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Abstract2

A molecular understanding of thermoset fracture is crucial for enhancing performance and3

durability across applications. However, achieving accurate atomistic modeling of thermoset4

fracture remains computationally prohibitive due to the high cost associated with quantum me-5

chanical methods for describing bond breaking. In this work, we introduce an active learning6

(AL) framework for our recently developed machine-learning based adaptable bond topology7

(MLABT) model that uses datasets generated via density functional theory (DFT) calcula-8

tions that are both minimalistic and informative. Employing MLABT integrated with AL and9

DFT, we explore fracture behavior in highly crosslinked thermosets, assessing the variations10

in fracture behavior induced by system temperature, temperature fluctuations, strain rate, cool-11

ing rate, and degree of crosslinking. Notably, we discover that while fracture is minimally12

affected by temperature, it is strongly influenced by strain rate. Furthermore, while the struc-13

tural disparities introduced by different network annealing rates influence the elastic properties,14

they are inconsequential for thermoset fracture. In contrast, network topology emerges as the15

dominant determinant of fracture, influencing both the ultimate strain and stress. Particularly,16
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MLABT with AL-DFT achieving near quantum-chemical accuracy in bond breaking still leads17

to ductile failures, emphasizing the necessity of modeling polymer networks at larger length18

scales for bridging the gap between experiment and simulation. Nevertheless, the integration19

of MLABT with the AL framework paves the way for efficient and DFT-accurate modeling20

of thermoset fracture, providing an affordable and accurate approach for calculating polymer21

network fracture across chemical space.22

Introduction23

Thermosets, characterized by the presence of irreversible polymer crosslinks and enhanced me-24

chanical properties, are foundational to numerous technological applications ranging from auto-25

motive components and aerospace structures to medical devices and protective coatings.1±3 The26

robust nature of thermosets along with their adaptability have ushered in new horizons for mate-27

rial innovations.4,5 Central to maximizing the potential of thermosets in these domains is an in-28

depth understanding of their fracture behaviors.6±10 Recent advancements in computational tools29

and experimental techniques have provided insights into the fracture of thermosets.11±18 How-30

ever, the atomic-scale processes governing these behaviors remain less explored. Delving into31

this atomic realm promises not only enhanced material predictability but also the prospect of tai-32

lored design.19,20 Nevertheless, this pursuit presents formidable challenges: accurate atomic-level33

modeling of thermoset fracture necessitates substantial computational resources, especially when34

elucidating intricate bond breakage phenomena with quantum mechanical (QM) methods.21 As35

the demand for higher performance materials grows, overcoming these challenges and obtaining a36

more comprehensive understanding of thermoset fracture at the molecular scale is imperative.37

In our previous study, we introduced the Machine Learning based Adaptable Bonding Topology38

(MLABT) framework, an approach tailored for atomistic simulations of thermosets under large de-39

formation.22 MLABT circumvents limitations of classical molecular dynamics (MD) simulations40

by itegrating a machine learning (ML) algorithm for detection and execution of bond-breaking41

events (with near QM accuracy) with any underlying classical force-field. Compared to existing42
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methods combining MD and QM,21 MLABT exhibits an approximately two orders of magni-43

tude improved computational efficiency, coupled with heightened sensitivity to rare bond-breaking44

events at low strains. This blend of speed and accuracy created by augmenting classical force-45

fields accurate at low strain with QM-quality bond-breaking detection renders MLABT a robust46

and chemically general tool for probing strain hardening and material failure dynamics in polymer47

networks.48

While the development of MLABT is promising for modeling thermoset fracture, it is not with-49

out its challenges. First and foremost, generating a sufficient volume of training data using QM50

calculations is resource-intensive. Moreover, provided the rare nature of bond-breaking events,51

bond evaluations are primarily confined to a narrow strain-hardening window for efficiency rea-52

sons. Second, existing MLABT training data derives from configurations possessing intact cross-53

linked topologies, rather than those emerging in situ during fracture. These constraints, revolving54

around inefficient and insufficient configurational sampling, curtail the full potential of MLABT55

in offering a computationally efficient and molecularly detailed modeling paradigm for thermoset56

fracture. Recognizing these limitations, the field of active learning (AL),23,24 defined by its ability57

to iteratively refine and expand training datasets, appears an apt fit for these challenges.25,26
58

In this work we integrate AL into MLABT simulations. This provides two concerted benefits59

for MLABT models: the ability (i) to systematically navigate the vast configurational space of60

thermoset fracture and (ii) to employ higher accuracy (i.e. more computationally costly) density61

functional theory (DFT) calculations that better capture the physics of bond breaking, by virtue of62

using nearly an order of magnitude less training data than previously. Empowered by this AL-DFT63

MLABT model, we conduct the first comprehensive exploration of thermoset fracture behaviors64

at the molecular scale using a DFT-accurate bond-breaking model. Note that although classical65

material fracture involves crack propagation beyond the molecular scale, we use the more specific66

term ªfractureº instead of ªfailureº, because breaking of the network into two parts can be clearly67

observed in the simulations, and it is consistent with pre-existing literature studying similar phe-68

nomena.6,7,9 We scrutinize how the stress-strain behaviors as well as bond breakages are modulated69
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by experimental factors including temperature, strain rate, cooling rate, and the degree of crosslink-70

ing. The results from our MLABT analysis reveal that strain rates have a more pronounced effect71

on bond breakages than temperature, suggesting that the time-temperature superposition principle72

does not hold for thermoset plasticity. Importantly, network topology appears to be more influ-73

ential than the stability of the glassy structure in determining fracture behavior. Furthermore, we74

demonstrate that thermoset stress-strain behavior exhibits small variance under thermal fluctua-75

tions, indicating a certain degree of degeneracy in network fracture. Considering that MLABT76

leverages the DFT accuracy for bond breaking in fracture modeling, yet doesn’t capture the brittle77

failure seen in experiments, we conjecture that embracing larger spatiotemporal scales in modeling78

will be essential for better alignment with experiments.79

Methods80

MLABT simulation81

Figure 1: Schematic of the Machine-Learning-based Adaptable Bonding Topology (MLABT)

method. MLABT can efficiently predict and perform bond breaking on-the-fly in MD simula-

tions with near quantum-chemical accuracy.22

MLABT is a method incorporated on-the-fly with classical MD (e.g. OPLS, Amber) to accu-82
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rately describe quantum-chemically accurate bond breaking at dramatically reduced cost, with a83

focus on the modeling of thermoset deformation and fracture.22 As illustrated in Fig. 1, MLABT84

scans all potentially breakable bond types in the classical MD simulation and predicts bond rupture85

based on the local structures. If a bond breaks, the corresponding topology is automatically mod-86

ified and MD continues until the next bond breaks. We develop MLABT in an archetypal epoxy87

polymer network, diglycidyl ether of bisphenol A (DGEBA) cured by methylene dianiline (MDA),88

but the approach is chemically generalizable.89

We employ similar simulation parameters as described in our previous work.22 Specifically,90

a cubic box containing 432 DGEBA and 216 MDA molecules (27,432 atoms in total) is utilized91

with periodic boundary conditions in three dimensions. Bonding topologies of networks are gen-92

erated dynamically by simulating curing reactions in MD, resulting in degrees of crosslinking93

ranging from 77% to 98%. Structures are melted at 800 K for 200 ps and then quenched to 300 K94

with a constant annealing rate ranging from 0.1 K/ps to 100 K/ps. The obtained glassy structures95

are then used as initial conditions for MLABT deformation simulations. Only uniaxial deforma-96

tions are considered in this work. During deformations, the simulation box is deformed uniaxially97

