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ABSTRACT ARTICLE HISTORY
Multi-output Gaussian process (MGP) regression plays an important role in the integrative analysis of Received May 2022
different butinterrelated systems/units. Existing MGP approaches assume that data from all units is collected Accepted June 2023
and stored at a central location. This requires massive computing and storage power at the central location,
induces significant communication traffic due to raw data exchange, and comprises privacy of units.
However, recent advances in Internet of Things technologies, which have tremendously increased edge
computing power, pose a significant opportunity to address such challenges. In this article, we propose Multi-output Gaussian
FedMGP, a general federated analytics (FA) framework to learn an MGP in a decentralized manner that processes; Variational
uses edge computing power to distribute model learning efforts. Specifically, we propose a hierarchical inference

modeling approach where an MGP is built upon shared global latent functions. We then develop a variational

inference FA algorithm that overcomes the need to share raw data. Instead, collaborative learning is achieved

by only sharing global latent function statistics. Comprehensive simulation studies and a case study on

battery degradation data highlight the superior predictive performance and versatility of FedMGP, achieved

while distributing computing and storage demands, reducing communication burden, fostering privacy,

and personalizing analysis.

KEYWORDS
Federated analytics; Internet
of federated things;

1. Introduction central location. For instance, consider a telematics system that
performs fleet management based on battery degradation data
collected from multiple vehicles. In a traditional centralized
system, every vehicle should send its degradation signals to
the central server, then the central server estimates the MGP
using collected signals from the vehicles, and finally, the server
distributes results to the vehicle users (e.g., the predicted residual
battery life). This is illustrated in Figure 1(a). This centralized
learning where all data from all units is located in one place
has long been the underlying assumption when modeling and
inferring an MGP.

However, recent advances in semiconductor technologies
have facilitated the deployment of edge units equipped with
highly compact AI chips with remarkable computing capabil-
ities. For example, in telematics systems nowadays, furnish-
ing vehicles with computing resources has become increas-
ingly straightforward. This evolution in computing resources
at the edge paves the way for a new analytics paradigm within
the Internet of Things (IoT) built upon local computations
and the decentralization of data analysis. In this paradigm,
units exploit their computing capabilities to transfer part of
the model learning to the edge; where the data is actually
created. This new IoT system characterized by edge comput-
ing power, has been coined the Internet of Federated Things
(IoFT) (Kontar et al. 2021) and is illustrated in Figure 1(b).
Within IoFT, Federated Analytics (FA) defines the decentral-
ized data analytics approach in IoFT that enables collaborative

The multi-output Gaussian process (MGP), also known as co-
kriging (Ver Hoef and Barry 1998), is a popular tool for inte-
grative analysis of output from different but interrelated sys-
tems/units. It is the extension of Gaussian processes (GP) to
vector-valued outputs. The key idea is to construct a large
covariance matrix that defines covariances both within and
across different outputs. As a result, an MGP can leverage
commonalities across related units, often resulting in enhanced
learning and improved predictive performance over indepen-
dent model learning within each unit. MGPs naturally inherit
the advantageous properties of GPs such as nonparametricity
and uncertainty quantification capability (Handcock and Stein
1993). With such promising merits and recent advances in GP
that allow for scaling to large-size data (e.g., Guhaniyogi and
Banerjee 2018; Chen et al. 2020), MGP has seen great suc-
cess in various domains. A range of examples can be found in
geostatistics (e.g., Gotway and Young 2002; Li and Zimmer-
man 2015), reliability engineering (e.g., Kontar et al. 2018),
urban planning (e.g., Bae et al. 2018), computer simulation
(e.g., Mak et al. 2018; Huang and Gramacy 2021), additive
manufacturing (e.g., Chen et al. 2021), healthcare (e.g., Cheng
et al. 2020; Chung, Al Kontar, and Wu 2022), among many
others.

Despite many success stories, existing studies on MGP
assume that data from all units is processed centrally; that
is, data across all units is stored and processed at the same
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Figure 1. lllustrative comparison of a centralized system and a federated system.

model learning. The word “federated” here refers to some
extent of localization and autonomy conferred on units at
the edge, resulting from the decentralization of data analytics
efforts.

Needless to say, FA resolves fundamental issues arising in
traditional centralized IoT. To name a few, the ability to perform
local computations allows (i) improved privacy, as only focused
updates from local computations needed for collaborative model
learning need to be shared, in contrast to sharing raw data in
centralized systems (ii) reduced computation and storage needs
imposed on the central server, as the server now mainly serves an
integration point of shared knowledge (iii) reduced latency and
communication traffic, as there is no massive raw data exchange
between the server and units (iv) faster alerts and decision, as
a local model now exists for immediate action. The MGP, as
an intrinsic approach for collaborative model learning across
different units, can reap immense benefits from FA. However,
the current literature on MGP is still limited to centralized
analytics. This study aims to fill the gap existing between FA and
MGP.

Specifically, we propose FedMGP, a general framework for
MGP-based federated integrative analysis where correlated units
collaboratively learn an MGP model without any raw data
exchange. The fundamental intuition is to assume that outputs of
different units are generated from a set of common global latent
functions. By collaboratively learning those latent functions,
units can indirectly borrow strength from each other while cir-
cumventing the need to share raw data. Instead, only knowledge
on the global functions needs to be shared. Building on this
intuition, we construct a hierarchical probabilistic model where
outputs are assumed to follow independent GPs conditional on
shared latent processes. This hierarchical approach allows for
characterizing both dependencies across units and their unique
features, but at the same time, poses a significant challenge that
all data needs to be available centrally during parameter estima-
tion and posterior inference. To address this issue, we introduce
a variational inference (VI) approach which approximates the
posterior distribution over the latent processes. We show that
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our VI-based approach, in turn, provides a variational lower
bound suitable for FA. This mitigates enormous computational
demands entailed by centralized MGPs built on extremely large
datasets; a major inhibitor in the broad use of existing MGPs. It
also allows both model learning and prediction without raw data
sharing at any stage.

In addition to the contributions above our study brings con-
tributions to FA. We develop a new methodology of FA that pro-
vides a natural Bayesian interpretation and estimates a predictive
posterior distribution, allowing us to obtain quantified predic-
tive uncertainty. This is particularly important for subsequent
decision-making and prescriptive analytics. Another interesting
contribution is that our federated variational approach results
in a personalized prediction for each unit. Personalization is
essential to capture unique behaviors of units, often found in
practice where units are operated in different environments.

We assess our framework using simulated and real-world
data. We evaluate prediction accuracy for various scenarios of
IoFT such as nonparametric signals, unstable communication,
participation of many units, and the presence of anomalous
units. In the case study, we consider an application in relia-
bility engineering where our model is applied to estimating
the degradation curves of lithium-ion batteries. Our model is
compared with a centralized MGP model, a two-step train-
then-personalize approach, a module-based approach, and sep-
arate models independently inferred by each unit. Our results
highlight the effectiveness of the proposed approach and its
ability to transfer knowledge across units, achieved in a way that
distributes computing and storage demands, reduces communi-
cation burden, enhances privacy, and personalizes analysis.

