
Identifying Coarse-Grained Representations for

Electronic Predictions

Chun-I Wang, J. Charlie Maier, and Nicholas E. Jackson∗

Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews

Avenue, Urbana, Illinois, 61801, USA

E-mail: jacksonn@illinois.edu

Abstract

Coarse-grained (CG) simulations are an important computational tool in chemistry

and materials science. Recently, systematic “bottom-up” CG models have been intro-

duced to capture electronic structure variations of molecules and polymers at the CG

resolution. However, the performance of these models is limited by the ability to select

reduced representations that preserve electronic structure information, which remains a

challenge. We propose two methods for (i) identifying important electronically coupled

atomic degrees of freedom and (ii) scoring the efficacy of CG representations used in

conjunction with CG electronic predictions. The first method is a physically-motivated

approach that incorporates nuclear vibrations and electronic structure derived from

simple quantum chemical calculations. We complement this physically-motivated ap-

proach with a machine learning technique based on the marginal contribution of nuclear

degrees of freedom to electronic prediction accuracy using an equivariant graph neural

network. By integrating these two approaches, we can both identify critical electroni-

cally coupled atomic coordinates and score the efficacy of arbitrary CG representations

for making electronic predictions. We leverage this capability to make a connection
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between optimized CG representations and the future potential for “bottom-up” devel-

opment of simplified model Hamiltonians incorporating non-linear vibrational modes.

1 Introduction

Coarse-grained (CG) simulations have emerged as an essential computational tool in chem-

istry and materials science for simulating large systems that would be intractable at the

atomistic resolution. In CG simulations, groups of atoms are combined into effective pseu-

doparticles via the definition of a CG representation (also called a CG “map”), reducing the

number of nuclear degrees of freedom that must be simulated. Provided this map, several

systematic methodologies have been introduced for establishing rigorous “bottom-up” cor-

respondence between different simulation resolutions.1–3 While these methodologies are well

developed, the task of selecting the “good” CG maps remains challenging, with chemical in-

tuition or convenience dictating most practical choices.4–6 A number of systematic schemes

for generating CG maps have been introduced that leverage essential dynamics,7–10 graph

theory,11–14 and machine learning (ML),15–18 but a dominant approach has yet to emerge.

In the context of modern physical chemistry, the ability to identify collective nuclear

degrees of freedom that couple strongly to electronic subsystems of interest is of critical

importance.4,19 Collective configurational degrees of freedom motivates the widespread use

of model Hamiltonians in the quantum dynamics community, with the modeling of excita-

tion transport in photosynthetic complexes,20–22 singlet fission in organic semiconductors,23

charge and excitation transport along polymer chains,24,25 and the absorption/emission spec-

tra of molecular aggregates26 utilizing a CG basis of sites with electron-phonon couplings in

terms of linearized vibrational normal modes. In rare cases, couplings to non-linear degrees

of freedom are known, but it is commonplace to select a single effective harmonic oscilla-

tor mode.27,28 While several systematic frameworks exist for developing CG models from

the bottom-up for classical simulations, no analogous techniques have been introduced for
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CG model quantum mechanics (QM) Hamiltonians beyond the normal mode regime, which

represents a notable gap in the field.

Recently, CG modeling methods have been introduced to facilitate the rigorous “bottom-

up” coarse-graining of electronic structure variations in molecular systems, denoted Elec-

tronic Coarse-Graining (ECG).19,29–34 If a CG map can be specified a priori, we have demon-

strated the ability of heteroscedastic Gaussian Processes to reproduce the all-atom statistical

distribution of electronic structure variations utilizing only the CG resolution.33 While this

systematic CG procedure is powerful, the task of identifying and selecting optimal CG maps

for ECG is computationally laborious, requiring retraining of the ECG model for any new CG

map.33,34 Developing systematic and computationally efficient means of selecting CG maps

are critically needed to advance ECG methods and ultimately connect with the “bottom-up”

development of simplified QM model Hamiltonians for arbitrary molecular systems.

