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Bottom-up methods for coarse-grained (CG) molecular modeling are critically needed to establish rigorous links be-
tween atomistic reference data and reduced molecular representations. For a target molecule, the ideal reduced CG
representation is a function of both the conformational ensemble of the system and the target physical observable(s)
to be reproduced at the CG resolution. However, there is an absence of algorithms for selecting CG representations
of molecules from which complex properties, including molecular electronic structure, can be accurately modeled.
We introduce continuously gated message passing (CGMP), a graph neural network (GNN) method for atomically
decomposing molecular electronic structure sampled over conformational ensembles. CGMP integrates 3D-invariant
GNNs and a novel gated message passing system to continuously reduce the atomic degrees of freedom accessible for
electronic predictions, resulting in a one-shot importance ranking of atoms contributing to a target molecular property.
Moreover, CGMP provides the first approach by which to quantify the degeneracy of “good" CG representations condi-
tioned on specific prediction targets, facilitating the development of more transferable CG representations. We further
show how CGMP can be used to highlight multiatom correlations, illuminating a path to developing CG electronic
Hamiltonians in terms of interpretable collective variables for arbitrarily complex molecules.

I. INTRODUCTION

The identification of reduced representations of molecu-
lar systems is critical to extracting fundamental understand-
ing across chemical space. Within this scope, coarse-grained
(CG) modelling1–7 forms an essential quantitative framework
for deriving fundamental understanding of soft materials over
mesoscopic spatiotemporal scales. In the process of averag-
ing over or decimating superfluous molecular degrees of free-
dom, representations are simplified, interatomic interactions
are smoothed out, and accessible timesteps for molecular dy-
namics (MD) simulations can be increased, greatly accelerat-
ing simulations. These advantageous features of CG mod-
elling facilitate thermodynamic sampling that would other-
wise require computationally intractable calculations, if per-
formed at atomistic resolution.

While CG modelling is advantageous for long-time confor-
mational sampling, the lower resolution of CG conformations
introduces challenges for extracting the corresponding elec-
tronic structure of a system. In many applications, it is nec-
essary to understand the electronic properties of disordered
soft material morphologies,8 which traditionally necessitates
the reintroduction of all atomic degrees of freedom to enable
quantum chemical (QC) methods. To accomplish this, the
atomistic degrees of freedom lost in the coarsening process
must be reconstructed and re-sampled in the original all-atom
(AA) thermodynamic ensemble, conditioned on the specific
CG conformation of interest. A variety of methods collec-
tively termed “backmapping"9–18 have been developed to ad-
dress this problem, though the poor computational scaling and

chemical transferability of this paradigm strongly limits its ap-
plication to electronic property determination.

The incompatibility between reduced CG representations
and electronic structure analysis can be circumvented by iden-
tifying CG representations that preserve nuclear degrees of
freedom critical to the targeted electronic prediction task. This
approach reframes the challenge of selecting appropriate CG
representations into one of identifying the atomic degrees
of freedom that exhibit the strongest correlation with elec-
tronic structure variations over the full conformational ensem-
ble. In this vein, quantitative approaches to CG representa-
tion identification have been explored using topology-based
graph partitioning19,20 and continuous representation opti-
mization for topological21 and thermodynamic properties.22

While these results demonstrate the power of CG representa-
tion discovery, they lack extensibility to arbitrary molecular
prediction targets (e.g. electronic structure) and cannot pro-
vide importance rankings for possible CG representations.

Machine learning (ML) has recently found purchase in
computational chemistry.13,23–31 Graph-based neural net-
works (GNNs)32–37 in particular have enabled transferable
model development across diverse chemistries and multiple
prediction tasks by encoding known physical symmetries into
the GNN architecture38–40 and leveraging data enhancement
techniques.41 ML has also begun to enable CG representation
identification for structural reproduction,22 calculation of the
mapping entropy,42–44 and the matching of human-generated
CG maps.45 Such approaches aimed at identifying a minimal
basis of molecular degrees of freedom are closely related to
the emerging field of explainable artificial intelligence46–49

that aims to explain the predictions of GNNs in terms of node,
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edge, and subgraph specific features. While the field is in its
early phases, it is clear that such ML approaches hold tremen-
dous promise for the future of CG modeling.

In this article, we develop a novel continuously gated
message passing (CGMP) scheme for use with 3D-invariant
GNNs (Figure 1) to generate a hierarchy of CG representa-
tions of molecular graphs, optimized to specific molecular
prediction targets. Within CGMP, the choice of whether or
not to observe an atom in the GNN is defined by a differen-
tiable model parameter referred to as the coarsening "score",
rendering the GNN able to discriminate between important
and unimportant sets of atoms for any combination of predic-
tion task and resolution restraint. After detailing the CGMP
method, we apply CGMP to extract the importance hierarchy
of atomic degrees of freedom for a variety of electronic pre-
diction tasks in a complex organic semiconductor molecule.
First, through continuous lowering of the target resolution in
the loss function, we measure the optimal information limit
of arbitrary molecular observables for all possible CG reso-
lutions. Second, over the course of training runs, we sample
the inherent solution degeneracy of the coarsening problem
and quantify the resolution dependence of this degeneracy.
Finally, by calculating the covariance between atomic fluc-
tuations in the final layer of the GNN, we investigate high-
covariance links as a potential path to the development of
CG electronic models expressed in terms of physically inter-
pretable collective variables.

II. METHODS

CGMP (Figure 1) uses a series of gates applied to a 3D-
invariant GNN message-passing algorithm to exclude "unim-
portant" nodes (atoms) from contributing information to the
GNN prediction. This message passing architecture is com-
bined with a harmonic constraint on the total number of nodes
(atoms) that may be used by the GNN, which is changed dy-
namically throughout training. The result is a one-shot train-
ing of a GNN on data sampled from a conformational ensem-
ble that produces a hierarchy of atomic importances (and con-
sequently CG representations) for all resolutions of interest.
Importantly, CGMP is an atomic decimation style approach
to coarse-graining as opposed to the commonly used averag-
ing maps, in which CG beads are composed of linear com-
binations of atomic degrees of freedom.50 In this work, we
explore the use of CGMP by training on density functional
theory (DFT)-derived variations in electronic structure from
an MD-derived conformational ensemble, resulting in the pro-
duction of a hierarchy of atomic importance rankings for a va-
riety of electronic prediction tasks. The complete architecture
of the GNN incorporating CGMP is illustrated in Figure 2.