The remainder of the article is organized as follows. Sec-
tion 2 provides an overview of FA and critical challenges in its
direct application to estimating an MGP. Section 3 introduces
our proposed approach. Section 4 reviews relevant literature
that aims to distribute computing efforts in GPs, categorized
as module-based and FA-based approaches. Section 5 examines
the proposed approach using simulation data. Section 6 applies
our method to a real-world application in reliability engineering.
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Section 7 concludes the article with a discussion on possible
future directions.

2. Preliminaries: Centralized MGP, FA, and Challenges

We start by building notation. Consider M units indexed by
M = {1,...,M}. A unit m € M collects N, observations,
denoted by D, = (X, Ym), with input X,,, = [xm,n];r:1 )))) N, €
RNmxd and output y, = [ym)”]nT:I,.,.,Nm e RN»x1 We also
denote X = [X]17 | € RVandy = [y}]]_, , €
RN*1 as the concatenated inputs and outputs from all units
where N =3\ Np.

In Section 2.1, we review an MGP in a centralized data
environment. In Section 2.2, we introduce a general framework
for FA and its extension to personalized FA. In Section 2.3, we
pose critical challenges arising when employing an MGP under
federated settings.

2.1. Centralized MGP

Suppose that the output of unit m € M is expressed as

Ym,n me(xm,n) +en for ne {1,...,Nu},

where f,,(-) denotes the true output function and €,, denotes
additive noise for unit m. An MGP is built upon defining a
shared covariance between observations across all outputs. To

— fMT : _ T —
do so, define f = [f,1,_,  with £ = [funl,—; N, =
[fin (xm,n)];'l—zlem to collectively denote underlying true values
of the output at the observed input. Also, let Cg, ¢ , € RNm >Ny
denote a (cross-) covariance matrix calculated from a covariance

function ¢f, ¢ (%,X;0y, ) = cov(fu(X),fr (X)) parameter-
ized by 0y, ¢ ,. An MGP is then defined over f as

f1 Ct, f;
. ~ N 0’ .
fur Ceyfy

Ct, by

f= = N(0,C).

(O

Assuming iid Gaussian noises €,; ~ N (O,G,%l) for m € M, the
observational model is given as

P(yIX; 01, 0) = /p(ylf;U)P(fIX;0fu11)df =vY(y;0,C+ X)

()
where ¥ (-; u, E) is a multivariate Gaussian density with mean
u and covariance matrix E. Also, O = {0y, for }ﬁf’ﬁ?,zl, o =

{om}ﬁ\n’f=1 and ¥ = bdiag(a,%llj\rm)ﬁ\n/l=1 where I, denotesana x a
identity matrix and bdiag(A;)’_, is a block diagonal matrix with
Ay, ..., A7 on the diagonal.

Model estimation in an MGP has a rich history. Most often it
is done by maximizing the marginal log-likelihood (2) in terms
of {f¢11, 0}, that is, maxg , & log ¥ (y; 0, C + X). Many iterative
optimization algorithms such as gradient-based methods can be
used. Whichever algorithm is chosen, evaluating either (2) or its
gradient is usually required at each iteration. This is readily done
in a centralized regime as ¢, ¢ , (x, x50y, f,s) can be directly
evaluated when all datasets D = {D,,...,Dy} are centrally
available.

Upon parameter estimation and given a new input observa-
tion x7, at unit m, the predictive distribution of the correspond-
ing output y¥ is derived as

PO 1% X, y5 0t 0) (3)
= /P()’qufaX:pX§0full’U)P(ﬂX,Y;Ofull)df

T —
=Y (s (C+ X))y, cov(xs, x5)
—cC+ D) It +02)

where ¢* € RN*! is a vector composed of covariances between
* * gk ) * ok,
X and x}, and cov(x;,, X},) = cf,, £, (X5, X3 0, 1 ).

2.2, Federated Analytics (FA)

Most FA approaches in the literature focus on deep neural
networks (DNN) and thereby are built upon an empirical risk
minimization (ERM) framework (Vapnik 1991). Therefore, we
start our overview of FA by explaining ERM over multiple units.
Unlike a centralized regime in the previous section, we consider
a decentralized regime that keeps data D,, stored locally at unit
m. Hereon, we will use the terms client and unit interchangeably.
We will also start with a generic framework for FA and in the
following sections highlight how our MGP treatment can be
synergized with such a framework.

Let f(-; @) denote a global model to be learned parameterized
by 6. In ERM, we aim to find @ that minimizes the global
empirical risk of the model f across all data D = {D;}mem.-
This is expressed as

inR(0; D) = mi mRm(0;D,), 4
mom( ) rrblnm;\:/lp m(0; D) (4)

where R,,(0; D,,) is the local empirical risk for unit m € M
and py, is a weight often equally distributed over units (ﬁ) or
proportional to the number of data points (NW’“). Under some
loss function, ¢, the local empirical risk of the unit m is

N
1
Rm(0;Dyy) = _N § Z(f (Xm,n;o)))/m,n)-
m -1

In a centralized database where all data D is accessible, we can
directly optimize (4). On the other hand, in a federated setting,
each client m can only evaluate their own risk function, and the
central server does not have the data from the clients. To address
this, FA takes a naturally distributed route illustrated in Algo-
rithm 1 to learn 6. The detailed procedure is rather intuitive. The
central server broadcasts a global model to each unit. Each unit
m executes client update to update the deployed model
using its local data D,, and finds a locally updated model §'°<*!,
The unit then sends back Aloc! = ¢ — g'°<@! called local pseudo-
gradient. This procedure is referred to as a local update, where
local computing power is exploited. Then the central server runs
cloud_update to integrate all global pseudo-gradient. This
procedure is iterated until a termination condition is satisfied.
Here an iteration of FA is referred to as a communication round.

FA was recently brought to the vanguard of data analyt-
ics after the release of the seminal work by McMahan et al.