(e.g., along the x axis) every 0.025 ps at a strain rate of 1× 109/s and the atomic coordinates are98

remapped accordingly. The two transverse directions are allowed to relax under P=1 atm to avoid99

the accumulation of artificial stress. We apply the Optimized Potentials for Liquid Simulations All100

Atoms (OPLS-AA) force-field with the Large-scale Atomic/Molecular Massively Parallel Simu-101

lator (LAMMPS) in all MD simulations.27,28 Simulated glass transition temperature, density, and102

elastic properties are all in good agreement with experiments and previous simulations.11,29±31
103

Central to MLABT is the ML model tasked with predicting bond breakages by analyzing the104

bond’s instantaneous surroundings. To characterize the local structure, we employ the Smooth105

Overlap of Atomic Positions (SOAP) descriptor, representing a Gaussian smeared local atomic106

density based on spherical harmonics and radial basis functions.32±34 We apply the support vector107

machine (SVM) with the radial basis function kernel as the classifier.35 More details can be found108

in the reference.22 Considering the additional cost of ML prediction that requires the computation109
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of the SOAP vectors for all the relevant atoms, we perform the scanning of bond breaking every110

0.001 true strain. In our testing, as long as the evaluation frequency is greater than one check every111

∆ε =0.01, no evident difference is observed in the resultant deformation behavior, as illustrated112

in Fig. S3 of the Supporting Information. In addition, due to the instability of the structures with113

broken bonds simulated with OPLS-AA, a timestep of 0.25 fs is utilized in MLABT simulations.114

Tuning force fields or adding hydrogens to broken bonds could solve this instability issue, but is115

not performed in the present study. All the simulations conducted in this work are carried out116

on the Bridges-2 cluster, which is provided by the Advanced Cyberinfrastructure Coordination117

Ecosystem: Services & Support (ACCESS).36
118

Iterative MLABT-based active learning119

To improve the generalization ability of MLABT across the entire fracture process, the ML model120

in this work undergoes iterative refinement, enriched progressively by the incorporation of AL. AL121

is a data-driven methodology primarily aimed at optimizing the process of data labeling and model122

training.37 Distinct from traditional ML frameworks, where a model is trained on a pre-labeled123

dataset, AL centers on the model actively selecting the most informative data points from a vast124

unlabeled pool of data.38,39 Here, we harness the power of AL to elucidate the fracture behaviors125

of thermosets, minimizing costs of QM computations while maximizing predictive generalization126

ability at diverse deformation conditions.127

The overall AL workflow is illustrated in Fig. 2. We start sampling highly strained configura-128

tions in MD simulations and extracting the local structures that potentially contain broken bonds129

for QM geometry optimization.22 Data pre-screening requires an artificial threshold based either130

on bond length or stretching energy, which could limit the applicability of the ML model in early131

bond breaking prediction. To achieve a high fidelity model, we utilize the more accurate DFT132

method PBEh-3c that improves upon our previous work using the semi-empirical tight-binding133

method GFN2-xTB.22,40 Due to the increased computational cost of PBEh-3c, our computational134

budget permitted generating a smaller initial training dataset, containing around 5,000 data points.135
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The initial SVM model is fit using 80% of the data and applied to kickstart the AL campaign.136

Figure 2: Workflow of the iterative active learning framework for MLABT.

To include representative and diverse local structures during deformation into the model train-137

ing, we employ an iterative pool-based AL strategy, as illustrated in Fig. 2. In each AL iteration,138

we collect all inputs (SOAP vectors) of the potentially breakable bonds (around 4,000 bonds per139

frame) in all frames (around 1,250 frames per trajectory) of a MLABT trajectory, which is gener-140

ated based on the latest re-trained ML model, as an unlabeled data pool. Note that this step takes141

no additional computational cost since SOAP vectors of these bonds were already computed while142

performing MLABT simulations. By doing this, the unlabeled data pool in one iteration already143

contains comprehensive information of in situ chemical bond local environments within a broad144

range of strains throughout the thermoset fracture process. To further improve the model’s gener-145

alization ability, we introduce some variations in conditions of MLABT simulations during the AL146

iterations. In the second iteration, we include simulations at various temperatures from 100 K to147

400 K. In the third iteration, we include simulations starting from initial structures with different148

bonding topologies. In the fourth iteration, we include simulations with different strain rates and149

with initial structures in different degrees of crosslinking (78% to 98%). Over all iterations, around150

85 million unlabeled data instances are collected cumulatively for AL querying.151
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Active learning query strategy152

To select the most informative data instances (local configurations) from the large pool of unlabeled153

data for DFT labeling, we use uncertainty sampling, along with the SVM classifier. In the context154

of SVM, uncertainty sampling can be intuitively understood by examining the decision function155

for each prediction.41,42 For a data point, the absolute value of the decision function | f (x)| =156

|∑N
i αiγiκ(xi,x)+b| represents its distance to the decision boundary, where κ(xi,x) = ⟨φ(xi)φ(x)⟩157

is a kernel function and αiγiφ(xi) forms a weight vector. The smaller this absolute value, the closer158

the data point is to the decision boundary, which indicates a higher level of uncertainty. Thus,159

querying data points with the smallest absolute decision functions maximizes the information gain,160

refining our model with each iteration.161

However, an inherent challenge emerges when adopting this approach: as our model and data162

evolve across iterations, the absolute values of the decision function can shift, rendering them non-163

comparable across different AL cycles. This poses a problem when trying to maintain a consistent164

measure of uncertainty across multiple iterations. To circumvent this challenge, we employ Platt165

scalingÐa method wherein a logistic regression model is trained using the decision function’s166

outputs.43 Through this process, the SVM’s raw decision values are transformed into calibrated167

probabilities, providing a consistent measure of uncertainty irrespective of the active learning it-168

eration. Within our binary classification context P(1|x) = 1−P(−1|x), the uncertainty associated169

with each instance x (SOAP vectors) is defined as170

u(x) = 1−max(P(1|x),P(−1|x)) = 0.5−|P(1|x)−0.5| (1)

Under this formulation, data points with probabilities closer to 0.5 are deemed to have maximum171

uncertainty, as they lie in regions where the model is most uncertain about its classifications.172

Using the outlined query strategy, bonds with maximum uncertainty are identified within each173

snapshot of the MLABT simulation. To regulate the number of bonds selected in each AL iter-174

ation, we apply an uncertainty threshold of 0.05. For every selected bond, its local environment175
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is extracted from the large MD configuration. This isolated environment is then subjected to full176

optimization via DFT calculations, as in the initial dataset generation.44 Each batch of labeled data177

from the AL is partitioned into a training set (comprising 80% of the data) and a testing set (ac-178

counting for the remaining 20%). Subsequently, the SVM model is retrained, incorporating both179

the initial dataset and the cumulative new AL training data. Test data are composed of both the180

initial data and the cumulative AL test data, as well as unseen data from a new MLABT trajectory181

(with maximum uncertainty in every snapshot) based on the final model. Detailed results on the182

model convergence are presented in the subsequent section.183
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Results184

Active learning performance185

Figure 3: (a) Max uncertainty of bond breaking prediction in MLABT simulations after AL itera-

tions. Uncertainty of bond breaking prediction is computed based on Equation 1, as detailed in the

Methods section. ‘Model 0’ denotes the model trained by the initial data, ‘Model 1’ and ‘Model 4’

denotes the updated models after the first and fourth AL iteration, respectively. (b) Initial data and

AL data visualized by principle component analysis of the SOAP vectors. The red points repre-

sent bonds that are found broken in DFT calculations. The evident difference in data distributions

demonstrates that AL explores diverse regions in feature space that are distinct from the initial

sampling.

