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Abstract

A molecular understanding of thermoset fracture is crucial for enhancing performance and
durability across applications. However, achieving accurate atomistic modeling of thermoset
fracture remains computationally prohibitive due to the high cost associated with quantum me-
chanical methods for describing bond breaking. In this work, we introduce an active learning
(AL) framework for our recently developed machine-learning based adaptable bond topology
(MLABT) model that uses datasets generated via density functional theory (DFT) calcula-
tions that are both minimalistic and informative. Employing MLABT integrated with AL and
DFT, we explore fracture behavior in highly crosslinked thermosets, assessing the variations
in fracture behavior induced by system temperature, temperature fluctuations, strain rate, cool-
ing rate, and degree of crosslinking. Notably, we discover that while fracture is minimally
affected by temperature, it is strongly influenced by strain rate. Furthermore, while the struc-
tural disparities introduced by different network annealing rates influence the elastic properties,
they are inconsequential for thermoset fracture. In contrast, network topology emerges as the

dominant determinant of fracture, influencing both the ultimate strain and stress. Particularly,
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MLABT with AL-DFT achieving near quantum-chemical accuracy in bond breaking still leads
to ductile failures, emphasizing the necessity of modeling polymer networks at larger length
scales for bridging the gap between experiment and simulation. Nevertheless, the integration
of MLABT with the AL framework paves the way for efficient and DFT-accurate modeling
of thermoset fracture, providing an affordable and accurate approach for calculating polymer

network fracture across chemical space.

Introduction

Thermosets, characterized by the presence of irreversible polymer crosslinks and enhanced me-
chanical properties, are foundational to numerous technological applications ranging from auto-
motive components and aerospace structures to medical devices and protective coatings.!™ The
robust nature of thermosets along with their adaptability have ushered in new horizons for mate-
rial innovations.*> Central to maximizing the potential of thermosets in these domains is an in-
depth understanding of their fracture behaviors.®'0 Recent advancements in computational tools
and experimental techniques have provided insights into the fracture of thermosets.!'~'® How-
ever, the atomic-scale processes governing these behaviors remain less explored. Delving into
this atomic realm promises not only enhanced material predictability but also the prospect of tai-
lored design. 120 Nevertheless, this pursuit presents formidable challenges: accurate atomic-level
modeling of thermoset fracture necessitates substantial computational resources, especially when
elucidating intricate bond breakage phenomena with quantum mechanical (QM) methods.?' As
the demand for higher performance materials grows, overcoming these challenges and obtaining a
more comprehensive understanding of thermoset fracture at the molecular scale is imperative.

In our previous study, we introduced the Machine Learning based Adaptable Bonding Topology
(MLABT) framework, an approach tailored for atomistic simulations of thermosets under large de-
formation.?2 MLABT circumvents limitations of classical molecular dynamics (MD) simulations
by itegrating a machine learning (ML) algorithm for detection and execution of bond-breaking

events (with near QM accuracy) with any underlying classical force-field. Compared to existing
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methods combining MD and QM,?!' MLABT exhibits an approximately two orders of magni-
tude improved computational efficiency, coupled with heightened sensitivity to rare bond-breaking
events at low strains. This blend of speed and accuracy created by augmenting classical force-
fields accurate at low strain with QM-quality bond-breaking detection renders MLABT a robust
and chemically general tool for probing strain hardening and material failure dynamics in polymer
networks.

While the development of MLABT is promising for modeling thermoset fracture, it is not with-
out its challenges. First and foremost, generating a sufficient volume of training data using QM
calculations is resource-intensive. Moreover, provided the rare nature of bond-breaking events,
bond evaluations are primarily confined to a narrow strain-hardening window for efficiency rea-
sons. Second, existing MLABT training data derives from configurations possessing intact cross-
linked topologies, rather than those emerging in situ during fracture. These constraints, revolving
around inefficient and insufficient configurational sampling, curtail the full potential of MLABT
in offering a computationally efficient and molecularly detailed modeling paradigm for thermoset
fracture. Recognizing these limitations, the field of active learning (AL),%3>* defined by its ability
to iteratively refine and expand training datasets, appears an apt fit for these challenges. 2>-2°

In this work we integrate AL into MLABT simulations. This provides two concerted benefits
for MLABT models: the ability (i) to systematically navigate the vast configurational space of
thermoset fracture and (ii) to employ higher accuracy (i.e. more computationally costly) density
functional theory (DFT) calculations that better capture the physics of bond breaking, by virtue of
using nearly an order of magnitude less training data than previously. Empowered by this AL-DFT
MLABT model, we conduct the first comprehensive exploration of thermoset fracture behaviors
at the molecular scale using a DFT-accurate bond-breaking model. Note that although classical
material fracture involves crack propagation beyond the molecular scale, we use the more specific
term “fracture” instead of “failure”, because breaking of the network into two parts can be clearly
observed in the simulations, and it is consistent with pre-existing literature studying similar phe-

nomena. ®7° We scrutinize how the stress-strain behaviors as well as bond breakages are modulated
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by experimental factors including temperature, strain rate, cooling rate, and the degree of crosslink-
ing. The results from our MLABT analysis reveal that strain rates have a more pronounced effect
on bond breakages than temperature, suggesting that the time-temperature superposition principle
does not hold for thermoset plasticity. Importantly, network topology appears to be more influ-
ential than the stability of the glassy structure in determining fracture behavior. Furthermore, we
demonstrate that thermoset stress-strain behavior exhibits small variance under thermal fluctua-
tions, indicating a certain degree of degeneracy in network fracture. Considering that MLABT
leverages the DFT accuracy for bond breaking in fracture modeling, yet doesn’t capture the brittle
failure seen in experiments, we conjecture that embracing larger spatiotemporal scales in modeling

will be essential for better alignment with experiments.