Algorithm 1 A generic framework for FA

Input: 0 (the initial global model); E (local steps); n (the global
step size)
1: while not a terminating condition is satisfied do
2:  The central server broadcasts € to all clients
3. for each client m € M do
4: Updates the deployed model:

0}2“‘1 <« client update(#; Dy, E)
Calculates a local pseudo-gradient: Al « g — glocal
Uploads Alo<@! to the central server

5
6
7. end for
8:  The central server calculates the global pseudo-gradient:

A <« cloud_update({A}ﬁca]}meM)

9. Update the global model: § < 6 — nA
10: end while

(2017), a research team at Google. In the paper, they pro-
posed FedAvg, a communication-efficient approach to train
a DNN under a decentralized data environment. FedAvg can
be viewed as a special case of FA, where client update is
done through E iterates of stochastic gradient descent (SGD)
and cloud_update averages local pseudo-gradients by A =
Y mem pmALl and updates the global model with = 1.
Since first proposed in 2017, FedAvg has become the standard
algorithm for FA thanks to its simplicity and robust perfor-
mance. Many other methodologies extend FedAvg to deal with
challenges in federated settings. For instance, approaches to deal
with data heterogeneity across units (e.g., Zhao et al. 2018; Sattler
etal. 2019; Zhu et al. 2021), to ensure fair predictive performance
(e.g., Li et al. 2020b; Yue, Nouiehed, and Al Kontar 2022), to
mitigate stragglers with limited bandwidth or computing capa-
bility (e.g., Li et al. 2020a; Park et al. 2021), and to defend against
potential backdoor attacks (e.g., Sun et al. 2019; Bagdasaryan
etal. 2020; Xie et al. 2021) were proposed. We refer the reader to
an in-depth review of FA by Kontar et al. (2021).

2.2.1. Personalized FA

A commonality of the FA approaches above is that one global
model islearned to fit all clients. In contrast, one may also create
tailor-made models that account for client heterogeneity while
still leveraging common knowledge across clients. This is exactly
what MGP does as predictions in an MGP are output-specific.
Along this line, learning a personalized model has been actively
investigated in FA. In general, the global risk minimization in
(4) can be extended for personalized FA as

min m%\; PmRm(0, ¢, Dm) (5)

where ® = {¢,,}mem collects personalized parameters ¢,, for
all units m € M.

Methodologically, existing methods for personalized FA can
be classified into two categories. One category includes two-step
approaches which first (i) estimate a global model, say 8, through
collaborative learning across units (e.g., FedAvg), and then (ii)
fine-tune ¢,, using local data Dy, to find a personalized model
within the neighborhood of 0. Many personalization approaches
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fall into this category (e.g., Dinh, Tran, and Nguyen 2020;
Hanzely and Richtdarik 2020; Li et al. 2021; Shi and Kontar 2022)
and some recent literature handles those two steps iteratively.
The other category mainly focuses on DNNG, (e.g., Arivazhagan
et al. 2019; Wang et al. 2019; Liang et al. 2020) where layers
split into personalized and shared ones. Collaborative learning
is performed on the weights of the shared layers while each unit
estimates its personalized layer individually.

2.3. Challenges

Given the current FA literature, it is rather clear that employing
an MGP (2) in IoFT poses significant challenges to parameter
estimation and prediction. MGPs are built upon correlations and
do not directly fit within an ERM paradigm. Specifically, the
log-likelihood of the multivariate Gaussian in which between-
output covariances cov(fy, (X),fpy (X)) for m # m’ should be
calculated, which is infeasible without data sharing. Also, any
local update to be done, needs to assess correlations with other
clients. Thus, maximum likelihood estimation (MLE) for MGP
needs to be rethought for FA. In addition, predictions of an MGP
(3) require a posterior of latent variables given all data across
units p(£|X,y;0a1) = pE|D1,. .., Dup;0sm). Unfortunately,
this is not straightforward in federated settings where clients do
not see each other’s data.

In the following section, we will provide a simple yet effective
solution to this challenge by taking a hierarchical modeling
approach and remodeling dependencies to become amenable to
federated inference.

3. Proposed Model

In this section, we introduce FedMGP, our proposed FA frame-
work for MGP. In Section 3.1, we present model construction
that is inspired by hierarchical Bayes. In Section 3.2, we develop
an inference framework that exploits local computations to dis-
tribute computations and circumvent the need for data sharing.
Finally, Section 3.3, discusses individualized predictions for each
unit. Throughout the article, the superscript “" is placed for the
hyperparameters of covariance functions.

3.1. Model Development

Our modeling strategy exploits the “hub-and-spoke” structure
in Figure 1(b), a natural hierarchy exhibited in IoFT systems
where one central server is connected to units at the edge.
Our framework adopts this natural hierarchy by assuming that
outputs of different units are generated from a set of common
global latent functions. By collaboratively learning those latent
functions, units can indirectly borrow strength from each other
while circumventing the need to share raw data. Instead, only
knowledge on the global functions needs to be shared.
Specifically, we model output functions {f,; (X)}me A1 as GPs
that depend on a common set of independent latent functions
{gi(x)}icz indexed by Z = {1, ..., I}. Commonality across units
is thus encoded and shared in the latent space. Figure 2 illus-
trates the correspondence between our approach and the natural
hierarchy of the “hub-and-spoke” IoFT system. As shown in
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Figure2. Anillustration representing the correspondence between the IoFT system
and the structure of the proposed MGP. A case with one latent function (/ = 1) is
presented.

Figure 2 our model is an instance of hierarchical Bayes (Koller
and Friedman 2009) that treats data as realizations of a learnable
latent probabilistic model ({f; (X)}me ) parameterized by the
stochastic processes ({g;(x)}icz) at the higher hierarchical level.
Under this hierarchical structure, units collaboratively infer
{gi(x)}iez, while, at the same time, each unit m estimates f;, (x)
using its local data D,,. Therefore, updating the latent proba-
bilistic model by learning local data yields an implicit update
on the associated stochastic processes. In a federated regime, as
the learning process happens at each unit using its local data,
different local updates on the shared functions are produced
from each unit. The central server thus collects and integrates
local updates to make a global update on the shared functions;
that is, the shared functions are learned collaboratively. Through
this, knowledge is transferred across units.

A natural consequence of the hierarchical structure is that
fi(x), ..., fm(x) are conditionally independent given {g;(x)};c.
Now, let each g;(x) be a sample drawn from a GP with zero mean
and covariance cg, (-, ;0;°"). Then the probabilistic graphical
model is written by

P (i} mer (g0 }iezs D, 0°) ©)
= [] » (h®Hgi®icz: $5",6<)

meM
where 0" = {0;°"}icz and ¢7)" = {@},}}icz such that 7
are hyperparameters simultaneously associated with f,, (x) and
gi(x) for m € M and i € 7. Here the hyperparameter notations
(e.g., 0°° and ¢:") emphasize the correspondence to the global
and personalized parameters in the personalized FA framework
(e.g., 0 and ¢,,) discussed in Section 2.2.1.

Since shared latent processes {g;(x)}icz and conditional out-
puts f, (x)|{gi(x)}icz are modeled as GPs, the marginal distri-
bution for {f;;(X)}mem can be expressed as a jointly distributed
GP, that is, an MGP. Given (6), learning the MGP boils down
to the estimation of the hyperparameters ¢;." and §°'. Now
the challenge is how to do this estimation in a federated setting
where clients do not have access to each other’s data, nor does
the central server.

Table 1. Hierarchical model.

