

1 **Title Page:**

2 **Title:** Foliar disease incidence in a tropical seedling community is density dependent and varies
3 along a regional precipitation gradient.

4 **Author Details:** Valerie R. Milici^{*1,2}, Liza S. Comita^{3,4}, and Robert Bagchi¹

5

6 1. Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N.

7 Eagleville Road, Unit 3043, Storrs, Connecticut 06269-3043, USA

8 2. Department of Ecology and Evolutionary Biology, University of Arizona, PO Box
9 210088, Tucson, AZ, 85721, USA

10 3. School of the Environment, Yale University, New Haven, CT, 06511 USA

11 4. Smithsonian Tropical Research Institute, Panama City, Republic of Panama

12

13 Author Emails:

14 Valerie Milici: valeriemilici@gmail.com; Liza Comita: liza.comita@yale.edu; Robert Bagchi:
15 robert.bagchi@uconn.edu

16

17 *Corresponding author: Valerie Milici; Address: Department of Ecology and Evolutionary
18 Biology, University of Arizona, PO Box 210088, Tucson, AZ, 85721, USA; Email:
19 valeriemilici@gmail.com

20

21 **Acknowledgements:**

22 We would like to thank Joe Wright, Greg Gilbert, Javier Ballesteros, and David Brassfield for
23 their contributions to project design and data collection, Andres Hernandez, and Omar

24 Hernandez for their lessons in tropical seedling identification, and Carlos Garcia-Robledo, Carl
25 Schlichting, and Jonathan Klassen for their comments on initial drafts of this manuscript, and the
26 associate editor and anonymous reviewers whose comments improved this manuscript. We also
27 thank Joe Wright for allowing us to use his seed mass and seed dispersal data. We would also
28 like to thank the Smithsonian Tropical Research Institute for supporting this research and
29 MiAmbiente for the permit (no. SE/P-6-19) that allowed us to carry out this work. This research
30 was supported by funding to V.R.M (Tinker Foundation, El Instituto, The University of
31 Connecticut, APS: Lewis and Clark Fellowship, STRI). L.S.C. acknowledges the support of the
32 National Science Foundation (DEB-1845403). The authors declare no conflict of interest.

33

34 **Conflict of Interest:** The authors declare no conflict of interest.

35

36 **Author Contributions:** Valerie Milici and Robert Bagchi developed the initial ideas, which
37 were refined by Liza Comita. Valerie Milici collected and analysed the data and drafted the
38 manuscript. Liza Comita and Robert Bagchi contributed to revisions and the final manuscript.

39

40 **Data Accessibility:** The data and code associated with this study are available in the following
41 Zenodo repositories: Data – 10.5821/zenodo.10456097, Code - 10.5281/zenodo.10456335

42

43

1 **Abstract:**

2 1. Many studies identify fungal and oomycete phytopathogens as natural enemies capable of
3 influencing plant species composition and promoting diversity in plant communities.
4 However, little is known about how plant-pathogen interactions vary along regional
5 abiotic gradients or with tree species characteristics, which limits our understanding of
6 the causes of variation in tree species richness.

7 2. We surveyed 10,756 seedlings from 272 tree species for disease symptoms along a mean
8 annual precipitation gradient in the tropical wet forests of Central Panama for three
9 months in the early wet season (June – August) and two months in the following dry
10 season (March - April). Over 99% of observed disease symptoms were caused by
11 necrotrophic foliar pathogens, while less than 1% of symptoms were attributed to
12 soilborne pathogens. Foliar disease incidence was inversely related to mean annual
13 precipitation, a pattern which may be due to greater disease susceptibility among dry
14 forest species.

15 3. Foliar disease incidence increased with conspecific seedling density but did not respond
16 to the proximity of conspecific adults. Although foliar disease incidence decreased as
17 mean annual precipitation increased, the strength of conspecific density- or distance-
18 dependence was independent of the precipitation gradient.

19 4. Seedlings of common tree species and species dispersed by non-flying mammals had a
20 higher risk of foliar pathogen incidence. Increased disease in common species may help
21 reduce their dominance.

22 5. **Synthesis:** The increases in foliar pathogen incidence with conspecific seedling density,
23 species abundance, and dispersal mechanism indicate that foliar disease incidence is non-

random and may contribute to the regulation of tropical plant communities and species coexistence. Furthermore, the relationships between foliar disease incidence, dispersal mechanism, and precipitation suggest plant-pathogen interactions could shift as a response to climate change and disruption of the disperser community.

Resumen:

1. Muchos estudios han identificaban a los fitopatógenos fúngicos y oomicetos como enemigos naturales con capaz de influir la composición de especies de plantas y promover la diversidad en las comunidades vegetales. Sin embargo, se sabe poco sobre cómo varían las interacciones planta-patógeno a lo largo de gradientes abióticos regionales o con las características de las especies de árboles, lo que limita nuestra comprensión de las causas de la variación en la riqueza de especies de árboles.
2. Encuestemos 10,756 plántulas pertenecientes a 272 especies de árboles, observando síntomas de enfermedades a lo largo de un gradiente de precipitación media anual en los bosques húmedos tropicales de Panamá Central. Cumplimos el estudio durante tres meses en la temporada de lluvias (junio-agosto) y dos meses en la siguiente temporada seca (marzo-abril). Más del 99% de los síntomas observados fueron causados por fitopatógenos necrótrofos foliares, mientras que menos de 1% de los síntomas se atribuyeron a fitopatógenos del suelo. La incidencia de enfermedades foliares mostro una relación inversa con la precipitación media anual, un patrón que podría deberse a una mayor susceptibilidad a enfermedades entre las especies de bosques secos.
3. La incidencia de enfermedades foliares aumentó con la densidad de plántulas conspecíficos, pero no respondió a la proximidad de adultos conspecíficos. Aunque la incidencia de enfermedad foliar disminuyó a medida que aumentaba la precipitación

47 media anual, el efecto de la dependencia de la densidad o la proximidad conspecífico fue
48 independiente de la gradiente de precipitación.

49 4. Las plántulas de especies comunes y especies dispersadas por mamíferos no voladores
50 tenían un riesgo más alto de incidencia de patógenos foliares. Un aumento de
51 enfermedades en especies comunes puede ayudar a reducir su dominancia.
52 5. **Síntesis:** Los aumentos en la incidencia de patógenos foliares con la densidad de
53 plántulas conspecíficos, la abundancia de especies, y el mecanismo de dispersión indican
54 que la incidencia de enfermedades foliares no es aleatoria y puede contribuir a la
55 regulación de comunidades vegetales tropicales y a la coexistencia de especies. Además,
56 las relaciones entre la incidencia de enfermedades foliares, el mecanismo de dispersión, y
57 precipitación sugieren que las interacciones planta-patógenos podrían cambiar como
58 respuesta al cambio climático y a la alteración de la comunidad dispersores.

59 **Key Words:** plant-pathogen interactions, Janzen-Connell hypothesis, tropical tree diversity,
60 precipitation gradient, seedling disease, Panama, foliar pathogens

61 **Introduction:**

62 Fungal and oomycete phytopathogens (hereafter pathogens) have a well-established role in
63 tropical seedling dynamics (Augspurger, 1984; Bagchi et al., 2014; Eck et al., 2019; Mangan et
64 al., 2010). Pathogens can increase the diversity of seedling assemblages (Bagchi et al., 2014;
65 Krishnadas et al., 2018; Mangan et al., 2010). Many studies and experiments find that pathogens
66 disproportionately attack seedlings occurring at high conspecific densities (Bell et al., 2006;
67 Gilbert et al., 2001) or close to conspecific adults (Negative Conspecific Density/Distance
68 Dependence, NCDD; Augspurger, 1984; Augspurger & Kelly, 1984; Gilbert et al., 2001; Howe
69 et al., 1985), as predicted by the Janzen-Connell hypothesis (Connell, 1971; Janzen, 1970). In

70 young seedlings, pathogen-driven NCDD can be caused by soilborne pathogens, which infect
71 roots (e.g., Augspurger, 1984), or foliar pathogens, which infect leaves (e.g., X. Liu et al., 2022),
72 but it is unclear what their relative contributions to NCDD are. Additionally, species typically
73 restricted to drier forests and shade-intolerant species are particularly susceptible to pathogen
74 attack, which may limit their distributions and reinforce abiotic niches (McCarthy-Neumann &
75 Kobe, 2008; Spear et al., 2015; Spear & Broders, 2021). Taken together, the literature suggests
76 that pathogens play an integral role in structuring tropical tree communities (Comita & Stump,
77 2020; Milici et al., 2020; Terborgh, 2020).

78 Manipulative experiments that connect pathogens to patterns of NCDD in seedlings (e.g.,
79 by inhibiting fungi via fungicides) are frequently restricted to small spatial scales of a few square
80 meters (e.g., Bagchi et al., 2014; Hazelwood et al., 2021; Mangan et al., 2010; McCarthy-
81 Neumann & Kobe, 2008). Characterizing patterns of pathogen attack on seedlings across larger,
82 regional, scales is nigh impossible with manipulative experiments. Although large-scale
83 examinations of disease patterns are generally more feasible with observational studies, studies
84 of regional variation in pathogen impacts are uncommon in tropical forests. Direct observations
85 of pathogen incidence in seedling assemblages across multiple forest sites, especially through the
86 crucial first year of a seedling's life, enable a wider-scale view of their response to the
87 distribution and characteristics of their hosts. Such work also allows us to observe if pathogen
88 attack is density-dependent at large spatial scales, and whether any density dependence varies
89 seasonally, across regional abiotic gradients, and among species.

90 Pathogen pressure on seedlings likely varies throughout the year in seasonal tropical
91 forests. The moist conditions during the rainy season favour pathogen transmission between
92 seedlings, while the lack of rainfall during the dry season creates poor conditions for the

93 transmission of foliar and soilborne pathogens. Furthermore, in the seasonal tropical forests of
94 Panama, the onset of the rainy season coincides with the peak in germination (Garwood, 1983),
95 and seedlings are most susceptible to pathogens in the weeks following germination (Garrett,
96 1970). Thus, pathogen pressure on seedlings may be highest at the start of the rainy season and
97 diminish towards its end. This pattern has been observed in soilborne pathogen attack on the
98 tropical tree species *Platypodium elegans* (Augspurger, 1983), and may be generalizable to other
99 species. Conversely, it may take time for pathogens to find and infect a suitable host, and
100 pathogen pressure may be initially low and increase throughout the rainy season; a pattern that
101 has been observed for foliar fungi on trees and shrubs in Panama (Piepenbring et al., 2015). We
102 know of no study that has systematically surveyed tropical forest seedlings at a community scale
103 to establish temporal patterns in the incidence of either soilborne or foliar disease.