Methods

MLABT simulation
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Figure 1: Schematic of the Machine-Learning-based Adaptable Bonding Topology (MLABT)
method. MLABT can efficiently predict and perform bond breaking on-the-fly in MD simula-
tions with near quantum-chemical accuracy.??

MLABT is a method incorporated on-the-fly with classical MD (e.g. OPLS, Amber) to accu-

4
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rately describe quantum-chemically accurate bond breaking at dramatically reduced cost, with a
focus on the modeling of thermoset deformation and fracture.?? As illustrated in Fig. 1, MLABT
scans all potentially breakable bond types in the classical MD simulation and predicts bond rupture
based on the local structures. If a bond breaks, the corresponding topology is automatically mod-
ified and MD continues until the next bond breaks. We develop MLABT in an archetypal epoxy
polymer network, diglycidyl ether of bisphenol A (DGEBA) cured by methylene dianiline (MDA),
but the approach is chemically generalizable.

We employ similar simulation parameters as described in our previous work.?? Specifically,
a cubic box containing 432 DGEBA and 216 MDA molecules (27,432 atoms in total) is utilized
with periodic boundary conditions in three dimensions. Bonding topologies of networks are gen-
erated dynamically by simulating curing reactions in MD, resulting in degrees of crosslinking
ranging from 77% to 98%. Structures are melted at 800 K for 200 ps and then quenched to 300 K
with a constant annealing rate ranging from 0.1 K/ps to 100 K/ps. The obtained glassy structures
are then used as initial conditions for MLABT deformation simulations. Only uniaxial deforma-
tions are considered in this work. During deformations, the simulation box is deformed uniaxially
(e.g., along the x axis) every 0.025 ps at a strain rate of 1 x 10%/s and the atomic coordinates are
remapped accordingly. The two transverse directions are allowed to relax under P=1 atm to avoid
the accumulation of artificial stress. We apply the Optimized Potentials for Liquid Simulations All
Atoms (OPLS-AA) force-field with the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) in all MD simulations.?”-?® Simulated glass transition temperature, density, and
elastic properties are all in good agreement with experiments and previous simulations. 112931

Central to MLABT is the ML model tasked with predicting bond breakages by analyzing the
bond’s instantaneous surroundings. To characterize the local structure, we employ the Smooth
Overlap of Atomic Positions (SOAP) descriptor, representing a Gaussian smeared local atomic
density based on spherical harmonics and radial basis functions.?3* We apply the support vector
machine (SVM) with the radial basis function kernel as the classifier.*> More details can be found

in the reference.?? Considering the additional cost of ML prediction that requires the computation
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of the SOAP vectors for all the relevant atoms, we perform the scanning of bond breaking every
0.001 true strain. In our testing, as long as the evaluation frequency is greater than one check every
A€ =0.01, no evident difference is observed in the resultant deformation behavior, as illustrated
in Fig. S3 of the Supporting Information. In addition, due to the instability of the structures with
broken bonds simulated with OPLS-AA, a timestep of 0.25 fs is utilized in MLABT simulations.
Tuning force fields or adding hydrogens to broken bonds could solve this instability issue, but is
not performed in the present study. All the simulations conducted in this work are carried out
on the Bridges-2 cluster, which is provided by the Advanced Cyberinfrastructure Coordination

Ecosystem: Services & Support (ACCESS). 3¢

Iterative MLLABT-based active learning

To improve the generalization ability of MLABT across the entire fracture process, the ML model
in this work undergoes iterative refinement, enriched progressively by the incorporation of AL. AL
is a data-driven methodology primarily aimed at optimizing the process of data labeling and model
training.37 Distinct from traditional ML frameworks, where a model is trained on a pre-labeled
dataset, AL centers on the model actively selecting the most informative data points from a vast
unlabeled pool of data.333 Here, we harness the power of AL to elucidate the fracture behaviors
of thermosets, minimizing costs of QM computations while maximizing predictive generalization
ability at diverse deformation conditions.

The overall AL workflow is illustrated in Fig. 2. We start sampling highly strained configura-
tions in MD simulations and extracting the local structures that potentially contain broken bonds
for QM geometry optimization.?? Data pre-screening requires an artificial threshold based either
on bond length or stretching energy, which could limit the applicability of the ML model in early
bond breaking prediction. To achieve a high fidelity model, we utilize the more accurate DFT
method PBEh-3c that improves upon our previous work using the semi-empirical tight-binding
method GFN2-xTB.?>* Due to the increased computational cost of PBEh-3c, our computational

budget permitted generating a smaller initial training dataset, containing around 5,000 data points.
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The initial SVM model is fit using 80% of the data and applied to kickstart the AL campaign.
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Figure 2: Workflow of the iterative active learning framework for MLABT.