The AL framework in this work is based on the query strategy of uncertainty sampling, as detailed186

in the Methods section. Since bond breaking events are rare even in material fracture, the majority187

of bond breaking uncertainties are simply zero, even for the initial ML model with a small dataset,188

as shown in Fig. S1 of the Supporting Information. However, the maximum uncertainty during the189
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deformation could be high if the bond instance lies closer to the poorly trained decision boundary.190

As shown in Fig. 3A, the initial model shows high peaks in uncertainty around strains of 0.5-191

0.6, where the bonds start to break, and around strain of 0.9-1.3, where the bonds break rapidly192

and the resulting stress reaches a maximum. The strain region in between has relatively lower193

uncertainty, because it is where the initial data are generated. The uncertainty for larger strains194

(>1.3) decreases, due to weaker interaction between strained bonds in the system that is poorly195

crosslinked. Nevertheless, the bonds with maximum uncertainty above a threshold of 0.05 in each196

snapshot are selected, and their local configurations are optimized with DFT to determine bond197

breaking.198

Next, we compare the local environments of the AL selected bonds with the bonds in the initial199

dataset, which are selected by bond stretching energy from configurations in a narrow range of200

strain, in the reduced dimensions by principle component analysis (PCA). The linear transforma-201

tion (coefficients) is constructed based on the SOAP vectors of the bonds in the initial dataset. As202

shown in Fig. 3B, the local environments in the initial dataset form four separated clusters. The203

right two clusters are associated with the ‘CT-CA’ bonds (connecting the sp3 carbon and the aro-204

matic carbon) located on both DGEBA and MDA, and the left two clusters are associated with the205

‘CT-CT’ bonds on DGEBA. Note that only those ‘CT-CT’ bonds on the DGEBA backbone (the206

bottom left cluster) are breakable in deformation, while those on DGEBA side chains (the top left207

cluster) are not. We could remove those from training data, but in this work, they are kept to en-208

hance generalizability. On the other hand, the local environments selected by AL are scattered over209

the principal component space and distributed densely in regions between the clusters. This result210

demonstrates the ability of AL to explore the diverse feature space that is unseen in the initial data.211

As such, including these AL environments in the model training can improve the generalization212

ability of MLABT for simulating thermoset deformations under diverse conditions.213
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Figure 4: (a) f0.5 and geometric mean of the ML model as trained after each AL iteration. (b) Com-

parison of stress-strain curves simulated by AL-DFT MLABT model and with the xTB MLABT

model at 300 K with a strain rate of 109/s. The xTB MLABT model overestimates the ultimate

stress, compared to the AL-DFT model and previous simulations.45 The shadow regions represent

the standard deviations induced by randomness in initial velocity generation over three indepen-

dent trajectories (same for subsequent figures).

Figure 4A shows the performance of the ML model on the test set after each AL iteration. The214

selection of the scoring metrics considering the imbalanced classification was discussed in previous215

work.22,46 It can be seen that the initial model exhibits an excellent geometry mean, whereas f0.5216

is relatively low, indicating a higher rate of false positives on regions outside of the initial training217

region. Once the model is updated with the AL selected data from the entire strain range using218

varied deformation and temperatures, f0.5 improves immediately while geometric mean remains219

almost unchanged. With more AL iterations including deformations using various strain rates220

and configurations with various degrees of crosslinking, the performance of the model remains221
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almost unchanged, whereas the maximum uncertainty decreases evidently (Fig. 3). After the222

fourth AL iteration, the maximum uncertainty is almost zero before the first bond breaking, and223

it remains above 0.15 only in a narrow strain range around 1.2. This performance is reflected224

in the distribution of prediction uncertainty, as shown in Fig. S1B and S1C of the Supporting225

Information. In addition, the number of bonds in the same deformation trajectory with uncertainty226

above 0.05 decreases with more AL iterations, but the rate of decrease slows after the second227

iteration, as shown in Fig. S2A of the Supporting Information. These features all suggest that the228

model in the AL framework is converging. To confirm the convergence, we apply the models after229

each iteration in MLABT simulations with identical initial conditions (positions, velocities). The230

results of the models after the second iterations are very similar, especially at ε <1.5, as shown231

in the Fig. S2B of Supporting Information. As such, we end the AL campaign and employ the232

model after the fourth iteration as the final model (denoted as ‘AL-DFT’) in this work for further233

investigation.234

MLABT simulations with the new AL-DFT MLABT model provide more accurate results on235

thermoset fracture than with the previously reported ‘xTB’ MLABT model. As shown in the stress-236

strain curves (SSC) in Fig. 4B, although the two models produce similar strains for the fracture237

initiation (the first bond breaking), the ultimate stress, and the material failure, the ultimate stress of238

AL-DFT MLABT is roughly one half of that of xTB MLABT, showing improved agreement with239

previous simulations (1-3 GPa).45 This reduced ultimate stress is induced by an increase of broken240

bonds and already appears in the initial model, suggesting that the GFN2-xTB method compared241

to DFT underestimates the probability of bond breaking. In addition, we find that simple models242

only using bond length as the breakage criterion, as reported in earlier simulations,21,47 could delay243

early bond breaking events and fail to generalize across various thermodynamic or morphological244

conditions, as detailed in the Supporting Information (Fig. S4). Furthermore, the shadow regions in245

Fig. 4B shows the standard deviation caused by randomness in velocity initialization, i.e., random246

seeds in generating initial atom velocities from the Maxwell±Boltzmann distribution. Although247

the specific broken bonds and locations are different, the overall variance in the SSC during strain248
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hardening is small. This suggests that there is some degeneracy in fracture initiation sites during249

thermoset deformation that result from velocity initialization, but they weakly affect the overall250

mechanical properties. The variation of ultimate stress and failure is stronger, probably due to the251

accumulated differences in bond breaking resulting in evident differences in the broken topology.252

We note that to our knowledge this study represents the first QM-informed atomistic study to report253

error bars in stress-strain curves of thermoset fracture, as for traditional approaches such error bars254

would be too computationally costly to compute.255
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Bond breaking during deformation256

Figure 5: (a) Bond strain distribution immediately before bond breakage during MLABT simula-

tions in the highly crosslinked system (98%) at 300 K with a strain rate of 109/s. (b) The numbers

of broken bonds in the two dominant broken bond types as a function of strain. (c) The maximum

bond strains for various bond types in the system as a function of strain. The bond strain is defined

as (l − l0)/l0, where l is the instantaneous bond length and l0 is the equilibrium bond length.

