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Abstract Deep penetration of energetic electrons (10s—100s of keV) to low L-shells (L < 4), as an
important source of inner belt electrons, is commonly observed during geomagnetically active times.

However, such deep penetration is not observed as frequently for similar energy protons, for which underlying
mechanisms are not fully understood. To study their differential deep penetration, we conducted a statistical
analysis using phase space densities (PSDs) of u = 10-50 MeV/G, K = 0.14 G?Re electrons and protons from
multiyear Van Allen Probes observations. The results suggest systematic differences in electron and proton deep
penetration: electron PSD enhancements at low L-shells occur more frequently, deeply, and faster than protons.
For p = 10-50 MeV/G electrons, the occurrence rate of deep penetration events (defined as daily-averaged
PSD enhanced by at least a factor of 2 within a day at L < 4) is ~2-3 events/month. For protons, only

~1 event/month was observed for u = 10 MeV/G, and much fewer events were identified for u > 20 MeV/G.
Leveraging dual-Probe configurations, fast electron deep penetrations at L < 4 are revealed: ~70% of electron
deep penetration events occurred within ~9 hr; ~8%—13% occurred even within 3 hr, with lower-u electrons
penetrating faster than higher-u electrons. These results suggest nondiffusive radial transport as the main
mechanism of electron deep penetrations. In comparison, proton deep penetration happens at a slower pace.
Statistics also show that the electron PSD radial gradient is much steeper than protons prior to deep penetration
events, which can be responsible for these differential behaviors of electron and proton deep penetrations.

1. Introduction

Earth's radiation belts are the donut-shaped regions where energetic electrons and protons are geomagnetically
trapped in Earth's inner magnetosphere. The equilibrium structure of Earth's radiation belts consists of an outer
radiation belt, occupied by electrons with energies from 10s of keV to ~10 MeV, and an inner radiation belt,
filled with 10s—100s of keV electrons and 10s of MeV-GeV protons. The energetic electron fluxes are usually
low between the two belts, where the slot region resides. However, deep penetration of energetic electrons into
the slot region or even the inner belt frequently happens, especially during geomagnetically active times (e.g.,
Califf et al., 2017, 2022; Claudepierre et al., 2017; Khoo et al., 2021; Lejosne et al., 2018; Li et al., 2017; Reeves
et al., 2016; Turner et al., 2016; Zhao & Li, 2013; Zhao et al., 2016, 2017). Furthermore, such deep penetration
of energetic electrons, most often seen in energies of 10s—100s of keV, is believed to be a major source of inner
belt electrons (e.g., Turner et al., 2016). Thus, understanding its characteristics and underlying physical mecha-
nisms is critical in understanding the radiation belt dynamics.

Previous studies have revealed the energy-dependent and L-dependent features of energetic electron deep pene-
tration into the slot region and inner belt. Using 100s of keV electron flux observations from the DEMETER
satellite, Zhao and Li (2013) found frequent electron flux enhancements in the slot region and inner belt, and
these enhancements often happened faster for lower-energy electrons than higher-energy ones. Using Van Allen
Probes observations of keV-MeV electrons, Reeves et al. (2016) showed that the flux enhancements of inner belt
and slot region electrons are more frequent at lower energies and also tend to happen at lower L-shells for the
lower-energy electrons. After enhancement, the decay of electron flux is consistent with the time scale of plas-
maspheric hiss wave scattering (e.g., Ripoll et al., 2016). Further focusing on the sudden electron flux enhance-
ment (flux enhanced by more than 1 order of magnitude within a day at L < 3), Turner et al. (2016) showed that
such enhancements frequently happened (~2.5/month at 200 keV), and the number of such events decreases
exponentially with increasing energy in 100s of keV range. Analyzing the electron phase space density (PSD)
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Figure 1. Daily-averaged fluxes of (left) electrons and (right) protons of various energies from 15 March 2013 to 16 July 2019, using data from MagEIS-B and
RBSPICE instruments on the Van Allen Probes. The blank areas at L < ~2.5-3 in proton plots of early years are due to no measurement.

radial profile during multiple events, they also showed that such sudden enhancements are an important source
of inner belt electrons.