To include representative and diverse local structures during deformation into the model train-
ing, we employ an iterative pool-based AL strategy, as illustrated in Fig. 2. In each AL iteration,
we collect all inputs (SOAP vectors) of the potentially breakable bonds (around 4,000 bonds per
frame) in all frames (around 1,250 frames per trajectory) of a MLABT trajectory, which is gener-
ated based on the latest re-trained ML model, as an unlabeled data pool. Note that this step takes
no additional computational cost since SOAP vectors of these bonds were already computed while
performing MLABT simulations. By doing this, the unlabeled data pool in one iteration already
contains comprehensive information of in situ chemical bond local environments within a broad
range of strains throughout the thermoset fracture process. To further improve the model’s gener-
alization ability, we introduce some variations in conditions of MLABT simulations during the AL
iterations. In the second iteration, we include simulations at various temperatures from 100 K to
400 K. In the third iteration, we include simulations starting from initial structures with different
bonding topologies. In the fourth iteration, we include simulations with different strain rates and
with initial structures in different degrees of crosslinking (78% to 98%). Over all iterations, around

85 million unlabeled data instances are collected cumulatively for AL querying.
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Active learning query strategy

To select the most informative data instances (local configurations) from the large pool of unlabeled
data for DFT labeling, we use uncertainty sampling, along with the SVM classifier. In the context
of SVM, uncertainty sampling can be intuitively understood by examining the decision function
for each prediction.*!*> For a data point, the absolute value of the decision function |f(x)| =
| YN aiyix(x;, x) + b| represents its distance to the decision boundary, where k(x;,x) = (¢ (x;) ¢ (x))
is a kernel function and ;% (x;) forms a weight vector. The smaller this absolute value, the closer
the data point is to the decision boundary, which indicates a higher level of uncertainty. Thus,
querying data points with the smallest absolute decision functions maximizes the information gain,
refining our model with each iteration.

However, an inherent challenge emerges when adopting this approach: as our model and data
evolve across iterations, the absolute values of the decision function can shift, rendering them non-
comparable across different AL cycles. This poses a problem when trying to maintain a consistent
measure of uncertainty across multiple iterations. To circumvent this challenge, we employ Platt
scaling—a method wherein a logistic regression model is trained using the decision function’s
outputs.*> Through this process, the SVM’s raw decision values are transformed into calibrated
probabilities, providing a consistent measure of uncertainty irrespective of the active learning it-
eration. Within our binary classification context P(1|x) = 1 — P(—1|x), the uncertainty associated

with each instance x (SOAP vectors) is defined as

u(x) =1 —max(P(1]x),P(—1|x)) =0.5—|P(1]x) —0.5] (1)

Under this formulation, data points with probabilities closer to 0.5 are deemed to have maximum

uncertainty, as they lie in regions where the model is most uncertain about its classifications.
Using the outlined query strategy, bonds with maximum uncertainty are identified within each

snapshot of the MLABT simulation. To regulate the number of bonds selected in each AL iter-

ation, we apply an uncertainty threshold of 0.05. For every selected bond, its local environment
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is extracted from the large MD configuration. This isolated environment is then subjected to full
optimization via DFT calculations, as in the initial dataset generation.** Each batch of labeled data
from the AL is partitioned into a training set (comprising 80% of the data) and a testing set (ac-
counting for the remaining 20%). Subsequently, the SVM model is retrained, incorporating both
the initial dataset and the cumulative new AL training data. Test data are composed of both the
initial data and the cumulative AL test data, as well as unseen data from a new MLABT trajectory
(with maximum uncertainty in every snapshot) based on the final model. Detailed results on the

model convergence are presented in the subsequent section.
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Figure 3: (a) Max uncertainty of bond breaking prediction in MLABT simulations after AL itera-
tions. Uncertainty of bond breaking prediction is computed based on Equation 1, as detailed in the
Methods section. ‘Model 0’ denotes the model trained by the initial data, ‘Model 1’ and ‘Model 4’
denotes the updated models after the first and fourth AL iteration, respectively. (b) Initial data and
AL data visualized by principle component analysis of the SOAP vectors. The red points repre-
sent bonds that are found broken in DFT calculations. The evident difference in data distributions
demonstrates that AL explores diverse regions in feature space that are distinct from the initial
sampling.

The AL framework in this work is based on the query strategy of uncertainty sampling, as detailed
in the Methods section. Since bond breaking events are rare even in material fracture, the majority
of bond breaking uncertainties are simply zero, even for the initial ML model with a small dataset,

as shown in Fig. S1 of the Supporting Information. However, the maximum uncertainty during the
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deformation could be high if the bond instance lies closer to the poorly trained decision boundary.
As shown in Fig. 3A, the initial model shows high peaks in uncertainty around strains of 0.5-
0.6, where the bonds start to break, and around strain of 0.9-1.3, where the bonds break rapidly
and the resulting stress reaches a maximum. The strain region in between has relatively lower
uncertainty, because it is where the initial data are generated. The uncertainty for larger strains
(>1.3) decreases, due to weaker interaction between strained bonds in the system that is poorly
crosslinked. Nevertheless, the bonds with maximum uncertainty above a threshold of 0.05 in each
snapshot are selected, and their local configurations are optimized with DFT to determine bond
breaking.

