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Computational investigation of the phase
behavior of colloidal squares with offset
magnetic dipoles†

Matthew A. Dorsey, Orlin D. Velev and Carol K. Hall *

Colloidal particles with anisotropic shapes and interactions display rich phase behavior and have

potential as structural bases for materials with controllable properties. In this paper, we explore the self-

assembling characteristics of a new class of particles that have been shown experimentally to form

reconfigurable structures: microscopic cube-shaped colloids with a magnetic dipole that is transversely

offset from the particle’s center of mass. We have performed in silico simulations of the dynamics of

large numbers of dipolar squares in two-dimensions using discontinuous molecular dynamics (DMD).

We use a coarse-grain method where the dipolar microcubes are represented by a group of four hard

circles bonded together to create a rigid square in two-dimensions and two opposite charges are

embedded within the square to represent a magnetic dipole. Annealing, or ‘‘slow-cooling’’, simulations

are conducted to determine the equilibrium structures. Systems of dipolar squares tend to assemble into

one of two different types of conformations: either single- or double-stranded assemblies, each with

unique structures and phase diagrams in the temperature-density plane. Single-stranded assemblies

form highly interconnected percolated, or gel-like, networks. In contrast, double stranded assemblies

tend to form globally-aligned nematic states at high densities, although this is not seen consistently in

all runs. The phase behavior of systems of dipolar squares depends not only on the system’s

temperature and density, but also on the type of dipole embedded within the square and on the relative

number of squares with an opposite ‘‘handedness’’ that are present within the system.

Introduction

Colloidal self-assembly relies on interparticle forces to direct
systems of particles into ordered structures. Colloidal assem-
blies can have many different morphologies, including lattices,
strings, sheets, and vesicles.1 Often, they can be triggered to
reversibly switch between phases by adjusting the forces
between the particles with specific external stimuli, e.g., elec-
tromagnetic fields.2 Colloidal systems with tailored properties
that change predictably and reversibly in response to external
stimuli are the basis for functional materials with tunable and
controllable properties. Applications for these materials are
increasingly being found in areas like biotechnology,3–5

photonics,6–9 and electronics.10–12 For example, dense suspensions
of colloidal spheres self-assemble into 2D monolayers and 3D
multilayers with controllable lattice properties, which then act as
templates for optical etching masks in photolithography.13

Colloidal particles with anisotropic properties are of interest
because they exhibit phase behavior that is more complex than
their isotropic analogs.14 One prominent example of an aniso-
tropic colloid is Janus spheres, which are spherical colloids
whose two hemispheres have different physical or chemical
properties.15 As a result of their different properties, Janus
spheres have interactions that depend on their relative orienta-
tion. Spherical colloids with isotropic interactions assemble
into symmetrical, lattice-like configurations at high densities
(e.g. face-centered cubic, hexagonal close-packed, and body-
centered cubic lattice structures). The packing structure of
systems with hard shapes is entropically driven: the system’s
overall free-energy is minimized at high densities when colloi-
dal particles organize into structures with fewer configurational
possibilities.16 However, Janus particles, whose interaction
symmetry has been broken, assemble into a rich variety of
phases distinct from their isotropic analogs. Amphiphilic Janus
particles, whose hemisphere’s have different physical proper-
ties (e.g. hydrophilic and hydrophobic) have surfactant-
like behavior, assembling into micelle and bilayer phases.17,18

Colloids with internal dipoles also have orientationally-
dependent interactions.19–21 Janus spheres with internal
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magnetic or electric dipoles may form staggered chains and
branched structures at low densities, and into crystal structures
at high densities.22–24 The geometry of a colloidal particle also
plays an important role in a system’s phase behavior, especially
at high densities. For example, colloidal rods at high densities
order into smectic and nematic phases in which all particles are
globally oriented in the direction of their long axis.25

In this paper we explore the behavior of cube-shaped colloi-
dal particles that have an internal magnetic dipole and which
have been confined to a 2D plane. The focus is on a novel class
of cubic, metallodielectric microparticles introduced by Han
et al. that are able to interact, assemble, reconfigure, and propel
in response to external magnetic and electric fields.26–28 These
‘‘patchy’’ cubic microparticles are 10 mm in size and are
generated by coating one face of a cubic latex particle with a
thin layer of cobalt, a ferrometallic material. When the particles
are suspended in water, they sediment to the bottom of the thin
chamber, effectively reducing the geometry to two dimensions.
Application of an external magnetic field across the chamber
parallel to the floor causes the metallic coating to acquire
residual magnetic polarization that creates long-range,
directionally-dependent forces between the patchy microparti-
cles. The magnetic field also forces the particles to orient their
magnetic side along the direction of the magnetic field, leading
to the formation of chained assemblies. The combination of
particle geometry, directional dipole–dipole interparticle mag-
netic interactions, and responsiveness to externally-applied,
tunable and time-dependent magnetic and electric fields gives
these particles a rich potential for assembling into responsive
and reconfigurable materials.

Computer simulations have been used extensively to study
the effect that particle geometry and orientationally-dependent
interactions (e.g., dipole–dipole interactions) have on the self-
assembling behavior of anisotropic colloidal particles.29–32

Molecular dynamics simulations are often used to model the
motion of colloidal suspensions by approximating forces
between particles with pairwise interparticle potential
functions.33–35 Computational studies of circular colloids with
offset internal dipoles have predicted a range of phase behavior
depending on the location and orientation of the dipole
embedded in the particles.36 In previous studies, computer
simulations have also been used to study systems of colloidal
cubes with internal dipoles.37–41 One challenge with the mod-
eling of systems of non-spherical colloids is in properly
accounting for their excluded volume interactions. Due to their
anisotropic geometries, computer simulations must account
for both the translational motion and the rotational motion of
the particles, increasing their overall computational burden. To
alleviate this burden, colloids with anisotropic geometries are
often approximated as groupings of particles with isotropic
interactions. For example, Escobedo et al. performed Monte
Carlo simulations of hard geometries in two- and three-
dimensions, modelling the squares and cubes, respectively, as
clusters of hard-spheres.42,43 The same method was used by
Kantorovich et al. to study cubes with embedded, centrally-
located magnetic dipoles, in which the magnetic dipoles were

represented by the point charge-dipole equation.44,45 While
theoretical studies of spheres with offset dipoles and of squares
with centrally-located dipoles have been performed extensively
using a variety of models, computational simulations of
squares with offset dipoles have not yet been performed to
the best of our knowledge. Colloids with offset dipoles can be
grouped into two categories depending on how the dipole is
shifted from the particle’s center-of-mass. If the vector that
points from the particle’s center of mass to the center of the
offset dipole is parallel to the direction that the dipole points,
the dipoles are considered longitudinally shifted. If that same
vector points perpendicular to the direction that the dipole
points, the dipoles are considered transversely shifted.