CGMP employs a custom modification of the ComENet35

3D-invariant GNN architecture. ComENet defines a reference
coordinate system for each graph node, based upon the direc-
tions to its nearest neighbors, then represents each graph edge
using the interatomic distance, as well as the local angles and
dihedrals with respect to the reference coordinates. This re-
sults in a representation which is still complete while main-

taining invariance to global rotations and translations. Further
mathematical details of ComENet and modifications appear in
the Appendix.

A. Node (Atom) Scores

The fundamental element of CGMP is its node-scoring
method. For context, the node scoring method used in CGMP
is distinct from common GNN pooling technique in two ways.
First, atom scores act as a gate on the message-passing algo-
rithm and directly exclude nodes from information aggrega-
tion at every layer of the GNN, simultaneously. This is in
contrast to standard pooling approaches that generate a low-
dimensional representation via projections of convolutions of
higher-dimensional data. Second, pooling approaches operate
using a discrete parameter to determine the pooled layer res-
olution. CGMP replaces this discrete parameter with a con-
tinuous resolution constraint using sparsity- and resolution-
focused terms in the model loss function.

The purpose of a node score in CGMP is to decide whether
or not to include an atom in the CG representation. If all
scores are set to 1, then the GNN is able to compute over
the full AA graph. When a node score is set to 0, it is re-
moved from consideration, and unable to contribute to the
prediction task (e.g. regression DFT-derived electronic struc-
ture). Then, when only M beads are allowed to have non-zero
scores, the GNN is acting directly on the CG representation
of the molecule. Importantly, our approach is constructed in
such a way that the transition from AA to CG is entirely dif-
ferentiable, enabling a continuous optimization process, and a
one-shot rendering of a CG map for each CG resolution.

In CGMP there are two separate node-level features: the
standard embedding vector and the score. The embedding
vector xi,1 is a learnable vector in the hidden space. This em-
bedding vector is the initial representation for each atom, and
shown at the top of the flow chart in Figure 2. The score pa-
rameter xi,2 is a single-valued parameter, and the score value
is the sigmoid of this parameter

gi = σ(xi,2) (1)

For any given training batch, we sample the node score values
using injected noise to aid training. The noise is only used for
calculating the output (regression) prediction; the score value
passed to the regularization loss is not stochastic.

xi,2 = xi,2 +λε (2)
ε ∼ N(0,1) (3)

Throughout the description of training, ε always refers to a
normally distributed variable. Numbering within any equa-
tion is only to indicate i.i.d. (independent and identically dis-
tributed) samples. The dimension of the random variable is
always that which matches the variable it is being added to.
Since λ will be a repeated term throughout the methods, a list
of all hyperparameter choices is provided in Table S1. The
purpose of the injected noise is to create higher batch vari-
ance, and thus lower regressive performance, when scores are
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FIG. 1. Description of the computational procedure employing CGMP for the identification of optimal reduced molecular representations.
a) A dataset is generated through a combination of atomistic MD simulations and DFT calculations on the sampled conformations. b) The
GNN with CGMP is trained with a continuously decreasing target resolution to determine the optimal representation for all resolutions in
one-shot. c) Interpretation and subsequent analysis of the atomic contributions to molecular electronic structure to inform CG representation
identification and model Hamiltonian elucidation.

undecided, or near 0.5. When scores are near 0 or 1, the sig-
moid curve flattens, and this noise has trivial impact. The
noise also has the effect of lowering the barrier in the loss
function, which encourages scores to select 0 or 1.

B. Node Embeddings

The CGMP procedure is performed using a message-
passing neural network (MPNN). In this network, the input to
the MPNN, zi, is a combination of the embedding and score,
with the tanh function bounding its range to disallow possible
competition between itself and the scoring function.

z(0)i = tanh(xi,1)gi +λ1ε1(1−gi)+λ2ε2 (4)

The first noise term in Eq. 4 means that the node score is
used to interpolate the node vector from pure signal to pure
noise as the node is coarsened out. This is one way in which
the GNN can smoothly transition from inferring on the full
molecule to subsets of atomic positions. The second noise
term in Eq. 4 is an additional noise to mitigate overfitting.

C. Graph Edges

The edges of the graph used for the GNN are derived from
a distance-based graph using the atomic positions and a cut-
off radius rC. For our experiments, we choose rC such that
its length multiplied by the number of message-passing layers
spans the molecular diameter. It is important to note that the
graph edge feature vectors depend on a larger neighborhood
than just two nodes. The reference coordinates for the cal-
culation are based on neighbors of each node, which may or

may not be included in the CG representation. If these nodes
are not removed from the graph, then information from the
AA representation can leak into the CG GNN. For example,
an edge feature vector contains torsional information, which
should not be able to be expressed with a CG representation
that only contains two nodes. Therefore, the distance calcula-
tion used to determine whether an edge is formed is modified
to include score values.

d(i, j) =
√
∥ri − r j∥2 +2rC ((1−gi)2 +(1−g j)2) (5)

This metric virtually shifts the "off" nodes to be far apart
from the "on" nodes, and thus keeps them from being included
in the GNN once score values become sufficiently low. This
metric further isolates each coarsened node and forces it to de-
gree 0, unable to communicate, regardless of how informative
any message could be.