To this end, a starting point of our treatment is exploiting
pseudo-inputs (also referred to as inducing variables), originally
proposed for sparse approximation of GPs (Snelson and Ghahra-
mani 2005). Pseudo-inputs are a set of latent input variables,
which we do not observe, expected to well characterize a GP
when output variables at their locations, called pseudo-targets,
are evaluated. The key assumption in our federated setting is that
the independence in (6) still holds if the latent GPs {gi(x)}icz
are well characterized by some pseudo-inputs and their corre-
sponding outputs. This assumption is a stepping stone for FA
because we can evaluate {g;(x) };cz with the pseudo-inputs with-
out knowing Xj, . . ., Xpr, which requires sharing {D;, . . ., Dy}

Consider ] pseudo-inputs denoted as W = [ij]szl,...,]
and the corresponding outputs of the ith latent process g; =
[gi(wj)]j—';lw’]. Also, let g = [g;r];lwl. The conditional inde-
pendence in (6) with the pseudo-inputs can be written as

p(Elg, X, Wi @, 0°) = ] p(fnls, X, W; g5, 0°)

meM
= l_[ W(fm;Vmg,Slm), (7)
meM
P(gIW;0°°) = 1/(g;0,Cgq) (8)

with

Vi =Cs,gCqg and Ry = Cy, 5, — VinCer,,

such that Cg, o = C;fm = [Cfm,g,.]f=1 e RN»xI denotes
a matrix that concatenates cross-covariance matrices Cy,, g €

N x ; . hCOVY. _ : I IIx1,
RN»>J with Chgi (55 Pn1)s Cgg = bdiag(Cg )i, € RU>T
where Cg, o, € R/ is a covariance matrix with cgg (-, 65");

and Cg, ,, is built from ¢, . (-, @;7",0°"). The hierarchical
structure is summarized in Table 1.

Under the hierarchical GPs (7) and (8), elegant ways to
design valid covariance functions ¢y, r, and ¢, o, include the
linear model of coregionalization (LMC) (Journel and Huijbregts
1976; Barry, Jay, and Hoef 1996) and convolution processes (CP)
(Ver Hoef and Barry 1998; Higdon 2002; Boyle and Frean 2004).
We will use CP-based covariance modeling in our experiments
in Sections 5 and Section 6. The reader is referred to Section A
of the supplementary material for details.

Given (7) and (8), we can see that cross-covariance matrices
Cs,.f,, for m # m' that requires ¢;, ;1 = cov(fn(X), frr (X)) do
not appear in the MGP built through our hierarchical structure.
In other words, the cross-correlations between units can be
characterized using C, ,,, C,, g and Cg g, without the explicit
calculation of cross-covariances Cs,,£,, which is not possible in
a federated setting. Nonetheless, this by no means indicates that
a traditional MLE framework can infer the MGP in a federated

Level Variables Model
1 Data ol = alf o ymny Ifmny: oml
: Output function [flg: Y, 0] = [f1]g: 95", 0] - [fylg; 652", 6]
3 Shared latent function [9]0<%V] = [g; |0§°V] . [g,|9/€0v]




setting. To see this, the marginal log-likelihood is

log p(y|X, W; 0V, &V, g)

= log / p(ylf; 0)p(flg, X, W; &) p(g|W; 0°°V)dfdg. (9)

= log ¥ (y; 0, bdiag(R,))_; + VCq¢ + %), (10)
with V. = [V]]]_,  and Cg¢ = [Cgg,IN_,. Directly

maximizing (10) is still not possible as the objectives cannot
be separated into marginal likelihoods of individual units. As
such, a gradient calculation still requires all data at once. In
the following section, we will see our approach to overcoming
this issue, which builds upon our hierarchical construction and
pseudo-inputs.

3.2. Federated Inference

Now we propose a federated inference procedure using VI. VI
is an inference framework that finds a variational distribution
approximating a posterior distribution. VI poses posterior infer-
ence as an optimization problem that minimizes the Kullback-
Leibler (KL) divergence between the variational distribution and
an often intractable posterior. This results in an evidence lower
bound (ELBO) amenable to optimization algorithms. Indeed,
recent studies have shown advantages of using VI in GPs (e.g.,
Lainez-Aguirre et al. 2016), including improved computational
efficiency over alternatives (e.g., Salimans, Kingma, and Welling
2015) or intrinsic regularization properties of VI (e.g., Titsias
2009) that may lead to improved generalization (e.g., Yue and
Al Kontar 2021).

Besides the above general advantages, we will show how we
use a VI technique to naturally facilitate distributed learning for
our hierarchical model characterized by pseudo-inputs. The key
idea is to place a variational distribution on the shared latent
functions and derive a decomposable ELBO over units. The
decomposability allows units to learn the variational distribu-
tion collaboratively within a personalized FA framework.

Now let us see the details. Henceforth, we will omit hyperpa-
rameters (e.g., 0, ®°°", 0') unless there is ambiguity. Under VI,
our goal is to approximate a posterior over the latent variables
f and g. To do so, we define a variational distribution over the
global latent variables g(g). As such, the joint distribution q(f, g)
is given as

q(f.8) = p(flg, X, Wiq®) = [ pEnle. X, W) [ ae)
meM i€l
(11)

with g(g) = N (n,, Mgg)' encompassing independent Gaus-
sian distributions q(gi) = N(pg,Mgg) such that p, =
resembles a mean-field approximation (Blei, Kucukelbir, and
McAuliffe 2017), yet in our case, is a natural consequence of our
hierarchical structure.

'In practice, the matrix Mg,g is reparameterized by a triangular matrix Lg g
obtained through the Cholesky decomposition Mgg = Lgg L;g to guar-

antee positive semidefiniteness of Mg g throughout model training (Lind-
strom and Bates 1988).
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Our goal is to find the variational distribution q(f,g) to
approximate the posterior p(f,g|D;,..., Dy, W). The varia-
tional parameters ft, and Mg g are universal across units m € M
as the associated variational distribution g(g) approximates the
posterior of shared latent GPs p(g|D;,. .., Dy, W). Given (7)
and (11), we can derive a variational marginal distribution q(f;,;)
from q(f, g) as

q(fm) = /P(fmlg, X, W)q(g)dg (12)

—y (fm;Vm[,Lg, 2, + VmMg,gV;) .

Now by a simple Jensen’s inequality on (9), and using the
variational distributions (11) and (12), we can derive a lower
bound of the marginal log-likelihood (9) as

log p(yIX) = log/P(Ylf)P(fIg,X,W)P(gIW)dfdg

p(ylH)p(flg, X, W)p(gIW)
f,g)l df
z /q( g) log )

We define ELBO as the lower bound above. It can be further
reorganized in terms of q(f,):

ELBO = Z Eqt,) [log p(ymlfm)] — ZDKL(q(gi)HP(gi))
meM i€

dg.