The goal of this work is to explore the phase behavior of the
polarized square colloidal particles with transversely-shifted
internal magnetic dipoles introduced by Han et al.26 We model
square colloidal particles in 2D as a cluster of four hard, non-
overlapping circles that are bonded together to create a rigid,
square geometrical shape in two dimensions. We model the
square’s dipole as two opposite charges embedded within the
hard spheres on the square’s edge, so that the dipole points
parallel to one of the principle axes of the square. The inter-
action between two charges is defined such that charges with
the same sign experience a repulsive potential, while charges
with opposite signs experience an attractive potential. This
construct is analogous to an electrostatic dipole, and has been
used previously to model magnetically-polarized colloids.46–48

One unique feature of the magnetically-polarized colloids
is their chirality. Since the squares are unable to rotate outside
of the two-dimensional simulation plane, they have a fixed
chirality, which depends on the direction of their magnetic
dipole relative to the square’s center. Another unique feature of
these magnetically-polarized colloids is that their dipole is
offset from the particle’s center. Here we study two different
types of dipoles, which we denote as standard and offset
dipoles, and which differ in how the dipole is embedded within
the square.

Highlights of our results include the following. We find that,
for all systems, as the temperature is reduced below a threshold
value, the dipolar square particles assemble into one of two
types of structures: (1) single-stranded assemblies, or (2)
double-stranded assemblies. In a single-stranded assembly,
the squares aggregate primarily in head-to-tail configurations,
to form flexible assemblies in which all the dipoles in the
strand point in the same direction. In a double-stranded
assembly, pairs of dipolar squares aggregate in an anti-
parallel conformation to form rigid assemblies with rod-like
morphologies. We have found that the system’s preference for
assembling into either single-stranded or double-stranded
assemblies is a consequence of where the dipole is embedded
within the square, which affects the squares’ preference for
either head-to-tail or antiparallel configurations. Additionally,
we find that under certain conditions, systems of magnetically
polarized squares with transversely shifted dipoles exhibit
density-dependent percolation and nematic phase transitions.
Interestingly, these phases depend not only on the type of
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dipole embedded within the square, but also on the presence or
absence of squares of opposite chirality in the system.

Model

The square particle is modeled with four non-overlapping,
uniform hard discs of diameter s. The square geometry is
maintained by bonding the hard discs in each group in such
a way that the square maintains a rigid shape, as shown in
Fig. 1. Five pseudo-bonds are used for each square via Belle-
mans’ method.49 In Bellemans’ method, spheres bound
together experience a repulsive force if their distance from
one another is outside of a certain range. Bellemans’ constant,
d, defines how tightly the discs are bound to one another,
which was set to 0.015s for our simulations. Two small,
charged discs, opposite in ‘‘charge’’ but equal in magnitude,
are embedded in the first and second discs of each square
formation, shown in Fig. 2. In our model, squares are unable to
rotate outside of the simulation plane, and, as a result, they have a
fixed chirality over the course of any simulation.50 The chirality of
any square depends on where the charges are embedded relative to
the particle’s center. We define A-chirality squares to have a
magnetic dipole that points clockwise relative to the center of the
particle, and B-chirality squares to have a magnetic dipole that
points counterclockwise relative to the center of the square. Fig. 2
illustrates two different squares, one with A-chirality and the other
with B-chirality.

We model the dynamics of the dipolar square colloids using
the Discontinuous Molecular Dynamics (DMD) algorithm.
DMD is an accelerated variant of the standard molecular
dynamics (MD) algorithm that is applied to coarse-grained
versions of molecular models.51,52 Coarse-grained models are
particularly useful for exploring the behavior of large systems of

particles, as well as phenomena that occur at long-time scales,
as they substantially reduce the overall computational time
required to simulate such systems. While in standard MD, the
potentials are continuous potential functions of the interparti-
cle distance, in DMD the potentials are represented by a series
of discrete changes in the potential’s value.53 When a pair of
particles are not at a discontinuity in the potential, the change
in the potential is zero. As a result, particles in DMD do not
experience any forces or acceleration. Instead, they experience
impulses over an infinitesimally small period of time at the
location in the discontinuity. At all other times, their velocities
(magnitude and direction) are constant until they encounter a
discontinuity in the interparticle potential, at which point the
trajectories of the interacting particles must be adjusted. The
advantage of DMD over standard MD is that, since the particles
maintain a constant velocity between discontinuities, the equa-
tions of motion between discrete points in time can be solved
analytically. The DMD is an event-driven algorithm that oper-
ates by moving the system of particles forward in time from
interaction to interaction, significantly reducing the overall
computational time compared to MD.54

The charged discs in different squares with opposite charges
experience an attractive, multi-step, square well potential, while
discs with the same charge experience a repulsive, multi-step,
square shoulder potential. The square potentials have the same
step widths, but opposite depths. The depths and widths for
either potential is selected to mimic the Yukawa potential, also
known as the screened Coulomb potential. The Yukawa
potential represents a full-range coulomb potential that is
shielded by a layer of aqueous counterions. A screened cou-
lombic potential was selected instead of a full-range coulombic
potential as, in the latter case, the computationally taxing
Ewald sums method is required to account for the cumulative
effect of the long-range potential across periodic boundaries
during molecular simulations. The Yukawa potential is
defined as

UYukawa r�ij

� �
¼ e

r�ij
exp �k� r�ij � 1

� �� �
(1)

Fig. 1 Illustration of the bonding strategy used to maintain the square
geometry in DMD. Four bonds (dashed black lines) link each disc with its
immediate neighbor. One bond (solid black line) links one disc to the disc
that is across from it.