D. Message Passing

The GNN employs an edge-weighted message-passing
scheme. The message is the hidden vector on the source node.
The edge weight is a combination of two weights. The initial
weight comes from the previously discussed graph featuriza-
tion.

ei j,k = NN(vk(i, j)) (6)

The feedforward neural network, NN, is a learnable model
component which maps the geometric information of the edge
feature vector to hidden space. The second edge weight is a
scalar gating function based on the score values for the nodes
involved in the edge.
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FIG. 2. The GNN architecture with score-based gated message pass-
ing used in CGMP. In contrast to pooling-based methods for repre-
sentation projection, these per-node parameters control information
flow at all layers of the network to ensure the GNN infers over a strict
subset of atomic positions.

gi j = (gig j)
2 (7)

The purpose of the nonlinearity in Eq. 7 is to separate the
score domains where coarsening a node begins to have an ef-
fect on GNN communication and where edges begin to be re-
moved from the graph. The MPNN update is then expressed
as

z(l+1)
i,k = W1z(l)i +W2 ∑

j∈N(i)
z(l)j ei j,kgi j (8)

∆z(l+1)
i = NN(cat(NN1(z

(l+1)
i,1 ),NN2(z

(l+1)
i,2 ))) (9)

z(l+1)
i = z(l)i +gi∆z(l+1)

i +λε(1−gi) (10)

Where W1 and W2 are weight matrices, NN1 and NN2 are
feedforward neural networks, with all involving trainable pa-
rameters of the full network. This update step, combining all
aggregated messages, is referred to as the interaction layer in
Figure 2. The final predicted energy is then generated by gated
sum-pooling over the graph.

Õ = ∑
i
(NN(zi)gi +λεgi(1−gi)) (11)

There are multiple distinct noisy components being added
to the message at every step. Each of these components is al-
ways designed to encourage decisive scores, and to have zero
magnitude at the appropriate limits. In the discrete limit of
this continuous model, all gates would take on binary values,
and noise terms would go to 0. This aspect of the design of
noise injection is crucial to make non-binary score solutions
less viable and facilitate model convergence. The impact of
noise injection on model performance and solution validity
is presented in Figures S6-8 of the Supplementary Materials
(SM).

E. Loss Function

The CGMP loss function is comprised of a weighted sum
of three functions described by

L = LMSE +λµLµ +λnLn (12)

The first term (LMSE ) is the regression error, measured by
the mean-squared error (MSE) associated with the property
prediction task (here, DFT-derived electronic structure val-
ues). The second component (Lµ ) is a penalty on the batch
mean of each node-level energy to prevent node contribu-
tions artificially drifting in energy space; training data with
nonzero mean is accounted for with a learnable biasing pa-
rameter added to the output.

Lµ = ∑
i
⟨Ei⟩2

batch (13)

The term Ei represents the per-node outputs at the last layer
of the graph, before sum-pooling. The third component (Ln)
is the node score term. Ln is composed of local entropic loss
terms on each node score that encourage binary score values,
as well as a global harmonic constraint on the number of CG
beads.

Ln = ∑
i
|(gi −∆L)(1−∆R −gi)|+λ

(
∑

i
gi −M

)2

(14)

The activation function for the score function is sigmoid,
which cannot reach 0 or 1 in a compact domain. This re-
sults in irrelevant nodes, with little coupling to other model
parameters, quickly reaching extremely large values in early
training before having to retread the same path when they are
inevitably coarsened out of the graph. By shifting the right-
hand minimum of the entropic loss by ∆R (set to 0.01 during
our experiments), we keep the solution space for all resolu-
tions within a bounded domain and allow for faster transitions
between resolutions. Shifting the score for an irrelevant node
only introduces minimal additional output noise in the final
GNN layer, while shifting an important node produces larger
effects in the message-passing layer. Therefore, some score
separation between relevant and irrelevant nodes is introduced
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before any coarsening pressure is applied. We set ∆L to 0, as
during our experiments we only reduce the target resolution.

Optimization of network parameters is performed with the
Adam optimizer, which was designed in part to be robust
to non-stationary objective functions.51 Empirically, we ob-
serve that the ability of the network to rapidly adjust atomic
scores to a changing target resolution is greatly diminished
when using other optimizers such as SGD with momentum.
Momentum-based optimization methods may carry over di-
minishing information from higher-resolution gradients into
the network parameter training trajectories even after the reso-
lution is lowered. However, this information cannot carry over
into network predictions, which are constrained by the GNN’s
computational graph. The restraint-based dynamic loss func-
tion used in CGMP is a novel approach compared to top-k
techniques52–54 which might form lower dimensional repre-
sentations using internal network constraints. We found sta-
bility in our optimization method over a large range of hy-
perparameter choices and prediction tasks. Hydrogens are
excluded from all molecular representations to simplify the
coarsening procedure. Noise ablation studies are included in
the SM (Figure S6-S8) to probe the impact of the score and
node injected noises on the performance and convergence of
CGMP.

III. RESULTS

A. Resolution Dependence of Electronic Prediction Accuracy

To demonstrate the performance of CGMP, we apply it to
identify optimal CG representations of the liquid crystalline
molecular semiconductor BTBT55 for four distinct electronic
prediction targets (encompassing 3 single-molecule and 1
pair-molecule electronic properties): the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecu-
lar orbital (LUMO) energy levels, the HOMO-LUMO gap,
and the HOMO-HOMO intermolecular electronic coupling
between a dimer of BTBT molecules. BTBT was selected
as a model system due to both its complex dependencies of
electronic structure on molecular configuration and the avail-
abilty of a high quality dataset for model training.56 Model
training, hyperparameters, and convergence behavior are dis-
cussed in Figure S1 of the SM. A discussion of model score
convergence to target resolution is included in Section VI of
the SM. In addition, while these results focus on the anal-
ysis of BTBT, we demonstrate transferability of the CGMP
method (with constant hyperparameters) to a different chem-
istry in Figures S9-10 of the SM.

We first show that the CG representations learned by a
one-shot CGMP trajectory exhibit high electronic prediction
accuracy at all sampled resolution. We performed a 1000-
epoch training run in which the number of CG beads, M,
was discretely interpolated from 32 heavy atoms to 2 over the
course of training by systematically changing the harmonic
constraint in the loss function. A comparison of our iterative
training to training directly to each target resolution was con-
ducted, but found to be inferior in both performance and effi-

ciency (see SM Figure S5). Note that for the HOMO-HOMO
coupling, the same CG map is being applied to each molecule
within the dimer, making it a prediction over 2M atomic posi-
tions. At the last epoch before reducing resolution, the model
was evaluated on the test set and used to calculate the coeffi-
cient of determination (R2). To ensure statistical robustness in
the development of CGMP, training was repeated 100 times
with different CGMP network initializations.
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FIG. 3. Coefficient of determination for HOMO, LUMO, HOMO-
LUMO Gap, and HOMO-HOMO coupling predictions using the
CGMP GNN model following equilibration at each CG resolution.
Error bars indicate standard deviation of ten repeated trials from in-
dependently trained CGMP GNN models.