(13)

where the notation Dkp (-||-) indicates the KL divergence.

The critical advantage of the ELBO in (13) is that its first
term is decomposed into client-independent expectations that
can be evaluated at each unit separately. While the second term
is shared knowledge as it is a function of global latent variables.
This indeed is similar to the personalized FA formulation in (5)
where the risk function at each client can be written as

Rm(¢m: O;Dm)

1
—_ p_Eq(fm) [log p(ym|fm)]+ > Dxr(q(g)llp(g0))
m ieZ

(14)

Local model fit {¢,,,.0}

Regularization via

shared knowledge with 6
where the ELBO is a sum over weighted local risks, that is,
ELBO = } . cmPm(=Rm(@,,,0;Dy)), corresponding to
the objective function in personalized FA (5). Here the global
and personalized parameters of FedMGP are as follows: 6 :=
{0°°Y, kg, Mg g, W} and @, := {9;,)", o}

One can directly observe that the local risk function provides
a natural interplay between shared and local knowledge. The
first term encourages the variational density of latent variables to
place probability mass on parameters that best explain the local
data. While, the second term is a regularizer based on shared
global knowledge. This naturally suggests an FA algorithm in the
spirit of personalized FA where global parameters are shared and
integrated into the central server. As such, we propose a feder-
ated algorithm to maximize (13) summarized in Algorithm 2.
Note that, we assume that any operation on a parameter set
corresponds to an operation on the vectorized set.

A detailed description for Algorithm 2 is as follows:

1. The central server deploys the global parameter 6 to all units

me M.
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Algorithm 2 Inference of FedMGP
Input: 6 (the initial global parameters); {¢,,}mer (the ini-
tial personalized parameters); n (the global step size); T
(the total communication round); {E(t)}tT=1 (local iterates at
round t);
1: for the communicationround t = 1,...,T do
2:  The central server broadcasts € to all clients
3:  for each client m € M do
4: Update the local model:

glocal glocdl « c1ient update(d,d,,; Dm, EP)

Update the personalized parameter: ¢,,, < ¢19%
Calculate a local pseudo-gradient: A% « ¢ — glocal
Upload Alrzcal to the central server

end for

The central server calculates the global pseudo-gradient:

R AL

A «— cloud_update({A}ﬁcal}meM)

10:  Update the global model: § <— 8 — nA
11: end for

2. Each unit m updates 6 and ¢,, through client update.
Specifically, client update minimizes R, (@,,,0; Dm)
in (14) using an iterative algorithm (e.g., gradient-based
methods). For example, one can take E®) iterations of SGD
to minimize R, (¢,,, 0; D,,) with respect to ¢, and 0. After
the iterates, client update returns the updated param-
eters ¢'° and Olrzcat The personalized parameter is then
updated ¢, < ¢1,3ca1. A local pseudo-gradient is calculated
as Alocal g _ glocal and sent back to the central server.

3. The central server aggregates the collected pseudo-gradients
{Alrgcal}me M by cloud update to obtain the global
pseudo-gradient A. Finally, the global parameter 6 is updated
with a given step size n: 0 < 6 — nA.

The steps above are repeated until an exit condition is met.
Throughout the proposed inferential algorithm, each unit’s
computing power is used when executing client update
and there is no raw data exchange. Through Algorithm 2, we
can attain the estimates of original parameters and variational
parameters. This is achieved in a communication-efficient way
that allows units to take several local steps, a major advantageous
feature for IoFT systems. Using the hat notation for estimates
(e.g. 9); we write the approximated posterior for g as q(g)
N(jrg,Mgg) ~ p(g|D1, ..., Dy, W), through which g(f,,)
pEm|D1, . .., D) is readily derived by (12).

&

3.2.1. Aggregation Schemes in cloud_update

In cloud update, the global pseudo-gradient A is obtained
by aggregating the received pseudo-gradients Al Like
FedAvg, a simple way to do that is weighted averaging:

A Y pmAR
meM

(15)

Indeed, recent work has provided elegant theoretical results
on the convergence of distributed averaging schemes (e.g.,
FedAvg) in GPs and their advantageous properties (Yue and

Kontar 2021). That being said, the proposed Algorithm 2 is a
general framework that any aggregation scheme can be plugged
into. We provide additional aggregation schemes in Section D
and their empirical validation in Section E in the supplementary
material. These include aggregation strategies for units with
unstable communication or anomalous data.

3.2.2. Stochastic Optimizationin client update

One advantage of our VI construction is that it allows stochastic
optimization methods such as SGD or Adam (Kingma and Ba
2015) to be used in client update. This is attributed to
the fact that the first term in (14) can be represented as the
sum of independent terms over each individual observation:

iEq(fm) [log p(ymlfm)] = iEq(fm) [log 1_[2[21 POmanlfmn)] =

o >t B 108 PG finn)] = e o (—log2mw —
1080,421 - ()/fn,n + an,n + Smn — Zym,nﬂm,n)/arﬁ) where Mm,n
is the nth element of the mean of q(fy,) and ¢, is the nth
element on the diagonal of the covariance matrix of q(f)
in (12).

Through this decomposition, we can simply sample a batch
and obtain its corresponding stochastic gradient. We note the
idea of using stochastic optimization in GPs has been explored
in an effort to handle an extremely large dataset (e.g., Hensman,
Fusi, and Lawrence 2013; Nguyen et al. 2014; Moreno-Muiioz,
Artés, and Alvarez 2018; Chung, Al Kontar, and Wu 2022; Chen
et al. 2020). The focus of this literature however is on a GP under
centralized regimes.

3.3. Personalized Prediction

Once units collaboratively infer the approximated posterior
q(g) = V(g ftg Mgg), each unit can derive its own posterior
predictive distribution using g(g) in place of the exact posterior
p8|D1,...,Dp, W). Let X, denote new inputs at the unit m. A
posterior predictive distribution of the corresponding output y},
is derived as

Py X5 D1y - . . D, W) (16)

- / DI P g X WIp(gI D . Dys, WdE" dg

~ / POLIE)p(E I3 X W)g(@)dE? dg

=0 (Vi Vindeg B + VisMgg Vi) +621)
where all matrices are constructed with estimated parameters
(¢,,,0); the matrices V* and @} are obtained in a similar
fashion to V and 2 but evaluated at X*. The ability of the

proposed approach to quantify predictive uncertainty is a direct
consequence of (16).

Remark 1. Tt is crucial to note that the calculation of the predic-
tive distribution (16) involves the estimated local parameter (})m,
and hence it is personalized to the local unit m. Also, deriving a
predictive distribution is done locally at respective units; it needs
neither other units’ data nor computation at the central server.
Yet, knowledge across all datasets is exploited via g(g) which
approximates the posterior p(g|D1, . . ., Dy, W).