Fig. 2 Two dipolar squares with opposite chiralities are shown. (a) A
dipolar square with a dipole that points clockwise relative to the square’s
center. This type of square is denoted A-chirality. (b) A dipolar square with
a dipole that points counterclockwise relative to the square’s center. This
type of square is denoted B-chirality. While the opposite charges that are
embedded within either of the two squares are the same, different colors
are used to make distinctions between the two different squares.
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where e is a constant with units of energy related to the
interaction strength of the potential, k* is the reduced inverse
Debye length, which represents the range of the potential and
therefore the strength of the screening effect, and r�ij is the

reduced distance between the two charges. Both the inverse
Debye length and the interparticle distance between the two
charges are reduced by the hard disc diameter s. The para-
meters used to fit the square well and shoulder potentials to the
Yukawa potential were selected by determining a maximum
cut-off length beyond which charged spheres will not interact
with each other. This maximum cut-off length was selected to

be slightly less than
ffiffiffi
2

p
s, which is the distance between two

similar charges when two dipolar squares are in an anti-parallel

conformation. If the cut-off length is set to be greater than
ffiffiffi
2

p
s,

then dipolar squares interacting via discontinuous potentials
self-assemble in a manner that is significantly different from
the way that they self-assemble when they interact with con-
tinuous potentials. We have estimated that a maximum cut-off

length of
ffiffiffi
2

p
s corresponds to a reduced Debye length of

approximately k* = 3.5. The reduced temperature of our simu-
lations is defined to be T* � kBT/e, where kB is the Boltzmann
constant and e is the energy constant in the Yukawa potential
with units of energy related to the strength of the interaction.

Hard discs from different squares interact through the
reduced hard disc potential U�

HD r�ð Þ, which is defined as

U�
HD r�ij

� �
� 1 if r�ij � 1

0 if r�ij 4 1

�
(2)

where r�ij is the reduced distance between the centers of two

hard discs. Charged discs embedded in different squares
interact via a four-step reduced charged disc potential

U�
CD r�ij

� �
, which is defined as

U�
CD r�ij

� �
�

e1 if �
ij os1

e2 else if r�ij os2
e3 else if r�ij os3
e4 else if r�ij os4

else 0

8>>>><
>>>>:

(3)

where r�ij is the reduced distance between the centers of two

charged discs. The potential is either attractive (square well) if
the charges are of opposite sign, or repulsive (square shoulder)
if the charges are of the same sign. The step depths (e1 = 2.5426,
e2 = 1.5916, e3 = 0.8259, and e4 = 0.3146) and step widths (s1 =
0.850, s2 = 0.950, s3 = 1.150, and s4 = 1.400) were selected to
approximate the discontinuous interactions between charged
discs to a Yukawa potential with a reduced Debye length of k* =
3.5.47

The dipoles that are embedded within each square are
transversely offset from the particle’s center-of-mass. We have
varied the location of the dipole’s charges within the square to
study how the degree to which the dipole is offset from the
square’s center impacts its behavior. In this paper, we consider
two different dipole offsets. In the first, denoted as the standard
dipole, the charged discs are placed in the center of either of
the hard discs that they are embedded in. Both charges are

located equidistant from the nearest square faces that are
parallel and perpendicular to the dipole. Fig. 3a shows that
for the standard dipole the transverse distance is dT = 0.5s and
the lateral distance is dL = 0.5s. The standard dipole represents
dipolar squares whose permanent magnetic dipole is located
along one of the square faces, and is a good representation of
those designed by Han et al.26 In the second type of dipole,
denoted as the offset dipole, the charged discs are embedded
such that the lateral distance is dL = 0.375s and is less than the
transverse distance, which remains dT = 0.5s. In this case,
shown in Fig. 3b, the charges are located slightly closer to the
square face that is perpendicular to the direction that the
dipole points than it is to the square face that is parallel to
the direction that the dipole points. To model the offset dipole,
two additional bonds are required for each of the charged discs
to maintain their position within the square. Each charged disc
is bonded to the hard disc that it is embedded inside of (with
bond lengths ranging between 0.125s � d and 0.125s + d) and
to the adjacent hard disc that contains the other embedded
charge (with bond lengths ranging between 1.125s � d and
1.125s + d).

The primary difference between the standard and the offset
dipole is their preference to be in anti-parallel or head-to-tail
configurations with other squares of the same type. Fig. 4
illustrates the difference between standard and offset dipoles
by showing diagrams and potential energy calculations
between two A-chirality squares in both head-to-tail and anti-
parallel configurations. Since the charged discs are embedded
within hard discs, the smallest distance that the two charged
discs can come to each other is determined by their distance in
any direction from the edge of the hard disc that they are
embedded in. In the case of the standard dipole, the charged
discs are embedded in the center of the hard discs, and

Fig. 3 Two A-chirality, dipolar squares are shown. Solid lines surround
each square and illustrate the hard, square shape that the formation of
hard discs represents, and dashed black lines connect opposite vertices of
the square. The type of dipole that is embedded within the square is
quantified by two parameters. The transverse distance (dT) is the distance
from the dipole center to the square edge that is parallel to the direction
that the dipole points. The lateral distance (dL) is the distance from the end
of the dipole (either of the charged spheres) to the square edge that is
perpendicular to the direction that the dipole points. (a) A dipolar square
with an embedded standard dipole; the transverse distance and the lateral
distance are equal. (b) A dipolar square with an embedded offset dipole;
the lateral distance is slightly smaller than the transverse distance, which
means that the charges on the offset dipole are slightly closer to the
perpendicular square edge than to the parallel one.
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therefore can never come closer to each other than r�ij ¼ 1:00 in

either the lateral or transverse directions. As a result, squares
with standard dipoles have their lowest configurational
potential in an antiparallel arrangement, in which both the
charges on each square have an oppositely-charged partner. In
the case of the offset dipole, the closest distance that is possible
between two charges is rij = 0.75s in the lateral direction dL,
while the closest distance in the transverse direction dT
remains r�ij ¼ 1:00. As a result, two squares with offset dipoles

have their lowest configurational potential in a head-to-tail
arrangement.

