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Community structure is a fundamental topological characteristic of optimally orga-

selecting the most appropriate community detection method. Furthermore, the
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2116707, 2126582, 2207733 work communities and cognitive and other individual measures, are not well under-

(and network modularity), as well as method-dependent relationships between net-

stood. This study analyzed large datasets of real brain networks (estimated from
resting-state fMRI from n = 5251 pre/early adolescents in the adolescent brain cogni-
tive development [ABCD] study), and n = 5338 synthetic networks with heteroge-
neous, data-inspired topologies, with the goal to investigate and compare three
classes of community detection methods: (i) modularity maximization-based
(Newman and Louvain), (ii) probabilistic (Bayesian inference within the framework of
stochastic block modeling (SBM)), and (iii) geometric (based on graph Ricci flow).
Extensive comparisons between methods and their individual accuracy (relative to
the ground truth in synthetic networks), and reliability (when applied to multiple fMRI
runs from the same brains) suggest that the underlying brain network topology plays
a critical role in the accuracy, reliability and agreement of community detection
methods. Consistent method (dis)similarities, and their correlations with topological
properties, were estimated across fMRI runs. Based on synthetic graphs, most
methods performed similarly and had comparable high accuracy only in some topo-
logical regimes, specifically those corresponding to developed connectomes with at

least quasi-optimal community organization. In contrast, in densely and/or weakly

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2024;45:€26669. wileyonlinelibrary.com/journal/hbm 1of 23
https://doi.org/10.1002/hbm.26669



2023 | WILEY.

BROOKS ET AL.

connected networks with difficult to detect communities, the methods yielded highly
dissimilar results, with Bayesian inference within SBM having significantly higher
accuracy compared to all others. Associations between method-specific modularity
and demographic, anthropometric, physiological and cognitive parameters showed
mostly method invariance but some method dependence as well. Although method
sensitivity to different levels of community structure may in part explain method-
dependent associations between modularity estimates and parameters of interest,
method dependence also highlights potential issues of reliability and reproducibility.
These findings suggest that a probabilistic approach, such as Bayesian inference in
the framework of SBM, may provide consistently reliable estimates of community
structure across network topologies. In addition, to maximize robustness of biological

inferences, identified network communities and their cognitive, behavioral and other
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networks.

1 | INTRODUCTION

The optimal organization of structural and functional circuits in the
adult human brain is modular, with a small-world topology that facili-
tates efficient, domain-specific localized computations and informa-
tion transmission to highly connected regions (hubs) for synthesis
(Bassett & Bullmore, 2006; Bullmore & Sporns, 2009; Cohen &
D'Esposito, 2016; Fransson et al, 2018; van den Heuvel &
Sporns, 2013). These characteristics, which are shared across opti-
mally organized complex systems, may be necessary to maximize the
brain's flexibility, adaptability to dynamically changing environments,
learning, but also resilience (Simon, 1962). Across spatial scales, locally
connected neuronal ensembles and brain regions form functionally
specialized communities that support local information processing and
interact with each other through robust but sparse long-range con-
nections (Bertolero et al., 2015; Crossley et al., 2013). This topological
organization is optimized over a period of two decades of human
development (Fair et al., 2009; Venon, 2013).

Whether structural or functional, brain network communities
have partly distinct neurodevelopmental trajectories. Highly con-
nected structural modules (hubs) may be present even at birth, primar-

ily in association brain areas (parietal and superior frontal) and

correlates should be confirmed with multiple reliable detection methods.

community detection, data-driven synthetic graphs, fMRI, graph Ricci flow, human brain
networks, stochastic block modeling

e Community detection in human brain networks significantly depends on both the type of
method used and underlying network topology.

o Different types of community detection methods can yield highly dissimilar modularity esti-
mates, and may significantly impact correlations of modularity estimates with physiological,
cognitive, and other individual characteristics.

o A probabilistic approach, such as Bayesian inference within the framework of stochastic

block modeling, may be more accurate and robust for community detection in brain

subcortical regions (Ball et al., 2014). These hubs remain topologically
consistent throughout life. In contrast, functional modules and hubs
undergo significant changes as a function of neural maturation. They
begin to emerge in the first year of life (Wen et al., 2019), and are
detectable in primary sensory and motor areas, but by adulthood are
present in frontal, visual, temporal, and subcortical areas (Ball
et al., 2014; Huang et al., 2015). Furthermore, overall functional net-
work modularity increases from childhood to young adulthood,
(Chen & Deem, 2015), likely peaking in young adulthood and decreas-
ing thereafter (Cao et al., 2014; Chong et al., 2019; Geerligs
et al, 2015; lordan et al., 2018; Onoda & Yamaguchi, 2013; Song
et al, 2014). Age-related differences in modularity have been
reported across brain regions, including frontoparietal control, atten-
tion, and visual networks, as a function of differences in the rate of
neural maturation and protracted development of some of these
regions (Betzel et al., 2014).

