The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Evaluation of Large Language Models on Code Obfuscation (Student Abstract)

Adrian Swindle!, Derrick McNealy?, Giri Krishnan’, Ramyaa Ramyaa*

I'Saint Louis University
2 University of Southern Mississippi
3University of California, San Diego
“New Mexico Institute of Mining and Technology
adrian.swindle @slu.edu, derrick.mcnealy @usm.edu, gkrishnan @ucsd.edu, ramyaa.ramyaa@nmt.edu

Abstract

Obfuscation intends to decrease interpretability of code and
identification of code behavior. Large Language Models
(LLMs) have been proposed for code synthesis and code anal-
ysis. This paper attempts to understand how well LLMs can
analyse code and identify code behavior. Specifically, this
paper systematically evaluates several LLMs’ capabilities to
detect obfuscated code and identify behavior across a vari-
ety of obfuscation techniques with varying levels of com-
plexity. LLMs proved to be better at detecting obfuscations
that changed identifiers, even to misleading ones, compared
to obfuscations involving code insertions (unused variables,
as well as variables that replace constants with expressions
that evaluate to those constants). Hardest to detect were ob-
fuscations that layered multiple simple transformations. For
these, only 20-40% of the LLMs’ responses were correct.
Adding misleading documentation was also successful in
misleading LLMs. We provide all our code to replicate re-
sults at https://github.com/Swindle A/LLMCodeObfuscation.
Overall, our results suggest a gap in LLMs’ ability to under-
stand code.

Introduction

Code obfuscations are functionality-preserving transforma-
tions that reduce the readability of the code rendering it
harder to understand or reverse engineer (Martinelli et al.
2018). Obfuscated code remains a challenge for cybersecu-
rity due to its ability to mask malware from conventional
(signature based) detection methods(Martinelli et al. 2018).
Further, ability of LLM to detect obfuscation in code reflect
on their ability to identify equivalance of code functionality.

Large Language Models (LLMs) have been proposed for
analyzing code and are also widely used in code synthe-
sis(Austin et al. 2021; Chen et al. 2021; Li et al. 2022).
Detecting obfuscation involves understanding code behav-
ior and would be a specific test of reasoning and code anal-
ysis capabilities. Here, we study three LLMs (ChatGPT 3.5,
Jurassic-2, and PaLM) with respect to their ability to detect
obfuscation and to identify code behavior. Theoretically this
problem, in general, is undecidable (Rice’s Theorem). How-
ever, we are interested in very simple code which always
terminates, whose behavior can be understood, and termina-
tion proved easily.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

23664

Method

ChatGPT 3.5 (OpenAl 2023), Jurassic-2 (AI21 2023), and
PalLM (Google 2023) were chosen as the LLMs to evaluate,
based on their robustness and performing well in prelimi-
nary tests. APIs for each of the LLM’s was used in some
form of Chat Completion. Default settings of parameters
worked well in simple tests and were not changed.

We created base codes and obfuscations (described be-
low) as we wanted to analyze the results based on the
type of code and obfuscation on very simple codes and ob-
fuscations. We used 21 distinct C++ base codes. All the
base codes used compute simple functions, such as those
that would be used in an introductory programming course.
Complexity varied from printing integers 1 to 10 each in a
new line, to checking whether the input is prime. Data struc-
tures and controls structures (code with and without loops
and recursion) used were also varied to ensure that the LLMs
are tested against a wide spectrum of coding tasks. We also
included pieces of code whose behavior was simple but un-
common (checking whether input excluding the letter ‘x’ is
a palindrome, printing a space followed by 6 newlines, etc.).
These pieces of code were included to lower the likelihood
of the LLMs having encountered them during training.

We used obfuscations with varying complexity. They can
be grouped as (i) obfuscations that do not change the abstract
syntax tree: These include transformations such as remov-
ing spaces and new lines, changing identifier names (shuf-
fling the identifiers already used in the base code, using ran-
dom identifiers, using misleading identifiers etc.), changing
strings to ASCII etc. One obfuscation of note inserted mis-
leading documentation. (ii) Obfuscations that change the ab-
stract syntax tree: These include transformations like insert-
ing unused variables, unnecessary statements (if-then state-
ments, for-loops), changing math constants with complex
expressions that evaluate to constants, replacing for-loops
with recursion, etc. (iii) Layered obfuscations that combined
multiple transformations.

The LLMs were tested using 3 prompts : (i) “Do these
pieces of code achieve the same goal?” (ii) “Is the function-
ality of these pieces of code the same?” (iii) “What does
this piece of code do?”. Prompts 1 and 2 included the obfus-
cated and original code. The words “goal” and functional-
ity” in prompts 1 and 2 respectively, are the key differences
between the prompts. Prompting the LLM with ”goal” was



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

012: Remove Spaces and Newlines

018: Jurassic Aimed 2

08: Change Strings to use ASCII Characters

06: Change For-Loops to Recursion

01: Change Mapping of Variables

03: Change variable names to imply different
data type

016: Change Output Presentation

07: Change Variables to Match a Functionality
Completely Different

04: Insert Unused Variables

010: Insert Unnecessary If/Else Statements

02: Incorrect/! D

05: Insert Unneeded Print Statements

011: Insert Unnecessary For-loops
09: Represent Numbers as Unnecessary
Math

014: Combine 09 and 011 with Unnecessary
Variables

013: Combine 08,09,and 011
017: Jurassic Aimed 1 [N

015: Combine 02-014 N

o

10 20 30 40 50 60 70 80 90 100

m Correct: Incorrect:
Figure 1: Average accuracy of LLMs across different obfus-
cation methods.

aimed at leading it towards giving an answer regarding the
outcome of the code. "Functionality” was used in hopes of
leading the LLM to analyze how the code functions instead
of the outcome. Prompt 3 differed from 1 and 2 because it
does not include the original code. The prompt is purpose-
fully vague to see how well the LLM understands the code
without any context.