Methods

NVT ensemble DMD simulations are performed in a 2-dimen-
sional simulation box with periodic boundaries. Constant
temperature is maintained using the Andersen thermostat,
where random squares are periodically selected and every disc
within that group is reassigned a unique velocity from a
Boltzmann distribution.55 Canonical ensemble annealing
simulations are used to investigate the equilibrium behavior
of systems of dipolar squares. In annealing simulations, the
system temperature is decreased in very small steps, allowing
the system to equilibrate before reducing the system tempera-
ture again. For each annealing simulation, the system tempera-
ture is set to a starting value of T* = 1.5 and reduced only after
200 million collision events. On average, 200 million collision

events last 1000 reduced seconds. The simulation time scale is

defined in seconds as t� ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=s2 �m

p
. We have determined

that this length of time is sufficient for a system to be
considered at equilibrium after a perturbation in the system
temperature.

The temperature is reduced according to the following
assignment strategy:

T� : ¼
T� � 0:25 if T� 4 0:5

T� � 0:0125 else if T� 4 0:25

T� � 0:005 else if T� 4 0:01

8><
>: (4)

Each annealing simulation has 70 temperature steps and
cumulatively runs for over 70 000 reduced seconds. When the
temperature reaches a value of T* = 0.01, the simulation is
finished. At this temperature the thermal forces of the system
are significantly lower than the strength of the interactions
between magnetic dipoles. Below this temperature, the equili-
brium structures of the system do not change further. Anneal-
ing simulations were performed for each system at area
fractions, f, ranging from 0.05 to 0.70. We define the area
fraction as the area occupied by all squares in the simulation
box, including the area between the circles in the center of the
square group, divided by the total area of the simulation plane.
The maximum packing fraction of this system is fmax = 0.839.

Four order parameters were developed to quantify the
clustering behavior of the squares at each temperature step
during the annealing simulations. Each order parameter mea-
sures the likelihood that a square will be found in a particular
type of configuration with other squares when it is at equili-
brium. A value of 0 indicates that none of the squares in the
system have adopted the specified conformation, while a value
of 1 indicates that all squares in the system have adopted the
specified conformation. The order parameters are plotted
against the reduced temperature of the system over the course
of an annealing simulation to determine the temperature at
which the system transitions from a state in which none of the
squares in the system conform to a particular order parameter
to a state in which all or most the squares in the system
conform to a particular order parameter. This transition for
any order parameter is defined to occur at the inflection point
in the line fit to the order parameter data vs. the reduced
temperature. The transition temperature of any order para-
meter is determined by calculating the inflection point of the
logistic5 curve fit to the order parameter data

F T�ð Þ ¼ C1 þ
C2 � C1

1þ C3=T�ð ÞC4

� �C5
(5)

where T* is the reduced temperature, F(T*) is the order para-
meter as a function of the reduced temperature over the course
of the anneal simulation, and C1, C2, C3, C4, and C5 are
constants used to fit the logistic5 curve to the order parameter
data. Examples of selected order parameter data fit to the
logistic5 curve are provided in the ESI.†

In total we use four order parameters to categorize the phase
behavior of large systems of dipolar squares. Two of the order

Fig. 4 Interaction potential between two polarized squares with standard
(top) or offset (bottom) dipoles in anti-parallel (left) or head-to-tail (right)
conformations. Each diagram lists the total interaction potentials between
the two squares with charged spheres interacting via a continuous Yukawa
potential UYukawa and the discontinuous potential UCD that was selected to
mimic the Yukawa potential.
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parameters quantify how the dipolar squares aggregate with
one another by measuring the configuration of squares that are
associated with other squares. The other two order parameters
are used to quantify the macroscopic, morphological properties
of systems of dipolar squares. For some order parameters, we
use clustering criterion to determine if two squares are asso-
ciated with one another. We consider two squares to be
associated with one another if either of their two opposite
charges are within a certain distance of one another. We define
two charged discs as being associated if they are within a

distance of
ffiffiffi
2

p
s from one another, which is the maximum

interaction distance of the charged disc potential. We have
found that this threshold distance is a good measure of square–
square association. Increasing the threshold distance beyond
this value does not make sense as the charged discs would not
interact with each other in that case.

The first configurational order parameter is the single-
strand order parameter, Fsingle-strand, which quantifies the
extent to which a system of dipolar squares conforms to a
single-stranded assembly. A square is considered in a single-
stranded assembly if each of its charged discs are associated
with at least one other oppositely charged disc. In a single-
stranded assembly, each square aligns in a head-to-tail configu-
ration with two other squares, as illustrated in Fig. 5. The
single-strand order parameter Fsingle-strand is defined as the
ensemble-averaged number of squares that conform to a single
stranded assembly, Nsingle-strand, normalized by the total num-
ber of squares in the system, Nsquares.

Fsingle-strand � Nsingle-strand

Nsquares

� �
(6)

The second configurational order parameter is the double-
strand order parameter, Fdouble-strand, which quantifies the
extent to which a system of dipolar squares conforms to a
double-stranded assembly. A square is considered to be in a
double-stranded assembly when each of its charged discs is
associated with two oppositely-charged discs, shown in Fig. 5.
In this type of assembly, both of the charged discs embedded
within a square are unable to associate with any additional
charged discs, due to the steric hindrances of how the dipole
is embedded in the square, and the square has reached its
lowest possible potential energy. The double-strand order
parameter Fdouble-strand is defined as the ensemble-averaged
number of squares that conform to a double-stranded assembly,
Ndouble-strand, normalized by the total number of squares in the
system, Nsquares.

Fdouble-strand ¼
Ndouble-strand

Nsquares

� �
(7)

We have defined the single- and double-stranded order para-
meters in such a way that for a square to meet the double-
stranded order parameter criteria, it must already meet the
single-stranded order parameter criteria. As a result, as any
system of colloidal squares cools during an annealing simula-
tion, the system first enters a single-stranded phase and then a
double-stranded phase.