Various mechanisms have been proposed to explain electron deep penetration to low L-shells. The electric field
impulses induced by interplanetary shocks can transport energetic particles earthward to very low L-shells (e.g.,
Blake et al., 1992; Li et al., 1993). However, such enhancements in the inner belt and slot region require intense
shocks that are infrequently observed (e.g., Schiller et al., 2016). Substorm injection is also an important mecha-
nism for energetic particles accessing the inner magnetosphere, but direct injection into L < 4 is rare (e.g., Turner
et al., 2015). Radial diffusion has long been recognized as a potential mechanism for electron enhancements in
the slot region and inner belt (e.g., Lyons & Thorne, 1973; Zhao & Li, 2013). However, it usually happens in a
relatively slow manner and thus is insufficient to account for some observed fast injections of 10s—100s of keV
electrons in the low L region (e.g., Su et al., 2016). Nondiffusive radial transport by DC electric fields is a prom-
ising mechanism for energetic electron deep penetration to low L-shells. It can be caused by enhanced large-scale
electric fields (e.g., Califf et al., 2017; Su et al., 2016; Zhao et al., 2017) or localized DC electric fields such as
Subauroral Polarization Streams (SAPS) electric fields (e.g., Califf et al., 2016, 2022; Lejosne et al., 2018; Zhao
etal., 2017).

On the other hand, 10s—100s of keV protons are essential constituents of Earth's ring current, a toroidal electric
current flowing around Earth in response to solar drivers (e.g., Daglis et al., 1999; Frank, 1967; Gkioulidou
et al., 2016; Krimigis et al., 1985; Smith & Hoffman, 1973; Williams, 1981; Zhao et al., 2015). However, their
flux enhancements at low L-shells are less frequent than electrons with similar energies (e.g., Califf et al., 2022;
Zhao et al., 2016, 2017). Figure 1 shows the daily-averaged fluxes of (left) electrons and (right) protons of ener-
gies from ~50 to ~500 keV, using data from the Van Allen Probes from 15 March 2013 to 16 July 2019. The
daily-averaged Dst index is shown in the bottom panels. As shown in Figure 1, 10s of keV electrons and protons
penetrate to low L-shells relatively often. After their enhancements at low L, proton fluxes decayed very fast,
while electron fluxes in the inner belt stayed elevated much longer. For 100s of keV energies, however, significant
differences can be observed in the occurrence frequency of electron and proton deep penetrations. About 100s
of keV electron flux enhancements were often observed at L < 3, while 100s of keV proton flux enhancements
at L < 3 were only observed during intense geomagnetic storms. At low L-shells, protons generally display less
dynamic features than electrons of similar energies.

Previous studies have recognized the deep penetration differential behaviors between electrons and protons.
However, these systematic differences have never been quantified, and the underlying mechanism causing such
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differences is still a mystery. While an enhanced convection electric field seems a viable explanation for electron
deep penetrations, it can hardly explain the differences between deep penetrations of electrons and protons of
similar energies. If the convection electric field is symmetric at dawn and dusk, such as the one predicted by
the Volland-Stern electric field model (Stern, 1973; Volland, 1973), protons and electrons with similar ener-
gies should penetrate to approximately the same L-shell (e.g., Califf et al., 2022; Korth et al., 1999; Lejosne
et al., 2018). On the other hand, the majority of previous studies on the deep penetration of energetic particles
focused only on flux enhancements. However, flux variations are subject to the influence of adiabatic effects,
which may hinder the identification of underlying physical mechanisms. Thus, in this study, we focus on the
electron and proton PSD calculated using pitch-angle-resolved fluxes from Van Allen Probes observations and
statistically investigate the differences between electron and proton deep penetrations in terms of the penetration
frequency, depth, time scale, and energy dependence. As a result, differential deep penetrations of energetic elec-
trons and protons are quantified, and underlying mechanisms are explored.