Here, we introduce two methods to identify high performing CG maps for use in electronic

prediction models. First, we introduce a computationally efficient, physically-motivated scor-

ing metric for CG maps that demonstrates strong correlations with the performance of ECG

models. Second, we develop an approach to compute the marginal contributions of nuclear

degrees of freedom to ECG model prediction accuracy, enabling the identification of critical

nuclear degrees of freedom for inclusion in CG maps. We demonstrate the application of these

techniques using a complex organic semiconductor molecule, 2-(4-methoxyphenyl)-7-octyl-

benzothienobenzothiophene (BTBT) employed in field-effect transistors that exhibits non-

trivial electron-phonon couplings.35 This work represents the first effort to develop systematic

methods for identifying CG maps that capture electronically coupled collective nuclear de-

grees of freedom, forming the foundation for the systematic development of “bottom-up”

CG procedures for simplified QM model Hamiltonians in future work.

3



2 Methods

2.1 Physically-Motivated Scoring Metric

We first introduce the physically-motivated approach for identifying nuclear degrees of free-

dom with strong electronic coupling, applicable at both the CG and atomistic resolutions.

We define a score, Di, associated with a particular CG bead, i (Eq. 1). Di is defined as the

modulus of a weighted sum (Pjj is a diagonal weight matrix) over atomic displacement vec-

tors, r⃗j, consistent with the CG map, Mij, which is a linear operator that maps the atomic

positions to the CG position of bead i utilizing linear weighting coefficients:

Di = |MijPjj

Nfreq∑
f=1

r⃗fj |. (1)

In Eq. 1, Nfreq delineates the distinct frequencies associated with the frequency range over

the averaging of displacement vectors occurs (see SI). A score, S, for a given CG map is

obtained by summing over all individual CG bead scores, Di. In Figure 1, a toy CG model

of a hydrogen cyanide molecule illustrates the matrix expression of Eq. 1, in which the atoms

are coarse-grained using two different maps.

The scoring metric, Di, is inspired by the essential dynamics CG scheme8,9 in that if

the collective motions (r⃗fj ) of multiple atoms contained within a given CG bead cancel

out, this CG map will be a poor representation of the collective motion of the constituent

configurational degrees of freedom. The larger the value of this summed displacement vector

for a given CG bead, the more accurately collective atomistic motions are captured by the

CG map. A simple example is provided in Figure 1b for a hypothetical linear molecule

that demonstrates how the collective motions are preserved or cancelled out for two different

CG representations. In this work, we assess the effectiveness of different forms of the CG

mapping, Mij, the weighting function, Pjj, and the displacement vector, r⃗fj for capturing

correlations between CG maps and electronic prediction capabilities. Hydrogen atoms are
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Figure 1: The physically-motivated approach for identifying and scoring CG maps using
hydrogen cyanide (HCN) as a toy model along with two vibrational normal modes. (a)
The matrix representation of Eq. 1 and the normal mode displacement of each atom. (b)
Conceptual examples showing how collective motions are preserved in a two-bead CG model
(left), and canceled out in a one-bead CG representation (right), the quantitative description
of which is provided by Eq. 1.
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excluded from all analysis. Note that if Mij is the identity matrix then Eq. 1 acts as a

scoring function at the atomistic resolution.