The more accurate AL-DFT MLABT model enables investigation of the bond breaking chemistry257

during thermoset fracture. Figure 5A shows the distribution of bond strain, defined as (l − l0)/l0,258

where l is the instantaneous bond length and l0 is the equilibrium bond length, immediately before259

bond breaking during MLABT simulations in the highly crosslinked system (98%) at 300 K with260
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a strain rate of 109/s. Similar results are observed at other conditions. It is surprising that the261

bond breakages occur at much smaller bond strains than previously expected.48 The maximum262

value around 0.12 is even smaller than the threshold value used in Barr’s method for pre-screening263

local configurations that potentially contain broken bonds,21 suggesting that the methods based on264

artificial criteria and QM calculations can delay bond breaking during deformation.265

The actual types of broken bonds in MLABT simulations of thermoset fracture are found to266

align with those revealed in QM calculations. Note that although we observed two types of broken267

bonds in strained DGEBA+MDA by QM calculations (both DFT and xTB), it does not guarantee268

these two types are actually broken during thermoset fracture because the local environments with269

evolving topology could become very different. As shown in Fig. 5B, the numbers of broken bonds270

decomposed into the two types show a consistent ratio throughout the entire fracture process. This271

ratio, i.e., approximately 2:1 for ‘CT-CT’ and ‘CT-CA’, is in agreement with the observations in the272

DFT calculations. This suggests that the bond breaking mechanism in epoxy thermosets remains273

consistent during fracture, independent of global strain. Furthermore, because our ML model is274

designed for only predicting these two types, we need to evaluate the possibility of bond breaking275

in other bond types during fracture. Figure 5C illustrates the maximum bond strain for four types276

of potentially broken bonds in the entire MLABT simulation. The ‘CT-CT’ and ‘CT-CA’ bonds277

indeed exhibit the highest maximum bond strain, with ‘CT-CT’ frequently being slightly higher278

than ‘CT-CA’. This is consistent with the fact that only these two types were broken and that ‘CT-279

CT’ bonds have a higher probability of rupture. The maximum bond strain of ‘CT-N’ or ‘CA-N’280

are evidently lower and cannot exceed those of the two broken types in the entire fracture range,281

confirming that they cannot break and negligibly contribute to the ML bond breaking model.282

Fracture behaviors by MLABT283

Utilizing AL-DFT MLABT simulations, we can efficiently probe the fracture behaviors of poly-284

mer networks at the atomic scale, combining the molecular precision and computational efficiency285

of classical MD with bond-breaking fidelity approaching that of DFT. It is imperative to recognize,286
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however, that both the lengthscale and timescale exert significant influence on the network topol-287

ogy’s formation and its dynamical response. We focus on extracting physical insights, specifically288

examining how the bond breaking events and fracture behaviors of polymer networks are modu-289

lated by factors such as temperature, strain rates, cooling rates, and the degree of crosslinking.290

Temperature effect291

Figure 6: (a) Stress-strain curves of the same initial structure (98% crosslinked) simulated by

AL-DFT MLABT at three temperatures with the same strain rate of 109/s. (b)-(c) Corresponding

accumulated number and rate of the bond breaking events during deformation. The unitless rate in

(c) is simply the derivative of the accumulated number in (b), with smoothing and normalization

for better visualization. The shadow regions represent the standard deviations induced by random-

ness in initial velocity generation over three independent trajectories, and the curves represent the

averaged results. The same settings are applied in subsequent figures.

First, we assessed the impact of temperature, held constant during deformation, on the fracture292

behavior of thermosets. Figure 6 displays (a) the SSC, (b) the count of broken bonds, and (c) the293
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rate of bond breakage (as deduced from the slope in (b)) at three distinct temperatures, 100 K, 300294

K, and 500 K, in MLABT simulations of a 98% crosslinked system subjected to a strain rate of295

109/s. These temperatures are all below the glass transition temperature (Tg ∼ 541 K). In general,296

bond breaking events appear temperature-insensitive, with temperature only influencing the ulti-297

mate stress as a consequence of the temperature effect before yielding. Specifically, a decrease in298

temperature enhances the elastic modulus and the corresponding yield stress, in agreement with299

previous experiments and simulations.49 However, the frequency of bond breakage events remain300

consistent in the plastic regime, and consequently, the characteristic strains for fracture initiation,301

peak stress, and ultimate failure also exhibit temperature independence. Only the stresses during302

strain softening and hardening vary as a result of the effect on the elastic regime, which was also303

observed in previous MD simulations without considering bond breaking.50 These findings suggest304

that bond rupture in amorphous polymer networks may not be characterized as a simple activation305

reaction. The potential reason may be related to heterogeneous local stresses that arise depending306

on the global strain and the network topology.51,52 Additional temperature-dependent behaviors in307

experiments, such as increased brittleness at lower temperatures,53 could be attributed to factors308

like crystallinity, entanglements, or effects occurring over extended spatiotemporal scales.309

Moreover, we find that the resultant stress is generally correlated with the bond breakage rate,310

a trend consistently observed across all conditions evaluated in this study. As the count of bonds311

on the edge of breaking surges during strain hardening, the cumulative stress also rises until the312

bond breakage rate peaks, resulting in the ultimate stress. Following this, as the bond breaking rate313

diminishes, so does the stress, until failure ensues. In addition, the thermal fluctuations mediated314

by random initial velocity generation show a relatively small impact on the number of broken bonds315

and the stress response during network deformation, though the bond breaking rate can fluctuate316

more strongly (in Fig. 6c) due to discreteness and randomness in individual bond breakages. The317

total count of bonds required to rupture the thermoset is approximately 55, around 0.2% of the318

total bonds or 1.5% of the potentially breakable bond types in the system, which is notably smaller319

than the number of reactions needed for network gelation.320
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Strain rate effect321

Figure 7: (a) Stress-strain curves of the same initial structure (98% crosslinked) simulated by

MLABT with three strain rates at 300 K. (b)-(c) Corresponding number (b) and rate (c) of the

bond breaking events during deformation.

Next, we investigate the effect of strain rate on the thermoset fracture behavior. As shown in Fig. 7,322

distinct from temperature, strain rate not only strongly affects the elastic behavior but also plastic323

and fracture behaviors. In the elastic regime, a larger strain rate results in higher elastic modulus324

and yield stress (Fig 7A), in agreement with previous experiments and simulations.47,48,54±56 Thus,325

a more noticeable strain softening regime is observed at larger strain rates. More interestingly, the326

bond breaking occurs more rapidly at higher strain rates, although the characteristic strains for327

fracture initiation (first bond breaking) and ultimate stress are almost independent of strain rate,328

as shown in Fig. 7B and C. Consequently, more bonds are broken in deformation with a large329

strain rate and the resultant ultimate stress is evidently reduced. The reason for this result is that330
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at large strain rates with little stress release, bond breakages do not occur in the most productive331

way, i.e., breaking apart the network using as few cuts as possible. Hence, the system could332

remain connected even though a large number of bonds have broken, and as a result, the system333

exhibits reduced ultimate stress and behaves more ductile at large strain rates, as shown in Fig. 7A.334

Note that this effect might converge at low strain rates, as the stress is fully relaxed once a bond335

breaks when the associated timescale is closer to or even longer than the stress field propagation336

time, which is supported by the smaller difference in the effect when changing the strain rate from337

1010/s to 109/s. Nevertheless, the MLABT results suggest a distinct disparity between effects of338

strain rate and temperature within the plastic regime. A further demonstration on the breakdown339

of their superposition is provided in the Supporting Information.340
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Cooling rate effect341

Figure 8: (a) Stress-strain curves of polymer networks with the same topology (98% crosslinked)

but generated with different annealing (cooling) rates simulated by MLABT at 300 K and with a

strain rate of 1010/s. (b)-(c) Corresponding numbers and rates of the bond breaking events during

deformation.