Next, we compare the local environments of the AL selected bonds with the bonds in the initial
dataset, which are selected by bond stretching energy from configurations in a narrow range of
strain, in the reduced dimensions by principle component analysis (PCA). The linear transforma-
tion (coefficients) is constructed based on the SOAP vectors of the bonds in the initial dataset. As
shown in Fig. 3B, the local environments in the initial dataset form four separated clusters. The
right two clusters are associated with the ‘CT-CA’ bonds (connecting the sp3 carbon and the aro-
matic carbon) located on both DGEBA and MDA, and the left two clusters are associated with the
‘CT-CT’ bonds on DGEBA. Note that only those ‘CT-CT’ bonds on the DGEBA backbone (the
bottom left cluster) are breakable in deformation, while those on DGEBA side chains (the top left
cluster) are not. We could remove those from training data, but in this work, they are kept to en-
hance generalizability. On the other hand, the local environments selected by AL are scattered over
the principal component space and distributed densely in regions between the clusters. This result
demonstrates the ability of AL to explore the diverse feature space that is unseen in the initial data.
As such, including these AL environments in the model training can improve the generalization

ability of MLABT for simulating thermoset deformations under diverse conditions.

11
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Figure 4: (a) fy 5 and geometric mean of the ML model as trained after each AL iteration. (b) Com-
parison of stress-strain curves simulated by AL-DFT MLABT model and with the xXTB MLABT
model at 300 K with a strain rate of 10%/s. The XTB MLABT model overestimates the ultimate
stress, compared to the AL-DFT model and previous simulations.* The shadow regions represent
the standard deviations induced by randomness in initial velocity generation over three indepen-
dent trajectories (same for subsequent figures).

Figure 4A shows the performance of the ML model on the test set after each AL iteration. The
selection of the scoring metrics considering the imbalanced classification was discussed in previous
work. %240 It can be seen that the initial model exhibits an excellent geometry mean, whereas f;) s
is relatively low, indicating a higher rate of false positives on regions outside of the initial training
region. Once the model is updated with the AL selected data from the entire strain range using
varied deformation and temperatures, fjs improves immediately while geometric mean remains
almost unchanged. With more AL iterations including deformations using various strain rates

and configurations with various degrees of crosslinking, the performance of the model remains
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almost unchanged, whereas the maximum uncertainty decreases evidently (Fig. 3). After the
fourth AL iteration, the maximum uncertainty is almost zero before the first bond breaking, and
it remains above 0.15 only in a narrow strain range around 1.2. This performance is reflected
in the distribution of prediction uncertainty, as shown in Fig. SI1B and S1C of the Supporting
Information. In addition, the number of bonds in the same deformation trajectory with uncertainty
above 0.05 decreases with more AL iterations, but the rate of decrease slows after the second
iteration, as shown in Fig. S2A of the Supporting Information. These features all suggest that the
model in the AL framework is converging. To confirm the convergence, we apply the models after
each iteration in MLABT simulations with identical initial conditions (positions, velocities). The
results of the models after the second iterations are very similar, especially at € <1.5, as shown
in the Fig. S2B of Supporting Information. As such, we end the AL campaign and employ the
model after the fourth iteration as the final model (denoted as ‘AL-DFT”) in this work for further
investigation.

MLABT simulations with the new AL-DFT MLABT model provide more accurate results on
thermoset fracture than with the previously reported ‘xTB” MLABT model. As shown in the stress-
strain curves (SSC) in Fig. 4B, although the two models produce similar strains for the fracture
initiation (the first bond breaking), the ultimate stress, and the material failure, the ultimate stress of
AL-DFT MLABT is roughly one half of that of xXTB MLABT, showing improved agreement with
previous simulations (1-3 GPa).* This reduced ultimate stress is induced by an increase of broken
bonds and already appears in the initial model, suggesting that the GFN2-xTB method compared
to DFT underestimates the probability of bond breaking. In addition, we find that simple models

only using bond length as the breakage criterion, as reported in earlier simulations, 147

could delay
early bond breaking events and fail to generalize across various thermodynamic or morphological
conditions, as detailed in the Supporting Information (Fig. S4). Furthermore, the shadow regions in
Fig. 4B shows the standard deviation caused by randomness in velocity initialization, i.e., random

seeds in generating initial atom velocities from the Maxwell-Boltzmann distribution. Although

the specific broken bonds and locations are different, the overall variance in the SSC during strain
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hardening is small. This suggests that there is some degeneracy in fracture initiation sites during
thermoset deformation that result from velocity initialization, but they weakly affect the overall
mechanical properties. The variation of ultimate stress and failure is stronger, probably due to the
accumulated differences in bond breaking resulting in evident differences in the broken topology.
We note that to our knowledge this study represents the first QM-informed atomistic study to report
error bars in stress-strain curves of thermoset fracture, as for traditional approaches such error bars

would be too computationally costly to compute.
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Figure 5: (a) Bond strain distribution immediately before bond breakage during MLABT simula-
tions in the highly crosslinked system (98%) at 300 K with a strain rate of 10%/s. (b) The numbers
of broken bonds in the two dominant broken bond types as a function of strain. (¢) The maximum
bond strains for various bond types in the system as a function of strain. The bond strain is defined
as (I —1o)/lp, where [ is the instantaneous bond length and [ is the equilibrium bond length.