The first morphological order parameter is the percolation
probability, P, which measures the likelihood of finding a
cluster of associated squares with infinite length. A system of
colloidal particles that have reached a percolated state are
considered to be in a gel phase. Gel phases have a high degree
of particle interconnectivity and are associated with materials
that have properties such as mechanical stability or electrical
conductivity.56 A system is determined to be percolated if any
one cluster of squares spans the length of the periodic simula-
tion box and connects with itself independently in both dimen-
sions. A cluster is defined as any group of squares that are
associated with each other.57 So, for example, if one square is
associated with two other squares, all three squares are con-
sidered to be a part of the same cluster. The percolation
parameter is a measure of whether or not the configuration
of a system is in a percolated state. If the configuration at any
point in time has reached a percolated state, the percolation
parameter for that configuration Cpercolated is assigned a value
of one. Otherwise, it is assigned a value of zero. The ensemble
average of the percolation order parameter,P, for any temperature
is therefore the ensemble average of the value Cpercolated assigned
to each system configuration that was examined for that ensemble.

P � hCpercolatedi (8)

The second morphological order parameter is the nematic
order parameter, S, which measures the directional order of the

Fig. 5 Diagrams which demonstrate the possible conformations of any
one square that meet the criteria for the single- (a and b) or double-
stranded (c and d) order parameters. The gray circles represent the hard
disks that make up the square geometry. The red and blue circles
represent the centers of the negative and positive charges, respectively,
embedded within A-chirality squares, and the orange and purple circles
represent the negative and positive charges, respectively, embedded
within B-chirality squares. The squares whose order parameter is being
considered are shown in dark gray, while the squares associated with them
are shown in light gray. The dashed, colored rings are centered around
charged spheres corresponding to their color and are at the maximum
distance at which the two opposite charges are considered to be asso-
ciated with one another (the outermost well of the UCD potential).
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system. The nematic order parameter is calculated by measur-
ing the angle between the embedded dipoles of every pair of
squares yij in each configurational snapshot that is taken. It is
defined in a such a way that if a pair of dipoles are aligned in a
head-to-tail or antiparallel configuration (yij = 0 or yij = p), the
order parameter has a value of 1. However, if the pair of dipoles
are aligned perpendicularly (yij = p/2), the order parameter is
�1/2. For any system that has a random orientational distribu-
tion, hcos2 yiji = 1/3 and the nematic order parameter has a
value of 0.58

S � 1

2
3 cos2 yij � 1
� 	

(9)

We define a system to be in a nematic state when the ensemble
average of the nematic order parameter is S Z 0.8, signifying
the system’s transition from a directionally disordered state
into a directionally ordered state. The nematic order parameter
has been used by others to study the nematic-isotropic phase
transition in systems of soft ellipsoids with molecular dipoles,
as well as in many other systems.59

Results

Simulations were performed for single- and mixed-chirality
systems of dipolar squares with either an embedded standard
dipole or an offset one. In total, we explored four systems: (1)
single-chirality systems of dipolar squares with standard dipoles,
(2) mixed-chirality systems of dipolar squares with standard
dipoles, (3) single-chirality systems of squares with offset dipoles,
and (4) mixed-chirality systems of squares with offset dipoles. For
each system, annealing simulations were performed on systems
containing. Nsquares = 1024 squares at excluded area fractions
ranging from f = 0.05 to f = 0.70. Single chirality systems
consisted entirely of A-chirality squares (NA = 1024 and NB = 0),
while mixed chirality systems consisted of equal numbers of
A- and B-chirality squares (NA = 512 and NB = 512, respectively).

For the remainder of this paper, we visualize the dipolar
colloids as squares, rather than as the groupings of hard circles.
This was done to better illustrate the results of our simulations,
which were designed to model the behavior of dipolar square
colloids. To do this, we used the open visualization tool
(OVITO), an open source tool for visualizing data from atomis-
tic simulations.60

Single-chirality systems of squares with standard dipoles

We begin with the results of the annealing simulations per-
formed on single-chirality systems of dipolar squares with
standard dipoles. The phase diagram for this system, plotted
in the area fraction vs. reduced temperature plane, is shown in
Fig. 6a. At high temperatures, the system of dipolar squares
exists in an isotropic state where the squares are disordered
with respect to one another and do not aggregate (Fig. 6I). As
the temperature is reduced below a threshold value, the
squares begin to aggregate with each other, first forming
single-stranded (Fig. 6II), and then double-stranded (Fig. 6III),
assemblies. For this system, the transition temperatures of the
single-strand and double-strand order parameters are in close
proximity to one another. This indicates that the dipolar
squares rapidly coalesce into double-strands as they transition
from a disordered state and begin to aggregate with mutual
alignment. This phenomenon is illustrated by simulation snap-
shots, shown in Fig. 6b for each phase observed and at various
densities. At low temperatures (Fig. 6III and IV), nearly every
square is in an anti-parallel alignment with another dipolar
square, forming a double-stranded assembly. The double-
strands that form at low densities have a rod-like morphology,
are relatively inflexible, and remain disordered with respect to
each other. The length of the double-strands that form depends
on the system density. At low system densities, the double-
strands are relatively short and as the density increases, so does
their length, sometimes even reaching lengths that span the
length of the simulation boxes’ periodic boundaries. However,

Fig. 6 (a) Phase diagram in the area fraction vs. reduced temperature plane for single-chirality systems of squares with standard dipoles. In the phase
diagram, the dotted line represents the system’s density threshold required for the system to form a nematic state. Below the dashed line the system will
not form a nematic state while above the dashed line the system sometimes forms a nematic state. (b) Simulation snapshots show structural properties of
single-chirality systems of squares with standard dipoles at various densities and temperatures. In each snapshot, squares are gray; the A-chirality squares
have dipoles shown as green arrows.
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even though some double strands span the length of the
simulation box, we find that the criteria for percolation are
never met at any temperature or density for this system.