Figure 3 demonstrates that CGMP achieves high predictive
accuracy across a broad set of electronic prediction tasks sam-
pled from a broad conformational space. As the results in Fig-
ure 3 are averaged over ten repeated trial runs, the low stan-
dard deviation of the resulting predictive accuracy ensures ro-
bustness across CGMP training. R2 decreases with the coars-
ening of the CG resolution, as is expected by the decimation
of atomic information the GNN can use to accomplish the re-
gression task, with the raw values of R2 being consistent with
previous work.56 As shown in SM Figure S5, these results
strongly outperform a baseline of randomly picking a repre-
sentation, both in mean and variance of the resultant R2 value.
Moreover, it is important to note that for a specific CG resolu-
tion, R2 can be systematically improved by explicitly learning
the noise associated with the CG prediction task using deep
kernel learning-based Electronic Coarse-Graining methods.57

However, as this technique is significantly more data inten-
sive, here we only report the R2 on the mean prediction, re-
sulting in an expected decrease in R2 with the coarsening of
the CG representation.

Examination of the resolution dependence of the R2 val-
ues in Figure 3 demonstrates complex dependencies of the
optimized CG resolution on the targeted output. In the ini-
tial stages of coarsening (CG resolution between 32-24) all
electronic prediction targets exhibit similar insensitivity to the
coarsening procedure; subsequent analysis of the representa-
tions demonstrates that for all electronic prediction tasks the
octyl sidechain is the first eight atoms to be coarsened out.
This result is consistent with the general understanding in the
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literature that alkyl sidechains do not contribute directly to the
electronic structure of the conjugated backbone.58 After the
side-chain has been decimated, the different electronic pre-
diction tasks exhibit distinct sensitivities to the target CG res-
olution used within CGMP. HOMO and LUMO energy pre-
dictions as a function of CG molecular conformation exhibit
the strongest dependence on CG resolution, which is likely re-
lated to the complex orbital structure that must be maintained
by the CG representation.56 Interestingly, the HOMO-LUMO
gap appears significantly less sensitive to the coarsening pro-
cess than either the HOMO or LUMO orbital - we hypoth-
esize that this result is likely due to fortuitous error cancel-
lation resulting from the simultaneous overlap of the HOMO
and LUMO orbitals on similar atoms.

Surprisingly, the HOMO-HOMO coupling appears the
most insensitive to CG resolution among all of the targeted
electronic prediction tasks. While the electronic coupling re-
sult is unexpected provided the complexity of orbital over-
lap functions entering into the calculation of the electronic
coupling, this result has a few potential explanations. First,
the electronic coupling exhibits an exponential dependence
on distance and orientation of the two molecules composing
the dimer, whereas the regression loss here simply uses the
raw value of the coupling. This will inevitably result in the
CGMP GNN regression being biased towards the reproduc-
tion of large values of the coupling as opposed to the expo-
nentially smaller values at the nodes of the wave function,
leading to artificially induced insensitivity to the CG resolu-
tion. While this might appear strange, learning the raw cou-
pling (as opposed to e.g. the log) is a common practice in
the literature59–61 and motivates our inclusion of the raw cou-
pling in Figure 3. Second, the insensitivity of the coupling
to the CG resolution is likely due to the fact that the separa-
tion of the centers of mass and relative orientations of the two
monomers are the largest contributors to the coupling, since
BTBT is a relatively rigid molecule. Figure 3 shows that the
HOMO-HOMO coupling performance drops precipitously at
approximately 5-6 beads, where the preservation of the rela-
tive orientations of the rigid bodies is no longer possible.

We also note the apparent increase in R2 with decreasing
resolution for resolutions above 15. Given that the GNN is
likely focusing on broad intermonomer distance relationships
and learning a much less complex function than the true, expo-
nentially varying coupling function, this appears to be a con-
vergence issue due to increased solution degeneracy at higher
resolutions. Most of the atoms are able to capture some degree
of the intermolecular distance, and are therefore given weight
in the solution, but only a subset of these atoms are able to
capture the relative molecular orientations. Since the inter-
molecular distance captures most of the variance of the elec-
tronic coupling function, this results in low-relevance atoms
being given excessive weight in the solution space for high
resolutions.

B. Sampling over Mapping Degeneracy

With the intention of CGMP being to produce the “best"
CG representation for a regression target over the full range
of CG resolutions, we next examine the stochasticity of the
training process in terms of the arrived at CG representations.
There is no a priori guarantee that CGMP will arrive at the
absolute best, or even the same CG representation, on every
randomized training run. Moreover, within the framework of
the generation of CG mappings, there is no theoretical prece-
dent for there being a single best CG representation for any
given target variable; indeed, strong degeneracy of CG repre-
sentations is well-known in the literature.62
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FIG. 4. Probability of a node (atom) being coarsened at a given CG
resolution, sampled over 100 repeated random network initializations
and training runs, shown here for (a) HOMO and (b) LUMO predic-
tion tasks. The coarsening procedure is observed to be monotonic,
such that at high resolutions any given atom is consistently included
in the representation. As the target resolution decreases, it is then
removed from the representation over a narrow distribution of reso-
lutions, and is afterwards consistently not available to the GNN. (c)
Indicates the correspondence between index numbering in (a) and (b)
and the atomic indices.

To explore CG representation degeneracy during CGMP
model training, we examine the ensemble of CG represen-
tations produced by repeated runs of the CGMP method for
BTBT using different initial weight and noise realizations.
Figure 4 a) and b) depict the probability that a particular atom
(labeling provided in Figure 4 c) is decimated at a given reso-
lution, optimized for the HOMO and LUMO prediction tasks,
respectively. These results are averaged over 100 repeated
random network initializations and subsequent training runs.
Zero probability in Figure 4 a) and b) indicates that an atom
is either always included for large target resolutions or never
included for low resolutions. The equivalent training trajecto-
ries for the HOMO-LUMO gap and HOMO-HOMO coupling
are provided in Figure S7 of the SM. For every observable, the
two most important atoms at the end of the coarsening proce-
dure are always determined to be atom labels 8 and 16. As the
GNN cannot make a meaningful prediction on a single atom,
the coarsening procedure was stopped at the CG resolution of
2 atoms.