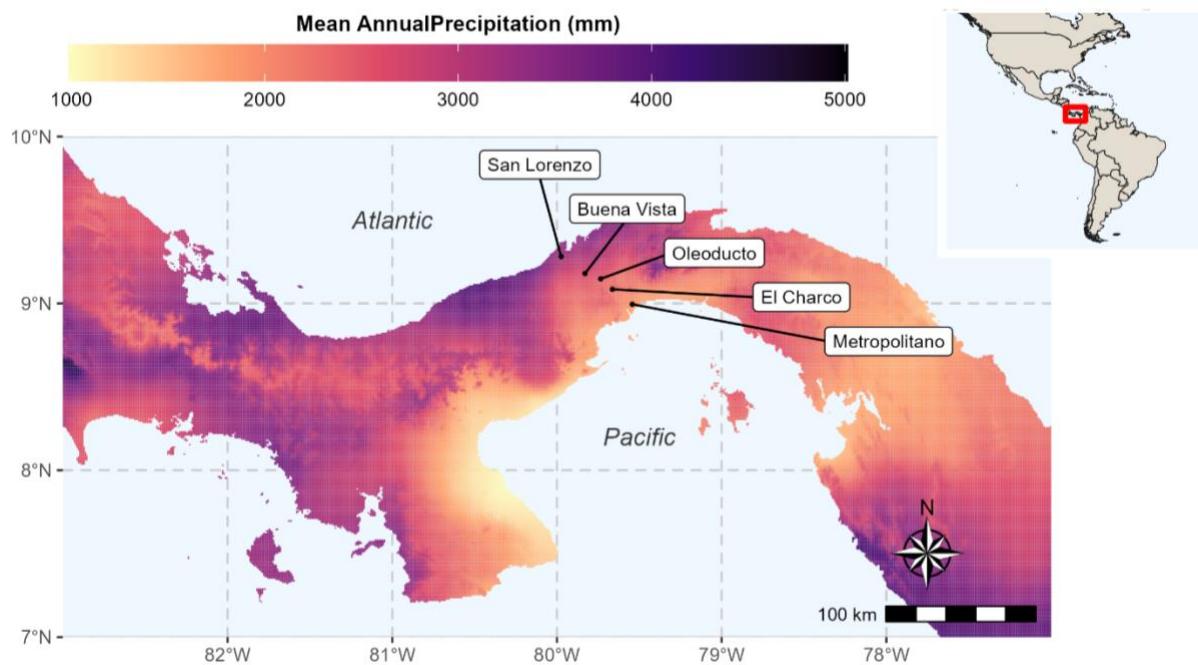
104 Pathogen-seedling interactions are also likely to vary along regional abiotic gradients,
105 potentially leading to pathogens influencing regional variation in plant community composition.
106 Moisture is thought to be an important abiotic modifier of plant-pathogen interactions at the
107 community level (Gillett, 1962; Lebrija-Trejos et al., 2023; Y. Liu & He, 2019) and a
108 strengthening of pathogen-caused NCDD in moist areas has been hypothesized as an explanation
109 for the positive relationship between precipitation and tree species richness that is commonly
110 observed in the American tropics (Bever et al., 2010; Givnish, 1999; Milici et al., 2020). The
111 interaction between moisture, pathogens, and their plant hosts has been extensively researched in
112 agroecosystems, showing that pathogen outbreaks are generally more severe under wetter
113 conditions (Velásquez et al., 2018), which has also been observed in tropical tree seedlings
114 (Swinfield et al., 2012). However, wet forest tree seedlings appear less susceptible to pathogen
115 damage and death than dry forest tree seedlings (Spear et al., 2015). This may be caused by a

116 growth-defensive trade-off where wet forest species are more slow-growing but better defended
117 against natural enemies than dry forest species (Coley et al., 1985). Thus, although pathogens
118 may benefit from wetter conditions, variation in plant traits associated with defence may counter
119 this effect.

120 Several plant species traits and demographic characteristics may be related to disease
121 susceptibility: for example, seed mass, rarity, and seed dispersal mechanism. Smaller-seeded
122 species may be more susceptible to disease because they are less well-provisioned than larger-
123 seeded species (Dalling et al., 2011). Adult abundance may also affect disease patterns in the
124 seedling community. When adults of a given species are locally abundant this may result in the
125 accumulation of host-specific pathogens and cause their seedlings to experience increased
126 disease incidence and mortality (Bachelot et al., 2017; Liang et al., 2016; Y. Liu et al., 2015).
127 Conversely, the small population sizes of rare species can result in lower defence-gene diversity,
128 and increase their susceptibility to pathogens (Marden et al., 2017). Dispersal mechanism may
129 also be related to disease incidence patterns because it is during dispersal that seeds may move
130 into enemy-free space (Howe & Smallwood, 1982). Species that are highly sensitive to
131 pathogens may be under high selective pressure to disperse far away from their parent (Eck et al.,
132 2019). Bat dispersal may successfully disperse seeds away from natural enemies (Sugiyama et
133 al., 2018) and endozoochorous bird dispersal may cleanse seeds of pathogens to reduce disease
134 incidence (Fricke et al., 2013), but it is uncertain if all dispersal modes are equally helpful for
135 evading pathogen infection.

136 While there is considerable evidence suggesting that pathogens influence tree
137 composition (e.g., Augspurger & Kelly, 1984; Bagchi et al., 2014; Gilbert et al., 2001; Mangan
138 et al., 2010; Spear et al., 2015), we lack a full understanding of how disease incidence varies

139 among species and in response to temporal or regional abiotic variation, particularly in highly
140 diverse tropical tree communities. To identify patterns in pathogen infection and sources of
141 variation, we surveyed tree seedling recruits for symptoms of pathogen infection within five
142 forest plots along a regional gradient of mean annual precipitation in central Panama. Surveys
143 were conducted in both the wet and dry season and predominantly encountered foliar pathogens.
144 These data were used to test the following predictions:


145 (i) Pathogen incidence will increase as time since germination progresses and will
146 intensify with mean annual precipitation across a regional precipitation gradient.
147 (ii) Pathogen incidence on seedlings will be greatest for locally abundant species and
148 small-seeded species, and will vary depending on dispersal agents.
149 (iii) Pathogen incidence will increase with proximity to conspecific adults and/or the
150 local density of conspecific seedlings and this relationship will strengthen with
151 increasing mean annual precipitation.

152
153 **Methods:**

154 **Study Sites**

155 Seedling surveys were conducted within the forests of central Panama, along a regional
156 precipitation gradient (Fig. 1; Table 1). Mean annual precipitation (MAP) across these sites
157 ranges from near the lower limit for tropical wet forests (1700 mm y^{-1} ; Richards et al., 1996) to
158 almost double that amount. We did not include truly arid forests in our study. We conducted the
159 surveys in five 1-ha (100 m x 100 m) forest plots, all of which are part of the network of 65 1-ha
160 ForestGEO plots found across Panama (Condit et al., 2013, 2022). The plots were chosen
161 because they span almost the entirety of the regional precipitation gradient across the canal zone
162 of Panama. Mean annual precipitation at these sites ranged from 1874 to 2848 mm, with a 4-5

163 month dry season occurring between December and May (Condit et al., 2013). The trees within
164 each plot are censused every five years, and all stems ≥ 1 cm dbh are tagged, identified to
165 species, and mapped (Condit, 1998b). We obtained permission to work at these sites through the
166 Panamanian Ministerio de Ambiente (permit number: SE/P-6-19).

167
168 **Figure 1:** A map of the locations of the five forest plots used in this study. The sites were
169 selected because they span nearly the entirety of the annual precipitation gradient in Panama.
170 Summary information for each site is provided in Table 1.

171 **Seedling Surveys**

172 We conducted monthly surveys of seedling disease at each of our five sites for three months
173 during the early rainy season (June – August 2018) and two months during the late dry season
174 (March & April 2019) for a total of five surveys per site. Wet season surveys coincided with the
175 germination of many tree species (Garwood, 1983) to observe pathogen infection in the weeks
176 and months immediately following germination, when seedlings are most-vulnerable (Garrett,
177 1970). Dry season surveys were conducted towards the end of the dry season when seedlings are

178 most likely to experience drought stress and have been exposed to pathogens for many months
179 (Piepenbring et al., 2015).

180 A survey consisted of ten 10 x 1 m belt transects, whose locations were randomly
181 assigned and adjusted to avoid overlap. For each survey, ten new transects were selected at a site,
182 so that each transect represented a unique sample of seedlings. We completed novel sets of
183 transects during each survey to maximize the number of seedling and tree species included in our
184 study because tropical seedling densities are generally quite low and unevenly distributed across
185 the forest floor (Comita et al., 2010). Our approach allowed us to quickly assess a large number
186 of seedlings for symptoms. However, a trade-off of this study design is that we were unable to
187 track individual seedling performance and therefore the consequences of observed seedling
188 infections were unknown. Along each transect, leaf litter was carefully removed to expose small
189 seedlings, and all tree seedlings were identified to species and categorized as symptomatic or
190 asymptomatic of infection. A seedling was identified as symptomatic of foliar disease if at least
191 20% of one leaf affected by necrotic lesions, or if they exhibited the orange-yellow spots or dry
192 white coating associated with rust and downy or powdery mildew disease. A seedling was
193 identified as symptomatic of soilborne disease if they exhibited a wrinkling and wilting of the
194 stem at the soil interface consistent with vascular wilt caused by soilborne pathogens. Locations
195 of seedlings were recorded to the nearest 1 m to allow calculation of local conspecific and
196 heterospecific seedling densities and possible effects of nearby adult trees. Since many trees can
197 persist for years at low stature in the forest understory (Hubbell, 1998; Rozendaal et al., 2010),
198 we defined seedlings as individuals that had recruited within the 2018 germination cycle. New
199 recruits were identified by the presence of cotyledons, few true leaves, short stature, and/or green
200 stem. Seedlings that could not be identified to species in the field were collected and identified

201 either through reference to a dichotomous key (Garwood, 2009) or after consultation with a field
202 botanist with expertise in the Panamanian flora (A. Hernandez; Smithsonian Tropical Research
203 Institute). Seedlings that remained unidentifiable were dried, photographed, and assigned a
204 morpho-species code.

205
206 **STATISTICAL ANALYSIS**

207

208 **Data Preparation:**

209
210 For analyses of species traits on tree seedling disease probability, all observations for which we
211 had accompanying trait data (seed mass, or dispersal mechanism) were included in the models.
212 Dispersal mechanism data were obtained from Wright et al. (2016) and seed mass data were
213 obtained from Wright et al. (2010). To quantify adult abundance we used the most-recent tree
214 census data (Condit et al., 2022) associated with our five study sites, which includes information
215 on the diameter at breast height (DBH measured at 1.3 m above the ground) of stems ≥ 10 mm
216 DBH in the 1-ha plot. A species' abundance was evaluated as the total basal area of that species
217 at each site surveyed, $\sum \pi(\frac{DBH}{2})^2$, corresponding to a seedling observation. Because trait and
218 abundance data were not available for all species, models evaluating relationships between traits
219 or abundance and disease prevalence included only a subset of the seedling data. For dispersal
220 mechanism, our dataset included sufficient observations to model the following dispersal types:
221 small bird, large bird, bat, non-volant mammal, and wind. Due to limited observations of water
222 ($n = 1$) and explosive dispersal ($n = 36$), these dispersal types were not evaluated. Models
223 evaluating adult basal area included 8,264 observations from 96 species, models of seed mass
224 included 3,320 observations from 99 species, and models of dispersal mechanism included 8,434

225 observations from 116 species. Models that evaluated the relationships between symptom
226 incidence and both mean annual precipitation and time used the entire dataset of 10,756
227 seedlings from 272 species.