The more accurate AL-DFT MLABT model enables investigation of the bond breaking chemistry
during thermoset fracture. Figure 5A shows the distribution of bond strain, defined as (I — lp) /I,
where [ is the instantaneous bond length and [j is the equilibrium bond length, immediately before

bond breaking during MLABT simulations in the highly crosslinked system (98%) at 300 K with

15



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

a strain rate of 10%/s. Similar results are observed at other conditions. It is surprising that the
bond breakages occur at much smaller bond strains than previously expected.*® The maximum
value around 0.12 is even smaller than the threshold value used in Barr’s method for pre-screening
local configurations that potentially contain broken bonds,?! suggesting that the methods based on
artificial criteria and QM calculations can delay bond breaking during deformation.

The actual types of broken bonds in MLABT simulations of thermoset fracture are found to
align with those revealed in QM calculations. Note that although we observed two types of broken
bonds in strained DGEBA+MDA by QM calculations (both DFT and xTB), it does not guarantee
these two types are actually broken during thermoset fracture because the local environments with
evolving topology could become very different. As shown in Fig. 5B, the numbers of broken bonds
decomposed into the two types show a consistent ratio throughout the entire fracture process. This
ratio, i.e., approximately 2:1 for ‘CT-CT’ and ‘CT-CA’, is in agreement with the observations in the
DFT calculations. This suggests that the bond breaking mechanism in epoxy thermosets remains
consistent during fracture, independent of global strain. Furthermore, because our ML model is
designed for only predicting these two types, we need to evaluate the possibility of bond breaking
in other bond types during fracture. Figure 5C illustrates the maximum bond strain for four types
of potentially broken bonds in the entire MLABT simulation. The ‘CT-CT’ and ‘CT-CA’ bonds
indeed exhibit the highest maximum bond strain, with ‘CT-CT’ frequently being slightly higher
than ‘CT-CA’. This is consistent with the fact that only these two types were broken and that ‘CT-
CT’ bonds have a higher probability of rupture. The maximum bond strain of ‘CT-N’ or ‘CA-N’
are evidently lower and cannot exceed those of the two broken types in the entire fracture range,

confirming that they cannot break and negligibly contribute to the ML bond breaking model.

Fracture behaviors by MLABT

Utilizing AL-DFT MLABT simulations, we can efficiently probe the fracture behaviors of poly-
mer networks at the atomic scale, combining the molecular precision and computational efficiency

of classical MD with bond-breaking fidelity approaching that of DFT. It is imperative to recognize,
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257 however, that both the lengthscale and timescale exert significant influence on the network topol-
238 0gy’s formation and its dynamical response. We focus on extracting physical insights, specifically
280 examining how the bond breaking events and fracture behaviors of polymer networks are modu-

200 lated by factors such as temperature, strain rates, cooling rates, and the degree of crosslinking.
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Figure 6: (a) Stress-strain curves of the same initial structure (98% crosslinked) simulated by
AL-DFT MLABT at three temperatures with the same strain rate of 10%/s. (b)-(c) Corresponding
accumulated number and rate of the bond breaking events during deformation. The unitless rate in
(c) is simply the derivative of the accumulated number in (b), with smoothing and normalization
for better visualization. The shadow regions represent the standard deviations induced by random-
ness in initial velocity generation over three independent trajectories, and the curves represent the
averaged results. The same settings are applied in subsequent figures.

202 First, we assessed the impact of temperature, held constant during deformation, on the fracture

203 behavior of thermosets. Figure 6 displays (a) the SSC, (b) the count of broken bonds, and (c) the
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rate of bond breakage (as deduced from the slope in (b)) at three distinct temperatures, 100 K, 300
K, and 500 K, in MLABT simulations of a 98% crosslinked system subjected to a strain rate of
10°/s. These temperatures are all below the glass transition temperature (Ty ~ 541 K). In general,
bond breaking events appear temperature-insensitive, with temperature only influencing the ulti-
mate stress as a consequence of the temperature effect before yielding. Specifically, a decrease in
temperature enhances the elastic modulus and the corresponding yield stress, in agreement with
previous experiments and simulations.*® However, the frequency of bond breakage events remain
consistent in the plastic regime, and consequently, the characteristic strains for fracture initiation,
peak stress, and ultimate failure also exhibit temperature independence. Only the stresses during
strain softening and hardening vary as a result of the effect on the elastic regime, which was also
observed in previous MD simulations without considering bond breaking.>" These findings suggest
that bond rupture in amorphous polymer networks may not be characterized as a simple activation
reaction. The potential reason may be related to heterogeneous local stresses that arise depending
on the global strain and the network topology.>!? Additional temperature-dependent behaviors in