Figure 4 shows that in the early coarsening process the car-
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bons of the alkyl chain, which do not contribute significantly
to any electronic prediction task, are decimated in order start-
ing from the end of the chain. This ordering is likely due to a
proximity-based hierarchy forming due to the distance-based
structure of the GNN computational graph, but is consistent
with the expectation that alkyl carbon atoms furthest from the
conjugated core are less important to the electronic structure
than those closest to the core. Moreover, the carbon atoms at
the end of the alkyl chain, due to lower communication with
the rest of the GNN, exhibit slightly higher degeneracy than
those closer to the conjugated core. At lower CG resolutions,
there exist similar clusters of atoms within the conjugated core
that, when sampled over a large number of trials, represent de-
generate coarsening choices which induce the same amount of
information loss. These clusters are highly correlated within
a connected block of resolutions and exhibit low overlap with
other atomic clusters. However, it is important to note that
atoms do not always exhibit close proximity in the chemi-
cal topology of the molecule. While this result might appear
counterintuitive, it is consistent with a normal mode represen-
tation of molecular vibrations in which delocalized vibrational
modes in the low-frequency domain can be coupled to the en-
ergetic changes of a single molecular orbital.

HOMO LUMOa) b)

FIG. 5. Five randomly selected maps produced by independent
CGMP runs fixed at a CG resolution of 12 beads, optimized for the
(a) HOMO and (b) LUMO prediction tasks.

To develop more insight into the importance of particular
atoms and functional groups to the prediction task, we exam-
ine samples of CG representations generated by independent
CGMP runs for a target CG resolution (Figure 4). Figure 5
a) and b) shows five selected CG mappings produced by in-
dependent CGMP runs, for the HOMO and LUMO energy
predictions, respectively. A CG resolution of 12 beads is se-
lected to emphasize effects in regions of high CG mapping
degeneracy, in which it can be understood if high degeneracy
regions can be attributed to delocalized structural contribu-
tions or balances between localized core regions of the chem-
ical structure. At the CG resolution of 12 beads, the preserved
chemical motifs of the molecule are consistently represented
for each prediction task: the C-C bond in the middle of the
main aromatic group (atoms 8 and 16), the flexible phenyl
dihedral (atoms 3, 4, 5, 18, 17, and 19), and the pednant oxy-
gen (atom 23). The HOMO prediction task places greater em-

phasis on the C-O bond and the phenyl dihedral, whereas the
LUMO prediction task intrinsically requires more information
about the benzothienobenzothiophene core to make effective
predictions. The difference between the families of maps gen-
erated for the HOMO and LUMO target variables, at a fixed
CG resolution, highlight their commonalities, helping inform
CG mapping design based on localized, physical variables as
opposed to a random collection of atoms. For instance, in the
HOMO prediction task, different atoms are kept on the right
hand side of the benzothienobenzothiophene group, suggest-
ing that the information contributing to the prediction isn’t a
particular atomic position or bond, but is instead the deforma-
tion of the plane on that side of the molecule.

To further quantify the degeneracy of “good" CG represen-
tations at a target CG resolution, we compute an entropy mea-
sure associated with each resolution by summing the proba-
bility values within Figure 4 a) and b) over the atomic indices
according to Eq. 15:

Ω j =−∑
i

pi j log pi j (15)

The computed resolution-dependent CG mapping entropies
are shown in Figure 6 for the HOMO, LUMO, HOMO-
LUMO gap, and HOMO-HOMO couplings. All observables
begin with a common coarsening procedure eliminating the
alkyl chain and follow a consistent entropy curve. As the CG
resolution decreases further, the shape of the CG mapping en-
tropy takes on its own character for each prediction target,
with high entropy regions representing where there are many
near-degenerate “good" CG representations. The observed
high degeneracy (high entropy) of CG mappings for single-
property targets across broad regions of Figure 6 provides an
opportunity for the quantitative development of multi-target-
compatible CG representations. Practical CG representations
should ideally be optimized to preserve as much information
about downstream prediction tasks as possible. If, at a given
resolution, all targets have unique, non-overlapping solutions
to the optimal mapping problem, then the combined solution
will necessitate a much higher CG resolution to achieve the
same performance on all tasks simultaneously. However, as
shown in Figure 6, all electronic targets considered in this
work exhibit notable mapping degeneracy across resolutions.
When combined with qualitative observations of similarities
between different target solutions (Figure 5), we conclude that
the solution space of CG representations for BTBT is broad
and that transferable CG representations across multiple tar-
get properties should be accessible. Critically, CGMP pro-
vides the first numerical optimization approach with which
to directly quantify the degeneracy of “good" CG representa-
tions optimized for specific prediction targets, facilitating the
development of more transferable CG representations.

C. Physical Significance of GNN Atomic Covariances

The output of the CGMP GNN is the sum of per-atom out-
put functions learned according to information aggregation
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FIG. 6. Mapping entropy for the considered variables, calculated us-
ing Eq. 15. All observables initially exhibit low mapping degeneracy,
as they all coarsen the alkyl chain. As the resolution decreases, de-
generacy generally increases due to physical and informational sym-
metries of the problem. This high degeneracy region suggests higher
likelihood of solution overlap between prediction tasks.

around each atom’s neighborhood. While these functions are
not intentionally optimized to distinguish one atom from an-
other, they are constructed from each atom’s local geometry,
and therefore carry information specific to the atom. For the
present interest of dissecting atomic importance and collective
variables from the dense conformational sampling of specific
chemistries, the GNN parameterization naturally converges to
atom-centered functions whose individual fluctuations corre-
spond to their relative contributions to the prediction task. We
propose that the correlations between these atomic outputs
correspond to the underlying collective variables driving con-
figurational changes in the molecular electronic structure.