2.2 Data-Driven Evaluation Metrics

We complement this heuristic scoring method with a quantitative evaluation of the marginal

contribution of atomic degrees of freedom to electronic prediction accuracy using equivariant

graph neural networks (GNN).36 The GNN is chosen as a data-driven metric for identifying

the crucial atoms because it can incorporate both the molecular topology and the three-

dimensional conformation during the learning process (see the SI for details). A training

set of 12,000 molecular configurations were sampled via molecular dynamics (MD) simula-

tions, with their electronic structure (highest occupied molecular orbital (HOMO) energy)

characterized using density functional theory (DFT). Then, a separate instance of a GNN

was trained for each heavy atom to be scored, with the coordinates of that particular atom

removed from the input features to the GNN. Following training, the R2 value of a testing

dataset was compared to a reference GNN, in which all atoms were included in the input

features. The score for any atom is calculated as the difference between the R2 values for

the reference GNN and the GNN with the atom excluded, and is interpreted as the marginal

contribution of that atom to the relative variation in the HOMO energy of a molecular

configuration. The results of this data-driven GNN model represent the most accurate char-

acterization of the importance of atomic degrees of freedom to the target electronic prediction

task.

To assess the efficacy of variations on the scoring metric (Eq. 1) for characterizing the

electronic prediction capabilities of CG maps, we employ feedforward neural networks (FNN)

to regress electronic properties (here the HOMO energy of BTBT) using only the CG repre-

sentation.29,37 146,590 sampled MD configurations of BTBT are projected into a CG repre-

sentation using a CG map (Mij) and transformed into an inverse distance matrix, where the

off-diagonal elements represent the reciprocal of the separation distance between CG parti-
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cles. As the distance matrix is symmetric, we considered only the off-diagonal elements from

the upper triangular portion as the FNN input feature—this featurization is the canonical

featurization used in previous ECG models. An FNN model is then trained to predict the

HOMO energy using only the CG representation of a molecule, and the R2 (SFNN−R2
HOMO ) of

this model serves as the ground truth for how accurately a given CG map captures elec-

tronic structure variations. We then correlate different scoring metrics (S =
∑

i Di) derived

using Eq. 1, with “good” CG map scoring metrics exhibiting strong linear correlation with

SFNN−R2
HOMO (see the SI). All tested scoring metrics are dramatically cheaper than the cost re-

quired to train a FNN model to evaluate a CG map. Further details of model training are

provided in the SI.

2.3 Dataset Construction

In this study, we employed MD simulations to sample a diverse set of BTBT monomer

and dimer configurations at an atomistic resolution. The resulting two data sets comprise

146,590 monomer and 102,400 dimer structures, respectively, which were projected onto 107

different CG representations. Each CG configuration was then featurized using the inverse

distance matrix associated with the respective CG representation and used as the input

feature for FNN models. For GNN models, we randomly sampled 14,000 configurations

from the monomer database (12,000 for training and 2,000 for testing) and used the atomic

Cartesian coordinates as the input feature. The electronic properties targeted in this work

were the HOMO energy of the BTBT monomer and the HOMO-HOMO intermolecular

coupling of the BTBT dimer. These properties were calculated by density functional theory

(DFT) calculations and the dimer projection technique38–40 using the sampled atomistic

configurations as input.
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2.3.1 Collecting Molecular Configurations via MD Simulations

To obtain the BTBT configurations, we performed MD simulations of the nematic liquid

crystal morphology at 555 K and 1.0 bar35 using an OPLS-based force field.41 We adapted

the OPLS force field by reparameterizing the equilibrium geometry, atomic partial charges,

and the torsional potentials of the inter-aromatic rings using DFT at the ωB97X-D3/cc-

pVDZ level of theory. In Figure S2, we present a systematic characterization of the structural

properties of BTBT in the four liquid-crystal phases (i.e., amorphous, nematic, smectic A,

and smectic E phases), which exhibit consistent structural features and phase behavior with

those observed in prior experimental and theoretical studies.35,42–44 Further details on the

parameterization and validation of the force field and the MD methodology can be found in

the SI. With the obtained MD trajectory, we collected molecular pairs with center-of-mass

distances ranging from 3 to 6 Å, resulting in a total of 102,400 pairs for the dataset of the

HOMO-HOMO electronic coupling. From this set, we randomly selected 146,590 distinct

monomer structures for the monomer dataset.

