruction. In the
future, we intend to systematically explore privacy preserva-
tion and data leakage prevention within the training process
of federated G/Ps. Our goal is to establish robust theoretical
guarantees for these privacy-preserving techniques.
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