To explore the nature of these multi-atom correlations, we
use the previously trained CGMP GNN at the all atom reso-
lution (32), and extract the outputs of the last layer prior to
sum pooling to generate a covariance matrix of outputs be-
tween each atom, sampled over the test set. Figure 7 shows
the average of these covariance matrices for the HOMO and
LUMO prediction tasks (Figure 7 a) and b), respectively) as
well as an overlay of the 20 largest off-diagonal edges onto the
molecular graph (Figure 7 c) and d)). The equivalent results
for the HOMO-LUMO gap and HOMO-HOMO coupling are
provided in Figure S8 of the SM. Large off-diagonal values
in Figure 7 a) and b) indicate high communication between
those atoms within the GNN; the set of these links forms
a task-specific network much sparser than the full computa-
tional graph that CGMP is performed over. In particular, the
strongest links correspond to physical bonds in the molecule
between atoms which survive until very low resolution in the
coarsening process. Atoms irrelevant to the target variable,
for example the alkyl chain, never meaningfully contribute to
the GNN output, even when there is no coarsening pressure
applied. Further discussion of the quantitative relationship
between the atomistic covariance matrix and the coarsening
process can be found in sections III and IV of the SM.

Interpretation of the covariances presented in Figure 7 c)
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FIG. 7. Element-wise square root of the covariance matrix of the last
layer of the GNN for (a) HOMO and (b) LUMO. Visualizations of
the element-wise square root of the covariance matrix for the HOMO
and LUMO projected onto the explicit molecular representation of
BTBT are also shown in (c) and (d), respectively. The top molecular
images in (c) and (d) show atomic standard deviations, which scale
with their contribution to the prediction task. The bottom molecular
images in (c) and (d) show the 12 highest covariance atomic relation-
ships. Only the 12 largest edges are shown for visual clarity.

and d) provide further pathways to identify critical collective
variables, and not just individual atoms, for CG representa-
tion development. Whereas this study has worked within the
decimation style of CG representation generation, the results
of Figure 7 c) and d) present a logical path forward to the de-
velopment of CG maps that average over atomic positions.
Target-optimized average CG maps would likely maximize
the covariance between between beads and minimize the co-
variance between atoms within a single bead. High covariance
links also present a starting point for creating effective mod-
els in terms of human-interpretable collective degrees of free-
dom. The covariance matrix presents a much sparser graph,
and therefore greatly reduced search space to look for high-
importance collective variables of the molecular conforma-
tion, over which one could build effective Hamiltonians for
the molecule’s electronic properties.

The highest-covariance edges in Figure 7 c) and d) span
both local and long-range interactions. The marginal change
in results from a reduced cutoff radius (see Figures S11 and
S12 in the Supplementary Materials) suggests that the elec-
tronic properties of interest can be accurately calculated as a
set of short-range interactions. Long-range covariances are
then a product of correlated conformational changes across
the molecule resulting in same-sign energy changes. Given
the correspondence between the atomistic covariance matrix
and lower-resolution performance, we hypothesize that the
atom-centered functions comprising the covariance matrix are
converging to a set of collective modes for the molecular func-
tion, as sampled over its thermodynamic distribution, which
will constitute the subject of future work.
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IV. DISCUSSION

Whereas this work focused on the decimation style of CG
mapping generation, there is considerable future work to do
to adapt the methodology to the generation of averaged style
CG maps in a similar one-shot, target-optimized fashion. The
symmetry in the indexing of CG beads presents challenges
in optimizing an averaging coarse-graining projection, though
initial work22 has been done to machine learn this category
of mappings. One limitation of applying such methods in the
context of the current CGMP model arises due to the chal-
lenges of incorporating symmetries dynamically during a sin-
gle training run - changing the resolution of an averaging map
is subject to both index exchange and particle exchange be-
tween beads, while our CGMP method simply removes or
adds another atom. Combining atoms into average CG beads
requires designing policies acting on neighborhoods of atoms
simultaneously, whereas CGMP designs a policy acting on in-
dividual atoms separately.

Emerging work63 has challenged this notion, using an un-
supervised approach to automatically form heterogeneous CG
representations over a chemically diverse space. It remains
an open question as to how to direct the training of this graph
partitioning method in a more supervised manner; future work
will seek to combine CGMP for learning electronically impor-
tant interatomic relationships with other potential techniques
for clustering-based representation learning. Obvious future
directions utilizing the results CGMP towards these ends in-
clude employing the covariance matrix of node energies out-
put by the GNN as an information-weighted graph over which
graph partitioning could occur. The full resolution covariance
matrix is predictive of coarsened model performance (SI), in-
dicating that this could form a potentially useful basis for vari-
ous spectral partitioning schemes. In addition, this covariance
data could be used in conjunction with normal mode analysis
of molecular vibrations to develop further strategies for as-
sessing map quality.56

Applications of CGMP to chemically diverse problems
presents several new challenges. First, the CGMP gates will
need to be expressed as functions of the atomic environment,
rather than node-specific parameters. Gate parameters could
also be replaced by an additional GNN layer, but such an
architecture would need to be extensively explored to deter-
mine practicality. Second, we have focused on a dataset of
diverse conformations for a single molecule, whereas increas-
ing chemical diversity would introduce a new dimension to
sample over, greatly increasing data costs. A more intense
study of the transferability between the conformational de-
pendencies of individual chemistries is needed to better under-
stand the computational scaling of chemically diverse coarse-
graining.

V. CONCLUSION

We introduce a novel message passing scheme for 3D-
invariant GNNs known as CGMP, from which atomic decom-
positions of complex prediction tasks can be extracted, facil-

itating the robust development of molecular CG representa-
tions. We illustrate how CGMP can be used to provide a
full hierarchy of property-optimized CG representations with
a one-shot training procedure. Further analysis of the gener-
ated representations provides an unprecedented look at the de-
generacy of “good" CG mapping representations optimized to
single-target prediction tasks. The observed high degeneracy
of “good" CG mapping representations across four common
electronic prediction targets provides considerable motivation
for the pursuit of multi-target optimized CG mapping opera-
tors that can serve as a foundations for chemically transfer-
able CG mapping generation. Moreover, we demonstrate how
CGMP can be used to extract physical interpretations of im-
portant atomic degrees of freedom, and how this data can be
used to seek average-based CG mapping representations. The
ability of CGMP to delineate the landscape of multi-target CG
representations in a numerically robust and high-performance
fashion promises an era of generalizable CG models across
chemical space.