228 We used the most-recent tree census data (Condit et al., 2022) for each of our survey
229 locations to calculate the proximity (1/distance) of each seedling to its nearest conspecific and
230 nearest heterospecific adult. The use of proximity facilitates comparison between analyses of
231 proximity and density (i.e., positive estimates in both analyses indicate negative distance/density
232 dependent disease incidence). For the density and proximity-dependence analyses we excluded
233 data from species that were observed on fewer than three transects, species that did not vary in
234 their proximity to conspecific adults (proximity models only), species for which adults were not
235 observed in any plots (proximity models only), and species that did not vary in their conspecific
236 seedling densities (density models only). In total, models evaluating density-dependent disease
237 incidence included 3,492 observations from 52 species, and models of proximity-dependent
238 disease incidence included 3,389 observations from 55 species.

239
240 **Model Form:**

241 All models assessed the probability that a seedling was symptomatic of disease using a binomial
242 generalized linear mixed-effects model with a logit link, included month of census as a
243 categorical fixed effect, and included random intercepts for species, site, and transect within
244 site. Models of density or proximity included a random slope for species to estimate variation
245 among species in effects of density or proximity on disease incidence. Effects of conspecific
246 density or proximity could be nonlinear and bias our estimation (Detto et al., 2019; Hülsmann et
247 al., 2021), so in our models of density or proximity we compared the model performance of
248 linear and nonlinear functional forms (fitted using a GAMM with a spline for the effect of

249 density or proximity) using AIC. A linear functional form was best supported by our data (had a
250 lower AIC) and as such is the form used for our analyses (ΔAIC 0.604 for conspecific density,
251 ΔAIC 0.830 for proximity to nearest conspecific adult; Supp. Table 1 & 2).

252 We modelled the relationship between mean annual precipitation (MAP) or species
253 characteristics on disease incidence by adding a fixed effect for MAP or species characteristic to
254 the model form described above. We allowed MAP and month of census to interact to assess
255 possible seasonal shifts in the effects of MAP on disease incidence.

256 We evaluated the effects of seedling density or distance to conspecific adult in separate
257 models because models that evaluated them simultaneously failed to converge, likely due to data
258 limitations (small number of observed symptomatic seedlings; $n=364$). In these models, we
259 allowed conspecific and heterospecific density (or proximity) to interact with MAP. Although
260 conspecific seedling density and proximity to conspecific adult are frequently correlated (Gilbert
261 et al., 1994; Nathan & Muller-Landau, 2000), the correlation was weak in our dataset (Pearson's
262 correlation: $r = 0.07$, $df = 1695$, $P = 0.003$).

263 All continuous explanatory variables were log-transformed and then standardized (by
264 subtracting their mean and dividing by their standard deviation) to facilitate model convergence
265 and allow direct comparison of parameter estimates. Both categorical explanatory variables,
266 census month and dispersal mechanism, were evaluated as sum-to-zero contrasts so that the
267 effect of each census or dispersal type can be interpreted relative to their mean incidence
268 probabilities. The 95% confidence intervals were estimated via parametric bootstrapping with
269 1,000 iterations (Davison & Hinkley, 1997).

270 Observational studies may be affected by survivorship bias (e.g., Visser et al., 2018),
271 because observing an individual is conditional on it surviving until the survey. In this study, we

272 may not have observed infections on the most vulnerable species because they succumb rapidly
273 to their infections, biasing our observations towards tolerant species. As a result, this would bias
274 parameter estimates and our conclusions. We checked for survivorship bias by estimating the
275 proportion of the seedling community that could have been symptomatic for each census and at
276 each site (P):

$$277 P = \frac{\sum_1^i (n_i w_i)}{\sum_1^i n_i} \quad (\text{Eq. 1})$$

278
279 Where n_i is the number of seedlings observed in a census for species i , weighted by its species-
280 specific probability of being observed as symptomatic (w_i , calculated as the proportion of
281 species i observed as symptomatic across all sites and censuses). This value was summed for all
282 seedling observations at each site and census combination and then divided by the total number
283 of observations (n_i) for that site and census. A decrease in the observations of symptomatic
284 species over time would indicate a loss of susceptible species consistent with expectations for
285 survivorship bias. All statistical analyses were performed using R v.3.6.3 (R Core Team 2020)
286 and using the package ‘lme4’ (Bates et al., 2015).

287
288
289

Results:

290 Overall, it was uncommon for us to encounter symptomatic seedlings; only 3% (364 seedlings)
291 of the 10,756 seedlings (272 species) observed were symptomatic of disease. Of those
292 symptomatic seedlings, over 99% (362 seedlings) were symptomatic of necrotrophic foliar
293 pathogen damage (i.e., necrotic lesions on the leaves); therefore, the results of the analyses are
294 specific to foliar pathogens as opposed to soilborne pathogens that damage roots and cause wilt-
295 like symptoms (e.g., Augspurger, 1983). Densities of recently germinated seedlings were quite

296 low; the mean conspecific seedling density was 1 seedling m⁻² (Interquartile range, IQR = 1-2
297 seedlings), and mean total seedling density was two seedlings m⁻² (IQR = 1-5 seedlings m⁻²).
298 Seedling abundance was similar across sites, except for El Charco, which had few wet season
299 seedling observations relative to the other sites, possibly due to a steep hillslope across half of
300 the plot limiting areas suitable for germination (V. Milici, *pers. obs.*). Seedlings were much
301 more abundant in the wet season than the dry season, especially in the site where the dry season
302 is most pronounced (Table 1; Metropolitano). Our test for survivor bias showed no consistent
303 pattern across the sites surveyed (Fig. S1).

304 Both mean annual precipitation (MAP) and month of census affected foliar disease
305 incidence in the seedling community (Fig. 2). In general, foliar disease was more prevalent
306 among the seedlings at the driest sites and decreased with increasing MAP ($\beta_{MAP} = -0.65 \pm SE$
307 = 0.27, $P = 0.02$), a relationship that was accentuated at the start of the rainy season in June
308 ($\beta_{MAP \cdot June} = -1.56 \pm 0.67$, $P = 0.02$), reduced in the middle of the dry season in March ($\beta_{MAP \cdot March}$
309 = 0.59 ± 0.35, $P = 0.09$), and changed direction at the end of the dry season in April ($\beta_{MAP \cdot April} =$
310 0.87 ± 0.38, $P = 0.02$). Overall, foliar disease incidence was lowest towards the beginning of the
311 rainy season in June ($\beta_{June} = -2.17 \pm 0.69$, $P = 0.001$), and highest towards the end of the dry
312 season in March ($\beta_{March} = 1.45 \pm 0.33$, $P < 0.001$) and April ($\beta_{April} = 0.85 \pm 0.34$, $P = 0.01$).

313

314

315

316

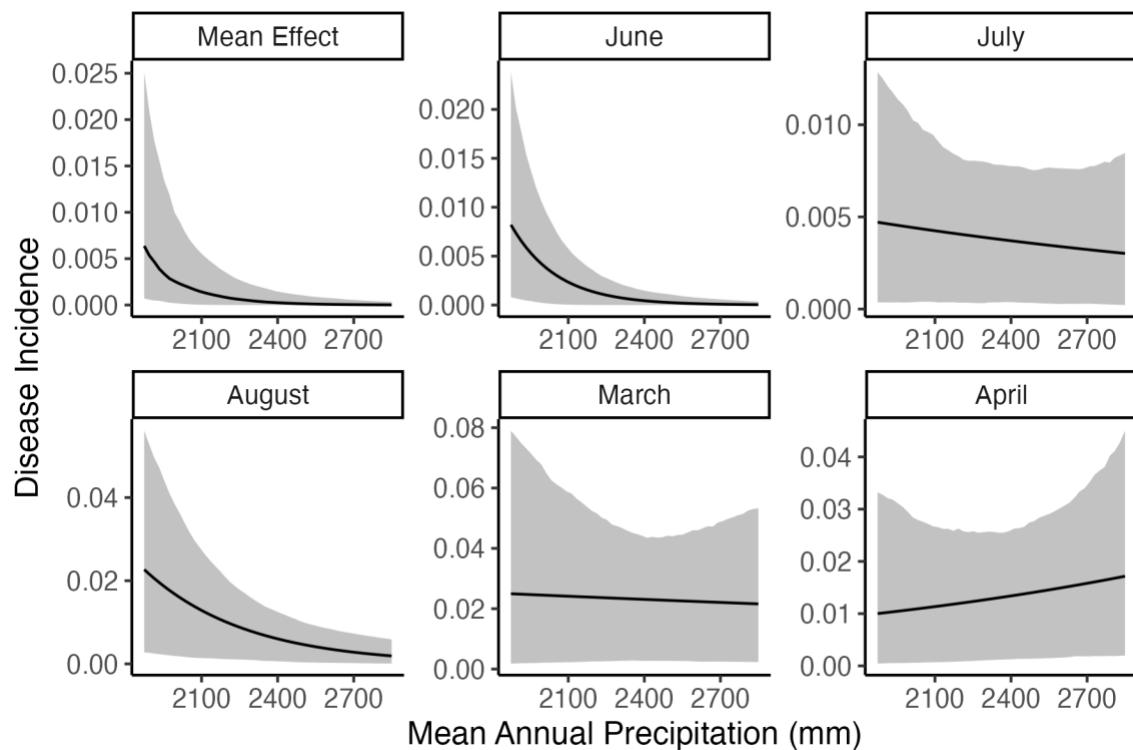
317

318

319

320

321 **Table 1:** Summary of the seedling observations from each site, grouped by season. The wet
 322 season observations were made in June, July, and August (2018), and the dry season
 323 observations were made in March and April (2019). Longitude and latitude are recorded in
 324 decimal degrees and mean annual precipitation (MAP) in millimetres. The sites are organized by
 325 increasing MAP.


Site Name	Longitude	Latitude	MAP	Wet Season		Dry Season	
				No. Seedlings	No. Species	No. Seedlings	No. Species
Metropolitano	8.995	-79.543	1874	6612	36	67	24
El Charco	9.084	-79.663	2050	140	27	91	23
Oleoducto	9.146	-79.712	2311	774	48	119	23
Buena Vista	9.179	-79.829	2595	514	69	467	27
San Lorenzo	9.281	-79.975	2848	1595	89	377	58

326

327 Dispersal mechanism and adult abundance, but not seed mass helped explain the variation in
 328 foliar disease incidence among species. Species dispersed by non-volant mammals (e.g.,
 329 monkeys, agouti, tapir) had a higher disease incidence than other dispersal types examined (β_{Non-}
 330 $volant} = 4.89 \pm 1.53, P = 0.001$), with species with other dispersal mechanisms (small bird, large
 331 bird, bat, and wind dispersal) showing relatively similar disease incidence to each other (Table
 332 2). Adult abundance (total basal area of conspecific adults within each 1-ha forest plot) was also
 333 associated with foliar disease incidence (Fig. 3). As site-wide adult abundance increased for a

334 given species, so too did disease incidence among its seedlings ($\beta_{Abundance} = 1.09 \pm 0.37, P =$
335 0.003). Seed mass, however, was not associated with variation in disease incidence among
336 seedlings ($\beta_{SeedMass} = 0.24 \pm 0.17, P = 0.16$).