The double-strands tend to assemble into a nematic state,
but only when the density in annealing simulation is above a
threshold value (Fig. 6IV). Even then, only a fraction of the
annealing simulations performed under identical conditions
form a nematic state, indicating the inconsistent nature of the
formation of this phase. In the nematic phase, the dipolar
squares align with one another. The nematic state only occurs
for systems that are above a critical density, which corresponds
to area fraction of f Z 0.60, but not in all runs. Fig. 6a shows
the region on the phase diagram where the nematic state
appears to occur; the dotted lines are meant to convey that
this is a metastable state. When in the nematic state, the
double-strands grow longer and tend to align as the tempera-
ture is reduced below an aggregation threshold temperature,
and the system’s potential energy is significantly lower than in
the non-nematic state. The likelihood of forming a nematic
state increases as the system density increases. We have not yet
been able to determine a set of conditions when the nematic
state appears consistently. When we increased the length of
each temperature step from 200 million events to 1 billion
events (see eqn (4)), the system was more likely to form a
nematic state, but it still did not do this consistently. Thus, at
this point in time, we conclude that more sophisticated meth-
ods, which are beyond the scope of this paper, will be required
to pinpoint the formation of a nematic state by these dipolar
squares. Additional information about the probability and
frequency of the formation of a nematic state for this system
have been included in the ESI.†

Mixed-chirality systems of squares with standard dipoles

The second system that we explored is a mixed-chirality system
of squares with standard dipoles. The phase diagram for this
system, plotted in the area fraction vs. reduced temperature
plane, is shown in Fig. 7a. The phase behavior of these systems
is very similar to that of the single chirality systems of squares

with standard dipoles just discussed. At high temperatures, the
squares exist in an isotropic fluid state where they are dis-
ordered with respect to one another and do not aggregate
(Fig. 7I). As the temperature is reduced below a threshold value,
the squares begin to aggregate, first forming single-stranded,
then double-stranded assemblies (Fig. 7II and III, respectively).
Once again, the transition temperatures of the single-stranded
and double-stranded phases are in close proximity to one
another, indicating that as the temperature is reduced below
a threshold value the squares quickly assemble into double-
strands. This is illustrated by simulation snapshots shown in
Fig. 7b for each phase observed and at various densities.

We find that for this system two different types of double-
stranded assemblies form. The first double-stranded assembly
consists exclusively of one type of square, either A-chirality or B-
chirality. This homogeneous double-stranded assembly is like
those observed in the single chirality system of squares with
standard dipoles: two strands of squares with the same chirality
coalesce such that their dipoles point antiparallel to one
another. The second type of double-stranded assembly consists
of both A- and B-chirality squares. In a heterogeneous double-
stranded assembly, two strands made from squares with oppo-
site chiralities coalesce such that their dipoles point in the
same direction with respect to one another. Simulation snap-
shots in Fig. 7b at low temperatures (Fig. 7III) illustrate the
difference between these two different types of double-stranded
assemblies, while Fig. 5 shows how a double-stranded assembly
can form from either a single-chirality square or from a mixture
of both chiralities of square. Unlike the previous system, the
nematic order parameter remains at a constant value of
approximately S D 0.25 for all system temperatures and den-
sities, indicating that the system remains isotropic, even at
high densities. Additionally, the criteria for percolation are
never met for any temperature or density for this system.

Single-chirality systems of squares with offset dipoles

The third system explored is a single-chirality system of squares
with offset dipoles. The phase diagram for this system, plotted

Fig. 7 (a) Phase diagram in the area fraction vs. reduced temperature plane for mixed-chirality systems of squares with standard dipoles. (b) Simulation
snapshots show structural properties of mixed-chirality systems of squares with standard dipoles at various temperatures and densities. In each snapshot,
squares are gray, where A-chirality squares have dipoles shown as green arrows and B-chirality squares have dipoles shown as purple arrows.
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in the area fraction vs. reduced temperature plane, is shown in
Fig. 8a. At high temperatures, the system of squares exists in an
isotropic, fluid state where the squares are disordered with
respect to one another and do not aggregate. As the tempera-
ture is reduced, the squares begin to aggregate (Fig. 8I). We
notice two distinct differences in their aggregation behavior
compared to that of systems of squares with standard dipoles.
First, the temperature at which the squares begin to aggregate
is significantly higher. Second, the single- and double-stranded
phase transition temperatures occur at considerably different
values from each other at all area fractions, unlike what occurs
in the standard dipoles case. While the transition temperatures
of the double-stranded order parameter are approximately the
same as for systems of squares with standard dipoles, the
single-stranded order parameter transition temperatures are
all significantly higher. As a result, the portion of the phase
diagram for this system corresponding to the single-stranded
phase is significantly wider than the same region of the phase
diagram for systems of squares with standard dipoles, while the
portion of the phase diagram corresponding to the double-
stranded phases is approximately the same area as the previous
systems.

The morphology and macroscopic assemblies of systems of
squares with offset dipoles are different from those for systems
of squares with standard dipoles. This can be seen by examin-
ing simulation snapshots shown in Fig. 8b. At temperatures
corresponding to the ‘‘Single-Stranded Fluid’’ region of the
phase diagram (Fig. 8II), the squares form long chains and
ring-like or cyclical structures in which all the squares are in
head-to-tail configurations with one another. As the tempera-
ture is reduced further into the ‘‘Double-Stranded Fluid’’ region
of the phase diagram (Fig. 8III), double-stranded assemblies
form, however they are shorter than those for the dipolar
squares with standard dipoles and are often attached to short
chains of single-stranded assemblies. The nematic order para-
meter remains constant at a value of approximately SD 0.25 for
all system temperatures and densities, indicating that the
system remains isotropic, even at high densities. Additionally,

the criteria for percolation are not met at any temperature or
density.

Mixed-chirality systems of squares with offset dipoles

The fourth and final system explored is a mixed-chirality system
of squares with offset dipoles. The phase diagram for these
systems plotted in the area fraction vs. reduced temperature
plane is shown in Fig. 9a. The phase behavior of these systems
is similar to those for the single chirality systems of squares
with offset dipoles just discussed. At high temperatures, the
system of squares exists in an isotropic, fluid state where the
squares are disordered with respect to one another and do not
aggregate (Fig. 9I). As the temperature is reduced, the dipolar
squares begin to aggregate with one another. Similar to the
single-chirality system of squares with offset dipoles, the single-
and double-stranded order parameter transition temperatures
are significantly different from each other at all area fractions.
As a result, the single-stranded phase is considerably wider
than the same region of the phase diagram for systems of
squares with standard dipoles (Fig. 9II and IV), while the
portion of the phase diagram corresponding to the double-
stranded phases is approximately the same area as the previous
systems (Fig. 9III and V).