Furthermore, we study the effect of cooling rate in the melt-quenching process for synthesizing342

glassy thermosets on its bond breaking and fracture behavior by MLABT simulations. As glass343

is a non-equilibrium state below the glass transition, the cooling rate and the associated timescale344

for relaxation controls the temperature at which the supercooled liquid loses ergodicity and the345

amorphous structure becomes ªfrozenº.57 Specifically, a smaller cooling rate results in a lower346

glass transition temperature, and thereby, a thermodynamically more stable glass state, i.e., a state347

located lower in the potential energy landscape. These more stable glasses show distinct atomic348

structures and materials properties compared to glasses with higher cooling rates, such as higher349
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density and higher mechanical strength.58,59 Such a cooling rate effect is observed in the elastic350

regime of thermosets, as shown in Fig. 8A, as the elastic modulus and yield stress increase with351

reduced cooling rates (details summarized in Table S1 of the Supporting Information). Note that352

in the simulations, the initial structures have identical bonding topology but only are generated by353

different cooling rates in melt-quenching simulations initial configurations from 800 K to 300 K354

prior to deformation. Interestingly, the cooling rate effect does not survive in the plastic behaviors.355

As strain increases in the strain softening and the initial part of the strain hardening (till strain∼0.6),356

the difference of stress induced in the elastic regime gradually disappears, suggesting that the357

effect of the initial glassy structures diminishes. Consequently, the following bond breaking effects358

and the fracture behavior are independent of the cooling rate, as shown in Fig. 8A-C. These359

observations can be understood by considering that the cooling rate in general determines the360

stability of initial glassy structures and therefore controls the elastic behavior (without structural361

change), however, as strain increases, the strain-induced structural modulation becomes dominant362

through the covalent bonded network, and the difference in the amorphous strained structures363

becomes negligible. We should also note that this limited cooling rate effect is an outcome of364

strong topological constraints of thermosets and the short length of strands used in the simulations.365
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Effect of crosslinking degree366

Figure 9: (a) Stress-strain curves simulated by MLABT for structures with different degrees of

crosslinking at 300 K and with a strain rate of 109/s. (b)-(c) Corresponding numbers and rates of

the bond breaking events during deformation.

Finally, we study how the degree of crosslinking affects bond breakage and fracture behavior of367

thermosets by MLABT simulations. In this work, the crosslinks are formed dynamically in MD368

simulations of curing reactions, and thus the degree of crosslinking is controlled by how long369

the curing process runs. As shown in Fig. 9, we prepare four structures with various degrees of370

crosslinking from 77% to 98% (all gels) and simulate their deformation responses with MLABT371

at 300 K with a strain rate of 109/s. Note that in this work, we do not provide statistically averaged372

results over various bonding topologies due to computational cost, however, the structures evalu-373

ated herein with the four degrees of crosslinking are generated from the same curing reaction in an374

effort to emphasize the influence of crosslinking degree.375
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In the system with a higher degree of crosslinking, while the elastic behaviors are subtly376

changed (due to smaller variations of crosslinking density60), the SSC in strain hardening in-377

creases more rapidly, and reaches the ultimate stress at a smaller strain value, as shown in Fig.378

9A. As the degree of crosslinking decreases, the ultimate stress shifts to a larger strain and the379

peak value decreases. Specifically, when the crosslinking degree decreases from 98% to 77%, the380

ultimate stress decreases by roughly 1/3 and the corresponding true strain increases by 1/3. This381

is generally consistent with results of previous simulations using ReaxFF.45 This behavior of SSC382

can be understood from bond breakages in Fig. 9B and C. As expected, fewer bonds are broken in383

systems with lower crosslinking degrees, consistent with the lower ultimate stress values. More-384

over, the dominant bond breaking events, indicated by the maximum rate of bond breaking, occur385

at larger strains, accounting for the shift of ultimate strain. Depending on specific modification of386

bonding topology, the strain of fracture initiation might shift such that it is delayed to a larger strain387

at aa crosslinking degree of 77%. We also note that although the effect of crosslinking degree is388

revealed here, the relationship between network fracture and network topology is intriguing yet389

more complex (the variance induced by topology at same degrees of crosslinking is illustrated in390

Fig. S7 of the Supporting Information), which warrants further investigation.391

Discussion392

The AL-DFT MLABT framework stands out as a promising approach for accurately modeling393

thermoset fracture, as bond breaking during fracture is performed at nearly quantum chemical394

accuracy while computational cost is kept similar to that of classical MD. Specifically, the AL395

modification of MLABT presents two distinct advantages: i) Integration of AL enables incorpora-396

tion of diverse training data across thermodynamic and configurational conditions, improving the397

transferability of models to new conditions. ii) By actively pinpointing the most informative data398

for training, the AL framework is roughly an order of magnitude more efficient in the generation399

of training data than our previous MLABT model. This heightened efficiency permits utilization400
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of more accurate (and computationally costly) QM methods, such as DFT.401

Importantly, these two advantages of the AL-DFT MLABT framework manifest in the po-402

tential generalizability of the methodology across chemical space, an area where other reactive403

models (e.g. ReaxFF) can struggle. As MLABT leverages widely-accepted classical force-fields,404

such as OPLS and Amber, as its baseline simulation method, the high performance of common405

quantities such as density and low strain mechanical response is ensured across a broad chemical406

space. By adding on a QM-quality bond breaking prediction, mediated by ML, to these classical407

simulations, the MLABT approach is inherently adaptable to new chemistries for which accurate408

classical force-fields exist. Moreover, the ML component responsible for bond breaking is also409

inherently adaptable as it leverages structural representations (SOAP vectors) and is informed by410

QM calculations, making it agnostic to specific chemistries. This flexibility allows for the effi-411

cient adaptation of the MLABT framework to new chemistries, a process further streamlined by412

the AL approach introduced in this study. In contrast, empirical methods like ReaxFF demand413

a cumbersome and iterative parameterization process.61 Transferability of the parameter sets in414

ReaxFF is a well-known (and expected) deficiency compared to classical FF as the prediction task415

required is more challenging.62 In our testing as detailed in the supporting information, MLABT416

and ReaxFF show generally consistent results in modeling network deformation, particularly on417

the overall bond breakages. However, without constant computation of charge and bond topology418

as in ReaxFF, MLABT is computationally more efficient by at least one order of magnitude. Pro-419

vided these advantages, MLABT may be a suitable and easily implementable alternative to ReaxFF420

for unparameterized chemistries, especially when a trusted classical FF is already known.421

As mentioned in the Methods section, a minor limitation of the current MLABT implementa-422

tion is the necessity for a small timestep (0.25 fs as opposed to 1 fs commonly used in standard MD423

simulations). This issue is primarily due to the instability introduced by broken bonds when using424

classical force fields. However, this drawback can be fixed in future developments of MLABT, ei-425

ther through optimizing the force fields or by appending hydrogens to atoms involved in the bond426

rupture. Importantly, the MLABT simulations conducted in this study did not employ these modi-427
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fications, ensuring that our reported outcomes remain free from any influence of mechanoradicals428

that could otherwise alter network dynamics and subsequent bond breakages. The role of these429

mechanoradicals in subsequent bond breaking processes is a challenging topic reserved for future430

works.431

The computational efficiency of MLABT relative to other QM-informed bond-breaking ap-432

proaches also enables a number of crucial insights into the nature of fracture in epoxy thermosets.433