In addition to its role in the brain's overall flexibility, adaptability,
and robustness, modularity has been linked to cognitive processing
across domains (Lorenz et al., 2011; Pradhan et al., 2011). Findings
based on diffusion MRI suggest that the development of structural
brain modules, particularly within the frontoparietal control network,

may be associated with age-related improvements in executive
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function in youth (Baum et al., 2017). Prior work based on functional
MRI (fMRI) has shown associations between modularity and working
memory, relational reasoning, language processing, and social cogni-
tion (Bertolero et al., 2018; Stevens et al., 2012). Furthermore, inter-
and intra-individual variability of functional network modularity has
been mapped onto variability in cognitive performance (Stevens
et al., 2012) and response to interventions for cognitive enhancement
(Arnemann et al., 2015; Baniqued et al., 2018; Chaddock-Heyman
et al., 2020; Gallen & D'Esposito, 2019).

Prior studies have also reported disease/disorder-related changes
in the brain's modular organization. For example, epilepsy patients
may have higher structural and functional network modularity com-
pared to healthy individuals (Pedersen et al, 2015; Takeda
et al., 2017; Vaessen et al., 2013). In contrast, lower modularity has
been reported in patients with schizophrenia and depression
(Alexander-Bloch et al., 2010, 2012; Peng et al., 2014). Children with
attention-deficit hyperactivity disorder (ADHD) or autism spectrum
disorder may also have reduced modularity (Belmonte et al., 2004;
Qian et al., 2019; Rudie et al., 2013; Wass, 2011). Finally, lower mod-
ularity has also been reported in patients with neurodegenerative dis-
eases, such as Alzheimer's and Parkinson's disease (Brier et al., 2014;
Gottlich et al., 2013; Ng et al., 2021).

A wide range of community detection methods are used by the
Neuroscience community to estimate the modular organization of
brain networks. However, there is currently no true standard or sys-
tematic approach for method selection. In other fields, method depen-
dence of modularity estimates has been documented, and has been
shown to limit the interpretability, reproducibility, and/or relevance of
findings, as well as scientific inference (Laender et al., 2020; Leskovec
et al., 2010). In the context of the brain, to date, there are limited sys-
tematic assessments and comparisons of these methods as a function
of network topology, particularly in the developing brain, which is
both highly heterogeneous and undergoes profound age-related topo-
logical changes. There are a few detailed studies focusing on a single
type, for example, based on modularity maximization (Garcia
et al, 2018), but very limited cross-type investigations. It is also
unclear how method choice impacts the accuracy of modularity esti-
mates in the developing brain and their associations with cognitive,
physiological, and other individual measures. Thus, there is a signifi-
cant unmet need to systematically evaluate different types of
methods and identify robust approaches for estimating modularity in
brain networks. It is also important to identify advantages and short-
comings of widely used and/or promising community detection
methods, particularly in settings where inter-network variability
is high.

To address this significant need, and contribute to ongoing efforts
to increase reproducibility and robustness of brain graph theoretic
analyses in Neuroscience, this study aimed to elucidate differences
between types of community detection methods applied to incom-
pletely developed brain networks of early adolescents, and the impact
of specific choices on correlational analyses using modularity as the
topological measure of interest. The study focused on classes of

methods that use distinct approaches for community detection, based

on edge-removal, modularity optimization, statistical inference, and
geometric analysis of the graph topology. It also focused specifically
on maturating, inherently noisy, and heterogeneous developing brains,
where community detection methods with different sensitivity to net-
work noise and weak/redundant connections can lead to disparate
results and method-dependent inferences. Investigated methods were
applied to both a large dataset of heterogeneous graphs estimated
from resting-state (rs) fMRI data from a sample of n>5000 early ado-
lescents, and a large dataset of data-inspired synthetic graphs with
controlled and systematically varied parameters. The latter were used
to investigate the impact of topological changes associated with
extensive reorganization of brain networks during development and
neural maturation on method performance and differences between
modularity estimates. Finally, in real-data analyses, modularity esti-
mates and their similarity were correlated with cognitive measures
and other individual youth characteristics. These mappings aimed to
further highlight the impact of method choice on biological associa-
tions between brain and behavior/cognition (and related inferences),
and the need to confirm research findings with multiple methods in

order to maximize their biological relevance.