For this system, we observe the formation of a percolated
state, unlike all the previous systems that we have examined.
For systems that are above a threshold density, as the tempera-
ture is reduced below the threshold aggregation temperature,
the criterion for percolation is met when the area fraction of the
annealing simulation is at or above f = 0.25. We consider this
state to be a gel because the colloidal particles are dynamically
arrested due to their strong associations with one another.
Simulation snapshots, shown Fig. 9b, illustrate this. At densi-
ties at or above the percolation threshold, the squares achieve a
high degree of interconnectivity with assemblies that span the
length of the simulation box in both dimensions. In this case,
as the temperature is reduced during the annealing simulation,
the system transitions from a non-percolated, single-stranded
fluid (Fig. 9II) to a percolated, single-stranded gel (Fig. 9IV), and

Fig. 8 (a) Phase diagram in the area fraction vs. reduced temperature plane for single-chirality systems of squares with offset dipoles. (b) Simulation
snapshots show structural properties of single-chirality systems of squares with offset dipoles at various temperatures and densities. In each snapshot,
squares are gray; the A-chirality squares have dipoles shown as green arrows.
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remains percolated as the system transitions to a double
stranded gel (Fig. 9V). We note that at densities above or below
the percolation threshold, the squares assemble into flexible,
strand-like morphologies that contain approximately equal
amounts of either chirality square. However, at densities below
the percolation threshold, the squares are unable to percolate
due to the short length of their assemblies relative to the length
of the simulation box. The nematic order parameter remains
constant at a value of approximately S D 0.25 for all system
temperatures and densities, indicating that the squares do not
align with each other, even at high densities.

Conclusions

In this study, we have performed coarse-grained molecular
dynamics simulations of square colloids with magnetically-
polarized dipoles that are transversely offset from their center
of mass. We represent the square colloids as four hard circles
that are bonded together in a rigid square geometry. The
intrinsic dipole was mimicked by embedding equal but oppo-
site charges in the hard circles, with additional bonds to
maintain the position of the charges within the square geome-
try. Annealing simulations were performed for large numbers
of the dipolar square colloids to discover their self-assembling
behavior as the system temperature is slowly reduced relative to
the strength of the embedded dipole. Order parameters were
developed to quantify the aggregation of the squares, and
subsequently to calculate phase diagrams that describe the
equilibrium configurations of a system of dipolar squares at
any temperature or density. We used our model to explore four
different systems, which vary in type of dipole embedded
within the square (either a standard or an offset dipole) and
in the relative amount of opposite chirality squares present in
the system.

We find that the phase diagrams for each system are unique.
The microscopic configurations of the dipolar square colloids

depend on the type of dipole that is embedded within the
square. The microscopic configurations of the squares, in turn,
determine the system’s morphology and the macroscopic
assemblies that the system forms at low temperatures when
the strength of the embedded magnetic dipole dominates. In
this paper we consider colloidal squares whose dipole has been
transversely-shifted from the particle’s center of mass. By
adjusting the location of the transversely shifted dipole within
the square, we also adjust the dipolar square’s preference for
anti-parallel or head-to-tail microscopic configurations with
other squares, and therefore alter the macroscopic structure
of the system’s colloidal assemblies. Squares with standard
dipoles prefer antiparallel configurations with other dipolar
squares. They assemble into rod-like structures that are linear
and have a rigid morphology. Alternatively, squares with offset
dipoles prefer head-to-tail configurations with other dipolar
squares. Systems of squares with offset dipoles assemble into
single-stranded assemblies with string-like morphologies.
Single-stranded assemblies are relatively flexible in comparison
to double-stranded assemblies.

The simulations predict that the dipolar squares with trans-
versely offset dipoles exhibit two unique density-dependent
phase transitions, to either nematic or percolated states,
although the transition to the nematic state is not seen con-
sistently in all runs. The type of transition that occurs, nematic
or percolated, depends not only on how the dipole is embedded
within the square, but also on the presence or absence of
opposite chirality squares within the system. Systems of
squares with offset dipoles exhibit a percolation transition at
low temperatures and moderate-to-high densities. In a perco-
lated state, the dipolar colloids have a high degree of inter-
connectivity and form clusters that span the entire length of the
simulation box. This is likely a result of the propensity of the
chiral mixtures to form linear chains, rather than anti-parallel
doublets (cf. Fig. 8 and 9). However, the percolation transition
only occurs for systems of squares that contain equal numbers
of either chirality of square. Systems of the same squares that

Fig. 9 (a) Phase diagram in the area fraction vs. reduced temperature plane for mixed-chirality systems of squares with offset dipoles. In the phase
diagram, the dashed line represents the system’s density threshold required for the system to form a percolated state. Below the dashed line the system
will not form a percolated state; above it the system forms a percolated state. (b) Simulation snapshots show structural properties of mixed-chirality
systems of squares with offset dipoles at various temperatures and densities. In each snapshot, squares are gray; A-chirality squares have dipoles shown
as green arrows and B-chirality squares have dipoles shown as purple arrows.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
9 

M
ay

 2
02

3.
 D

ow
nl

oa
de

d 
by

 N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

4/
2/

20
24

 9
:2

6:
49

 P
M

. 
View Article Online

https://doi.org/10.1039/d3sm00081h


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 4123–4136 |  4133

contain only one chirality are unable to percolate under the
same conditions. Additionally, systems of squares with stan-
dard dipoles sometimes formed a nematic state at high den-
sities. We are unable to conclusively verify that the nematic
state is the system’s most stable configuration due to the
inconsistent results from the annealing simulation, as
described in the results section. At high densities and low
temperatures, double-stranded assemblies in the system some-
times become oriented in the same direction due to the
excluded-volume interactions of the rods. However, the
nematic state only occurs for systems of squares with standard
dipoles that contain only one chirality square. Even though
mixed chirality systems of squares with standard dipoles form
the same rod-like structures as single-chirality systems, we
never observe them to form a globally aligned state under the
same conditions.

The difficulty of reliably obtaining a nematic state at the end of
an annealing simulation is not surprising given the system’s high
densities and low temperatures, hallmarks of glassy dynamics. In the
glassy state, the strong interactions between particles significantly
increases the time required to fully explore all of the system’s
configurational possibilities. Based on the inconsistent behavior in
the annealing simulations not only as a function of system para-
meters (i.e. temperature, density), but also of the length of the
annealing simulation at each temperature step, we expect that there
exists a free energy barrier that prevents the system from transition-
ing to a nematic state and that the size of this barrier decreases as
the system’s density increases. Below area fractions of 0.60, the
barrier is too large for the system to transition to a nematic state. If
annealing simulations for this system for area fractions at or above
0.60 were run sufficiently (or infinitely) long at each temperature
step, we expect that the system would reliably assembly into a
nematic state. In that case the system would have enough time to
sufficiently explore all configurational possibilities and likely find the
most stable arrangement under those conditions. Additional infor-
mation about the frequency and probability of the occurrence of a
nematic state have been included in the ESI.† In future work, we
hope to further explore this issue with algorithms that are better
suited for calculating the system’s free energy.