2.3.2 Characterization of Electronic Properties

The HOMO energy of each monomer structure sampled from MD was computed using DFT

at the ωB97X-D3/cc-pVDZ level of theory. For molecular pairs, the electronic couplings

were also computed at this level of theory utilizing the dimer projection approach.38–40 In

the dimer projection calculation, individual BTBT molecules were calculated in their neutral

singlet states, and the off-diagonal Fock matrix elements were calculated as the coupling. In

the present work, we aimed to investigate the hole transport property and thus calculated

the off-diagonal Fock matrix element for the HOMO. The sign of the electronic coupling

was determined using the phase-matching scheme introduced in previous work.37,45 The

distributions of the HOMO energy of the monomer dataset and the electronic coupling of the

dimer dataset are shown in Figure S3. All DFT calculations were performed using ORCA46

and we developed our own scripts to evaluate the electronic coupling. All computations for
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the electronic characterization of the dataset were done using services provided by the OSG

Consortium.47–49

3 Results and Discussion

3.1 Identifying Electronically Coupled Atomic Degrees of Free-

dom

First, we present the performance of the physically-motivated (Eq. 1) and GNN approaches

for scoring the importance of atomic nuclei in BTBT for predicting its HOMO energy. Figure

2 shows the atomic scores derived via the marginal contributions from the GNN and three

different forms of the scoring metric: MO (Pii employing a normalized magnitude of the

summed atomic HOMO density using Löwdin populations),50 NM (r⃗fj derived via normal

mode analysis with DFT), and MO-NM (utilizing Pii from the HOMO method, and r⃗fj from

the NM score). Figures 2b and 2c show that both the GNN and MO-NM approaches identify

two carbon atoms located in the conjugated center of BTBT as the most important atomic

coordinates influencing the HOMO energy. These carbon atoms have a high electron density

associated with the HOMO, as revealed by the visualization of Löwdin population analysis

in Figure 2d. Both approaches also highlight the contribution of carbon atoms located in

the conjugated moiety adjacent to the methoxyphenyl group, which can be attributed to the

rotational motion of the methoxyphenyl group that affects the electron delocalization via

the overlap of adjoining carbon 2p orbitals. Importantly, these scoring metrics support the

premise that the atomic importance provided by the quantitative GNN predictions can be

qualitatively reproduced using physically-motivated metrics that exhibit lower computational

cost than an ensemble of GNNs.
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Figure 2: (a) Molecular structure of BTBT where hydrogen atoms are omitted for clarity.
Normalized heatmaps showing the atomic scores evaluated by different methods: (b) graph
neural networks, (c) MO-weighted normal mode displacement, (d) HOMO population, and
(e) normal mode displacement. The atomic scores were normalized by the maximum atomic
score of each evaluation metric. The heatmaps provide a visual representation of the relative
importance of different atoms in BTBT, as evaluated by each metric.

3.2 Evaluation of CG Representations

The identification of electronically-coupled atomic coordinates provides a valuable guideline

for developing CG representations that can accurately predict configurational variation of the

HOMO energy for BTBT. Here, we evaluated a diverse set of CG representations for BTBT

that were classified into four groups: two CG representations obtained from a systematic

graph-based approach (denoted as GBCG),14 40 CG representations generated randomly

(denoted as Random-1), 40 CG representations generated randomly that preserve the two

carbon atoms located in the conjugated center of BTBT (denoted as Random-2), and 25

manually defined CG representations using the randomly generated CG models with higher

metric scores as references (denoted as Improvement). Details of the random CG map

generation algorithms are provided in the SI. Three evaluation metrics for all 107 generated

CG maps are shown in Figure 3, with the score “S” denoting the sum over all Di: (1)

Pii weighted by the marginal GNN scores and r⃗fj by normal mode displacement vectors
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(SGNN−NM
HOMO ), (2) Pii weighted by HOMO coefficients and r⃗fj by normal mode displacement

vectors (SMO−NM
HOMO ), and (3) the prediction accuracy of an FNN ECG model trained on the

CG representation (SFNN−R2
HOMO ). Additional metrics that were explored are provided in the SI.