2 | MATERIALS AND METHODS

Coordinated functional activity between brain areas can be described
mathematically by a graph G(E,V), in which discretized brain regions
represent nodes V and functional interactions between their edges E.
Brain graphs are typically estimated from regional measurements of
electrical/electromagnetic activity (EEG and MEG) or blood oxygena-
tion (fMRI) using various correlation techniques, from simple pairwise
correlation in the time or frequency domains (e.g., peak cross-
correlation and coherence) to probabilistic (information theoretic)
methods (Bastos & Schoffelen, 2016; Li et al, 2009; Rossini
et al., 2019), and directional techniques for effective connectivity
(Harush & Baruch, 2017; Lopez-Madrona et al., 2019; Stephan &
Friston, 2010). Connectivity matrices are further processed (e.g., via
thresholding or model-related approaches (Bielczyk et al., 2018)) to
eliminate edges that represent weak and/or artifact-related regional
interactions and obtain binary or weighted adjacency matrices, based
on which communities and other topological graph characteristics can

be estimated.

21 | Community detection algorithms

Three types of community detection methods were investigated and
compared: (1) modularity maximization-based, including Newman
and Louvain methods, (2) a model-based probabilistic approach based
on stochastic block modeling (SBM) (Holland et al., 1983) and Bayes-
ian inference, and (3) a geometric approach (Ni et al., 2019), based on
Ricci flow (Hamilton, 1982; Ollivier, 2007). Their respective mecha-
nisms, computational cost, and examples of previous applications to

real and synthetic brain networks are summarized in Table 1. The first
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TABLE 1
brain networks.

Method Time complexity

Girvan-Newman O(m?n) or O(n®)

Louvain O(nlogn)
SBM (o} (nlogzn)
Ricci flow O(mnlogn)
Infomap O(m)

Note: n corresponds to number of nodes, and m the number of edges.

two are state-of-the-art methods that have been used extensively in
Neuroscience for community detection in structural and functional
brain networks, whereas SBM and Ricci flow are much less frequently
used in the field. Each method's advantages and shortcomings are dis-
cussed in terms of accuracy, computational cost, and interpretability.
Their methodological differences are also highlighted below. Finally, in
a secondary set of comparisons, the Infomap method (Rossval &
Bergstrom, 2008), which is gaining popularity in brain network studies
(Sporns & Betzel, 2016), was also applied to the analyzed data.
Although it uses a different optimization metric for community detec-
tion, this method is not fundamentally different than the Louvain
method. Both are greedy algorithms but Louvain uses modularity max-
imization whereas Infomap minimizes the description length of a ran-

dom walk in the network for partitioning.

2.1.1 | Girvan-Newman method

The Newman method is one of the most widely used community
detection algorithms (Newman, 2004), and is based on progressive
removal of network edges based on betweenness centrality. The latter
quantifies a node's importance in a network based on how many short-
est paths between pairs of nodes pass through it. Mathematically,
betweenness centrality C, is defined as:

cb(v>:“§€jv"§;f‘g), (1)

where o(s,t) is the total number of shortest paths between nodes s
and t and o(s,t|v) is the number of those paths that cross node v
(Brandes, 2008). As edges are progressively removed, betweenness
centrality is recalculated for nodes affected by the previous removal,
and these steps are repeated until no edges are left in the graph. Dur-
ing this process, groups of nodes become disconnected and commu-

nity structure is unveiled. This structure is inherently hierarchical.

Mechanism

Edge removal

Modularity maximization

Bayesian inference

Geometric approach

Minimization of description length

Community detection methods analyzed in the study, and corresponding approach, computational cost, and previous application to

Examples of prior brain applications
Meunier et al. (2009)

Bordier et al. (2017)
Bassett et al. (2013)
Rudie et al. (2013)
Jietal. (2019)
Betzel et al. (2018)

Faskowitz and Sporns (2020)
Weber et al. (2017)

Sporns and Betzel (2016)
Seitzman et al. (2020)

In this study, the following definition of modularity Q was used
(Arenas et al., 2008; Newman, 2016):

1 kik;
Q@) :ﬂz (AU - 727";) Ogg;5 2)

i

where m is the total number of edges within the network, A; the adja-
cency matrix, ki = ZiA,‘j the degree of a node i, and similarly for k;, 6;
the Kronecker delta, g;, g community assignments of nodes i, j,andy a
resolution parameter. When y =1, Equation (2) corresponds to the
traditional definition of modularity. For y > 1, the network partitioning
favors the detection of a larger number of smaller communities,
whereas y < 1 leads to fewer but larger communities. In this study, the
modularity estimation was performed using a range of gamma values
(0.8-1.3, with increment of 0.02). The results are based on the y value
at the first inflection point (Khambati et al., 2015). Though simple and
widely used, the Newman method is computationally expensive, par-
ticularly for large networks. The optimization of y also increases
computational cost.