337

338

339 **Figure 2:** The relationship between mean annual precipitation (MAP, mm) and time of year on
340 foliar disease incidence (proportion) among recently germinated tree seedlings in the forests of
341 Central Panama. Disease incidence was low across all forest sites and censuses but varied with
342 MAP and time of year. Incidence tended to be highest in the driest forests and decrease with
343 increasing MAP ($\beta = -0.65 \pm 0.27, P = 0.02$), however this effect was reduced in March ($\beta = 0.59$
344 $\pm 0.35, P = 0.09$), and reversed in April ($\beta = 0.87 \pm 0.38, P = 0.02$). Disease incidence was
345 lowest during the initial census in June ($\beta = -2.17 \pm 0.69, P = 0.001$) and increased in March (β
346 $= 1.45 \pm 0.33, P < 0.001$) and April ($\beta = 0.85 \pm 0.34, P = 0.01$). Lines represent mean parameter

347 values estimated using binomial GLMM and error around mean estimates represent the 95%
348 confidence interval estimated by parametric bootstrapping. Models were fit using 10,756
349 observations from 272 species.

350 Foliar disease incidence was significantly related to local conspecific seedling density
351 ($\beta_{Density} = 0.16 \pm 0.08, P = 0.04$), increasing on seedlings at higher conspecific densities (Fig.
352 4A). The effect of conspecific seedling density on disease incidence was consistent across the
353 species surveyed; the estimated variance component for species-specific effects of conspecific
354 density (random slope) was indistinguishable from zero (likelihood test ratio, $\chi^2_1 = 0, P =$
355 0.99). We found no evidence for a community-wide effect of proximity to conspecific adults on
356 disease incidence across the 55 species analysed ($\beta_{Proximity} = -0.33 \pm 0.37, P = 0.38$, Fig. 4B).
357 Examination of the species-specific random slopes suggested that proximity to adult conspecifics
358 increased the risk of foliar disease for five species and decreased the risk for one species (Fig. 5),
359 although the community-wide estimate of the variance component (random slope) was non-
360 significant (Var = 13.5; likelihood test ratio, $\chi^2_1 = 2.46, P = 0.16$). Neither heterospecific
361 seedling density ($\beta_{HetDensity} = 0.14 \pm 0.13, P = 0.27$) nor proximity to heterospecific adults
362 ($\beta_{HetProximity} = 0.11 \pm 0.07, P = 0.14$) influenced disease incidence.

363
364
365
366
367
368
369

370

371

372 **Table 2:** Summary statistics for binomial GLMM examining the relationship between disease
 373 incidence and dispersal mechanism. Bold text denotes a statistically significant relationship ($P <$
 374 0.05). Categorical variables (census and dispersal mechanism) were coded with sum-to-zero
 375 contrasts (effects coding) so each estimate is the difference between disease incidence in the
 376 corresponding category and the overall mean.

Explanatory Variable	Estimate	SE	z-value	P-value
Intercept	-6.71	0.72	-9.36	< 0.001
Bat	0.25	1.22	0.21	0.837
Nonvolant-Mammal	4.89	1.54	3.18	0.001
Small Bird	-1.70	1.24	-1.37	0.169
Large Bird	-1.87	1.35	-1.39	0.166
Wind	2.22	2.18	1.02	0.309
July Census	0.46	0.48	0.95	0.339
August Census	1.17	0.47	2.45	0.014
March Census	2.36	0.53	4.49	< 0.001
April Census	1.95	0.53	3.66	< 0.001

377

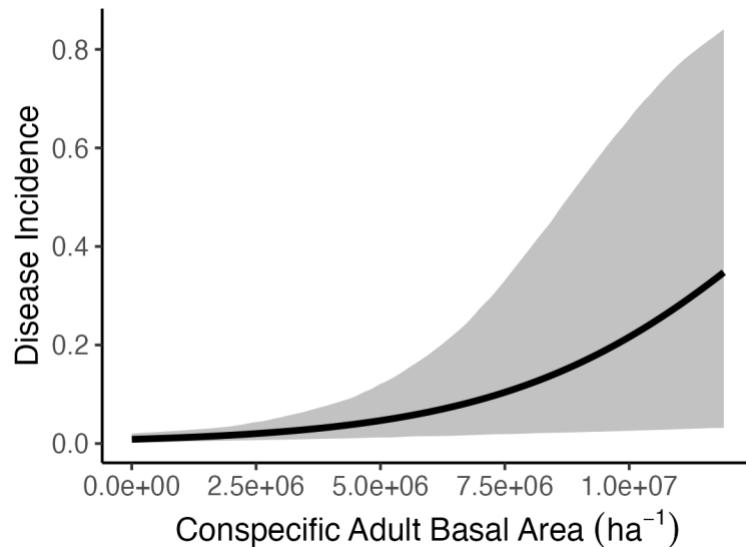
378

379

380

381

382

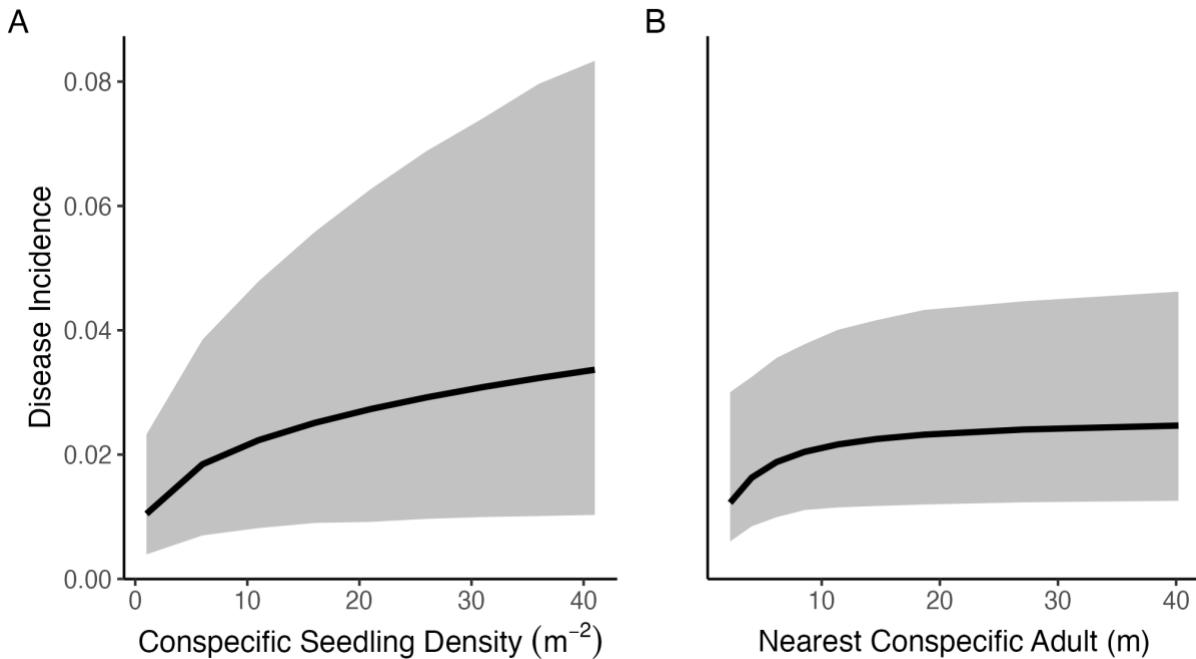

383

384

385

386

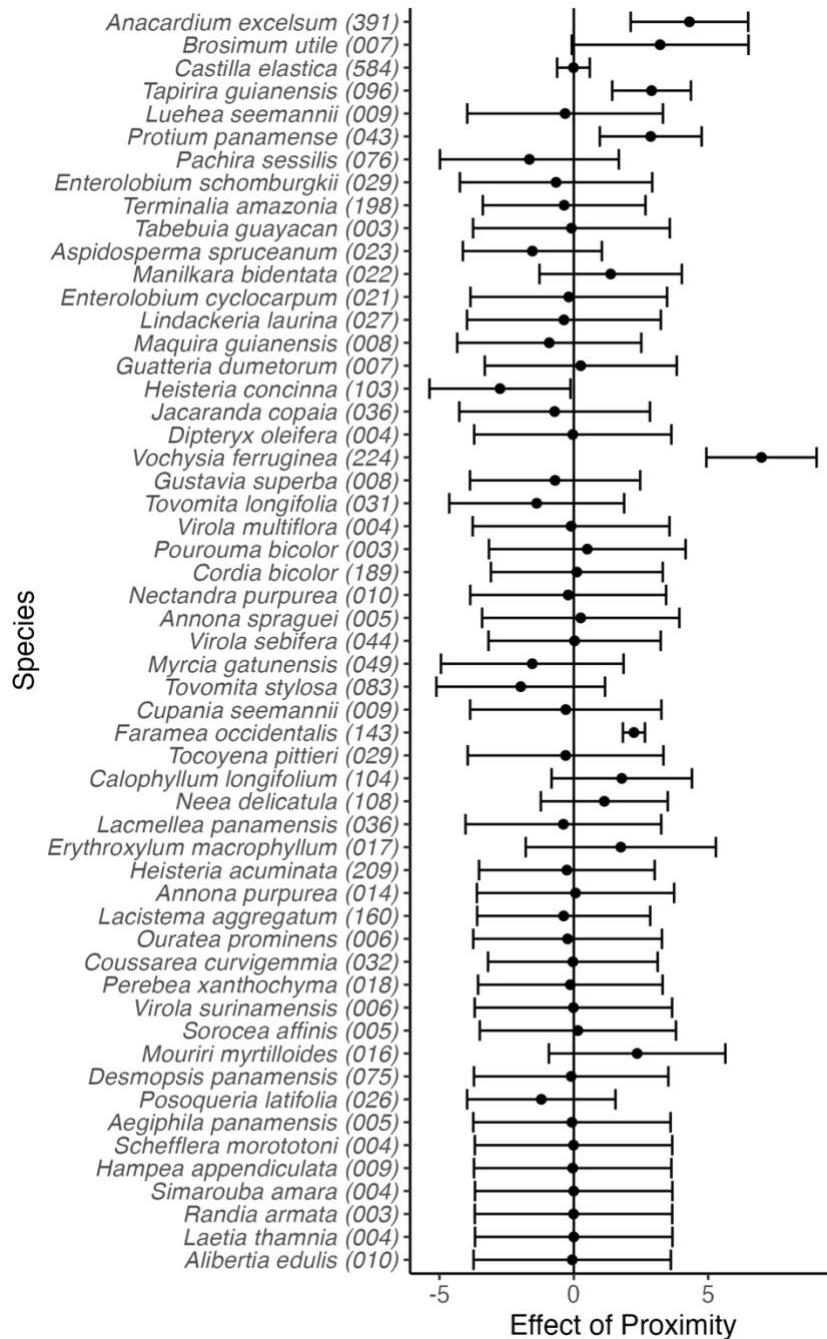
387


388

389 **Figure 3:** Disease incidence of tree seedlings in the forests of central Panama increases as
 390 conspecific adult abundance (total basal area within 1-ha forest plot; $\beta = 1.09 \pm 0.37, P = 0.003$).
 391 The line represents the mean parameter estimate, generated through binomial GLMM. The
 392 shading represents the 95% CIs estimated via parametric bootstrapping. Models evaluated using
 393 8264 observations from 92 species.