VI. SUPPLEMENTARY MATERIAL

Training details and hyperparameters, training conver-
gence, interpreting coarsening through covariance, full-
resolution score distributions, alternative training strategies,
accounting for convergence errors, noise ablation studies, case
study of additional chemistry, comparison with lower GNN
cutoff radius, equivalent main text figures for other observ-
ables.
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Appendix A: ComENet Graph Featurization

The initial input to the GNN is the set of atomic indices
and coordinates belonging to the molecule. A distance cutoff
(model hyperparameter) is used to generate the edges of the
graph representation of the molecule. Each node is assigned
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a learned vector feature according to atomic index, and edges
are featurized using local geometric information. Specifically,
each edge is represented via a tuple (d,θ ,φ ,τ), where d is the
edge length, θ and φ are determined by the orientation of the
edge with respect to the atom’s local neighborhood, and τ is a
representation of the relative orientation of the two neighbor-
hoods involved in the edge.

1. Angle Calculation

Suppose a message is being passed from node j to node i.
The algorithm finds node i’s first- and second-nearest neigh-
bors, fi and f j, respectively (if j is i’s only neighbor, then
j = fi = si). The edge from i to fi and the ( fi, i,si) plane serve
as a reference axis and plane to define the local neighborhood
of i. θi j is then the angle( fi, i, j), and φi j is the angle between
the planes ( fi, i,si) and ( fi, i, j). To orient the neighborhood,
the algorithm then finds nodes fi j and f ji, which are reference
nodes that exclude the other member of the edge, and calcu-
late τi j = dih( fi j, i, j, f ji). Note the implication for low-degree
nodes: if j is i’s only neighbor, then θi j = φi j = τi j = 0. If i is
j’s only neighbor, then τi j = 0.

2. A Differentiable Reference Vector

The previous geometric calculations require that for each
edge the closest neighboring nodes not involved in the edge
are tracked, which is a multi-stage sorting process. As the
goal of this work is to represent the coarsening process in a
continuous and differential fashion, we introduce an alterna-
tive atomic neighborhood defined by a first reference vector,
fi j, based on a weighted sum of the full set of edge vectors. We
first define a vector (ui j) in the direction of each edge, scaled
by a length (ri j) and an optional edge score (wi j). The second
reference vector, si j, is then generated in the same fashion, but
projecting out any components parallel to the first reference
vector. This method has the advantage that, instead of using
an arbitrarily defined vector for each edge, one can employ a
single set of reference vectors for every edge of a node.

ui j =
wi j

r2
i j

ri j (A1)

f′i = ∑
j∈N(i)

ui j (A2)

s′i = ∑
j∈N(i)

(
ui j −

ui j · fi

10−9 + f 2
i

fi

)
(A3)

We then modify these initial representations to account for
decreasing node degrees through coarsening and remain con-
sistent with the behavior of ComENet. We fix behavior such
that a node with degree one has si = fi, and a node with de-
gree 0 has randomly assigned reference vectors. The values
of a degree 0 node’s reference vectors do not matter, as it does
not communicate with the rest of the graph, and outputs will

be gated to 0, but this assignment keeps gradient values stable
during coarsening.

fi = f′i +10−6
ε (A4)

si = s′i +10−2fi +10−6
ε (A5)

For an edge weight, we choose wi j = 2ReLU(gig j − 0.5).
This is a simple way of coupling node scores with the an-
gle calculation, but is not strictly necessary; more sophisti-
cated gating schemes could be developed, such as additional
gates for individual edges in the graph to further prune the
GNN computational graph. Edge gates could be a way to
provide further interpretation of the computation happening
within the GNN. As an example, partitioning the computa-
tional graph into two disconnected localized graphs over the
molecule would be a clear indication that correlations between
their outputs are purely due to delocalized, collective modes
over the molecular conformations, rather than communication
over long distances. Sparsifying the computational graph at a
given resolution breaks the physical symmetries that may be
present in the current representation and introduces a biased
path for future coarsening. As the present work is interested
in identifying the space of possible representations, we leave
investigation into edge gating parameters to future work.

3. Angles to Vector Features

After assigning each edge a tuple containing geometric in-
formation, these tuples are converted into feature vectors for
input to a neural network. ComENet generates two separate
feature vectors for the tuples (di j,θi j,φi j) and (di j,τi j). This
serves to have separate messages to communicate local neigh-
borhood and neighborhood orientation information. The en-
coding of each tuple is

v1(d,θ ,φ) = jl

(
βln

c
d
)

Y m
l (θ ,φ) (A6)

v2(d,τ) = jl

(
βln

c
d
)

Y 0
l (τ) (A7)

in which jl and Y m
l represent the Bessel and spherical har-

monic functions of appropriate degree and order. These vec-
tors are each projected via two-layer neural network to the
hidden dimension of the GNN, and used as an edge weight
for their own message-passing schemes (Equation 8). The re-
sultant node update (Equation 9) is a neural network-projected
concatenation of these two aggregated messages.
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29S. Zhang, M. Makoś, R. Jadrich, E. Kraka, K. Barros, B. Nebgen, S. Tretiak,
O. Isayev, N. Lubbers, R. Messerly, and J. Smith, “Exploring the frontiers

of chemistry with a general reactive machine learning potential,” (2023).
30S. Chennakesavalu, D. J. Toomer, and G. M. Rotskoff, “Ensuring thermo-

dynamic consistency with invertible coarse-graining,” J. Chem. Phys. 158,
124126 (2023).

31X. Fu, T. Xie, N. J. Rebello, B. Olsen, and T. S. Jaakkola, “Simulate Time-
integrated Coarse-grained Molecular Dynamics with Multi-scale Graph
Networks,” Transactions on Machine Learning Research (2023).

32B. E. Husic, N. E. Charron, D. Lemm, J. Wang, A. Pérez, M. Majewski,
A. Krämer, Y. Chen, S. Olsson, G. de Fabritiis, F. Noé, and C. Clementi,
“Coarse graining molecular dynamics with graph neural networks,” J.
Chem. Phys. 153, 194101 (2020).

33Z. Liu, L. Lin, Q. Jia, Z. Cheng, Y. Jiang, Y. Guo, and J. Ma, “Transfer-
able Multilevel Attention Neural Network for Accurate Prediction of Quan-
tum Chemistry Properties via Multitask Learning,” J. Chem. Inf. Model. 61,
1066–1082 (2021).