2.1.2 | Louvain method

The Louvain method aims to optimize modularity as an objective func-
tion. It begins by assigning each node to its own community and then
aggregates communities together based on change in modularity
(Blondel et al., 2008). Similarly to several other methods, it has the
advantage of being aparametric, thus not requiring a priori assump-
tions on the number of communities. It uncovers primarily assortative
community structure via modularity maximization, comparing the
number of edges connecting nodes within a community to the num-
ber of edges connecting nodes between two different communities.
Recently, a major shortcoming of this approach has been discovered,
in that it may yield arbitrarily disconnected or badly connected com-

munities (i.e., disjoint, island-like groups of nodes). This flaw has been
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addressed via a new formulation of Louvain called the Leiden method
(Traag et al., 2019), which guarantees that communities remain con-
nected. The algorithm attempts to maximize difference between the
“true” number of intracommunity edges and the expected number of
these edges. Similarly, to the Newman method, the resolution param-
eter y was varied for the Louvain algorithm, too. Because the algo-
rithm is non-deterministic, we performed 10 repetitions at each
gamma value, using the median modularity value to select community

affiliations, a process that also increased computational cost.

213 |
modeling

Bayesian inference and stochastic block

SBM is often used to generate synthetic graphs. The number of nodes
and blocks (communities), and a probability matrix are provided as
inputs, and graphs are generated with a topological structure dictated
by the probability matrix (Faust & Wasserman, 1992; Holland
et al., 1983; Lee & Wilkinson, 2019). This matrix effectively governs
the group membership of the nodes, which is specified by a partition
b. Because of the probabilistic generation of b, SBM does not limit the
resulting graph's community structure to a single type. Thus, it may be
assortative, as is detected by Girvan-Newman and Louvain algo-
rithms, core-periphery, disassortative, or a combination of these
(Guimera & Sales-Pardo, 2009). For community detection in real net-
works, SBM is also used to identify optimal partitions (communities).
Assuming that the real graph has been generated by a process similar
to that assumed by the SBM, Bayesian inference is used to find an
optimal graph partitioning and assign each node to a community.
Thus, Bayesian inference is applied within the SBM framework, and
the two together become a community detection tool. This probabilis-
tic framework ensures that detected communities are rooted in the

statistics of the real network's structure.

Degree correction and nested SBM

In the most basic SBM, edge placement within a community is ran-
dom. Thus, communities tend to contain nodes of similar degrees,
which are unlikely to occur in real-world networks. This bias is
accounted for in the degree-corrected SBM, wherein additional
parameters are included to permit degree heterogeneity within groups
(Karrer & Newman, 2011; Yan et al., 2014). In this study, the degree-
corrected variant of SBM was used. Another variant used in this study
is the degree-corrected nested SBM (nSBM), a hierarchical extension
of SBM that utilizes a hierarchy of priors and hyperpriors and
improves the SBM's resolution (Amini et al., 2019). First, a set of com-
munities is detected for the network via SBM. Then, the detected set
is treated as its own graph, so that each community is a node. This
recursive process continues until a single community is obtained.
Thus, the information gleaned from coarser levels is considered prior
information in more granular levels (Peixoto, 2014b). nSBM allows for
the detection of smaller communities by circumventing the maximum
group scaling associated with the regular SBM and can detect multile-

vel hierarchy within the network.