394

395


396

397

398 **Figure 4:** Disease incidence of tree seedlings in the forests of central Panama increases as
 399 conspecific seedling density increases ($\beta = 0.16 \pm 0.08, P = 0.04$, A) and has no clear
 400 relationship with proximity to the nearest conspecific adult ($\beta = -0.33 \pm 0.37, P = 0.38$, B). Lines
 401 represent the mean parameter estimates, generated through binomial GLMM. The shading
 402 represents the 95% CIs estimated via parametric bootstrapping. Models of density (proximity)
 403 evaluated 3492 (3389) observations from 52 (55) species.

404

405

406 **Figure 5:** The variation in the species-level slopes suggests that five species (*A. excelsum*, *T.*
 407 *guianensis*, *V. ferruginea*, *P. panamense*, and *F. occidentalis*) experience higher disease
 408 incidence than average when closer to a conspecific adult, while one species, *H. concinna*,
 409 experiences below-average disease risk when closer to a conspecific adult. The community-wide
 410 estimate for the variance component was itself non-significant (Var = 13.5; likelihood ratio test,

411 $\chi^2_1 = 2.46, P = 0.16$). The species are arranged in descending order of how common they are in
412 the forest as adults (the sum of site-wide basal area). The number of seedling observations of
413 each species is in parenthesis. Points represent the mean estimated deviance from the overall
414 community effect of proximity on disease while bars are the standard deviation around the mean
415 prediction.

416 Although we found a general effect that disease incidence decreased with increasing
417 MAP, MAP did not explain variation among sites in the effects of either conspecific seedling
418 density ($\beta_{MAP \cdot Density} = 0.07 \pm 0.06, P = 0.26$) or conspecific adult proximity ($\beta_{MAP \cdot Proximity} = -0.20$
419 $\pm 0.23, P = 0.38$) on disease incidence.

420 **Discussion:**

421 We conducted surveys of seedling disease across a regional precipitation gradient in the forests
422 of central Panama to characterize the effects of mean annual precipitation, conspecific seedling
423 density, distance to nearest adult conspecific, and species characteristics on disease incidence in
424 the young seedling community. Although we sought to characterize disease caused by both
425 soilborne and foliar pathogens, we almost exclusively recorded foliar disease. Pathogens are
426 often thought to be more prevalent in wetter areas (Gillett, 1962; Givnish, 1999; Milici et al.,
427 2020), but foliar disease incidence was highest in the forest sites with lowest annual precipitation
428 and during the dry season. Foliar disease incidence was also non-randomly distributed; seedlings
429 were more likely to exhibit foliar pathogen damage as conspecific seedling density increased, if
430 they were a common species, or if they were dispersed by non-flying mammals. Overall, this
431 study suggests foliar pathogens help shape seedling community composition and diversity,
432 particularly in drier tropical forests and during the dry season.

433 (i) **Foliar pathogen incidence varies throughout the year and along the regional
434 precipitation gradient.**

435 Pathogens have long been thought to produce more infections as mean annual precipitation
436 increases (Gillett, 1962; Givnish, 1999; Milici et al., 2020), but we show that apart from the late
437 dry season, foliar disease incidence is actually most prevalent in the driest sites. This relationship
438 was significant, and consistent through the wet season, despite the study including only five
439 sites. Differences in defence allocation among the species assemblages across the precipitation
440 gradient may explain this relationship. Available soil moisture is an important driver of tree
441 species distribution across Panama (Condit et al., 2013; Engelbrecht et al., 2007), and as a result
442 there is a high degree of community turnover along the precipitation gradient. In Panama, fast-
443 growing light demanding tree species, more characteristic of the seedling community in our drier
444 sites, have decreased chemical defence allocation and higher rates of attack by insect herbivores
445 (Coley, 1983) compared to slow-growing shade tolerant species, more characteristic of the
446 seedling community in our wetter sites (Coley, 1983; Gripenberg et al., 2018). Better defended
447 wet-forest species may be better able to resist pathogen infection despite the moist climate that
448 favours pathogen transmission and germination (Barrett et al., 2009; Garrett, 1970; Swinfield et
449 al., 2012). Evidence for a trade-off between growth and defence has been found in many
450 ecological communities, including the precipitation gradient studied here, suggesting it may be a
451 universal phenomenon (Coley, 1983; Coley et al., 1985; Coley & Barone, 1996; Fine et al.,
452 2006; Lind et al., 2013). A growth-defence trade-off was the best predictor of foliar pathogen
453 incidence for grassland species (Cappelli et al., 2020), and may explain why seedlings of drier
454 forest species were more susceptible to pathogen damage and death than wetter forest species in
455 an experiment in two of the forest sites included in this study (Spear et al., 2015, but see Gaviria

456 & Engelbrecht, 2015). Alternatively, increased foliar pathogen incidence in dry forests may be
457 the result of a gradient in insect herbivore interactions. Foliar pathogens often require damage by
458 insect herbivores to infect a host (García-Guzmán & Dirzo, 2001), which decrease in prevalence
459 as mean annual precipitation increases across these sites in Panama (Weissflog et al., 2017).
460 Thus, decreased rates of herbivory may cause fewer opportunities for foliar pathogens to infect
461 seedlings as mean annual precipitation increases, which would result in a decreased foliar
462 pathogen disease incidence in areas of high mean annual precipitation.

463 Foliar pathogen incidence among recently germinated seedlings was initially low,
464 increased as the wet season progressed and into the dry season. This pattern is likely caused by a
465 combination of exposure period and dry season drought-stress. In the seasonal tropical forest
466 studied here, most seedlings germinate early in the wet season (Garwood, 1983), and it takes
467 time for the new leaves to be colonized by fungi (Arnold & Herre, 2003; Piepenbring et al.,
468 2015). Thus, the seedlings in the early wet season may have not yet been exposed to foliar
469 pathogens or had time to develop symptoms of infection. Additional increases in symptomatic
470 seedlings during the dry season could be owed to drought stress, which prior studies have shown
471 affects a large proportion of the seedling species at our sites (Engelbrecht et al., 2007;
472 Engelbrecht & Kursar, 2003; Gaviria et al., 2017) as well as many other seasonal tropical forest
473 regions (Comita & Engelbrecht, 2014). Drought stress can compromise the plant immune
474 response, making plants more susceptible to infections in a process known as “predisposition”
475 (Desprez-Loustau et al., 2006; Schoeneweiss, 1975). A positive effect of drought on fungal
476 pathogen development within hosts is well-documented (e.g., Ghanbari et al., 2017, 2021; Jaciel
477 et al., 2012; Sinha et al., 2019); even beneficial fungi, such as foliar endophytes, can become
478 pathogenic when their hosts are drought-stressed (Slippers & Wingfield, 2007). Under climate

479 change, increased seasonality of precipitation in Central American forests is predicted to
480 intensify dry seasons (Condit, 1998a; Kirtman et al., 2013; Lintner et al., 2012). Our finding that
481 foliar pathogen incidence is highest during the dry season for all sites along the precipitation
482 gradient, suggests that dry-season intensification could lead to increases in foliar pathogen
483 damage among seedlings. Given the established role of pathogens in influencing seedling
484 survival, growth, and diversity (Bagchi et al., 2014; Mangan et al., 2010) such intensification of
485 disease could affect community composition of tropical forest tree assemblages (Condit, 1998a;
486 Milici et al., 2020; Thompson et al., 2010).

487 **(ii) Dispersal mechanism and rarity affect foliar pathogen incidence**

488 It is generally accepted that escaping disease is an important benefit of dispersal
489 (Augspurger, 1983; Howe et al., 1985; Russo, 2005; Sugiyama et al., 2018), but few studies have
490 examined the relationship between dispersal mechanism and subsequent disease incidence (e.g.,
491 Fricke et al., 2013). Non-volant-mammal-dispersed species had much higher rates of foliar
492 disease incidence than species dispersed by other means (e.g., wind or birds), which
493 complements a study in the Peruvian Amazon that found higher seed pathogen incidence on
494 primate-dispersed tree species (Pringle et al., 2007). While different enemies (e.g., insects) might
495 be prevalent on tree species with alternative dispersal modes, the concordance between this study
496 and Pringle et al. (2007) may suggest that tree species dispersed by non-flying mammals are
497 particularly vulnerable to pathogens. The majority of seeds fall near their parents, regardless of
498 dispersal mode (Muller-Landau et al., 2008), so the pattern of disease incidence on first-year
499 seedlings described here predominantly reflects the fates of undispersed seeds and seedlings.
500 Although further work would be necessary to confirm a greater vulnerability of non-flying-
501 mammal-dispersed species to pathogens, it might imply that dispersal is particularly important

502 for the health of seedlings from these species compared to species dispersed by other means.
503 Higher disease susceptibility might contribute to the reduced recruitment observed in many non-
504 volant mammal dispersed species in defaunated forests in Panama and elsewhere in the tropics
505 (Effiom et al., 2013; Kurten et al., 2015; Terborgh et al., 2008).

506 Foliar pathogen incidence, by being higher in seedlings of abundant species, may
507 contribute to the persistence of rare species in the community. Our findings suggest that rarity
508 confers an advantage to seedlings, likely due to the build-up of host-specific pathogens in areas
509 where adults of a given species are locally abundant, which can cause a community
510 compensatory trend (CCT; Liang et al., 2016; Y. Liu et al., 2015). A CCT has been documented
511 in the seedling community of a Bornean rainforest (Webb & Peart, 1999) and has been attributed
512 to soilborne pathogens in a subtropical forest in China (Liang et al., 2016; Y. Liu et al., 2015).
513 Foliar disease incidence increases with species abundance in a temperate grassland (Mitchell et
514 al., 2002) and contributes to a CCT in Puerto Rican tree seedlings (Bachelot et al., 2017). If the
515 patterns of foliar disease we observed affect survival patterns, then the contribution of foliar
516 pathogens to a CCT may be a widespread phenomenon that contributes to plant species
517 coexistence by advantaging the survival and recruitment of rare species.

518 **(iii) Foliar pathogen incidence is density- but not distance-dependent**

519 Evidence from tropical to temperate forests has established that soilborne pathogens can
520 mediate NCDD (Augspurger, 1983; Domínguez-Begines et al., 2021; Mangan et al., 2010;
521 Packer & Clay, 2000) and are likely important to stabilizing species coexistence. As such,
522 soilborne pathogens have been the focus of many studies, but the importance of foliar pathogens
523 has been highlighted by a growing body of work (Bagchi et al., 2014; X. Liu et al., 2022; this
524 study). We did not identify the foliar pathogens observed in this study, but previous research

525 (Piepenbring et al., 2011; Spear, 2017; Spear & Broders, 2021) suggests that they likely
526 belonged to the Ascomycota (e.g., *Fusarium spp.* and *Colletotrichum spp.*). Many of the
527 symptoms we observed were consistent with tropical tar spot fungi (Phyllochorales), a common
528 fungal pathogen in the forests of Panama (Piepenbring et al., 2011). We show that these foliar
529 pathogens result in negative conspecific density-dependent infection, suggesting that the
530 contributions of foliar pathogens to NCDD should not be ignored. If the NCDD pattern in
531 pathogen infection we report here reduces survival and growth, then foliar pathogens could also
532 contribute to stabilizing coexistence by natural enemies as predicted by the Janzen-Connell
533 hypothesis and modern coexistence theory (Chesson, 2000; Connell, 1971; Janzen, 1970).