2. Data and Analysis
2.1. PSD of Energetic Electrons and Protons

In this section, we use the pitch-angle-resolved fluxes of energetic electrons from MagEIS instruments (Blake
et al., 2013; Claudepierre et al., 2021) and protons from RBSPICE instruments (Mitchell et al., 2013) on the
Van Allen Probes (Mauk et al., 2012), from 15 March 2013 to 16 July 2019, to calculate the electron and proton
PSD. MagkEIS instruments provided differential flux measurements of electrons with energies from ~30 keV to
~4 MeV. RBSPICE instruments TOFXE data are used for proton differential fluxes with energies from ~45 to
~600 keV. Observations from both Van Allen Probes were used to provide a better spatiotemporal resolution.
Using these pitch-angle-resolved flux data, we calculated the electron and proton PSD as f = piz, where j is the
differential flux and p is the relativistic momentum. The corresponding adiabatic invariants, u, K, and L*, were
calculated under the T89D geomagnetic field model (Tsyganenko, 1989) using the Van Allen Probes MagEphem
files. Detailed descriptions of the PSD calculation method can be found in Chen et al. (2005). In this study, we
focus on electrons and protons with 4= 10-50 MeV/G and K = 0.14 G'?Re. K = 0.14 G"?Re is used in this study
since the satellite observations provided the best coverage of this population, and the selected y range ensures
a sufficient L* coverage (down to L* ~ 3.3) of proton PSD data for this study. These p and K values roughly
correspond to ~50-500 keV electrons and ~50-700 keV protons at L* = 3—4 when Kp = 6, and thus are suitable
to study the deep penetration of 10s—100s of keV particles to low L-shells.

Figure 2 shows daily-averaged PSD of electrons and protons with y = 10, 20, 30, and 50 MeV/G and
K =0.14 G'Re, from 15 March 2013 to 16 July 2019, using data from both Van Allen Probes. The differences
in electron and proton deep penetrations are even more dramatic in PSD plots compared to the flux plots. For
u = 10-50 MeV/G electrons (left panels), deep penetration into L* < 4 and even L* < 3 frequently occurred,
causing PSD enhancements of orders of magnitude at low L-shells. After the deep penetration, the electron PSD
decreased relatively rapidly in the low L region. For protons, however, such deep penetration occurred much less
often than electrons with similar ¢ and K values. For u = 10 MeV/G protons, deep penetration to L* = 4 occurred
relatively often; however, these deep penetrations mostly stopped around L* ~ 3 and did not reach lower L*. For
u = 20-50 MeV/G protons, very few PSD enhancements at L* < 4 can be observed, and PSDs at low L* are
less dynamic than electrons. The energy dependence in electron and proton deep penetrations is also apparent
from PSD plots: as p gets higher, the frequency of deep penetrations becomes lower for both species. On the
other hand, both electrons and protons show higher PSDs at higher L-shells in general, which suggests that the
source region of these populations at low L-shells is likely located at high L-shells, consistent with the results of
electrons shown in Turner et al. (2016). It is also worth noting that the color bars of electron and proton PSDs are
different: the radial gradient of electron PSD is commonly much larger than that of proton PSD.

2.2. Occurrence Frequency and Depth of Energetic Electron and Proton Deep Penetration Based on the
PSD Data

To quantitatively study the differences between electron and proton deep penetrations, we developed an automatic
algorithm to identify such deep penetration events for electrons and protons using their daily-averaged PSD. We
define a deep penetration event as the daily-averaged PSD increasing by at least a factor of 2 within a day over
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Figure 2. Daily-averaged phase space density of (left) electrons and (right) protons with u = 10, 20, 30, and 50 MeV/G and K = 0.14 G'’Re, from 15 March 2013
to 16 July 2019, using data from both Van Allen Probes. The blank areas at low L-shells in s = 20-50 MeV/G proton plots are due to the limited energy range of

measurements.