Bayesian inference
This approach is used to identify node partitioning into communities
(Peixoto, 2016), based on maximization of the posterior distribution
of possible partitions:
P(A|6,b)P(6,b)
P(b|A) =———+—"2, 3

o) =" ®)
where A is an adjacency matrix, b a partition, and @ a model parameter
controlling the partition. An equivalent information-theoretic perspec-

tive is the minimization of description length, X:

%= —InP(A6,b) — InP(6,b). (4)

Thus, the optimal partition is one that describes a given network
with as little information as possible. In this study, the minimum
description length (MDL) was used both for model selection and for
choosing representative partitions for each brain. A Markov chain
Monte Carlo (MCMC) agglomerative algorithm (Peixoto, 2014a) was
implemented for this analysis. The MCMC sampling is asymptotically
exact and is thus more accurate than other approaches, such as
variational inference, which use appropriate distributions (Lange
et al., 2022). The algorithm's time complexity is O(nlogzn), making
this approach computationally feasible for large-scale (in number of
graphs and number of nodes per graph) network analyses. Because
this method is stochastic, an optimal partition cannot be guaranteed.
Thus, as best practice, the algorithm was called 10 times for each
graph, and the partition yielding the lowest MDL (i.e., the best fit) was
selected.

214 | Ricciflow

The Ricci flow approach is based on the geometric notion of curva-
ture, which quantifies how spaces are bent at each point. Ricci flow
(Hamilton, 1982) deforms the metric of a Riemannian manifold in a
way formally analogous to the diffusion of heat, smoothing out irregu-
larities in the metric. Under the Ricci flow, regions in a space of large
positive curvature shrink to points, whereas regions of very negative
curvature spread out. Discretized curvature (Ollivier, 2007) and Ricci
flow have been developed to study graphs, for example, to identify
bottleneck edges and discover community structures in social net-
works (Ni et al., 2015, 2019). The discrete Ollivier-Ricci curvature on
a network edge (x,y) € E is defined as:

W(my,my)

KXYZl_;d(X,Y) ) ©)

where W(my,m, ) is the minimum total weighted travel distance (opti-
mal transport distance, or Wasserstein distance) to move a distribu-
tion my on the neighbors of vertex x to a distribution m, on the
neighbors of vertex y, and d(x,y) is the distance between x and y in
the graph. The curvature of an edge (x,y) is positive if the two verti-
ces have a well-connected/overlapping neighborhood, and negative if

(x,¥)'s neighborhood are largely disjoint.
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Discrete Ricci flow is a process that deforms the metric (i.e., edge
length) by its Ricci curvature until edge curvature evolves to be uni-
form everywhere. For any pair of adjacent nodes x and y on a graph
G=(V,E), weight w(x,y) of edge (x,y) is adjusted by the curva-
ture k(x,y):

Wir1 (% Y) =wi(xy) —€-ki(X%Y) - wi(xy),¥Y(x,y) € E, (6)

where «;(x,y) is computed using the current edge weight w;(x,y). The
step size is controlled by € > 0. After each iteration edge weights are
rescaled so the total edge weight in the graph remains the same. The
Ricci flow process expands negatively curved edges and shrinks posi-
tively curved edges. Eventually, nodes connected by intra-
community edges are condensed, and inter-community edges are
stretched. Network “surgery” is performed to remove edges with
large weights, in order to separate the network into different com-
munities. The threshold used to remove edges can be chosen by
either the evaluating threshold insensitivity or maximizing graph
modularity (Ni et al., 2019). For networks with hierarchical commu-
nity structures, multiple rounds of network surgery and Ricci flow
can be performed to further separate communities at different
scales. Running time of the discrete Ricci flow is dominated by two
factors: (a) the search of shortest paths distances between nodes
that are three hops away in the network, which is at most
O(mnlogn) for a graph of n vertices and m edges; (b) the number iter-
ations and surgeries. Typically the number of iterations and surgery
operations are both small constants (Ni et al., 2019). Given the geo-
metric nature of the method, community detection by Ricci flow
favors dense graphs. It also assumes that edges across communities
are less dense than edges within communities. In graphs when this
assumption does not hold, the method does not detect multiple com-
munities, that is, considers the entire graph as a single community (Sia
et al., 2019, 2022). This assumption is not necessary in other methods,
for example, SBM.

It is important to note that like most, if not all, community detec-
tion algorithms, there are both detectability and resolution limits that
impact the investigated methods. Regardless of the algorithm, the
detectability limit depends of the graph characteristics, including num-
ber of intercommunity connections, density, and degree distribution
(Richardt & Leone, 2008). Furthermore, the resolution limit is /m for
Newman and Louvain, v/n for SBM, and Togn for NSBM. Based on the
real and synthetic data analyzed in this study, these translate to hun-
dreds of communities and thus resolution limits that are much higher
than the typical number of communities in (even high-resolution)
brain networks. In the Ricci flow method, the number of communities
is controlled by the threshold used in the surgery step for edge
removal. When graphs are sufficiently sparse, Ricci flow may remove
edges and reach multiple singleton communities. Finally, in theory, all
investigated methods are scalable to higher-resolution networks.
However, in practice, scalability will depend on each method's time

complexity.