534 Necrotrophic foliar pathogens represent the majority of pathogens that a plant encounters
535 through the year and can reduce seedling performance later into plant development than
536 soilborne pathogens (Rottstock et al., 2014). Foliar pathogens may even produce stronger
537 patterns of NCDD and contribute more strongly to seedling mortality than soilborne pathogens
538 (Bagchi et al., 2014; Bayandala et al., 2016, 2017; X. Liu et al., 2022). Our study shows that
539 pathogen infection, which likely increases seedling mortality risk, occurs non-randomly in space
540 and across species. Non-random patterns of mortality at the early life stages have been shown to
541 be particularly important in shaping community structure and diversity in tropical tree
542 communities (Green et al., 2014). Without tracking the fate of infected seedlings, we can only
543 speculate about the long-term consequences for tree-community diversity of the patterns of
544 conspecific-density dependent infection by foliar pathogens observed in this study.
545 Nevertheless, our work provides evidence that foliar pathogens may contribute to maintaining
546 the diversity of tropical trees through negative conspecific density dependent infection of
547 seedlings, in addition to soilborne pathogens.

548 The Janzen-Connell hypothesis (Connell, 1971; Janzen, 1970) suggests that distance-
549 dependent patterns of infection at the young seedling stage will increase tree diversity. However,
550 our data indicated that foliar pathogens are not more prevalent near adult conspecific trees and,
551 therefore, are unlikely to maintain tree community diversity as predicted by the Janzen-Connell
552 hypothesis. Negative conspecific distance-dependent disease incidence was only evident for a
553 small number of the species evaluated and the average effect over the 55 species in the analysis
554 was weak, which is consistent with past research from Panama on the effects of distance
555 dependence during the seed-to-seedling transition (Marchand et al., 2020). For this community,
556 distance dependence is widespread at the later seedling stage (Murphy et al., 2017), which
557 suggests the pressures that cause distance-dependent recruitment may differ from those that
558 affect the youngest seedlings. Compared to soilborne pathogens, foliar pathogens may be less
559 likely to result in distance-dependent disease. Their airborne spores, dispersing from adult trees
560 in the canopy above, can spread over a wide area so that the spores reaching a seedling
561 could originate from trees far away (Jauss et al., 2021). Thus, the airborne spores that encounter
562 and infect seedlings may originate from trees spread over a large area and, therefore, their
563 composition may be unrelated to the identities of the nearest adult trees. Conversely, the spores
564 of soilborne pathogens do not move large distances (Oliveira & Bell, 2022), concentrating them
565 near parent trees and making them more likely to cause distance-dependent disease.

566 **Conclusions:**

567 Previous work has demonstrated that pathogen attack on tropical forest seedlings can be density-
568 dependent in individual plant species (Augspurger, 1983; Augspurger & Kelly, 1984; Bell et al.,
569 2006) and pathogens can increase the species diversity of seedling assemblages (Bagchi et al.,
570 2014; Krishnadas et al., 2018; Mangan et al., 2010). Here, we document patterns of disease on a

571 large number of tree species, finding that the conspecific-density dependence of disease
572 incidence on seedlings previously observed in small suites of species holds at the community
573 scale. If these patterns influence recruitment, they are likely to explain pathogen effects on plant
574 diversity in community-level experiments (Bagchi et al., 2014; Krishnadas et al., 2018; Mangan
575 et al., 2010). Furthermore, whereas soil-borne pathogens have previously been associated with
576 density-dependent attack on plant communities (Augspurger & Wilkinson, 2007; Bell et al.,
577 2006; Mangan et al., 2010), we show that attack by foliar pathogens can also be density
578 dependent. Finally, we show that foliar pathogens are most prevalent in drier conditions, in
579 forests with the least annual precipitation and during the dry season. Thus, the more intense dry
580 seasons predicted for many tropical forests under climate change may lead to an increase in
581 foliar disease on seedlings. The implications of such increased disease for tree communities are
582 difficult to predict, but the importance of pathogens for tree community diversity means the
583 effects could have important consequences for tropical forest diversity.

584 **References:**

585 Arnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical
586 fungal endophytes: Ecological pattern and process in *Theobroma cacao* (Malvaceae).
587 *Mycologia*, 95(3), 388–398. <https://doi.org/10.1080/15572536.2004.11833083>

588 Augspurger, C. K. (1983). Seed Dispersal of the Tropical Tree, *Platypodium Elegans*, and the
589 Escape of its Seedlings from Fungal Pathogens. *Journal of Ecology*, 71(3), 759–771.
590 <https://doi.org/10.2307/2259591>

591 Augspurger, C. K. (1984). Seedling Survival of Tropical Tree Species: Interactions of Dispersal
592 Distance, Light-Gaps, and Pathogens. *Ecology*, 65(6), 1705–1712. JSTOR.
593 <https://doi.org/10.2307/1937766>

617 Bayandala, Masaka, K., & Seiwa, K. (2017). Leaf diseases drive the Janzen–Connell mechanism
618 regardless of light conditions: A 3-year field study. *Oecologia*, 183(1), 191–199.
619 <https://doi.org/10.1007/s00442-016-3757-4>

620 Bell, T., Freckleton, R. P., & Lewis, O. T. (2006). Plant pathogens drive density-dependent
621 seedling mortality in a tropical tree. *Ecology Letters*, 9(5), 569–574.
622 <https://doi.org/10.1111/j.1461-0248.2006.00905.x>

623 Bever, J. D., Dickie, I. A., Facelli, E., Facelli, J. M., Klironomos, J., Moora, M., Rillig, M. C.,
624 Stock, W. D., Tibbett, M., & Zobel, M. (2010). Rooting theories of plant community
625 ecology in microbial interactions. *Trends in Ecology & Evolution*, 25(8), 468–478.
626 <https://doi.org/10.1016/j.tree.2010.05.004>

627 Cappelli, S. L., Pichon, N. A., Kempel, A., & Allan, E. (2020). Sick plants in grassland
628 communities: A growth-defense trade-off is the main driver of fungal pathogen
629 abundance. *Ecology Letters*, 23(9), 1349–1359. <https://doi.org/10.1111/ele.13537>

630 Chesson, P. (2000). Mechanisms of Maintenance of Species Diversity. *Annual Review of
631 Ecology and Systematics*, 31(1), 343–366.
632 <https://doi.org/10.1146/annurev.ecolsys.31.1.343>

633 Coley, P. D. (1983). Herbivory and Defensive Characteristics of Tree Species in a Lowland
634 Tropical Forest. *Ecological Monographs*, 53(2), 209–234.
635 <https://doi.org/10.2307/1942495>

636 Coley, P. D., & Barone, J. A. (1996). HERBIVORY AND PLANT DEFENSES IN TROPICAL
637 FORESTS. *Annual Review of Ecology and Systematics*, 27(1), 305–335.
638 <https://doi.org/10.1146/annurev.ecolsys.27.1.305>

639 Coley, P. D., Bryant, J. P., & Chapin, F. S. (1985). Resource Availability and Plant
640 Antiherbivore Defense. *Science*, 230(4728), 895–899.
641 <https://doi.org/10.1126/science.230.4728.895>

642 Comita, L. S., & Engelbrecht, B. M. J. (2014). Drought as a driver of tropical tree species
643 regeneration dynamics and distribution patterns. In D. A. Coomes, D. F. R. P. Burslem,
644 & W. D. Simonson (Eds.), *Forests and Global Change* (1st ed., pp. 261–308). Cambridge
645 University Press. <https://doi.org/10.1017/CBO9781107323506.013>

646 Comita, L. S., Muller-Landau, H. C., Aguilar, S., & Hubbell, S. P. (2010). Asymmetric Density
647 Dependence Shapes Species Abundances in a Tropical Tree Community. *Science, New
648 Series*, 329(5989), 330–332.

649 Comita, L. S., & Stump, S. M. (2020). Natural Enemies and the Maintenance of Tropical Tree
650 Diversity: Recent Insights and Implications for the Future of Biodiversity in a Changing
651 World. *Annals of the Missouri Botanical Garden*, 105(3), 377–392.
652 <https://doi.org/10.3417/2020591>

653 Condit, R. (1998a). Ecological Implications of Changes in Drought Patterns: Shifts in Forest
654 Composition in Panama. In A. Markham (Ed.), *Potential Impacts of Climate Change on
655 Tropical Forest Ecosystems* (pp. 273–287). Springer Netherlands.
656 https://doi.org/10.1007/978-94-017-2730-3_12

657 Condit, R. (1998b). *Tropical Forest Census Plots: Methods and Results from Barro Colorado
658 Island, Panama and a Comparison with Other Plots* (1st ed.). Springer-Verlag Berlin
659 Heidelberg, Landes Bioscience, Georgetown, USA. 10.1007/978-3-662-03664-8

660 Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R., & Turner, B. L. (2013). *Species*
661 *distributions in response to individual soil nutrients and seasonal drought across a*
662 *community of tropical trees.* 5.

663 Condit, R., Pérez, R., Aguilar, S., & Lao, S. (2022). Census data from 65 tree plots in Panama
664 (1994-2015) [Dataset]. *Dryad.* <https://doi.org/10.15146/mdpr-pm59>

665 Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in
666 some marine animals and in rain forest trees. *Dynamics of Populations*, 298–312.

667 Dalling, J. W., Davis, A. S., Schutte, B. J., & Elizabeth Arnold, A. (2011). Seed survival in soil:
668 Interacting effects of predation, dormancy and the soil microbial community: Seed
669 survival in soil. *Journal of Ecology*, 99(1), 89–95. <https://doi.org/10.1111/j.1365->
670 2745.2010.01739.x

671 Davison, A. C., & Hinkley, D. V. (1997). *Bootstrap Methods and their Application*. Cambridge
672 University Press. <https://doi.org/10.1017/CBO9780511802843>

673 Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D., & Vannini, A. (2006).
674 Interactive effects of drought and pathogens in forest trees. *Annals of Forest Science*,
675 63(6), 597–612. <https://doi.org/10.1051/forest:2006040>

676 Detto, M., Visser, M. D., Wright, S. J., & Pacala, S. W. (2019). Bias in the detection of negative
677 density dependence in plant communities. *Ecology Letters*, 22(11), 1923–1939.
678 <https://doi.org/10.1111/ele.13372>

679 Domínguez-Begines, J., Ávila, J. M., García, L. V., & Gómez-Aparicio, L. (2021). Disentangling
680 the role of oomycete soil pathogens as drivers of plant–soil feedbacks. *Ecology*, 102(8).
681 <https://doi.org/10.1002/ecy.3430>

682 Eck, J. L., Stump, S. M., Delavaux, C. S., Mangan, S. A., & Comita, L. S. (2019). Evidence of
683 within-species specialization by soil microbes and the implications for plant community
684 diversity. *Proceedings of the National Academy of Sciences*, 201810767.
685 <https://doi.org/10.1073/pnas.1810767116>

686 Effiom, E. O., Nuñez-Iturri, G., Smith, H. G., Ottosson, U., & Olsson, O. (2013). Bushmeat
687 hunting changes regeneration of African rainforests. *Proceedings of the Royal Society B:*
688 *Biological Sciences*, 280(1759), 20130246. <https://doi.org/10.1098/rspb.2013.0246>