AL* > 0.5 at L* < 4. Multiple enhancements that occur on adjacent days are counted as one single event. Figure 3a
shows the number of deep penetration events of electrons (in black) and protons (in red) as a function of y from
15 March 2013 to 16 July 2019. It quantitatively shows both species-dependent and energy-dependent features of
these deep penetrations: the number of deep penetration events for electrons is much larger than protons with the
same y and K, and the number of deep penetration events decreases as u increases for both electrons and protons.
About 150-250 deep penetration events were observed for u = 10-50 MeV/G, K = 0.14 G?Re electrons over
this period, giving an occurrence rate of ~2-3 events/month. For u = 10 MeV/G, K = 0.14 G'?Re protons, about
70 events were observed, yielding a ~1 event/month occurrence rate. However, as y increases, the number of
proton deep penetrations drops drastically: very few deep penetration events were identified for u > 20 MeV/G,
K = 0.14 G'?Re protons based on our definition. These results demonstrate that electrons penetrate to low
L-shells much more frequently than protons of similar energies, and lower-energy particles penetrate to low
L-shells more easily than higher-energy particles.
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Figure 3. (a) Number of deep penetration events of electrons (in black) and protons (in red) with K = 0.14 G'’Re as a function of y from 15 March 2013 to 16 July
2019, and (b) the corresponding penetration depth, with the dots showing the medians and the bars showing the range between 25th and 75th percentiles.
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We also conducted a statistical analysis of the penetration depth of the deep penetration events. Figure 3b
shows the statistics on the lowest L* of these deep penetrations of electrons and protons, i.e., the lowest L* that
daily-averaged PSD enhanced by at least a factor of 2. The dots show the medians, and the bars show the ranges
between the lower and upper quartiles. The penetration depth is not shown for protons with u > 20 MeV/G due
to low statistics. Figure 3b shows that electrons often penetrate deeper than protons: about half of electron deep
penetration events occurred at L* <3, most of which occurred at L* $3.3, while the majority of proton deep
penetrations stayed above L* ~ 3.2.

Figure 3 quantitatively demonstrates the systematic differences in the occurrence frequency, penetration depth,
and energy dependence of deep penetration of electrons and protons: energetic electrons penetrate to low L-shells
much more frequently and deeply than protons, and lower-energy particles penetrate to lower L-shells more easily
than higher-energy particles.

2.3. Time Scales of Energetic Electron and Proton Deep Penetration Using Dual-Probe Observations

In the previous subsection, daily-averaged PSDs were used to explore the occurrence frequency and depth of
energetic electron and proton deep penetration. However, it is worth noting that these deep penetration events can
occur in a time scale much faster than 1 day. For example, Su et al. (2016) showed one fast injection event during
which p = 2.5 MeV/G, K = 0.3 G"?Re electron flux enhanced significantly at L down to ~2.5 within half a day.
Zhao et al. (2017) studied one deep penetration event of energetic electrons during which the electron fluxes were
enhanced by orders of magnitude at L ~ 3—4 within ~2 hr. In addition, Califf et al. (2022) studied three deep
penetration events, each showing an enhancement time scale of electrons on the order of a few hours at L < 4.
Thus, we also investigate statistically how fast these deep penetration events occur utilizing the PSD data of both
Van Allen Probes.

The two Van Allen Probes operated in a configuration that followed each other, and the time separation between
their orbits ranged from O to ~9 hr. This configuration is ideal for studying the timing of deep penetration events.
For each identified event, we compare the PSD calculated using both Probes' data pass-by-pass, and the shortest
time it takes for PSD to enhance by at least an order of magnitude over a AL* > 0.5 at L* < 4 is recorded. Figure 4
shows an example during a fast, deep penetration event of electrons. The electron PSDs of a range of y are shown
in this figure, using data from both Van Allen Probes during 10-11 May 2019. The two highlighted outbound
passes show that the electron PSD increased by a few orders of magnitude at L* < 4 within ~1.8 hr. This example
suggests that electron deep penetration can occur faster than a couple of hours.

It is worth noting that due to the varying separation between the two Probes, the time calculated here for the
deep penetration is only an upper bound: the actual time it takes for electron PSD enhancements is very likely
even shorter, which could not be revealed due to limited spatiotemporal coverage of the satellite observations.
Also, note that to exclude the potential MLT dependence in the energetic particle deep penetration (e.g., Zhao
et al., 2017), the inbound (outbound) passes are compared to inbound (outbound) passes only.