4, Related Work

In an effort to mitigate the high computational cost asso-
ciated with learning GPs, researchers have proposed various
approaches that distribute the computational burden among
multiple units with computing and data storage capabilities.
These approaches can be classified into two categories: (i)
module-based approaches and (ii) FA-based approaches.

In module-based methods, individual units train their own
GP models independently until convergence, after which the
models or their predictions are combined to form a global GP
prediction. Some methods are based on the mixture of experts
framework (Tresp 2000; Cao and Fleet 2014; Deisenroth and
Ng 2015), which assumes that local GPs are independent to
allow the global marginal likelihood to be decomposed into local
marginal likelihoods. While these methods require only one
round of communication, they are prone to issues of variance
over-estimation (Cao and Fleet 2014) or weak experts (Tresp
2000) due to the factorization. To address these issues, Deisen-
roth and Ng (2015) introduce additional hyperparameters that
reflect each expert’s contribution, yet these are determined in a
heuristic manner.

Compared to combining summary information at the end,
the FA framework is a collaborative process that operates under
multiple communication rounds. Such a collaborative process
is shown to be advantageous both theoretically and empirically
compared to combining summary information after training
locally till convergence. For example, Li et al. (2019) show that
the convergence bound of Fedavg follows O(E/T) with local
steps E and the total communication rounds T, implying that
E should be small enough for the convergence of FedAvg.
Inspired by the FA framework, there has been recent interest
in approaches to learning GPs in a federated way. Kontoudis
and Stilwell (2022) investigate an alternating direction method
of multipliers-based method for decentralized GP learning in
situations where none of or a part of local datasets can be
shared across adjunct units. This approach assumes the inde-
pendence of local GPs and, thus, the decomposition of the
global marginal likelihood. Achituve et al. (2021) present an FA
framework for personalized classification, which involves learn-
ing a global deep kernel along with personalized GP classifiers.
Yu et al. (2022) use a two-stage federated method to learn a
global GP with a deep random kernel. Yue and Kontar (2021)
investigate the convergence of FedAvg when applied directly
to learning GP hyperparameters and highlight the associated
empirical benefits. Note that these methods are all designed
for single-output GPs. While our proposed FedMGP falls into
the category of FA-based approaches, its uniqueness is that
(i) it learns an MGP where a key additional challenge is the
need to learn the between-unit covariances and (ii) it employs
a variational learning approach to enable an FA framework
for MGPs.

In the context of variational learning of a GP using
locally stored data and local computing resources, ModularGP
(Moreno-Mufioz, Artes, and Alvarez 2021) is a module-based
approach that aims to discover a global MGP that can learn
from all local datasets without direct access to them. Instead,
it uses a variational predictive distribution from GP modules
trained on local datasets. More specifically, each unit trains a
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stochastic variational GP (Hensman, Fusi, and Lawrence 2013)
independently using its local dataset. Upon completion of the
local learning process, units transmit dictionaries to the central
server, consisting of GP hyperparameters, variational distribu-
tions of pseudo-targets, and the value of the maximized varia-
tional lower bound, but not the local datasets. The central server
then builds a lower bound based on the received dictionaries,
and maximizes the lower bound to infer a global variational
distribution that approximates the posterior of the global MGP
given all local data. Notice that, ModularGP estimates an MGP
such that its predictive distribution for unit m is close to the
predictive posterior distribution of the pseudo-targets received
from unit m. In contrast, our FedMGP directly fits the predictive
distribution to the likelihood, enabling direct use of the data
rather than relying on estimated pseudo-targets. Moreover, by
sharing locally learned variational distributions, ModularGP
exposes the underlying data and trends of each local unit, posing
significant privacy risks. On the other hand, FedMGP only
shares common latent functions amongst units while keeping
personalized parameters stored locally. Consequently, FedMGP
can enhance privacy while achieving the desired objectives.
Section B in the supplementary material provides an in-depth
discussion that highlights the key differences between FedMGP
and ModularGP.

5. Simulation Study

In this section, we evaluate our proposed FedMGP using sim-
ulated data. We consider two scenarios: nonparametric signal
extrapolation (Section 5.1), IoFT systems with different scales
(Section 5.2). Note that, in the supplementary material, we also
discuss additional scenarios with units that have unstable com-
munication (Section E.1) and with the participation of anoma-
lous units producing highly heterogeneous signals (Section E.2).

We examine a FedMGP-based model and benchmark models
as follows:

o FedMGP-avg: our proposed FedMGP that aggregates local
pseudo-gradients through averaging; shown in (15).

o IndGP: an independent single GP deployed to each unit.

e CenMGP: a centralized MGP built on (7) and (8). While it
is expected that CenMGP performs best among considered
models, comparing with CenMGP will shed light on the pre-
dictive competitiveness of FedMGP, our federated approach.

e ModularGP: a module-based approach to learn an MGP
(Moreno-Muiioz, Artes, and Alvarez 2021).

« FedPoly: a federated polynomial regression with personal-
ization. This is a simple two-step personalized FA approach
where (i) a polynomial regression model in the form of
fP"lY(x;O) = Zf:o Orxk whose parameter 6 := [Gk]fzo is
trained by FedAvg across units, and then (ii) personalized to
thelocal data D,, by minimizing a penalized least squares loss
function: ming N%n Z],Y;”l E(fp‘)ly(xm,n; 0), ymn) —w||0*—0]3
where 0 is the estimated parameter at the first step and w is
a positive coefficient. Therefore, this approach personalizes
0 to each unit m € M while retaining global knowledge by
encouraging a solution close to " estimated across units.
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For IndGP, covariances are calculated by the radial basis
function (RBF) kernel. For all MGPs, the latent GP g;(w) is
constructed with a covariance function defined by

Cong (W,W/;ofov) = exp (—%(w — w/)TS;l(w — w’)) (17)

where S; € RiXd is a diagonal matrix for length scale parame-
ters. Therefore, §;° = S;. The cross-covariances between g;(w)
and fy,(x) is defined as

X0} [
o (6 W3 B0, 05°)

. vfn)idet(Si) 1 TR -
- mexP<‘5(x—W> (Roni + i) (X—w))

where ¢<%V =

mi {Ryn,i»Vm,i} defines unit-specific parameters.
Indeed, (18) is a widely used covariance function (e.g., Majum-
dar and Gelfand 2007; Alvarez and Lawrence 2011; Fricker,
Oakley, and Urban 2013; Kontar et al. 2018; Li et al. 2018;
Chung, Al Kontar, and Wu 2022) for non-separable MGPs where
fm(x) is defined as a convolution (Higdon 2002) of a Gaussian
smoothing kernel with a shared latent white noise process g;(w).
In all simulation studies we use one latent function (I = 1) for
FedMGP, ModularGP, and CenMGP.
Finally, model evaluation is based on 30 experiment repli-
cations. We refer the reader to Section C in the supplementary
material for details of implementation settings.