2.2 | Datasets

2.2.1 | Networks estimated from real fMRI data

The study analyzed minimally preprocessed rs fMRI data from the
adolescent brain cognitive development (ABCD) study, a longitudinal
investigation of almost 12,000 children (Casey et al., 2018), measured
at 21 sites across the United States. A cohort of 5251 participants in
pre/early adolescence (from the ABCD baseline dataset, median
age = 120.0 months, inter-quartile range (IQR) = 13.0 months) was
selected for analysis, following exclusions based on poor-quality imag-
ing data, homogeneously high connectivity across the brain (likely
associated with motion and other artifacts), clinical findings in the
structural MRI, or history of bipolar disorder or attention deficit
hyperactivity disorder (ADHD). Both disorders have been associated
with aberrant functional connectivity that could impact the estimation
of community organization (Chase & Phillips, 2016; Konrad &
Eickhoff, 2010). All imaging data were from Release 2.0.1. Additional
details on inclusion criteria for connectivity analysis, and imaging sys-
tems and protocols used by the ABCD are provided in (Brooks
et al., 2021) and (Hagler et al., 2019), respectively. All neuroimaging
data from this release were acquired with 3T Siemens or GE scanners.
T1w acquisition (1 mm isotropic) included scanner-based motion cor-
rection. Repetition time (TR) for fMRI (2.4 mm isotropic) was 0.8 s,
and thus sampling rate was 1.25 samples/s. Preprocessing included
correction for BO distortion. Further custom processing is outlined
below.

The Next-Generation Neural Data Analysis (NGNDA) platform
(https://github.com/cstamoulis1/Next-Generation-Neural-Data-Analysis-
NGNDA) was used to further process the fMRI data. Processing
included structural MRI (T1w) segmentation, coregistration of each
participant's fMRI to their structural MRI, normalization to MNI space,
initial frame removal, and slice-time correction. These steps were per-
formed using a combination of the SPM12 software package (Friston
et al., 1994, 2007) and the NGNDA. They were followed by motion
and artifact suppression and denoising of fMRI voxel time series. Also,
nuisance signals were regressed out. Breathing and other artifacts in
the frequency range 0.28-0.46 Hz were removed from these signals
using a third-order elliptical bandstop filter. Signals were filtered in
both directions to eliminate potential distortions associated with the
nonlinear phase of the IIR filter. Frames with displacement >0.3 mm
were censored. The statistical modeling approach of Power et al. was
used to regress motion-related contributions out of voxel time series
(Power et al., 2014). To reduce the very high voxel resolution for fur-
ther analysis, images were parcellated (Siegel et al., 2014), using the
high-resolution Schaefer-1000 cortical atlas (1000 parcels), Mel-
bourne subcortical atlas (54 parcels), and a probabilistic MR cerebel-
lar atlas (34 parcels). This resulted in a reduction of the spatial
dimension from ~300,000 voxels to 1088 voxel-averaged parcels
(Diedrichsen et al., 2009; Schaefer et al., 2018; Tian et al., 2020). A
third-order elliptical bandpass filter with cutoffs 0.01 and 0.25 Hz
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(typical physiological frequency range of the BOLD signals), respec-
tively, was then applied to each parcel time series (Yuen et al., 2019),
to suppress high-frequency artifacts. Time series were further
denoised through time-domain signal decomposition (using a varia-
tion of the ensemble empirical mode decomposition) (Torres
et al., 2011; Wu & Huang, 2009) and component exclusion based on
their amplitudes and characteristic frequencies. Scanner effects on
signal amplitude were finally assessed, and all signals were harmo-
nized through amplitude normalization (by the median of the abso-
lute signals).

Each participant included in this study had up to 4 five-minute rs
fMRI runs. The cohort of n = 5251 included participants with at
least one run in which <10% of frames had been censored for
motion (with a displacement cutoff of 0.3 mm). A subcohort had
more than one run that met this criterion. To test reliability and
reproducibility of method performance and similarity across data-
sets, a subcohort of n = 3820 participants with a second run that
met the frame censoring cutoff was also analyzed. Best and second
best runs are referred to as first and second run hereafter. Note that
each run represents a snapshot of rs activity during a 5-min period.
The two selected (quality-based) runs were not necessarily consecu-
tive. In addition, the ABCD study protocol is such that, to avoid
fatigue, falling asleep, and compliance issues, a movie clip (~20s
long) is shown between runs.