The dimensions and length scales of the box that we have
used for our simulations could have an impact on which
density-dependent phases we observe in our simulations. Simu-
lations are subject to density fluctuations up to the length scale
of the periodic box boundaries but are unable to capture the
occurrence of longer-wavelength density fluctuations, which
influence both the percolated and nematic states.61 For exam-
ple, as the single-chirality system of squares with standard
dipoles transitions from a double-stranded fluid to a nematic
state, there is likely an interface that occurs between the
disordered liquid state and the ordered crystal state. For this
interface to be properly observed, the dimensions of the box should
be significantly greater than the length scale of the liquid–solid
interface. If one box dimension was significantly longer than the
other, this would enhance the likelihood that the solid–liquid
phase interface would form, making it easier to observe the
order–disorder transition.62 The simulation box dimensions could

also impact the likelihood of percolation, especially close to the
transition point when the formation of a percolated state is less
stable. We will consider this for future work.

In our computational studies, simulations are performed in
two-dimensions and, as a result, the relative number of chiral
particles present in the system remain fixed. In experimental
system, the chirality of any particle would be able to change
should sufficient energy allow particle to flip or rotate onto
another side. Our results suggest that at low to moderate
densities, squares with offset dipoles confined to a plane would
prefer to form a racemic mixture, and under certain conditions
would form a high-interconnected, gel-like state. At high den-
sities, however, the racemic mixture of dipolar squares is
unable to form an order state. Instead, our results suggest,
although do not prove, that the system may prefer configura-
tions containing only one chirality of square. This information
suggests that one might be able to control the relative amounts
of chiral squares by adjusting the system density. An interesting
avenue of further study would be to employ mixed DMD-MC
simulations in which the chirality of the particle is allowed to
flip according to some acceptance criteria.63

The information provided by our computational investiga-
tion could provide guidance for colloidal scientists synthesizing
new types of particles, with anisotropic geometries. To the best
of our knowledge, we are the first to perform theoretical studies
of square particles with transversely shifted dipoles. We have
discovered that the phase behavior of squares with transversely
shifted magnetic dipoles is diverse, as they exhibit unique
phases and morphologies that are sensitive to the location of
the dipole embedded within them. Our inspiration for creating
this model was the cubic microparticles synthesized by Han
et al., which have one face that is coated in a polarizable
magnetic material.26 We believe that our squares with standard
dipoles provide guidelines for further investigations of the
behavior of such emerging systems of microparticles with
complex shape and interactions. We have shown how these
colloids assembly into rods with linear and rigid morphologies,
and exhibit temperature and density-dependent phase transi-
tions, including the formation of a nematic phase under certain
conditions.

We also are interested in colloidal systems with highly
interconnected gel-like states, as these phases are correlated
with potentially desirable material properties. For this reason,
we adjusted the standard dipole to create the offset dipole. This
adjustment is experimentally analogous to taking the particles
synthesized by Han et al. and shifting the magnetic dipole
slightly away from the face and towards the square’s center. We
found that by adjusting the location of the magnetic dipole
within the square colloid, we switched the configurational
preference of the squares in our model from anti-parallel to
head-to-tail. This adjustment resulted in a remarkable shift in
the system’s morphology, to more flexible assemblies, and
phase behavior, enabling the formation of a percolated, gel-
like state. While such particles have not yet been realized
experimentally, we believe that their interesting structural
properties make them an exciting possibility and that their
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synthesis should be pursued by colloidal scientists for
verification.

The use of Discontinuous Molecular Dynamics (DMD) to
model the polarized, square microparticles was driven by our
goal of exploring the large phase space of systems of square-
shaped particles. The advantage of DMD is that we can rapidly
simulate systems under many different conditions using only
modest computational resources. Additionally, we were able to
use simple DMD techniques to construct models of particles
that have anisotropic interactions by applying isotropic inter-
actions in specific ways. The use of short-ranged potentials also
increases the computational speed of our simulations, allowing
us to avoid using the computationally-costly Ewald sums
method. While our model does not account for the effect of
long-ranged potentials, we expect that the results of our study
are qualitatively correct. The implementation of long-ranged
interactions would likely result in transitions that occur at
different temperatures, as the squares would aggregate or
percolate sooner in the annealing simulations. We believe that
our efforts to model square colloidal particles with transversely-
offset dipoles will help guide experimentalists towards new and
exciting colloidal particle systems with unique assembly prop-
erties and phases.

Author contributions

Matthew A. Dorsey: conceptualization, methodology, software,
formal analysis, investigation, visualization, writing – original
draft, Orlin D. Velev: writing – review & editing, supervision,
funding acquisition, Carol K. Hall: writing – review & editing,
supervision, project administration, funding acquisition.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was supported by NSF grant number CBET-1935248.
We acknowledge the computing resources provided by North
Carolina State University High Performance Computing Services
Core Facility (RRID:SCR_022168), as well as the staff who helped
facilitate this project. We also acknowledge that a portion of this
research was completed using services provided by the OSG
Consortium,64,65 which is supported by the National Science
Foundation awards #2030508 and #1836650.

Notes and references

1 M. A. Boles, M. Engel and D. V. Talapin, Self-Assembly of
Colloidal Nanocrystals: From Intricate Structures to Func-
tional Materials, Chem. Rev., 2016, 116(18), 11220–11289.

2 A. Yethiraj and A. van Blaaderen, A colloidal model system
with an interaction tunable from hard sphere to soft and
dipolar, Nature, 2003, 421(6922), 513–517.

3 S. Mitragotri and J. Lahann, Physical approaches to bioma-
terial design, Nat. Mater., 2009, 8(1), 15–23.

4 F. Caruso, R. A. Caruso and H. Möhwald, Nanoengineering
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