689 Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L., &
690 Hubbell, S. P. (2007). Drought sensitivity shapes species distribution patterns in tropical
691 forests. *Nature*, 447(7140), 80–82. <https://doi.org/10.1038/nature05747>

692 Engelbrecht, B. M. J., & Kursar, T. A. (2003). Comparative drought-resistance of seedlings of 28
693 species of co-occurring tropical woody plants. *Oecologia*, 136(3), 383–393.
694 <https://doi.org/10.1007/s00442-003-1290-8>

695 Fine, P. V. A., Miller, Z. J., Mesones, I., Irazuzta, S., Appel, H. M., Stevens, M. H. H.,
696 Sääksjärvi, I., Schultz, J. C., & Coley, P. D. (2006). The growth-defense trade-off and
697 habitat specialization by plants in Amazonian forests. *Ecology*, 87(sp7), S150–S162.
698 [https://doi.org/10.1890/0012-9658\(2006\)87\[150:TGTAHS\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2)

699 Fricke, E. C., Simon, M. J., Reagan, K. M., Levey, D. J., Riffell, J. A., Tomás A. Carlo, &
700 Tewksbury, J. J. (2013). When condition trumps location: Seed consumption by fruit-
701 eating birds removes pathogens and predator attractants. *Ecology Letters*, 16(8), 1031–
702 1036. <https://doi.org/10.1111/ele.12134>

703 García-Guzmán, G., & Dirzo, R. (2001). Patterns of leaf-pathogen infection in the understory of
704 a Mexican rain forest: Incidence, spatiotemporal variation, and mechanisms of infection.
705 *American Journal of Botany*, 88(4), 634–645. <https://doi.org/10.2307/2657063>

706 Garrett, S. D. (1970). *Pathogenic root-infecting fungi*. Cambridge University Press.

707 Garwood, N. (2009). *Seedlings of Barro Colorado Island and the Neotropics*. Cornell University
708 Press, Ithaca.

709 Garwood, N. C. (1983). Seed Germination in a Seasonal Tropical Forest in Panama: A
710 Community Study. *Ecological Monographs*, 53(2), 159–181.
711 <https://doi.org/10.2307/1942493>

712 Gaviria, J., & Engelbrecht, B. M. J. (2015). Effects of Drought, Pest Pressure and Light
713 Availability on Seedling Establishment and Growth: Their Role for Distribution of Tree
714 Species across a Tropical Rainfall Gradient. *PLOS ONE*, 10(11), e0143955.
715 <https://doi.org/10.1371/journal.pone.0143955>

716 Gaviria, J., Turner, B. L., & Engelbrecht, B. M. J. (2017). Drivers of tree species distribution
717 across a tropical rainfall gradient. *Ecosphere*, 8(2), e01712.
718 <https://doi.org/10.1002/ecs2.1712>

719 Ghanbary, E., Fathizadeh, O., Pazhouhan, I., Zarafshar, M., Tabari, M., Jafarnia, S., Parad, G.
720 A., & Bader, M. K.-F. (2021). Drought and Pathogen Effects on Survival, Leaf
721 Physiology, Oxidative Damage, and Defense in Two Middle Eastern Oak Species.
722 *Forests*, 12(2), 247. <https://doi.org/10.3390/f12020247>

723 Ghanbary, E., Tabari Kouchaksaraei, M., Mirabolfathy, M., Modarres Sanavi, S. A. M., &
724 Rahaie, M. (2017). Growth and physiological responses of *Quercus brantii* seedlings

725 inoculated with *Biscogniauxia mediterranea* and *Obolarina persica* under drought stress.

726 *Forest Pathology*, 47(5), e12353. <https://doi.org/10.1111/efp.12353>

727 Gilbert, G. S., Foster, R. B., & Hubbell, S. P. (1994). Density and distance-to-adult effects of a
728 canker disease of trees in a moist tropical forest. *Oecologia*, 98(1), 100–108.
729 <https://doi.org/10.1007/BF00326095>

730 Gilbert, G. S., Harms, K. E., Hamill, D. N., & Hubbell, S. P. (2001). Effects of seedling size, El
731 Niño drought, seedling density, and distance to nearest conspecific adult on 6-year
732 survival of *Ocotea whitei* seedlings in Panamá. *Oecologia*, 127(4), 509–516.
733 <https://doi.org/10.1007/s004420000616>

734 Gillett, J. B. (1962). Pest pressure, an underestimated factor in evolution. In D. Nichols (Ed.),
735 *Taxonomy and geography* (pp. 37–46). The Systematics Association.

736 Givnish, T. J. (1999). On the causes of gradients in tropical tree diversity. *Journal of Ecology*,
737 87(2), 193–210. <https://doi.org/10.1046/j.1365-2745.1999.00333.x>

738 Green, P. T., Harms, K. E., & Connell, J. H. (2014). Nonrandom, diversifying processes are
739 disproportionately strong in the smallest size classes of a tropical forest. *Proceedings of
740 the National Academy of Sciences*, 111(52), 18649–18654.
741 <https://doi.org/10.1073/pnas.1321892112>

742 Gripenberg, S., Rota, J., Kim, J., Wright, S. J., Garwood, N. C., Fricke, E. C., Zalamea, P., &
743 Salminen, J. (2018). Seed polyphenols in a diverse tropical plant community. *Journal of
744 Ecology*, 106(1), 87–100. <https://doi.org/10.1111/1365-2745.12814>

745 Hazelwood, K., Beck, H., & Paine, C. E. T. (2021). Negative density dependence in the mortality
746 and growth of tropical tree seedlings is strong, and primarily caused by fungal pathogens.
747 *Journal of Ecology*, 109(4), 1909–1918. <https://doi.org/10.1111/1365-2745.13615>

748 Howe, H. F., Schupp, E. W., & Westley, L. C. (1985). Early Consequences of Seed Dispersal for
749 a Neotropical Tree (*Virola surinamensis*). *Ecology*, 66(3), 781–791.
750 <https://doi.org/10.2307/1940539>

751 Howe, H. F., & Smallwood, J. (1982). Ecology of Seed Dispersal. *Annual Review of Ecology*
752 and Systematics, 13(1), 201–228. <https://doi.org/10.1146/annurev.es.13.110182.001221>

753 Hubbell, S. P. (1998). The maintenance of diversity in a neotropical tree community: Conceptual
754 issues, current evidence, and the challenges ahead. In F. Dallmeier & J. A. Comiskey
755 (Eds.), *Forest biodiversity, research, monitoring and modeling*. (Vol. 20, pp. 17–44).
756 UNESCO and Parthenon Publishing.

757 Hülsmann, L., Chisholm, R. A., & Hartig, F. (2021). Is Variation in Conspecific Negative
758 Density Dependence Driving Tree Diversity Patterns at Large Scales? *Trends in Ecology*
759 and Evolution, 36(2), 151–163. <https://doi.org/10.1016/j.tree.2020.10.003>

760 Jactel, H., Petit, J., Desprez-Loustau, M.-L., Delzon, S., Piou, D., Battisti, A., & Koricheva, J.
761 (2012). Drought effects on damage by forest insects and pathogens: A meta-analysis.
762 *Global Change Biology*, 18(1), 267–276. <https://doi.org/10.1111/j.1365-2486.2011.02512.x>

764 Janzen, D. H. (1970). Herbivores and the Number of Tree Species in Tropical Forests. *The
765 American Naturalist*, 104(940), 501–528.

766 Jauss, R.-T., Nowack, A., Walden, S., Wolf, R., Schaffer, S., Schellbach, B., Bonkowski, M., &
767 Schlegel, M. (2021). To the canopy and beyond: Air dispersal as a mechanism of
768 ubiquitous protistan pathogen assembly in tree canopies. *European Journal of
769 Protistology*, 80, 125805. <https://doi.org/10.1016/j.ejop.2021.125805>

770 Kirtman, B., Power, S. B., Adedoyin, A. J., Boer, G. J., Bojariu, R., Camilloni, I., Doblas-Reyes,
771 F., Fiore, A. M., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schar, C., Sutton, R., van
772 Oldenborgh, G. J., Vecchi, G., & Wang, H.-J. (2013). Chapter 11 - Near-term climate
773 change: Projections and predictability. In IPCC (Ed.), *Climate Change 2013: The*
774 *Physical Science Basis. IPCC Working Group I Contribution to AR5*. Cambridge
775 University Press.

776 Krishnadas, M., Bagchi, R., Sridhara, S., & Comita, L. S. (2018). Weaker plant-enemy
777 interactions decrease tree seedling diversity with edge-effects in a fragmented tropical
778 forest. *Nature Communications*, 9(1). <https://doi.org/10.1038/s41467-018-06997-2>

779 Kurten, E. L., Wright, S. J., & Carson, W. P. (2015). Hunting alters seedling functional trait
780 composition in a Neotropical forest. *Ecology*, 96(7), 1923–1932.
781 <https://doi.org/10.1890/14-1735.1>

782 Lebrija-Trejos, E., Hernández, A., & Wright, S. J. (2023). Effects of moisture and density-
783 dependent interactions on tropical tree diversity. *Nature*, 615(7950), 100–104.
784 <https://doi.org/10.1038/s41586-023-05717-1>

785 Liang, M., Liu, X., Gilbert, G. S., Zheng, Y., Luo, S., Huang, F., & Yu, S. (2016). Adult trees
786 cause density-dependent mortality in conspecific seedlings by regulating the frequency of
787 pathogenic soil fungi. *Ecology Letters*, 19(12), 1448–1456.
788 <https://doi.org/10.1111/ele.12694>

789 Lind, E. M., Borer, E., Seabloom, E., Adler, P., Bakker, J. D., Blumenthal, D. M., Crawley, M.,
790 Davies, K., Firn, J., Gruner, D. S., Stanley Harpole, W., Hautier, Y., Hillebrand, H.,
791 Knops, J., Melbourne, B., Mortensen, B., Risch, A. C., Schuetz, M., Stevens, C., &
792 Wragg, P. D. (2013). Life-history constraints in grassland plant species: A growth-

793 defence trade-off is the norm. *Ecology Letters*, 16(4), 513–521.

794 <https://doi.org/10.1111/ele.12078>

795 Lintner, B. R., Biasutti, M., Diffenbaugh, N. S., Lee, J., Niznik, M., & Findell, K. L. (2012).

796 Amplification of wet and dry month occurrence over tropical land regions in response to

797 global warming. *Journal of Geophysical Research: Atmospheres*, 117(D11),

798 2012JD017499. <https://doi.org/10.1029/2012JD017499>

799 Liu, X., Parker, I. M., Gilbert, G. S., Lu, Y., Xiao, Y., Zhang, L., Huang, M., Cheng, Y., Zhang,

800 Z., & Zhou, S. (2022). Coexistence is stabilized by conspecific negative density

801 dependence via fungal pathogens more than oomycete pathogens. *Ecology*, 103(12).

802 <https://doi.org/10.1002/ecy.3841>

803 Liu, Y., Fang, S., Chesson, P., & He, F. (2015). The effect of soil-borne pathogens depends on

804 the abundance of host tree species. *Nature Communications*, 6(1), 10017.

805 <https://doi.org/10.1038/ncomms10017>

806 Liu, Y., & He, F. (2019). Incorporating the disease triangle framework for testing the effect of

807 soil-borne pathogens on tree species diversity. *Functional Ecology*, 33(7), 1211–1222.