33 could be attributed to factors

experiments, such as increased brittleness at lower temperatures,
like crystallinity, entanglements, or effects occurring over extended spatiotemporal scales.
Moreover, we find that the resultant stress is generally correlated with the bond breakage rate,
a trend consistently observed across all conditions evaluated in this study. As the count of bonds
on the edge of breaking surges during strain hardening, the cumulative stress also rises until the
bond breakage rate peaks, resulting in the ultimate stress. Following this, as the bond breaking rate
diminishes, so does the stress, until failure ensues. In addition, the thermal fluctuations mediated
by random initial velocity generation show a relatively small impact on the number of broken bonds
and the stress response during network deformation, though the bond breaking rate can fluctuate
more strongly (in Fig. 6¢) due to discreteness and randomness in individual bond breakages. The
total count of bonds required to rupture the thermoset is approximately 55, around 0.2% of the

total bonds or 1.5% of the potentially breakable bond types in the system, which is notably smaller

than the number of reactions needed for network gelation.
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Figure 7: (a) Stress-strain curves of the same initial structure (98% crosslinked) simulated by
MLABT with three strain rates at 300 K. (b)-(c) Corresponding number (b) and rate (c) of the
bond breaking events during deformation.

Next, we investigate the effect of strain rate on the thermoset fracture behavior. As shown in Fig. 7,
distinct from temperature, strain rate not only strongly affects the elastic behavior but also plastic
and fracture behaviors. In the elastic regime, a larger strain rate results in higher elastic modulus
and yield stress (Fig 7A), in agreement with previous experiments and simulations. *”#84-36 Thus,
a more noticeable strain softening regime is observed at larger strain rates. More interestingly, the
bond breaking occurs more rapidly at higher strain rates, although the characteristic strains for
fracture initiation (first bond breaking) and ultimate stress are almost independent of strain rate,

as shown in Fig. 7B and C. Consequently, more bonds are broken in deformation with a large

strain rate and the resultant ultimate stress is evidently reduced. The reason for this result is that
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at large strain rates with little stress release, bond breakages do not occur in the most productive
way, i.e., breaking apart the network using as few cuts as possible. Hence, the system could
remain connected even though a large number of bonds have broken, and as a result, the system
exhibits reduced ultimate stress and behaves more ductile at large strain rates, as shown in Fig. 7A.
Note that this effect might converge at low strain rates, as the stress is fully relaxed once a bond
breaks when the associated timescale is closer to or even longer than the stress field propagation
time, which is supported by the smaller difference in the effect when changing the strain rate from
10195 to 10%/s. Nevertheless, the MLABT results suggest a distinct disparity between effects of
strain rate and temperature within the plastic regime. A further demonstration on the breakdown

of their superposition is provided in the Supporting Information.
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Figure 8: (a) Stress-strain curves of polymer networks with the same topology (98% crosslinked)
but generated with different annealing (cooling) rates simulated by MLABT at 300 K and with a
strain rate of 10'%s. (b)-(c) Corresponding numbers and rates of the bond breaking events during
deformation.

Furthermore, we study the effect of cooling rate in the melt-quenching process for synthesizing
glassy thermosets on its bond breaking and fracture behavior by MLABT simulations. As glass
is a non-equilibrium state below the glass transition, the cooling rate and the associated timescale
for relaxation controls the temperature at which the supercooled liquid loses ergodicity and the
amorphous structure becomes “frozen”.>’ Specifically, a smaller cooling rate results in a lower
glass transition temperature, and thereby, a thermodynamically more stable glass state, i.e., a state
located lower in the potential energy landscape. These more stable glasses show distinct atomic

structures and materials properties compared to glasses with higher cooling rates, such as higher
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density and higher mechanical strength.”®° Such a cooling rate effect is observed in the elastic
regime of thermosets, as shown in Fig. 8A, as the elastic modulus and yield stress increase with
reduced cooling rates (details summarized in Table S1 of the Supporting Information). Note that
in the simulations, the initial structures have identical bonding topology but only are generated by
different cooling rates in melt-quenching simulations initial configurations from 800 K to 300 K
prior to deformation. Interestingly, the cooling rate effect does not survive in the plastic behaviors.
As strain increases in the strain softening and the initial part of the strain hardening (till strain~0.6),
the difference of stress induced in the elastic regime gradually disappears, suggesting that the
effect of the initial glassy structures diminishes. Consequently, the following bond breaking effects
and the fracture behavior are independent of the cooling rate, as shown in Fig. 8A-C. These
observations can be understood by considering that the cooling rate in general determines the
stability of initial glassy structures and therefore controls the elastic behavior (without structural
change), however, as strain increases, the strain-induced structural modulation becomes dominant
through the covalent bonded network, and the difference in the amorphous strained structures
becomes negligible. We should also note that this limited cooling rate effect is an outcome of

strong topological constraints of thermosets and the short length of strands used in the simulations.
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Figure 9: (a) Stress-strain curves simulated by MLABT for structures with different degrees of
crosslinking at 300 K and with a strain rate of 10%/s. (b)-(c) Corresponding numbers and rates of
the bond breaking events during deformation.