Specifically, we are able to simulate multiple replicas of our networks both in phase space and434

topology with DFT accuracy at minimal computational cost. From this added computational sam-435

pling, we observe that thermal fluctuations in the fracture process (as mediated by differing initial436

seeds in the velocity distribution) have a small impact on the resulting fracture process until the437

point of material failure. Although the exact bond breaking sites can differ due to randomness in438

the initial velocity distribution, the variations in the SSC and bond breaking are small during strain439

hardening. After the ultimate stress, these variations become larger due to accumulated topological440

differences.441

Importantly, the MLABT results demonstrate that the polymer network topology plays a more442

important role in controlling fracture behavior than fine details of the polymer’s glassy structure.443

Specifically, although the elastic mechanical properties depend on the cooling rate in the melt-444

quenching of thermosets, the plastic properties and bond breakages are independent of it (Fig. 8),445

suggesting that the influence of glassy structure blurs due to strain-induced rearrangement beyond446

the elastic regime. On the other hand, the degree of crosslinking (Fig. 9) and the topology varia-447

tion at the same degree (Fig. S7) primarily determine the fracture behavior, such as the ultimate448

strain/stress and the fraction of broken bonds. This again confirms the importance of topological449

perspective for understanding the fracture mechanisms of polymer networks.7,9,63
450

Lastly, our results show that time and temperature, the superposition of which is often posited451

to understand the viscoelastic behaviors of polymers, play different roles in the network fracture.452

Specifically, temperature does not affect bond breakages but slightly changes the resultant stress453

due to the local relaxation of glassy structures. However, the strain rate can strongly determine the454
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strain-stress behavior by influencing the rate of bond breakages. At large strain rates, the strain-455

induced structural evolution can propagate faster than the release of stress via network topology456

immediately after bond scission. As a consequence, additional ªunnecessaryº bonds break, result-457

ing in a more fragile network with lower ultimate stress. Note that although this physical scenario458

seems reasonable from the atomistic perspective (also supported by the ReaxFF results in Fig. S6459

of the Supporting Information), it cannot explain the general trend observed in experiments that a460

decrease in temperature or an increase in strain rate leads to more brittle fracture behaviors. The461

reason is that in experiments where deformation is much slower compared with stress release, the462

bond breakages can occur in the most efficient way through networks and the difference in fraction463

of broken bonds is tiny when varying deformation rates. This is consistent with the simulation464

results in Fig. 7b where the differences become smaller when further decreasing the strain rate,465

suggesting a possible convergence at strain rates close to those used in experiments. As such, the466

ultimate stress on experimental timescales will be dominated by stress relaxation due to structural467

reorganization. This is confirmed by our simulation results that show the stress after structural op-468

timization at each deformation step is much lower than that without optimization, as shown in Fig.469

S9 in the Supporting Information. In this context, the strain rate effect reported in the MLABT470

simulations is mainly due to bond breaking events rather than long-term structural relaxation.471

More importantly, the discrepancy with experiments is reflected in the long-recognized anomaly472

of ductile fracture in the molecular modeling of thermosets,64,65 a phenomenon whose root cause473

is still under debate.66 Given that the MLABT method offers QM-level accuracy in bond breaking,474

yet still demonstrates ductile fracture, and considering the revealed atomistic strain-rate effect is475

unlikely to contribute to a brittle fracture (when extrapolated at experimental strain rates), mod-476

eling at larger length scales is imperative to bridge the gap between experiments and simulations.477

One reason is that for typical simulation length scales, the crosslinking density (∼0.1 mole/cm3)478

significantly exceeds the experimental values (0.001-0.01 mole/cm3).67,68 This discrepancy hin-479

ders the formation of polymer chain entanglements in current molecular dynamics simulations of480

thermosets. Another hypothesis is related to larger-scale structures, such as air pockets or pores.481
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Air pockets or pores could potentially expedite the fracture towards the elastic regime and exhibit482

a distinct temperature dependence through micro-structural reorganization.69±71 One piece of sup-483

porting evidence is that in experiments of thermoset films where length-scales are limited below484

micrometers, the elongation can exceed 100% before failure,72 in better alignment with the be-485

haviors in the simulations. These factors also contribute to the ultimate strength at fracture of the486

material in the present simulations being greater than those in experiments. More detailed dis-487

cussions are provided in the Supporting Information. Nevertheless, we believe that incorporating488

larger length-scale structures in modeling is a promising direction for resolving these discrepan-489

cies, and MLABT, owing to its efficient and accurate treatment of bond breaking, is well-suited for490

extending to larger length-scales in diverse environments, including composites and interfaces.491

Conclusion492

We have combined AL with MLABT to create a framework for the atomistic modeling of ther-493

moset fracture with DFT-accuracy and classical FF cost. This integration offers heightened pre-494

dictive accuracy across thermodynamic and configurational space while simultaneously improving495

efficiency during model training. Moreover, the adaptability of MLABT with AL enables re-496

searchers to explore polymer fracture across diverse chemistries, provided a suitable classical FF,497

avoiding the pitfalls of cumbersome parameterization in other reactive methods. We have applied498

the MLABT framework to understand the molecular determinants of fracture in polymer networks,499

finding that the network topology largely dictates fracture behaviors, while the intrinsic stability500

of the glassy structures has little influence. Interestingly, strain rate, rather than temperature, pre-501

dominantly impacts network fracture at atomic scale, deviating from conventional paradigms in502

elasticity. Looking ahead, MLABT-based models of thermoset fracture form a potentially useful503

basis for the establishment of chemically generalizable bond-breaking models applicable to a di-504

verse set of polymer chemistries while leveraging the vast array of existing, and high-accuracy,505

classical force-fields.506

28



Supporting Information507

Uncertainty and convergence of the AL MLABT model, effect of MLABT bond scanning fre-508

quency on failure, comparison of MLABT with a simple model based on bond lenths, comparison509

of MLABT with ReaxFF, effect of network topology on fracture, time-temperature superposition510

in polymer network fracture, discussion on discrepancies with experiments.511

Acknowledgement512

This material is based upon work supported by the National Science Foundation Chemical The-513

ory, Models, and Computation division under award CHE-2154916. This work used Bridges-2 at514

the Pittsburgh Supercomputing Center through allocation CHE230055 from the Advanced Cyber-515

infrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is sup-516

ported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and517

#2138296.518

References519

(1) Jayan, J. S.; Appukuttan, S.; Wilson, R.; Joseph, K.; George, G.; Oksman, K. In Fiber Rein-520

forced Composites; Joseph, K., Oksman, K., George, G., Wilson, R., Appukuttan, S., Eds.;521

Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing,522

2021; pp 1±24.523

(2) Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.-P. Biobased Thermosetting524

Epoxy: Present and Future. Chem. Rev. 2014, 114, 1082±1115.525

(3) Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and Application of Epoxy Resins: A Review. Journal526

of Industrial and Engineering Chemistry 2015, 29, 1±11.527

(4) Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R. J. I. A Review on the Potential and528

29



Limitations of Recyclable Thermosets for Structural Applications. Polymer Reviews 2020,529

60, 359±388.530

(5) Gioia, C.; Lo Re, G.; Lawoko, M.; Berglund, L. Tunable Thermosetting Epoxies Based on531

Fractionated and Well-Characterized Lignins. J. Am. Chem. Soc. 2018, 140, 4054±4061.532