We used the following accuracy measure: if the LLM cor-
rectly answered (that the codes were obfuscations of each
other/have the same functionality for prompts 1/2 or gave
the correct functionality for prompt 3) and gave the correct
explanation of its answer, then we marked it as a correct
response. If either the answer or the explanation of the an-
swer is incorrect, the response is marked as incorrect. This
was because internal inconsistencies of the response (final
answer and explanation) indicate lack of understanding. We
discarded cases where the LLM produced an error and did
not produce a response. Additional details of methods and
analysis are provided in our Github repository '

Results

When comparing between the LLMs, Jurassic was found to
be the best at identifying the true functionality of a script.
Jurassic correctly answered the prompt and properly ex-
plained the code in 60% of its responses. PaLM and Chat-

"https://github.com/Swindle A/LLMCodeObfuscation

23665

GPT have a similar rate of correct responses (47% and
47.45%).

Base codes that were more complex were harder to deci-
pher, as expected, as were the base codes that had no purpose
(and were unlikely to have been seen by the LLMs).

The worst accuracy were on obfuscations that layered
transformations. Following such obfuscations, in general,
were obfuscations that change the abstract syntax tree fooled
the LLMs more than the ones that do not. There were 2 no-
table exceptions to this (i) LLMs were not fooled by the ob-
fuscation which transformed for-loops into recursive code.
We believe this is because the function name was descrip-
tive, and the code itself was simple enough that recursive and
for-loop versions may have been used to train the LLMs. (ii)
LLMs were fooled by inserting misleading documentation.

Across all LLMs, prompting the LLM to give the func-
tionality of the obfuscated code(prompt 3) gave the highest
accuracy ("55%). While the prompt for asking if the origi-
nal and obfuscated code had the same functionality(prompt
2) gave the lowest accuracy ("48%). It appears that the inclu-
sion of the original code, actually impaired the LLMs ability
to understand the codes as a whole. Due to the vagueness of
the prompts and a 7% range, it is unclear how significant the
differences in the prompts are. It would be natural to assume
that the performance of the LLMs will be better given more
context through the prompts, but it is possible that more con-
text could cause more error.

Discussion

In this work, we examined various obfuscation methods on
a variety of code on various LLMs. The success of an obfus-
cation was determined by how many layers of obfuscation it
contained and the type of obfuscation. The top 4 most suc-
cessful (013, O14, O15, O17) all used a layered approach
to their obfuscations, with O18 being the most unsuccessful
obfuscation. O15 was the most successful because the goal
of the obfuscation is to take all the previous methods and
apply it to the code. Based on all the obfuscations where the
LLMs failed, or succeeded, Jurassic and PalLM relied heav-
ily on variable names to identify the code. This can be seen
in cases where the code contains complex math. Jurassic and
PalLM only use the variable name to understand the function
of the variable without deciphering the complex math. This
is where ChatGPT fails.

Another observation from our obfuscations is LLMs can
accurately detect O18, which attempts to confuse the LLMs
by having descriptive comments for the original code spread
throughout the obfuscated code. Even though the comments
have no relevance to the obfuscated code, they still detail
what the code should accomplish, providing the LM with all
the information it needs to understand the code.

In conclusion, the LLMs were not able to understand the
functionality of obfuscated code. Transformations that in-
cluded changes to the abstract syntax tree and layered mul-
tiple types of transformations had the lowest accuracy for
detecting obfuscation and code functionality by the LLMs.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

References

Al21. 2023. Jurassic-2 models. https://docs.ai21.com/docs/
jurassic-2-models#jurassic-2-ultra-unmatched-quality. Ac-
cessed: 2023-07-14.

Austin, J.; Odena, A.; Nye, M.; Bosma, M.; Michalewski,
H.; Dohan, D.; Jiang, E.; Cai, C.; Terry, M.; Le, Q.; et al.
2021. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H. P. d. O.;
Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman,
G.; et al. 2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Google. 2023. API Documentation. https://developers.
generativeai.google/api. Accessed: 2023-07-14.

Li, Y.; Choi, D.; Chung, J.; Kushman, N.; Schrittwieser, J.;
Leblond, R.; Eccles, T.; Keeling, J.; Gimeno, F.; Dal Lago,
A.; et al. 2022. Competition-level code generation with al-
phacode. Science, 378(6624): 1092—-1097.

Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A.; San-
gaiah, A. K.; and Cimitile, A. 2018. Evaluating model
checking for cyber threats code obfuscation identification.
Journal of Parallel and Distributed Computing, 119.
OpenAl 2023. GPT-3.5. https://platform.openai.com/docs/
models/gpt-3-5. Accessed: 2023-07-14.

23666