(18)

5.1. Nonparametric Signal Extrapolation

Our task in this simulation is to extrapolate signal observations
from a target unit, by borrowing information from other units.
Specifically, the target unit has a signal truncated at some point,
whereas other units have the entire length of their signals.
The simulation implicates the potential usage of FedMGP for
predicting the future evolution of condition monitoring signals
collected from operating engineering components or recovering
amissing part of a signal possibly due to sudden sensor malfunc-
tions. This simulation compares FedMGP - avg with FedPoly,
ModularGP, IndGP, and CenMGP.

5.1.1. Setup

To generate data, we first obtain a smooth curve g(-) drawn from
a GP with the RBF kernel with a length scale of 0.1 ina d =
1 dimensional space. The data generating model for unit m is
constructed using a convolution:

o
y= 5,,,/ h(x — w)g(u)du + €4, (19)
—0oQ

where h,, () = ¥(;0,A,) is a one-dimensional Gaussian
smoothing kernel, §,, € R is a parameter that controls signal
amplitude and €, ~ N (0, 031). Here, units share common latent
functions g(-), yet convolved with different smoothing kernels
hm(-) and parameters &,,, to allow both shared and unique
features.

Next, we generate observations from M = 5 units. For each
unit, we generate 200 evenly-spaced d = 1 dimensional input
points ranging over [—1,1]. We then randomly draw five iid
samples of 8,, ~ unif(0.5,3) and A, ~ unif(2, 10), where unif

stands for the uniform distribution. oy, is set to 0.1. Using (19)
and the sampled parameters, we obtain 200 output points for
each unit evaluated at the input points. Unit 1 is the target unit
where observations belonging in (0, 1] are removed. The mean
squared error (MSE) for each unit is assessed for the missing
range.

For FedMGP-avg, ModularGP, and CenMGP, we place
J = 30 pseudo-inputs evenly spaced within [—1.1,1.1]. We also
place 30 pseudo-inputs for each GP module in the independent
learning stage of ModularGP. To further see the robustness of
FedMGP-avg in the selection of pseudo-inputs, we examine
FedMGP - avg performance when pseudo-inputs are perturbed
by Gaussian random variables with zero mean and variances
0.05% and 0.12.

5.1.2. Results

Results are presented in Table 2 and Figure 3. Many insights
can be obtained from the results. Based on the average MSEs
in Table 2, we observe that FedMGP-avg significantly out-
performs IndGP. This demonstrates that our approach allows
units to collaboratively learn an integrative model that results in
better performance compared to units using their own data only.
Figure 3 clearly shows such advantages, where FedMGP-avg
accurately extrapolates the target unit’s signal in [0, 1] with low
predictive variance, whereas IndGP fails to do that. Second,
FedMGP-avg achieves comparable performance to CenMGP.
This highlights the ability to avoid raw data sharing and reduce
computing/storage needs at the central server without sacrific-
ing predictive accuracy. Third, as presented in Figure 3, signals
exhibit different yet related trends. Our approach can learn a
personalized model accounting for the unit-specific features.
Indeed, personalization is a challenge in traditional FA built
upon DNNs. The FedMGP-avg’s superior personalization abil-
ity is further highlighted through improved performance over
FedPoly. The improved personalization is due to the intrinsic
advantage of MGP construction, which introduces both per-
sonalized and global parameters (¢,,,8). Fourth, perturbing
pseudo-inputs does not significantly affect the performance of
FedMGP - avg, demonstrating the robustness of FedMGP-avg
in choosing pseudo-inputs. Fifth, FedMGP - avg provides better
predictive accuracy than ModularGP. It supports what we
mentioned in Section 4, that ModularGP could deteriorate
performance because it fits an MGP to the approximate poste-
rior distributions of pseudo-targets received from GP modules
rather than data likelihoods. Finally, our approach can quantify
predictive uncertainty quite well. In the upper-left panel of
Figure 3, we visually see that the 99% prediction intervals of
FedMGP-avg are well-quantified even in (0, 1] for unit 1 where
observations are missing. This is expected, as extrapolation for
unit 1 can be seen as an interpolation across units.

5.2. IoFT System with Different Scales

This simulation examines our approach in IoFT systems with
different scales. Cases with a moderate or large number of units
M and observations N, are considered. The simulation explores
in what situations our proposed approach can be more effective
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Figure 3. Nonparametric signal extrapolation.
Table 2. Comparison of MSEs evaluated at the missing range.
FedMGP-avg FedMGP-avg FedMGP-avg FedPoly ModularGP IndGP CenMGP
(0.052) (0.12)
Avg. 0.012 0.013 0.012 0.057 0.114 2.226 0.010
Std. 0.003 0.004 0.002 0.19 0.109 2,112 0.002

NOTE: Values in parentheses indicate the variance of the Gaussian noise added to the pseudo-inputs of FedMGP-avg. Best results among models except for CenMGP are

boldfaced.

Table 3. Average MSEs over units.

Model (Nm. M)
(20,10) (20,200) (1000, 10) (1000, 200)
FedMGP-avg 0.0119(0.001) 0.0151 (0.010) 0.0103 (0.000) 0.0137 (0.008)
IndGP 0.0581 (0.028) 0.0678 (0.025) 0.0118 (0.003) 0.0174(0.016)
CenMGP 0.0119 (0.001) 0.0132(0.0) 0.0109 (0.001) -(-)

NOTE: Values in parentheses indicate standard deviations over repeated experiments. Best results among models except for CenMGP are boldfaced. Note that CenMGP is

inscalable to the case with (N, M) = (1000, 200).

compared to independent or centralized models. We compare
FedMGP-avg, IndGP, and CenMGP.

5.2.1. Setup

We use the same data generating model as (19), setting 8,, ~
unif (0.5,3) and A, ~ unif(8, 10). We run experiments under
four cases where (N,,;, M) is set to (20, 10), (20,200), (1000, 10),
and (1000, 200). That is, models are trained on 200k observa-
tions in the largest-scale case. For those with N,,, = 1000, we
used stochastic optimization for local training in FedMGP with
batch size 10. Average MSE over units is used to evaluate model
performance.

5.2.2. Results

Results in Table 3 show that FedMGP performs better than
IndGP in all cases, while comparable to CenMGP. Specifically
when local data is sparse (the cases with N, = 20), FedMGP
significantly outperforms IndGP. This is because observations
of each unit are not enough for IndGP to infer the true curve

independently. On the other hand, FedMGP can transfer knowl-
edge across units, yet without sharing their data, resulting in
quite accurate predictions. Moreover, results show the scalability
of FedMGP that can distribute model learning efforts to the
units by exploiting local computing power when a large number
of units with many observations participate in the system, for
example, (N, M) = (1000, 200), where CenMGP fails to scale.