(6) Rottler, J. Fracture in Glassy Polymers: A Molecular Modeling Perspective. J. Phys.: Con-533

dens. Matter 2009, 21, 463101.534

(7) Barney, C. W.; Ye, Z.; Sacligil, I.; McLeod, K. R.; Zhang, H.; Tew, G. N.; Riggleman, R. A.;535

Crosby, A. J. Fracture of Model End-Linked Networks. Proceedings of the National Academy536

of Sciences 2022, 119, e2112389119.537

(8) Wang, S.; Panyukov, S.; Craig, S. L.; Rubinstein, M. Contribution of Unbroken Strands to538

the Fracture of Polymer Networks. Macromolecules 2023, 56, 2309±2318.539

(9) Stevens, M. J. Interfacial Fracture between Highly Cross-Linked Polymer Networks and a540

Solid Surface: Effect of Interfacial Bond Density. Macromolecules 2001, 34, 2710±2718.541

(10) Sbrescia, S.; Ju, J.; Creton, C.; Engels, T.; Seitz, M. Effect of Temperature, Rate, and Molec-542

ular Weight on the Failure Behavior of Soft Block Copoly(Ether±Ester) Thermoplastic Elas-543

tomers. Soft Matter 2023, 19, 5127±5141.544

(11) Ortiz, C.; Kim, R.; Rodighiero, E.; Ober, C. K.; Kramer, E. J. Deformation of a Polydomain,545

Liquid Crystalline Epoxy-Based Thermoset. Macromolecules 1998, 31, 4074±4088.546

(12) Glotzer, S. C.; Paul, W. Molecular and Mesoscale Simulation Methods for Polymer Materials.547

Annual Review of Materials Research 2002, 32, 401±436.548

(13) Wu, C.; Xu, W. Atomistic Molecular Modelling of Crosslinked Epoxy Resin. Polymer 2006,549

47, 6004±6009.550

(14) Zhong, M.; Wang, R.; Kawamoto, K.; Olsen, B. D.; Johnson, J. A. Quantifying the Impact of551

Molecular Defects on Polymer Network Elasticity. Science 2016, 353, 1264±1268.552

30



(15) Odegard, G. M.; Jensen, B. D.; Gowtham, S.; Wu, J.; He, J.; Zhang, Z. Predicting Mechanical553

Response of Crosslinked Epoxy Using ReaxFF. Chemical Physics Letters 2014, 591, 175±554

178.555

(16) Li, C.; Strachan, A. Molecular Scale Simulations on Thermoset Polymers: A Review. Journal556

of Polymer Science Part B: Polymer Physics 2015, 53, 103±122.557

(17) Hsu, Y.-C.; Yu, C.-H.; Buehler, M. J. Using Deep Learning to Predict Fracture Patterns in558

Crystalline Solids. Matter 2020, 3, 197±211.559

(18) Buehler, M. J. Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive560

Transformer Diffusion Model. Journal of Applied Mechanics 2022, 89.561

(19) Wang, S.; Hu, Y.; Kouznetsova, T. B.; Sapir, L.; Chen, D.; Herzog-Arbeitman, A.; John-562

son, J. A.; Rubinstein, M.; Craig, S. L. Facile Mechanochemical Cycloreversion of Polymer563

Cross-Linkers Enhances Tear Resistance. Science 2023, 380, 1248±1252.564

(20) Zhao, X.; Chen, X.; Yuk, H.; Lin, S.; Liu, X.; Parada, G. Soft Materials by Design: Uncon-565

ventional Polymer Networks Give Extreme Properties. Chem. Rev. 2021, 121, 4309±4372.566

(21) Barr, S. A.; Kedziora, G. S.; Ecker, A. M.; Moller, J. C.; Berry, R. J.; Breitzman, T. D. Bond567

Breaking in Epoxy Systems: A Combined QM/MM Approach. J. Chem. Phys. 2016, 144,568

244904.569

(22) Yu, Z.; Jackson, N. E. Machine Learning Quantum-Chemical Bond Scission in Thermosets570

under Extreme Deformation. Applied Physics Letters 2023, 122, 211906.571

(23) Lookman, T.; Balachandran, P. V.; Xue, D.; Yuan, R. Active Learning in Materials Science572

with Emphasis on Adaptive Sampling Using Uncertainties for Targeted Design. npj Comput573

Mater 2019, 5, 1±17.574

(24) Prince, M. Does Active Learning Work? A Review of the Research. Journal of Engineering575

Education 2004, 93, 223±231.576

31



(25) Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E. Less Is More: Sampling577

Chemical Space with Active Learning. The Journal of Chemical Physics 2018, 148, 241733.578

(26) Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L. Recent Advances and Appli-579

cations of Machine Learning in Solid-State Materials Science. npj Comput Mater 2019, 5,580

1±36.581

(27) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS582

All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J.583

Am. Chem. Soc. 1996, 118, 11225±11236.584

(28) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.;585

Crozier, P. S.; in ’t Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.;586

Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS - a Flexible Simulation587

Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales.588

Comp. Phys. Comm. 2022, 271, 108171.589

(29) Grandbois, M.; Beyer, M.; Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. How Strong Is a590

Covalent Bond? Science 1999, 283, 1727±1730.591

(30) Garcia, F. G.; Soares, B. G.; Pita, V. J. R. R.; Sánchez, R.; Rieumont, J. Mechanical Properties592

of Epoxy Networks Based on DGEBA and Aliphatic Amines. Journal of Applied Polymer593

Science 2007, 106, 2047±2055.594

(31) Vashisth, A.; Ashraf, C.; Bakis, C. E.; van Duin, A. C. T. Effect of Chemical Structure595

on Thermo-Mechanical Properties of Epoxy Polymers: Comparison of Accelerated ReaxFF596

Simulations and Experiments. Polymer 2018, 158, 354±363.597

(32) Bartók, A. P.; Kondor, R.; Csányi, G. On Representing Chemical Environments. Phys. Rev. B598

2013, 87, 184115.599

32



(33) De, S.; Bartók, A. P.; Csányi, G.; Ceriotti, M. Comparing Molecules and Solids across Struc-600

tural and Alchemical Space. Phys. Chem. Chem. Phys. 2016, 18, 13754±13769.601

(34) Himanen, L.; Jäger, M. O. J.; Morooka, E. V.; Federici Canova, F.; Ranawat, Y. S.; Gao, D. Z.;602

Rinke, P.; Foster, A. S. DScribe: Library of Descriptors for Machine Learning in Materials603

Science. Computer Physics Communications 2020, 247, 106949.604

(35) Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM transac-605

tions on intelligent systems and technology (TIST) 2011, 2, 1±27.606

(36) Boerner, T. J.; Deems, S.; Furlani, T. R.; Knuth, S. L.; Towns, J. Practice and Experience in607

Advanced Research Computing; 2023; pp 173±176.608

(37) Cohn, D. A.; Ghahramani, Z.; Jordan, M. I. Active Learning with Statistical Models. Journal609

of artificial intelligence research 1996, 4, 129±145.610

(38) Settles, B. Active Learning Literature Survey. 2009,611

(39) Settles, B. From Theories to Queries: Active Learning in Practice. Active Learning and Ex-612

perimental Design Workshop In Conjunction with AISTATS 2010. 2011; pp 1±18.613

(40) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTBÐAn Accurate and Broadly Parametrized614

Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and615

Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652±616

1671.617

(41) Schohn, G.; Cohn, D. Less Is More: Active Learning with Support Vector Machines. ICML.618

2000; p 6.619

(42) Kremer, J.; Steenstrup Pedersen, K.; Igel, C. Active Learning with Support Vector Machines.620