Finally, we study how the degree of crosslinking affects bond breakage and fracture behavior of
thermosets by MLABT simulations. In this work, the crosslinks are formed dynamically in MD
simulations of curing reactions, and thus the degree of crosslinking is controlled by how long
the curing process runs. As shown in Fig. 9, we prepare four structures with various degrees of
crosslinking from 77% to 98% (all gels) and simulate their deformation responses with MLABT
at 300 K with a strain rate of 10°/s. Note that in this work, we do not provide statistically averaged
results over various bonding topologies due to computational cost, however, the structures evalu-
ated herein with the four degrees of crosslinking are generated from the same curing reaction in an

effort to emphasize the influence of crosslinking degree.
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In the system with a higher degree of crosslinking, while the elastic behaviors are subtly
changed (due to smaller variations of crosslinking density®), the SSC in strain hardening in-
creases more rapidly, and reaches the ultimate stress at a smaller strain value, as shown in Fig.
9A. As the degree of crosslinking decreases, the ultimate stress shifts to a larger strain and the
peak value decreases. Specifically, when the crosslinking degree decreases from 98% to 77%, the
ultimate stress decreases by roughly 1/3 and the corresponding true strain increases by 1/3. This
is generally consistent with results of previous simulations using ReaxFF.* This behavior of SSC
can be understood from bond breakages in Fig. 9B and C. As expected, fewer bonds are broken in
systems with lower crosslinking degrees, consistent with the lower ultimate stress values. More-
over, the dominant bond breaking events, indicated by the maximum rate of bond breaking, occur
at larger strains, accounting for the shift of ultimate strain. Depending on specific modification of
bonding topology, the strain of fracture initiation might shift such that it is delayed to a larger strain
at aa crosslinking degree of 77%. We also note that although the effect of crosslinking degree is
revealed here, the relationship between network fracture and network topology is intriguing yet
more complex (the variance induced by topology at same degrees of crosslinking is illustrated in

Fig. S7 of the Supporting Information), which warrants further investigation.

Discussion

The AL-DFT MLABT framework stands out as a promising approach for accurately modeling
thermoset fracture, as bond breaking during fracture is performed at nearly quantum chemical
accuracy while computational cost is kept similar to that of classical MD. Specifically, the AL
modification of MLABT presents two distinct advantages: 1) Integration of AL enables incorpora-
tion of diverse training data across thermodynamic and configurational conditions, improving the
transferability of models to new conditions. ii) By actively pinpointing the most informative data
for training, the AL framework is roughly an order of magnitude more efficient in the generation

of training data than our previous MLABT model. This heightened efficiency permits utilization
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of more accurate (and computationally costly) QM methods, such as DFT.

Importantly, these two advantages of the AL-DFT MLABT framework manifest in the po-
tential generalizability of the methodology across chemical space, an area where other reactive
models (e.g. ReaxFF) can struggle. As MLABT leverages widely-accepted classical force-fields,
such as OPLS and Amber, as its baseline simulation method, the high performance of common
quantities such as density and low strain mechanical response is ensured across a broad chemical
space. By adding on a QM-quality bond breaking prediction, mediated by ML, to these classical
simulations, the MLABT approach is inherently adaptable to new chemistries for which accurate
classical force-fields exist. Moreover, the ML. component responsible for bond breaking is also
inherently adaptable as it leverages structural representations (SOAP vectors) and is informed by
QM calculations, making it agnostic to specific chemistries. This flexibility allows for the effi-
cient adaptation of the MLABT framework to new chemistries, a process further streamlined by
the AL approach introduced in this study. In contrast, empirical methods like ReaxFF demand
a cumbersome and iterative parameterization process.®! Transferability of the parameter sets in
ReaxFF is a well-known (and expected) deficiency compared to classical FF as the prediction task
required is more challenging.® In our testing as detailed in the supporting information, MLABT
and ReaxFF show generally consistent results in modeling network deformation, particularly on
the overall bond breakages. However, without constant computation of charge and bond topology
as in ReaxFF, MLABT is computationally more efficient by at least one order of magnitude. Pro-
vided these advantages, MLABT may be a suitable and easily implementable alternative to ReaxFF
for unparameterized chemistries, especially when a trusted classical FF is already known.

As mentioned in the Methods section, a minor limitation of the current MLABT implementa-
tion is the necessity for a small timestep (0.25 fs as opposed to 1 fs commonly used in standard MD
simulations). This issue is primarily due to the instability introduced by broken bonds when using
classical force fields. However, this drawback can be fixed in future developments of MLABT, ei-
ther through optimizing the force fields or by appending hydrogens to atoms involved in the bond

rupture. Importantly, the MLABT simulations conducted in this study did not employ these modi-
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fications, ensuring that our reported outcomes remain free from any influence of mechanoradicals
that could otherwise alter network dynamics and subsequent bond breakages. The role of these
mechanoradicals in subsequent bond breaking processes is a challenging topic reserved for future
works.

The computational efficiency of MLABT relative to other QM-informed bond-breaking ap-
proaches also enables a number of crucial insights into the nature of fracture in epoxy thermosets.
Specifically, we are able to simulate multiple replicas of our networks both in phase space and
topology with DFT accuracy at minimal computational cost. From this added computational sam-
pling, we observe that thermal fluctuations in the fracture process (as mediated by differing initial
seeds in the velocity distribution) have a small impact on the resulting fracture process until the
point of material failure. Although the exact bond breaking sites can differ due to randomness in
the initial velocity distribution, the variations in the SSC and bond breaking are small during strain
hardening. After the ultimate stress, these variations become larger due to accumulated topological
differences.