Across all three methods of evaluating CG representations, a general hierarchy of per-

formance emerges amongst CG maps for the HOMO prediction task in BTBT: GBCG <

Random-1 < Random-2 < Improvement. GBCG derived CG maps exhibit the lowest scores

because no electronic information enters into the weighting functions and GBCG is biased

torward homogeneous distribution for bead sizes when generating CG maps as illustrated in

Figure 3d. Random-2 consistently outperformed Random-1 due to the pre-specified preser-

vation of the two crucial carbon atoms in all randomly generated maps. The resolution

of a CG map, which was quantified by the total number of CG particles (shown as a +

mark in Figures 3a-c) had a considerable impact on all scores among the random mappings

(Random-1 and Random-2), with higher resolution CG maps generally performing better

than lower resolution ones as shown in Figure S5. Finally, CG maps hand-tailored (Improve-

ment) utilizing the results of Figure 2 on average outperformed all other maps. For BTBT,

in addition to retaining the two carbon atoms with the highest GNN or MO-NM scores, we

found that atoms that are immediately pendant to the conjugated moieties should also be

retained. These atoms include the carbon atom of the methoxyphenyl group connected to

the conjugated core, the oxygen atom of the methoxyphenyl group, and the carbon atom

linking the conjugated core and the alkyl side chain, which serves as a pivot point among the

torsional motions. These results suggest that pre-existing knowledge of crucial atomic coor-

dinates in electronic predictions can benefit the selection of optimal CG maps for electronic

prediction tasks. Moreover, these results suggest that a heterogeneous distribution of CG

bead resolutions may be more advantageous for electronic predictions than ones exhibiting

a homogeneous distribution.

The analysis of CG scores also sheds light on a longstanding debate regarding the preser-

vation of symmetry in CG modeling.14,51–54 Among the 107 CG representations examined,
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Figure 3: Global CG score of 107 CG representations, evaluated using two methods: (a)
FNN model performance for HOMO energy prediction, (b) summation of the effective MO-
NM displacement of all the CG particles, (c) summation of the normal mode displacement
weighted by atomic scores of GNN metric shown in Figure 2b, and (d) selected CG repre-
sentations in which the color of each particle indicates the normalized Di score based on the
MO-NM metric. The overall CG score provides a quantitative measure of the correspon-
dence between each CG representation and HOMO energy. The three evaluation methods
are compared to assess their ability to capture the relevant features of the system, as re-
flected in the CG score.
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we observed a clear trend in the scores, particularly in relation to the degree of symmetry.

Asymmetric CG mappings, such as the GBCG representations, consistently yielded lower

scores compared to relatively symmetric ones, such as the top-10 of the Random-2 group

(Figure S4). This suggests that ”good representations,” verified by both physically-motivated

and data-driven metrics, are associated with a higher level of symmetry at the CG level. We

believe that maintaining a symmetric CG topology is crucial for preserving the symmetry of

CG bonded interactions, particularly in modeling conducting molecules that feature rigid or

semi-flexible conjugated regions alongside dangling alkyl groups. Such symmetry not only

helps mitigate numerical instability during iterative Boltzmann inversion but also ensures

the accuracy and reliability of CG models.

While it is clear that information about atomic degrees of freedom and their relative

importance to electronic prediction tasks can help inform the selection of CG maps, we

now consider the computational cost and quantitative accuracies associated with CG maps

selected via the different approaches. In Figures 4a-c, we show the correlations between

SMO−NM
HOMO , SGNN−NM

HOMO , and SNM
HOMO and the ECG-derived prediction accuracy, denoted SFNN−R2

HOMO .