WIREs Data Mining and Knowledge Discovery 2014, 4, 313±326.621

(43) Platt, J., et al. Probabilistic Outputs for Support Vector Machines and Comparisons to Regu-622

larized Likelihood Methods. Advances in large margin classifiers 1999, 10, 61±74.623

33



(44) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program624

Package. J. Chem. Phys. 2020, 152, 224108.625

(45) Meng, Z.; Bessa, M. A.; Xia, W.; Kam Liu, W.; Keten, S. Predicting the Macroscopic Fracture626

Energy of Epoxy Resins from Atomistic Molecular Simulations. Macromolecules 2016, 49,627

9474±9483.628

(46) Kubát, M.; Matwin, S. Addressing the Curse of Imbalanced Training Sets: One-sided Selec-629

tion. International Conference on Machine Learning. 1997.630

(47) Konrad, J.; Meiûner, R. H.; Bitzek, E.; Zahn, D. A Molecular Simulation Approach to Bond631

Reorganization in Epoxy Resins: From Curing to Deformation and Fracture. ACS Polym. Au632

2021, 1, 165±174.633

(48) Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J. Simulation of Fracture634

Nucleation in Cross-Linked Polymer Networks. JOM 2013, 65, 147±167.635

(49) Li, C.; Medvedev, G. A.; Lee, E.-W.; Kim, J.; Caruthers, J. M.; Strachan, A. Molecular636

Dynamics Simulations and Experimental Studies of the Thermomechanical Response of an637

Epoxy Thermoset Polymer. Polymer 2012, 53, 4222±4230.638

(50) Li, C.; Strachan, A. Molecular Dynamics Predictions of Thermal and Mechanical Properties639

of Thermoset Polymer EPON862/DETDA. Polymer 2011, 52, 2920±2928.640

(51) Yoshimoto, K.; Jain, T. S.; Workum, K. V.; Nealey, P. F.; de Pablo, J. J. Mechanical Het-641

erogeneities in Model Polymer Glasses at Small Length Scales. Phys. Rev. Lett. 2004, 93,642

175501.643

(52) Riggleman, R. A.; Lee, H.-N.; Ediger, M. D.; de Pablo, J. J. Free Volume and Finite-Size644

Effects in a Polymer Glass under Stress. Phys. Rev. Lett. 2007, 99, 215501.645

(53) Pink, E.; Campbell, J. D. The Low-Temperature Macro Deformation of an Epoxide Resin.646

Materials Science and Engineering 1974, 15, 187±194.647

34



(54) Mayr, A. E.; Cook, W. D.; Edward, G. H. Yielding Behaviour in Model Epoxy Thermosets648

Ð I. Effect of Strain Rate and Composition. Polymer 1998, 39, 3719±3724.649

(55) Fan, J.; Anastassiou, A.; Macosko, C. W.; Tadmor, E. B. Molecular Dynamics Predictions650

of Thermomechanical Properties of an Epoxy Thermosetting Polymer. Polymer 2020, 196,651

122477.652

(56) Tamrakar, S.; Ganesh, R.; Sockalingam, S.; Haque, B. Z.; Gillespie, J. W. Experimental653

Investigation of Strain Rate and Temperature Dependent Response of an Epoxy Resin Under-654

going Large Deformation. J. dynamic behavior mater. 2018, 4, 114±128.655

(57) Ediger, M. D.; Angell, C. A.; Nagel, S. R. Supercooled Liquids and Glasses. J. Phys. Chem.656

1996, 100, 13200±13212.657

(58) Barrat, J.-L.; Baschnagel, J.; Lyulin, A. Molecular Dynamics Simulations of Glassy Poly-658

mers. Soft Matter 2010, 6, 3430±3446.659

(59) Yu, Z.; Liu, Q.; Szlufarska, I.; Wang, B. Structural Signatures for Thermodynamic Stability660

in Vitreous Silica: Insight from Machine Learning and Molecular Dynamics Simulations.661

Phys. Rev. Materials 2021, 5, 015602.662

(60) Shokuhfar, A.; Arab, B. The Effect of Cross Linking Density on the Mechanical Properties663

and Structure of the Epoxy Polymers: Molecular Dynamics Simulation. J Mol Model 2013,664

19, 3719±3731.665

(61) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive Force Field666

for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396±9409.667

(62) Liu, L.; Liu, Y.; Zybin, S. V.; Sun, H.; Goddard, W. A. I. ReaxFF-lg: Correction of the668

ReaxFF Reactive Force Field for London Dispersion, with Applications to the Equations of669

State for Energetic Materials. J. Phys. Chem. A 2011, 115, 11016±11022.670

35



(63) Lin, S.; Zhao, X. Fracture of Polymer Networks with Diverse Topological Defects. Phys. Rev.671

E 2020, 102, 052503.672

(64) Wu, X.; El-Awady, J. A. In Integrated Computational Materials Engineering (ICME): Ad-673

vancing Computational and Experimental Methods; Ghosh, S., Woodward, C., Przybyla, C.,674

Eds.; Springer International Publishing: Cham, 2020; pp 267±296.675

(65) Littell, J. D.; Ruggeri, C. R.; Goldberg, R. K.; Roberts, G. D.; Arnold, W. A.; Binienda, W. K.676

Measurement of Epoxy Resin Tension, Compression, and Shear Stress±Strain Curves over a677

Wide Range of Strain Rates Using Small Test Specimens. Journal of Aerospace Engineering678

2008, 21, 162±173.679

(66) Bukowski, C.; Zhang, T.; Riggleman, R. A.; Crosby, A. J. Load-Bearing Entanglements in680

Polymer Glasses. Science Advances 2021, 7, eabg9763.681

(67) Chen, J.-S.; Ober, C. K.; Poliks, M. D.; Zhang, Y.; Wiesner, U.; Cohen, C. Controlled Degra-682

dation of Epoxy Networks: Analysis of Crosslink Density and Glass Transition Temperature683

Changes in Thermally Reworkable Thermosets. Polymer 2004, 45, 1939±1950.684

(68) Zhao, S.; Abu-Omar, M. M. Renewable Epoxy Networks Derived from Lignin-Based685

Monomers: Effect of Cross-Linking Density. ACS Sustainable Chem. Eng. 2016, 4, 6082±686

6089.687

(69) Schichtel, J. J.; Chattopadhyay, A. Modeling Thermoset Polymers Using an Improved Molec-688

ular Dynamics Crosslinking Methodology. Computational Materials Science 2020, 174,689

109469.690

(70) Bay, R. K.; Zhang, T.; Shimomura, S.; Ilton, M.; Tanaka, K.; Riggleman, R. A.; Crosby, A. J.691

Decoupling the Impact of Entanglements and Mobility on the Failure Properties of Ultrathin692

Polymer Films. Macromolecules 2022, 55, 8505±8513.693

36



(71) Wu, X.; Aramoon, A.; El-Awady, J. A. Hierarchical Multiscale Approach for Modeling the694

Deformation and Failure of Epoxy-Based Polymer Matrix Composites. J. Phys. Chem. B695

2020, 124, 11928±11938.696

(72) Boarino, A.; Charmillot, J.; Figueirêdo, M. B.; Le, T. T. H.; Carrara, N.; Klok, H.-A. Ductile,697

High-Lignin-Content Thermoset Films and Coatings. ACS Sustainable Chem. Eng. 2023, 11,698

16442±16452.699

37