Importantly, the MLABT results demonstrate that the polymer network topology plays a more
important role in controlling fracture behavior than fine details of the polymer’s glassy structure.
Specifically, although the elastic mechanical properties depend on the cooling rate in the melt-
quenching of thermosets, the plastic properties and bond breakages are independent of it (Fig. 8),
suggesting that the influence of glassy structure blurs due to strain-induced rearrangement beyond
the elastic regime. On the other hand, the degree of crosslinking (Fig. 9) and the topology varia-
tion at the same degree (Fig. S7) primarily determine the fracture behavior, such as the ultimate
strain/stress and the fraction of broken bonds. This again confirms the importance of topological
perspective for understanding the fracture mechanisms of polymer networks. ’-%-3

Lastly, our results show that time and temperature, the superposition of which is often posited
to understand the viscoelastic behaviors of polymers, play different roles in the network fracture.
Specifically, temperature does not affect bond breakages but slightly changes the resultant stress

due to the local relaxation of glassy structures. However, the strain rate can strongly determine the
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strain-stress behavior by influencing the rate of bond breakages. At large strain rates, the strain-
induced structural evolution can propagate faster than the release of stress via network topology
immediately after bond scission. As a consequence, additional “unnecessary” bonds break, result-
ing in a more fragile network with lower ultimate stress. Note that although this physical scenario
seems reasonable from the atomistic perspective (also supported by the ReaxFF results in Fig. S6
of the Supporting Information), it cannot explain the general trend observed in experiments that a
decrease in temperature or an increase in strain rate leads to more brittle fracture behaviors. The
reason is that in experiments where deformation is much slower compared with stress release, the
bond breakages can occur in the most efficient way through networks and the difference in fraction
of broken bonds is tiny when varying deformation rates. This is consistent with the simulation
results in Fig. 7b where the differences become smaller when further decreasing the strain rate,
suggesting a possible convergence at strain rates close to those used in experiments. As such, the
ultimate stress on experimental timescales will be dominated by stress relaxation due to structural
reorganization. This is confirmed by our simulation results that show the stress after structural op-
timization at each deformation step is much lower than that without optimization, as shown in Fig.
S9 in the Supporting Information. In this context, the strain rate effect reported in the MLABT
simulations is mainly due to bond breaking events rather than long-term structural relaxation.
More importantly, the discrepancy with experiments is reflected in the long-recognized anomaly

of ductile fracture in the molecular modeling of thermosets, +-6>

a phenomenon whose root cause
is still under debate.% Given that the MLABT method offers QM-Ilevel accuracy in bond breaking,
yet still demonstrates ductile fracture, and considering the revealed atomistic strain-rate effect is
unlikely to contribute to a brittle fracture (when extrapolated at experimental strain rates), mod-
eling at larger length scales is imperative to bridge the gap between experiments and simulations.
One reason is that for typical simulation length scales, the crosslinking density (~0.1 mole/cm?)
significantly exceeds the experimental values (0.001-0.01 mole/cm?).67-%8 This discrepancy hin-

ders the formation of polymer chain entanglements in current molecular dynamics simulations of

thermosets. Another hypothesis is related to larger-scale structures, such as air pockets or pores.
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Air pockets or pores could potentially expedite the fracture towards the elastic regime and exhibit
a distinct temperature dependence through micro-structural reorganization. 7! One piece of sup-
porting evidence is that in experiments of thermoset films where length-scales are limited below
micrometers, the elongation can exceed 100% before failure,’? in better alignment with the be-
haviors in the simulations. These factors also contribute to the ultimate strength at fracture of the
material in the present simulations being greater than those in experiments. More detailed dis-
cussions are provided in the Supporting Information. Nevertheless, we believe that incorporating
larger length-scale structures in modeling is a promising direction for resolving these discrepan-
cies, and MLABT, owing to its efficient and accurate treatment of bond breaking, is well-suited for

extending to larger length-scales in diverse environments, including composites and interfaces.

Conclusion

We have combined AL with MLABT to create a framework for the atomistic modeling of ther-
moset fracture with DFT-accuracy and classical FF cost. This integration offers heightened pre-
dictive accuracy across thermodynamic and configurational space while simultaneously improving
efficiency during model training. Moreover, the adaptability of MLABT with AL enables re-
searchers to explore polymer fracture across diverse chemistries, provided a suitable classical FF,
avoiding the pitfalls of cumbersome parameterization in other reactive methods. We have applied
the MLABT framework to understand the molecular determinants of fracture in polymer networks,
finding that the network topology largely dictates fracture behaviors, while the intrinsic stability
of the glassy structures has little influence. Interestingly, strain rate, rather than temperature, pre-
dominantly impacts network fracture at atomic scale, deviating from conventional paradigms in
elasticity. Looking ahead, MLABT-based models of thermoset fracture form a potentially useful
basis for the establishment of chemically generalizable bond-breaking models applicable to a di-
verse set of polymer chemistries while leveraging the vast array of existing, and high-accuracy,

classical force-fields.

28



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

Supporting Information

Uncertainty and convergence of the AL MLABT model, effect of MLABT bond scanning fre-
quency on failure, comparison of MLABT with a simple model based on bond lenths, comparison
of MLABT with ReaxFF, effect of network topology on fracture, time-temperature superposition

in polymer network fracture, discussion on discrepancies with experiments.
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