34W. Zhu, Y. Zhang, D. Zhao, J. Xu, and L. Wang, “HiGNN: A Hierarchi-
cal Informative Graph Neural Network for Molecular Property Prediction
Equipped with Feature-Wise Attention,” J. Chem. Inf. Model. 63, 43–55
(2023).

35L. Wang, Y. Liu, Y. Lin, H. Liu, and S. Ji, “ComENet: Towards Complete
and Efficient Message Passing for 3D Molecular Graphs,” (2022).

36K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R.
Müller, “SchNet – A deep learning architecture for molecules and materi-
als,” J. Chem. Phys. 148, 241722 (2018).

37V. Fung, J. Zhang, E. Juarez, and B. G. Sumpter, “Benchmarking graph
neural networks for materials chemistry,” npj Comput. Mater. 7, 1–8 (2021).

38Z. Qiao, M. Welborn, A. Anandkumar, F. R. Manby, and T. F. Miller, III,
“OrbNet: Deep learning for quantum chemistry using symmetry-adapted
atomic-orbital features,” J. Chem. Phys. 153, 124111 (2020).

39T. D. Loose, P. G. Sahrmann, T. S. Qu, and G. A. Voth, “Coarse-Graining
with Equivariant Neural Networks: A Path Towards Accurate and Data-
Efficient Models,” (2023).

40S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth,
N. Molinari, T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials,” Nat Com-
mun 13, 2453 (2022).

41A. Krämer, A. E. P. Durumeric, N. E. Charron, Y. Chen, C. Clementi,
and F. Noé, “Statistically Optimal Force Aggregation for Coarse-Graining
Molecular Dynamics,” J. Phys. Chem. Lett. 14, 3970–3979 (2023).

42M. Giulini, R. Menichetti, M. S. Shell, and R. Potestio, “An Information-
Theory-Based Approach for Optimal Model Reduction of Biomolecules,”
J. Chem. Theory Comput. 16, 6795–6813 (2020).

43F. Errica, M. Giulini, D. Bacciu, R. Menichetti, A. Micheli, and R. Potes-
tio, “A Deep Graph Network–Enhanced Sampling Approach to Efficiently
Explore the Space of Reduced Representations of Proteins,” Frontiers in
Molecular Biosciences 8 (2021).

44R. Menichetti, M. Giulini, and R. Potestio, “A journey through mapping
space: characterising the statistical and metric properties of reduced repre-
sentations of macromolecules,” Eur. Phys. J. B 94, 204 (2021).

45Z. Li, G. P. Wellawatte, M. Chakraborty, H. A. Gandhi, C. Xu, and A. D.
White, “Graph neural network based coarse-grained mapping prediction,”
Chem. Sci. 11, 9524–9531 (2020).

46A. Mastropietro, G. Pasculli, C. Feldmann, R. Rodríguez-Pérez, and
J. Bajorath, “EdgeSHAPer: Bond-centric Shapley value-based explanation
method for graph neural networks,” iScience 25, 105043 (2022).

47S. Zhang, F. Zhu, J. Yan, R. Zhao, and X. Yang, “DOTIN: Dropping Task-
Irrelevant Nodes for GNNs,” (2022).

48R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNEx-
plainer: Generating Explanations for Graph Neural Networks,” (2019).

49H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in Graph Neural Net-
works: A Taxonomic Survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 5782–5799 (2023).

50W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth,
A. Das, and H. C. Andersen, “The multiscale coarse-graining method. I.
A rigorous bridge between atomistic and coarse-grained models,” J Chem
Phys 128, 244114 (2008).

51D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
(2017).

52Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hi-
erarchical Graph Representation Learning with Differentiable Pooling,” in



12

Advances in Neural Information Processing Systems, Vol. 31 (Curran As-
sociates, Inc., 2018).

53J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proceed-
ings of the 36th International Conference on Machine Learning, Proceed-
ings of Machine Learning Research, Vol. 97, edited by K. Chaudhuri and
R. Salakhutdinov (PMLR, 2019) pp. 3734–3743.

54H. Gao, Y. Liu, and S. Ji, “Topology-Aware Graph Pooling Networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 4512–
4518 (2021).

55M. J. Han, D. Wei, Y. H. Kim, H. Ahn, T. J. Shin, N. A. Clark, D. M.
Walba, and D. K. Yoon, “Highly Oriented Liquid Crystal Semiconductor
for Organic Field-Effect Transistors,” ACS Cent. Sci. 4, 1495–1502 (2018).

56C.-I. Wang, J. C. Maier, and N. E. Jackson, “Identifying Coarse-Grained
Representations for Electronic Predictions,” J. Chem. Theory Comput. 19,
4982–4990 (2023).

57J. C. Maier and N. E. Jackson, “Bypassing backmapping: Coarse-grained
electronic property distributions using heteroscedastic Gaussian processes,”
J. Chem. Phys. 157, 174102 (2022).

58C. Risko, M. D. McGehee, and J.-L. Brédas, “A quantum-chemical per-
spective into low optical-gap polymers for highly-efficient organic solar
cells,” Chem. Sci. 2, 1200–1218 (2011).

59F. Musil, S. De, J. Yang, J. E. Campbell, G. M. Day, and M. Ceriotti, “Ma-
chine learning for the structure–energy–property landscapes of molecular
crystals,” Chem. Sci. 9, 1289–1300 (2018).

60C.-I. Wang, M. K. E. Braza, G. C. Claudio, R. B. Nellas, and C.-P. Hsu,
“Machine Learning for Predicting Electron Transfer Coupling,” J. Phys.
Chem. A 123, 7792–7802 (2019).

61C.-I. Wang, I. Joanito, C.-F. Lan, and C.-P. Hsu, “Artificial neural net-
works for predicting charge transfer coupling,” J. Chem. Phys. 153, 214113
(2020).

62T. T. Foley, K. M. Kidder, M. S. Shell, and W. G. Noid, “Exploring the
landscape of model representations,” Proceedings of the National Academy
of Sciences 117, 24061–24068 (2020).

63J. Lederer, M. Gastegger, K. T. Schütt, M. Kampffmeyer, K.-R. Müller, and
O. T. Unke, “Automatic Identification of Chemical Moieties,” Phys. Chem.
Chem. Phys. (2023), 10.1039/D3CP03845A.