As a baseline, a scoring function utilizing only the normal mode displacement vectors and

an identity matrix for the weighting matrix exhibits essentially no correlation with the pre-

dictive performance of ECG models (Figure 4a). This result is dramatically improved when

utilizing the HOMO populations as the atomic weight matrix Pii, resulting in a strong lin-

ear correlation with the performance of ECG models (Figure 4b). The scoring metric for

CG maps is derived using the GNN marginal atomic contributions for Pii in combination

with normal modes for r⃗fj (Figure 4c). A variety of alternative scoring metrics employing

essential dynamics as estimates of r⃗fj , Huang-Rhys factor analysis for Pii, and a variety

of other approaches were also explored, with details provided in the SI. However, all such

methods using Huang-Rhys factor analysis for Pii exhibited significantly worse correlation

with SFNN−R2
HOMO , which represents the “ground-truth” of a CG map’s predictive performance.

The alternative metrics employing essential dynamics as the displacement vector (r⃗fj ) show
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moderate correlation with SFNN−R2
HOMO that indicates the robustness of Eq. 1 for quantifying

the collective atomic motions within CG particles (see the SI for futher discussion). In fact,

it can be observed that SMO−NM
HOMO correlates quite strongly with the “best” scoring metric

which utilizes the GNN-derived marginal contribution weighting function (see Figure 4d).

As obtaining SGNN−NM
HOMO requires training of an ensemble of GNN’s over O(104−5) electronic

structure calculations, and SMO−NM
HOMO simply requires a normal mode quantum chemical (QC)

analysis at the ground state geometry, the latter is recommended as a robust and practical

methodology for selecting CG maps for ECG prediction models with the least computational

cost.

With the establishment of the SMO−NM
HOMO score as a cost effective and quantitatively reliable

means for evaluating the efficacy of CG maps for the HOMO prediction task in BTBT, we

now examine the transferability of CG map scores to the off-target prediction property of

the HOMO-HOMO intermolecular electronic coupling between BTBT dimers. We use an

FNN to predict the intermolecular electronic coupling using only the CG resolution for the

107 CG maps previously examined. In Figure 5a, the R2 scores of intermolecular electronic

coupling for different CG presentations, SFNN−R2
Coupling , were all above 0.9. Although there was

a minor variation in SFNN−R2
Coupling for different CG representations, distinct separation between

different classes of CG maps is still observed. Moreover, Figure 5c shows the correlation

between SFNN−R2
Coupling and SFNN−R2

HOMO , with a coefficient of determination of 0.607, which agrees

with the physical intuition that CG maps optimized for MO energy prediction should work

well for electronic couplings involving the same MO. These results indicate that the CG

maps optimized for a single electronic property prediction task have the potential to be

transferable between related prediction tasks.
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Figure 4: Correlation between different evaluation metrics for 107 CG representations: (a)
sum over normal mode displacement without any weight (SNM

HOMO) versus scores obtained
from FNN (SML−R2

HOMO ), (b) the normal mode scores weighted by HOMO population (SMO−NM
HOMO )

versus SML−R2
HOMO , (c) the normal mode scores weighted by GNN contribution (SGNN−NM

HOMO ) versus
SML−R2
HOMO , and (d) versus SMO−NM

HOMO versus SGNN−NM
HOMO
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Figure 5: (a) Overall coarse-grained (CG) score of 107 CG representations evaluated by
FNN model performance for electronic coupling prediction, (b) HOMO contour plots of a
selected BTBT molecular pair, which illustrate the variation in HOMO density across the
molecules and (c) scatter plot of CG scores based on FNN model performance for HOMO
energy prediction and electronic coupling prediction for the 107 CG representations. The
plots provide insight into the electronic properties of the molecules and can help guide the
development of more accurate CG representations.
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3.3 Transferability and Generality