Connectivity was calculated as the peak cross-correlation
between signal pairs, resulting in a 1088 x 1088 connectivity matrix.
Although a number of measures can be used to obtain edge weights,
this estimator explicitly accounts for time-dependent similarity
between signals, and the peak corresponds to maximal similarity.
Statistical and percolation thresholds were estimated, and a cohort-
level threshold (estimated via bootstrapping) corresponding to the
moderate outlier of peak cross-correlation (defined as median +
1.5x IQR) was selected. It was then applied to all connectivity matri-
ces to obtain corresponding weighted and binary adjacency matrices.
Correlation values below this threshold were set to 0. For each par-
ticipant, in addition to imposing a threshold for frame censoring, the
run with the lowest median nonzero connectivity was selected at
the best-quality run, under the assumption that the brain at rest is
weakly coordinated (with the exception of select networks such as
the default mode network (Greicius et al., 2003)). In most brains, this
run also coincided with that with the lowest number of frames cen-
sored for motion (median=1.6% of censored frames, interquartile
range (IQR) =4.53%). Additional details on threshold estimation and
selection of fMRI runs for analysis are provided in (Brooks
et al., 2021). The same criteria were used to select the second best-
quality run (median = 1.6% of censored frames, IQR =4.0%). Statis-
tics of network characteristics were: median (IQR) degree =40
(52) and 56 (78) for the two runs, clustering was 0.33(0.06) and 0.35
(0.06) for the two runs, and median weight was 0.65(0.08) for both
runs. Community structure of each brain, from each run and each
method was estimated using the parallel processing resources of the
high-performance computing (HPC) clusters in the collaborating

institutions.

2.2.2 | Synthetic networks

Network generation algorithm

Given that the true community structure (the ground truth) of net-
works estimated from real brain data is unknown, synthetic networks
with controllable properties, including community structure, were
generated. The Lancichinetti-Fortunato-Radicchi (LFR) algorithm
(Lancichinetti et al., 2008) was used for this purpose. A prior study on
functional brain network modularity also used this model (Bordier
et al.,, 2017). The algorithm allows the variation of multiple graph
parameters. Here, these were varied based on the topological proper-
ties of the real rs networks. The Python library Networkx (https://
networkx.org/documentation/stable/reference/generated/networkx.
generators.community.LFR_benchmark_graph.html) was used to gen-
erate the synthetic graph dataset. This algorithm was chosen because
its parameters are biologically interpretable and can be mapped to
topological characteristics of brain networks that vary as a function of
age, for example, during development.

The LFR takes several inputs that define the characteristics of the
graph. The number of nodes is controlled by a parameter n. The node
degree and community size are assumed to follow a power law distri-
bution. Power law exponents 71 and ; influence degree and commu-
nity size, respectively. The parameter x € [0, 1], determines the ratio of
inter-community edges for each node. A value of =1 results in a
graph where all edges are between nodes belonging to different com-
munities, and =0 in a graph where only nodes within the same
community are connected. The average node degree can also be spec-
ified. To generate a graph, each node is assigned a degree by drawing
from the power law distribution with exponent z;. Each community's
size is assigned based on the power law distribution with exponent 7.
Median node degree must be equal to the average degree that was
given as input, and the sum of the community sizes must equal the
total number of nodes n. Each node is added to a community ran-
domly. In communities that become too large, nodes are randomly
removed and reassigned. After community assignments are complete,
each node u is given (1 —u) x degree(u) edges within its community
and p x degree(u) edges outside of its community.

3 | DATA-DRIVEN NETWORKS

Synthetic networks were generated using model parameters that were
statistically derived from the real data. Based on modularity estimated
using the Newman method, the number of communities and median
community size were calculated for each participant. Bootstrapping
with replacement was used to obtain cohort-wide community statistics
(25th and 75th percentiles) for number of communities, median com-
munity size, median node degree, and median ratio of inter-community
connections. Based on these estimates, the number of communities in
synthetic graphs was varied in the range [2, 22]. As shown in Table 2,
when applied to real data, both Newman and Louvain methods yielded
a relatively small number of functional communities, in the range of

those reported in prior work (Tooley et al., 2022).
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TABLE 2 Summary statistics (minimum, maximum, median, and
inter-quartile range (IQR)) for number of communities detected
with each method, applied to brain networks estimated from two
fMRI runs.