6. Case Study: Battery Degradation Signal Prediction

In this section, we present an application of our approach
to data-driven predictive analytics for reliability engineering.
Forecasting the future degradation trend plays an important
role in reliability engineering. Today’s connectivity across units,
along with reduced data acquisition cost, facilitates data-driven
forecasting approaches, where the degradation signal of an in-
service unit can be modeled based on the data from other con-
nected units. This case study considers data-driven modeling of
battery degradation under the scenario where units operating
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Figure 4. Predictions for Battery Cell 9's degradation signal observed up to 30%.
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Figure 5. Atrend of Battery Cell 5's capacity decrease and the shared information of ModularGP and FedMGP - avg. Note that the scale of y-axis is different.

Table 4. Average MSEs (x1073) in different degradation phases.

Model 30% 50% 70%
FedMGP-avg 1.94 (1.03) 1.68 (0.97) 1.44 (1.06)
FedPoly 6.13 (2.11) 3.98 (1.38) 2.25(1.77)
ModularGP 2.11(1.49) 1.79(1.35) 1.48 (1.39)
IndGP 9.63 (7.50) 3.62(0.72) 4.17 (1.62)
CenMGP 1.88(0.72) 1.65(0.79) 1.41(0.82)

NOTE: Values in parentheses indicate standard deviations of MSEs. Best results
among models except for CenMGP are boldfaced.

individual batteries are also equipped with computing capabili-
ties. We employ our proposed FedMGP to let the units use their
respective computing resources to construct an MGP-based
prognostics model in a collaborative manner. Thus, our model
predicts battery degradation by leveraging other units’ battery
information and computing resources, yet without necessitating
data sharing with a central server.

6.1. Setup

We use the CALCE battery team’s dataset (Lee, Kwon, and Pecht
2018). The dataset comprises degradation signals from M = 23
batteries run over N, = 250 cycles. A capacity (mAh) decrease
in consumption cycles defines battery degradation given a nom-
inal capacity 350 mAh. We randomly choose one test battery
and remove a part of its signal to consider three cases where
data is observed up to the 75th (30%), 125th (50%), and 175th
(70%) cycle, respectively. We repeat the experiment for each case
five times. We compare our proposed framework FedMGP - avg
with four benchmark models IndGP, FedPoly, ModularGP,
and CenMGP. In particular, polynomial regression in FedPoly
fits the logarithm of the response variable, which is a widely used
setting to characterize battery degradation signals in the litera-
ture (e.g., Son et al. 2013; Kontar et al. 2017). By cross-validation,

we set the degree of polynomial regression in FedPoly to
K = 4 and use I = 2 latent functions for FedMGP-avg,
ModularGP, and CenMGP. Each latent function is evaluated
at ] = 50 evenly spaced pseudo-inputs. In the independent
learning stage in ModularGP, we use 8 pseudo inputs evenly
spaced.

6.2. Results

For each model, we provide the average of MSEs and their
standard deviation over repeated experiments in Table 4. From
the results, it is clear that FedMGP-avg achieves remarkably
better performance for all degradation stages than IndGP and
FedPoly, highlighting the practicality of our approach. A com-
parative illustration of predicted degradation curves is shown
in Figure 4. The figure shows that independent modeling by
IndGP and two-step personalized modeling by FedPoly fail
to provide either adequate predictions or predictive uncertainty.
In particular, it is not straightforward to quantify predictive
uncertainty in two-step approaches such as FedPoly. On the
contrary, FedMGP-avg provides accurate estimates as well
as well-quantified predictive uncertainty. Indeed, uncertainty
quantification can be extremely useful in determining optimal
inspection and maintenance decisions in reliability engineering
(Birolini 2013). Also, results over different degradation stages in
Table 4 indicate that the prediction accuracy of FedMGP-avg
improves as more data is obtained. Finally, ModularGP suffers
not only deteriorated performance but also privacy risk. Fig-
ure 5 depicts the observations of the capacity of Battery Cell 5
(grey dots) and shared information (cross marks). Recall that
ModularGP shares a pseudo-target distribution estimated by
each unit, while what Fe dMGP shares are merely common latent
functions {q(g:)}ie(1,2). The figure pictorially demonstrates that



ModularGP can divulge battery’s degradation trends by shar-
ing the pseudo-target distribution, while FedMGP does not.

7. Conclusion and Discussion

The increase in computing power of edge devices in today’s
IoT provides an opportunity to distribute model learning efforts
to reduce costs, achieve local decisions, and preserve privacy.
As a result, many efforts have been devoted to the develop-
ment of FA algorithms in the past few years, with the main
focus on deep learning models. However, MGPs have yet to
come into the spotlight of FA despite their natural applica-
tion to integrative analysis of data from multiple IoT devices.
Our study thus fills the gap between the current MGP and FA
literature.

Inspired by the natural hierarchy of an IoFT system, we
construct a hierarchical modeling and learning approach for
an MGP built upon shared global latent functions. We then
propose a VI approach that is amenable for distributed infer-
ence and overcomes the need to share raw data. Instead, only
parameters of the shared global latent functions need to be
shared to infer our model. Through comprehensive simulation
and case studies, we present the advantageous properties of our
model compared to both centralized and separate modeling
approaches.

There are many potential existing directions to extend our
model. One possible direction is to incorporate deep GPs (e.g.,
Damianou and Lawrence 2013). Deep GPs possess powerful
representation capability and nonstationary flexibility, achieved
by stacking multiple layers of GPs. Such merits allow its broad
use in multi-fidelity modeling (e.g., Perdikaris et al. 2017) or
computer simulation experiments (e.g., Sauer, Gramacy, and
Higdon 2023). One approach is to place multiple GPs at the
last layer that shares previous layers, yielding multiple correlated
outputs (i.e., an MGP). Yet, this creates a fundamental challenge
to estimating the complex model in a federated fashion. Like
our approach, deriving a variational lower bound decomposable
across units could be a possible approach. Another possible
generalization of FedMGP is to build a model capable of han-
dling data of various types or accounting for qualitative factors,
which are common in IoFT practices. For example, vehicles
in an IoFT-enabled telematics system may be equipped with
sensors that collect data of different types (e.g., continuous or
discrete variables) or may be grouped based on their qualitative
features (e.g., sedans or trucks). Incorporating heterogeneous
MGPs (Moreno-Muifioz, Artés, and Alvarez 2018) or kernels
designed for both quantitative and qualitative factors (Deng et al.
2017) into our framework are promising future directions to
pursue.

Supplementary Materials

Additional discussions and numerical results: The file (suppl.pdf)
contains an additional discussion on the covariance construction of
MGPs (Section A), an in-depth review of ModularGP and its com-
parison to FedMGP (Section B), detailed implementation setup (Section
C), alternative aggregation schemes in cloud_update beyond simple
averaging (Section D), and the corresponding additional experiments
(Section E).

TECHNOMETRICS 101

Code: The file (code. zip) contains codes that reproduce some of the
results in the article.
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