The methods introduced herein should exhibit straightforward transferability to a variety of

chemistries and electronic prediction properties of interest to the broader physical chemistry

community. While initial tests with other molecular orbitals and their associated electronic

properties shows a substantial robustness of the developed approach to any electronic target

property, there is no expectation that the CG maps developed as a result of the methods

introduced here should be transferable between arbitrary electronic prediction tasks. As

the best CG maps derived in this study can be extracted using the HOMO population as

a weighting function, there is no expectation that a CG map optimized for prediction tasks

related to the HOMO should be accurate for prediction tasks related to other orbitals, par-

ticularly those with substantially different spatial structure of the orbitals. Such approaches

have substantial promise in the organic semiconductor community but could also be of po-

tential interest to the biological community interested in developing optimal CG maps that

accurately capture e.g. hydrogen bonding or electronic polarization. As the scoring func-

tion defined by Eq. 1 is sufficiently general, users can experiment with any combination of

weighting functions or displacement vectors relevant to their system of interest to access a

computationally cheaper path to optimal CG makes than repeated training of a data-driven

FNN in the traditional ECG approach. By eliminating the existing computational burden

to the selection of “good” CG maps for electronic predictions to a standard ground state

DFT normal mode analysis, this should significantly lower the barrier to the development of

CG electronic prediction models in the broader community.

An important point of the developed methods relates to the utilization of the described

approach for identifying electronically coupled vibrational modes, beyond the normal mode

regime, of interest to quantum dynamics treatments. As the standard form of the Hamil-

tonian for quantum dynamical calculations employs bilinear couplings to, typically, local-

ized normal mode vibrations, there is substantial interest moving forward in systematic

approaches for identifying non-linear collective variables exhibiting strong couplings to elec-
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tronic subsystems of interest. While it is common to identify electronically coupled normal

modes by examining their associated Huang-Rhys factors, such approaches do not capture

molecular motions beyond the normal mode regime. An interesting example of this occurs in

the context of the BTBT molecule studied here, where the rotational motion of the phenyl di-

hedral angle is identified as being of critical importance to the HOMO energy (see Figure S3).

Moreover, all scoring methods introduced here can immediately discriminate unimportant

degrees of freedom, such as the alkylic side-chain in BTBT. By developing molecular rep-

resentations utilizing only a subsystem of nuclear coordinates, there is the potential to use

numerically driven techniques to identify their non-linear collective motions, which would

be the first concrete step towards the establishment of electronically coupled non-linear vi-

brational modes. Moreover, the ability to achieve this for any arbitrarily complex chemistry

from the “bottom-up” provides an interesting avenue to the systematic development of model

Hamiltonians beyond the normal mode regime.

4 Conclusions

In this work, we presented two complementary methodologies for identifying strongly cou-

pled atomic degrees of freedom and evaluating the effectiveness of CG maps utilized in

electronic prediction tasks. A physically-motivated approach using normal mode analysis

and quantum-chemically derived charge distributions was used to quantify electron-phonon

couplings, demonstrating strong linear correlation with electronic predictions at CG reso-

lutions generated using supervised machine learning. The proposed physically-motivated

metric requires only a ground state normal mode analysis available in any quantum chem-

istry code, and is easy to implement. The implementation of this metric is available in

our GitHub repository (https://github.com/TheJacksonLab/ECG ScoringMetric). We have

also introduced a data-driven approach leveraging equivariant GNNs to derive the marginal

contribution of atomic degrees of freedom to electronic prediction performance, demonstrat-
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ing good agreement with the physically-motivated approach. By leveraging both methods,

we have demonstrated the potential to design CG models that preserve electronic-property-

informative atomic coordinates for a targeted CG model resolution. Our results show the

robustness and versatility of both methodologies in evaluating electronic properties at the

CG level, suggesting that these approaches could lead to the development of optimized ECG

models for a wide range of materials and systems, as well as “bottom-up” CG models for QM

model Hamiltonians. We anticipate that these evaluation metrics will enable the systematic

and automatic mapping of CG models that capture electronic structure or chemical reaction

properties, facilitating the development of CG models that better reflect the behavior of

complex molecular systems.
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