Applying the same technique to the deep penetration events identified in Section 2.2 (during which the
daily-averaged PSD increased by at least a factor of 2 within a day over AL* > 0.5 at L* < 4), the time it takes for
each event to occur is calculated, and statistical results are shown in Figure 5. The calculation is only performed
for events during which both probes provided good L-shell coverage (PSD data are available at L* down to at least
3). These include most electron deep penetration events in the Van Allen Probes era and most proton deep pene-
tration events after 2016. Each panel of Figure 5 shows, for a specific population, the numbers and corresponding
percentages of deep penetration events which occurred within 0-3, 3—6r, 6 hr—an orbital period of the Van Allen
Probes (~9 hr), or more than an orbital period, using both Probes' PSD data. Note that, based on the statistics
over 7 years and a half, the time separation of the two Van Allen Probes evenly distributed over the bins of 0-3 hr
(~33%), 3—6 hr (~34%), and 6-~9 hr (~33%). However, it is statistically more likely for deep penetration events
to occur between passes with a longer time separation due to a longer time window.

Overall, Figures 5a—5c show that the majority of electron deep penetration events occurred on a time scale of
several hours. For u = 10 MeV/G, K = 0.14 G!"?Re electrons, 71.3% of events occurred within an orbital period
of the Van Allen Probes (~9 hr), and 12.6% even occurred within 3 hr. As y increases, the deep penetration event
takes slightly longer to occur. However, even for u = 50 MeV/G, K = 0.14 G'”Re electrons, most events (66.3%)
still occurred within ~9 hr, and 7.9% occurred within 3 hr. These results suggest very fast, deep penetrations
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Figure 4. The phase space density of electrons with u = 10, 20, 30, and 50 MeV/G and K = 0.14 G'Re as a function of L* and time, from 10 to 11 May 2019, using

data from both Van Allen Probes.

of energetic electrons to low L-shells in a statistical sense, especially considering that the time calculated here
is an upper bound due to limited spatiotemporal coverage. Such fast, deep penetrations are not likely caused
by inward radial diffusion, which in general occurs on a time scale of many drift periods of electrons (the drift
period of 10s—100s of keV electrons at L < 4 is on the order of hours) (e.g., Zhao & Li, 2013). Other mechanisms,
such as nondiffusive radial transport caused by enhanced convection electric field (e.g., Califf et al., 2017; Su
et al., 2016) or localized DC electric field (e.g., Califf et al., 2022; Lejosne et al., 2018; Zhao et al., 2017), should
be considered.

On the other hand, the proton deep penetration events occurred relatively slowly compared to those of electrons.
Figure 5d shows that, for u= 10 MeV/G, K = 0.14 G'”?Re protons, 56.5% of events occurred within an orbital period,
and only 4.3% (1 event) occurred within 3 hr. For u= 15 MeV/G, K = 0.14 G'"?Re protons, no deep penetration event
occurred within 6 hr, and only two events (20%) occurred within ~9 hr. For protons with higher y values, no event
occurred within an orbital period, though the statistics are poor due to the very limited number of events. These
results suggest that protons penetrate to low L-shells at a slower pace compared to electrons with similar y and K.

2.4. Differences in Electron and Proton PSD Radial Gradient

We have shown systematic differences in electron and proton deep penetrations: energetic electrons penetrate
to low L-shells more frequently, deeply, and faster than protons with similar energies. It is thus of great interest
to find out which mechanisms are responsible for such differential behaviors of charged particles of different
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Figure 5. The number and corresponding percentage of deep penetration events that occurred within 0-3 hr, 36 hr, 6 hr-z, (satellite orbital period, ~9 hr), and >,
using data from both Van Allen Probes from 15 March 2013 to 16 July 2019, for (a—c) u = 10, 30, and 50 MeV/G, K = 0.14 G'?Re electrons and (d) u = 10 MeV/G,

K = 0.14 G'"”Re protons.