808 <https://doi.org/10.1111/1365-2435.13345>

809 Mangan, S. A., Schnitzer, S. A., Herre, E. A., Mack, K. M. L., Valencia, M. C., Sanchez, E. I., &

810 Bever, J. D. (2010). Negative plant–soil feedback predicts tree-species relative abundance

811 in a tropical forest. *Nature*, 466(7307), 752–755. <https://doi.org/10.1038/nature09273>

812 Marchand, P., Comita, L. S., Wright, S. J., Condit, R., Hubbell, S. P., & Beckman, N. G. (2020).

813 Seed-to-seedling transitions exhibit distance-dependent mortality but no strong spacing

814 effects in a Neotropical forest. *Ecology*, 101(2), e02926. <https://doi.org/10.1002/ecy.2926>

815 Marden, J. H., Mangan, S. A., Peterson, M. P., Wafula, E., Fescemyer, H. W., Der, J. P.,
816 dePamphilis, C. W., & Comita, L. S. (2017). Ecological genomics of tropical trees: How
817 local population size and allelic diversity of resistance genes relate to immune responses,
818 cosusceptibility to pathogens, and negative density dependence. *Molecular Ecology*,
819 26(9), 2498–2513. <https://doi.org/10.1111/mec.13999>

820 McCarthy-Neumann, S., & Kobe, R. K. (2008). Tolerance of soil pathogens co-varies with shade
821 tolerance across species of tropical tree seedlings. *Ecology*, 89(7), 1883–1892.

822 Milici, V. R., Dalui, D., Mickley, J. G., & Bagchi, R. (2020). Responses of plant–pathogen
823 interactions to precipitation: Implications for tropical tree richness in a changing world.
824 *Journal of Ecology*, 108(5), 1800–1809. <https://doi.org/10.1111/1365-2745.13373>

825 Milici, V.R., Comita, L.S., & Bagchi, R. (2024). Foliar disease incidence in a tropical seedling
826 community is density dependent and varies along a regional precipitation gradient [Data
827 set]. In *Journal of Ecology*. Zenodo. <https://doi.org/10.5281/zenodo.10456097>

828 Milici, V.R. (2024). valeriemilici/PanamaSeedlingSurveys:PanamaSeedlingSurveyAnalysis
829 (v1.0.0). Zenodo. <https://doi.org/10.5281/zenodo.10456335>

830 Mitchell, C. E., Tilman, D., & Groth, J. V. (2002). Effects of Grassland Plant Species Diversity,
831 Abundance, and Composition on Foliar Fungal Disease. *Ecology*, 83(6), 1713–1726.
832 [https://doi.org/10.1890/0012-9658\(2002\)083\[1713:EOGPSD\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2)

833 Muller-Landau, H. C., Wright, S. J., Calderón, O., Condit, R., & Hubbell, S. P. (2008).
834 Interspecific variation in primary seed dispersal in a tropical forest. *Journal of Ecology*,
835 96(4), 653–667. <https://doi.org/10.1111/j.1365-2745.2008.01399.x>

836 Murphy, S. J., Wiegand, T., & Comita, L. S. (2017). Distance-dependent seedling mortality and
837 long-term spacing dynamics in a neotropical forest community. *Ecology Letters*, 20(11),
838 1469–1478. <https://doi.org/10.1111/ele.12856>

839 Nathan, R., & Muller-Landau, H. C. (2000). Spatial patterns of seed dispersal, their determinants
840 and consequences for recruitment. *Trends in Ecology & Evolution*, 15(7), 278–285.
841 [https://doi.org/10.1016/S0169-5347\(00\)01874-7](https://doi.org/10.1016/S0169-5347(00)01874-7)

842 Oliveira, T. S. D., & Bell, R. W. (Eds.). (2022). *Subsoil Constraints for Crop Production*.
843 Springer International Publishing. <https://doi.org/10.1007/978-3-031-00317-2>

844 Packer, A., & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a
845 temperate tree. *Nature*, 404(6775), 278–281. <https://doi.org/10.1038/35005072>

846 Piepenbring, M., Hofmann, T. A., Kirschner, R., Mangelsdorff, R., Perdomo, O., Justavino, D.
847 R., & Trampe, T. (2011). Diversity patterns of neotropical plant parasitic microfungi.
848 *Ecotropica*, 17, 27–40.

849 Piepenbring, M., Hofmann, T. A., Miranda, E., Cáceres, O., & Unterseher, M. (2015). Leaf
850 shedding and weather in tropical dry-seasonal forest shape the phenology of fungi –
851 Lessons from two years of monthly surveys in southwestern Panama. *Fungal Ecology*,
852 18, 83–92. <https://doi.org/10.1016/j.funeco.2015.08.004>

853 Pringle, E. G., Álvarez-Loayza, P., & Terborgh, J. (2007). Seed characteristics and susceptibility
854 to pathogen attack in tree seeds of the Peruvian Amazon. *Plant Ecology*, 193(2), 211–
855 222. <https://doi.org/10.1007/s11258-006-9259-4>

856 Richards, P. W., Walsh, R. P. D., Baillie, I. C., & Greig-Smith, P. (1996). *The tropical
857 rainforest: An ecological study* (2nd ed.). Cambridge University Press.

858 Rottstock, T., Joshi, J., Kummer, V., & Fischer, M. (2014). Higher plant diversity promotes
859 higher diversity of fungal pathogens, while it decreases pathogen infection per plant.
860 *Ecology*, 95(7), 1907–1917. <https://doi.org/10.1890/13-2317.1>

861 Rozendaal, D. M. A., Brienen, R. J. W., Soliz-Gamboa, C. C., & Zuidema, P. A. (2010). Tropical
862 tree rings reveal preferential survival of fast-growing juveniles and increased juvenile
863 growth rates over time. *New Phytologist*, 185(3), 759–769.
864 <https://doi.org/10.1111/j.1469-8137.2009.03109.x>

865 Russo, S. E. (2005). Linking seed fate to natural dispersal patterns: Factors affecting predation
866 and scatter-hoarding of Virola calophylla seeds in Peru. *Journal of Tropical Ecology*,
867 21(3), 243–253. <https://doi.org/10.1017/S0266467405002312>

868 Schoeneweiss, D. F. (1975). Predisposition, stress, and plant disease. *Annual Review of
869 Phytopathology*, 13(1), 193–211.

870 Sinha, R., Irulappan, V., Mohan-Raju, B., Suganthi, A., & Senthil-Kumar, M. (2019). Impact of
871 drought stress on simultaneously occurring pathogen infection in field-grown chickpea.
872 *Scientific Reports*, 9(1), 5577. <https://doi.org/10.1038/s41598-019-41463-z>

873 Slippers, B., & Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens
874 of woody plants: Diversity, ecology and impact. *Fungal Biology Reviews*, 21(2–3), 90–
875 106. <https://doi.org/10.1016/j.fbr.2007.06.002>

876 Spear, E. R. (2017). Phylogenetic relationships and spatial distributions of putative fungal
877 pathogens of seedlings across a rainfall gradient in Panama. *Fungal Ecology*, 26, 65–73.
878 <https://doi.org/10.1016/j.funeco.2016.12.004>

879 Spear, E. R., & Broders, K. D. (2021). Host-generalist fungal pathogens of seedlings may
880 maintain forest diversity via host-specific impacts and differential susceptibility among
881 tree species. *New Phytologist*, 231(1), 460–474. <https://doi.org/10.1111/nph.17379>

882 Spear, E. R., Coley, P. D., & Kursar, T. A. (2015). Do pathogens limit the distributions of
883 tropical trees across a rainfall gradient? *Journal of Ecology*, 103(1), 165–174.
884 <https://doi.org/10.1111/1365-2745.12339>

885 Sugiyama, A., Comita, L. S., Masaki, T., Condit, R., & Hubbell, S. P. (2018). Resolving the
886 paradox of clumped seed dispersal: Positive density and distance dependence in a bat-
887 dispersed species. *Ecology*, 0(0). <https://doi.org/10.1002/ecy.2512>

888 Swinfield, T., Lewis, O. T., Bagchi, R., & Freckleton, R. P. (2012). Consequences of changing
889 rainfall for fungal pathogen-induced mortality in tropical tree seedlings: Fungal
890 Pathogen-Induced Mortality in Tropical Tree Seedlings. *Ecology and Evolution*, 2(7),
891 1408–1413. <https://doi.org/10.1002/ece3.252>

892 Terborgh, J. (2020). At 50, Janzen–Connell Has Come of Age. *BioScience*, 70(12), 1082–1092.
893 <https://doi.org/10.1093/biosci/biaa110>

894 Terborgh, J., Nuñez-Iturri, G., Pitman, N. C. A., Valverde, F. H. C., Alvarez, P., Swamy, V.,
895 Pringle, E. G., & Paine, C. E. T. (2008). Tree recruitment in an empty forest. *Ecology*,
896 89(6), 1757–1768. <https://doi.org/10.1890/07-0479.1>

897 Thompson, S., Alvarez-Loayza, P., Terborgh, J., & Katul, G. (2010). The effects of plant
898 pathogens on tree recruitment in the Western Amazon under a projected future climate: A
899 dynamical systems analysis. *Journal of Ecology*, 98(6), 1434–1446.

900 Velásquez, A. C., Castroverde, C. D. M., & He, S. Y. (2018). Plant–Pathogen Warfare under
901 Changing Climate Conditions. *Current Biology*, 28(10), R619–R634.
902 <https://doi.org/10.1016/j.cub.2018.03.054>

903 Visser, M. D., Schnitzer, S. A., Muller-Landau, H. C., Jongejans, E., de Kroon, H., Comita, L.
904 S., Hubbell, S. P., & Wright, S. J. (2018). Tree species vary widely in their tolerance for
905 liana infestation: A case study of differential host response to generalist parasites.
906 *Journal of Ecology*, 106(2), 781–794. <https://doi.org/10.1111/1365-2745.12815>

907 Webb, C. O., & Peart, D. R. (1999). Seedling density dependence promotes coexistence of
908 Bornean rain forest trees. *Ecology*, 80(6), 2006–2017. [https://doi.org/10.1890/0012-9658\(1999\)080\[2006:SDDPCO\]2.0.CO;2](https://doi.org/10.1890/0012-9658(1999)080[2006:SDDPCO]2.0.CO;2)

910 Weissflog, A., Markesteijn, L., Lewis, O. T., Comita, L. S., & Engelbrecht, B. M. J. (2017).
911 Contrasting patterns of insect herbivory and predation pressure across a tropical rainfall
912 gradient. *Biotropica*. <https://doi.org/10.1111/btp.12513>

913 Wright, S. J., Calderón, O., Hernández, A., Detto, M., & Jansen, P. A. (2016). Interspecific
914 associations in seed arrival and seedling recruitment in a Neotropical forest. *Ecology*,
915 97(10), 2780–2790. <https://doi.org/10.1002/ecy.1519>

916 Wright, S. J., Kitajima, K., Kraft, N. J., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R.,
917 Dalling, J. W., Davies, S. J., & Diaz, S. (2010). Functional traits and the growth–
918 mortality trade-off in tropical trees. *Ecology*, 91(12), 3664–3674.

919

920