species. A superposed epoch analysis of electron and proton PSD radial profiles is conducted to tackle this prob-
lem. Figure 6 shows the statistics of daily-averaged PSD radial profiles for electrons (top panels) and protons
(bottom panels) 1 day before deep penetration events of electrons with the corresponding # and K. We focus on
electron deep penetration events since all proton deep penetration events identified in this study were accompa-
nied by deep penetration of electrons with same  and K. Note that most electron deep penetration events were not
accompanied by proton deep penetration. For instance, u = 10 MeV/G, K = 0.14 G'?Re proton deep penetration
was only observed in ~30% of deep penetration of electrons with the same p and K, and for u = 20-50 MeV/G
particles, this number decreased to a few percent. In Figure 6, each gray curve shows the PSD radial profile
during one event, the red curve shows the median of the gray curves, and the black curves show the lower and
upper quartiles.

Systematic differences can be observed in PSD radial gradients of electrons and protons prior to the electron deep
penetration events. Statistically, prior to the electron deep penetration events, electrons have steeper PSD radial
gradients than protons with similar ¢ and K values. The differences become significantly larger as u increases:
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Figure 6. Statistics on daily-averaged phase space density radial profiles of (top) electrons and (bottom) protons with u = 10, 20, 30, and 50 MeV/G and
K =0.14 G'"Re, 1 day before the deep penetration events of electrons with the corresponding y and K. In each panel, the gray lines show PSD data for deep penetration
events, the red line shows the median of the gray lines, and the black lines show the 25th and 75th percentiles.

u=20-50 MeV/G, K = 0.14 G'”?Re protons have much shallower PSD radial gradients at L* ~ 3—5 compared to
electrons of the same u and K. These differences correlate well with the differences in frequency, depth, and time
scale of the electron and proton deep penetration.

Figure 7 shows the evolution of the median of the electron PSD radial profile from the superposed epoch analysis
results, from 2 days before the electron deep penetration events to 5 days after those. It shows that, statistically,
as the deep penetration event occurs, the electron PSD significantly enhances down to L* ~ 3, creating an even
steeper radial gradient down to lower L-shells. This again suggests that most electron deep penetration events are
not likely caused by radial diffusion, which often smooths out the radial gradient in PSD. Nondiffusive radial
transport caused by time-varying convection or localized DC electric fields remains the most likely mechanism
causing the electron deep penetrations.

Though the role of nondiffusive radial transport on electron deep penetration is very important, the very fast, deep
penetration events shown in this study are not likely due to electrons' direct access from the plasma sheet. For
example, if a 100 keV electron gains 100 keV within a drift orbit by convection electric field (which corresponds
to a polar cap potential drop greater than 100 kV and thus very strong convection), it would only move from L ~ 4
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Figure 7. Superposed epoch analysis results on the evolution of daily-averaged phase space density radial profiles (median) of electrons with p = 10, 20, 30, and
50 MeV/G and K = 0.14 G'”Re, from 2 days before the deep penetration events to 5 days after those.
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to L ~ 3.2 in a dipole field. Thus, it is very likely that these fast electron PSD enhancements at low L-shells are
due to the nondiffusive inward radial transport of electrons that preexist in the inner magnetosphere. A positive
PSD radial gradient is needed to enhance the particle PSD at low L-shells by this mechanism. A larger radial
gradient suggests that more particles at higher L-shells are available and can be readily transported earthward by
the nondiffusive process. With a shallower PSD radial gradient, the inward movement can still be present, but
the enhancement at low L-shells would be less significant. Thus, different PSD radial gradients of electrons and
protons can be a crucial factor contributing to the differential deep penetration of the two species.

3. Discussion and Conclusion

This statistical study shows the systematic differences in energetic electron and proton deep penetration to L < 4
in terms of penetration frequency, depth, and time scale, and suggests that the PSD radial gradient is a vital factor
in causing such differential behaviors. It is thus of great interest to know what caused such differences in PSD
radial gradients of energetic electrons and protons in the first place.

A positive PSD radial gradient usually requires particle sources at high L-shells and sinks at low L-shells. The
large-scale convection electric field is a well-known source process that brings plasma sheet electrons and
protons earthward and contributes to the positive radial gradient in PSD (e.g., Korth et al., 1999). However, if the
large-scale convection electric field is symmetric at dawn and dusk, electrons and protons with similar energies
should have access to similar L-shells (e.g., Califf et al., 2022; Korth et al., 1999; Lejosne et al., 2018; Zhao
et al., 2017). In addition, in the plasma sheet, the average temperature of protons is ~5-10 times higher than
electrons (e.g., Baumjohann, 1993). So, more abundant energetic protons at high L-shells, and thus steeper PSD
radial gradients, would actually be expected if the convection electric field is the only driver.

Instead, this steeper radial gradient in electron PSD could be related to more efficient loss of electrons in the
slot region than protons with similar energies in the range of 100s of keV. Energetic electrons in the slot region
are subject to nearly continuous scattering loss caused by plasmaspheric hiss waves, VLF transmitter waves,
lightning-generated whistler waves, and others (e.g., Abel & Thorne, 1998; Claudepierre et al., 2020; Xiang
et al., 2020). Tens to a few hundred keV electrons are also subject to loss due to the continuous generation of
coherent hiss waves inside the plasmasphere and the nonlinear interaction with hiss waves (Omura et al., 2015;
Tobita & Omura, 2022). In contrast, the loss of 100s of keV protons at L ~ 3—4 is mainly caused by charge
exchange processes, which is often less efficient than electron loss at this region. For example, using Van Allen
Probes observations, Claudepierre et al. (2020) showed that the empirical lifetime of 300 keV electrons at L = 3
(corresponding to u ~ 20-30 MeV/G) is about 2 days. In comparison, the lifetime of 300 keV protons at L = 3
by charge exchange loss is on the order of 10s—100 days (e.g., Ebihara & Ejiri, 2003; Illie et al., 2012). Using an
empirical plasmapause model by Liu et al. (2015), we calculated the plasmapause location prior to electron deep
penetration events. The averaged plasmapause 1 day before electron deep penetration events (corresponding to
those shown in Figure 6) is at L ~ 5.5. This suggests the presence of hiss waves prior to these events which could
be responsible for electron loss at low L-shells. Also, previous studies suggest that the resonance energy of hiss
waves is higher at lower L-shells (e.g., Ni et al., 2019; Zhao et al., 2019). Therefore, hiss waves inside the plas-
masphere could also be responsible for the observed steeper electron PSD radial gradient for higher-u electrons as
shown in Figure 6. In summary, more efficient loss of energetic electrons at L ~ 3—4 could be an important factor
that leads to a steeper radial gradient in electron PSD.

In addition, some mechanisms that act differently on energetic electrons and protons may also contribute to their
differential behaviors. One such mechanism is the DC electric field driven by the SAPS. SAPS are fast westward
ionospheric ion drifts at subauroral latitudes. It corresponds to a poleward electric field in the ionosphere and a
radial electric field in the magnetosphere, mainly in the dusk and midnight sectors. Due to its dawn-dusk asym-
metry, SAPS has been shown to affect protons and electrons differently and is potentially able to inject electrons
deeper than protons (e.g., Califf et al., 2022; Lejosne et al., 2018). Combined with a steeper radial gradient in
PSD, the differential effect of SAPS on electrons and protons could be further enhanced.

It is also worth noting that positive feedback could be established for electron deep penetration. As shown in
Figure 7, deep penetration events often create a steeper PSD radial gradient down to even lower L-shells. With a
steeper PSD radial gradient at lower L, inward radial transport would become more efficient, and more frequent
and deeper penetrations would be further observed.
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In summary, using multiyear PSD data from Van Allen Probes, this study quantitatively demonstrates system-
atic differences in electron and proton deep penetration: energetic electron deep penetration to low L-shells
occurs more frequently, deeply, and faster than proton deep penetration. Such differential deep penetration can
be explained by the combination of nondiffusive radial transport and the steeper PSD radial gradient of electrons
than protons, which could be partly due to the faster loss of electrons in the slot region, though other mechanisms
could also play a role. Future modeling work is needed to fully understand the underlying mechanisms of differ-
ential behaviors of electron and proton deep penetration.
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