Number of communities—first run Modularity

Method Minimum Maximum Median (IQR) Median (IQR)
Newman 2 22 5(2) 0.522 (0.166)
Louvain 2 17 6(3) 0.534 (0.167)
SBM 9 87 48 (17) 0.197 (0.164)
nSBM 10 124 89 (13) 0.126 (0.097)
Ricci flow 2 103 42 (38) 0.298 (0.198)
Infomap 2 47 18 (13) 0.467 (0.213)
Number of communities—second run Modularity

Method  Minimum Maximum Median (IQR) Median (IQR)
Newman 2 20 4 (3) 0.471(0.188)
Louvain 2 16 6(3) 0.483(0.191)
SBM 13 87 52(19) 0.149 (0.14¢)
nSBM 21 132 89 (11) 0.097 (0.086)
Ricci flow 2 96 31(35) 0.249 (0.267)
Infomap 1 50 16 (11) 0.422 (0.292)

Note: Corresponding median and IQR for modularity and also included.

To represent the variability of the real connectomes in the syn-
thetic graphs, as well as vary their topological properties so that they
reflect developmental changes in functional circuits (Venon, 2013), a
range of average degree, u, 71, and 7, inputs were used based on the
estimated real network statistics. First, average degree and p were
varied within the range of real estimates of these parameters' 25th
and 75th percentiles. Since appropriate ranges for r; and 7, were not
a priori known, initially a wide range of values were used. However,
only ranges of 71 and z;, that consistently produced biologically plausi-
ble numbers of communities were used to select a final set of syn-
thetic graphs. Once all input ranges were set, each parameter was
individually varied (holding others constant) so that every combination
of parameters would generate a distinct graph. Some combinations
failed to produce a graph, likely because one or more distribution
assumptions had been violated. Furthermore, some graphs were dis-
carded because they contained an unrealistic large number of commu-
nities. Following these exclusions, a total of 2669 valid binary graphs
were used in further analyses.

To create weighted graphs, a range of correlation values (the edge
weights) based on statistical thresholds estimated from the real rs net-
works were used. Brain circuits in pre/early adolescence are differen-
tially maturated. Some are fairly well-developed (e.g., those
supporting sensory processing), but others are underdeveloped
(e.g., frontoparietal control and DMN). In this study, the large-scale
networks identified by Yeo et al. (2011), were considered. For simplic-
ity, they were classified as developed, partially/moderately developed,
and underdeveloped, so that ranges of correlation values could be

established for these categories. For example, visual networks were

assumed to represent fairly well-developed circuitry, the somatomo-
tor network moderately developed circuitry, and the frontoparietal
control and limbic networks under-developed circuitry. For each par-
ticipant, median edge weights were calculated in each of these three
categories of networks. Then, in each synthetic graph, communities
were classified as fully developed, moderately developed, or under-
developed, and within-community edge weights were randomly sam-
pled from the corresponding median connectivity distributions of
three categories of real networks. Weights between communities
were also assigned based on a classification of low/high connectivity
estimated from the real data. This approach simplified method com-
parisons as a function of graph parameters, given an already complex
space of multiple parameter variations. It also maximized the repre-
sentation of differentially developed communities in the synthetic
graphs, similar to real brain networks. For each graph with a specific
intra-community connectivity, two graphs were generated, for high
and low inter-community connectivity. Median values for the two
were 0.639 and 0.730, respectively. Based on this approach, a total of
5338 weighted synthetic graphs (twice the original dataset size) were
generated and further analyzed. The synthetic data were generated
using the parallel processing resources of the HPC cluster at Harvard
Medical School.

3.1 | Statistical analysis

Modularity was compared across methods using real and synthetic
networks and two commonly used measures of similarity, the
adjusted Rand index (ARI)—adjusted for similarity by chance, and
normalized mutual information (NMI), which was unadjusted. Both
statistics were estimated at the graph level. In real data, only inter-
method comparisons were possible, as the ground truth was
unknown. In synthetic networks, absolute comparisons were possi-
ble, given each network's known community structure (the ground
truth). Inter-method differences in community structure and modu-
larity, and differences in associations between method-specific mod-
ularity and individual demographic, physiological, and cognitive
measures were also investigated. Simple (unadjusted) statistical com-
parisons of ARl and NMI in between groups of participants used the
nonparametric Wilcoxon rank sum test for unpaired samples and
ordinary linear regression models with ARI and NMI as the depen-
dent variables, and participant characteristics as independent vari-
ables. Additional multivariate regression models were developed
with appropriate adjustments for age, race, ethnicity, family income,
and experimental site, to assess correlations between method-
specific modularity and cognitive task measures. Correlograms were
generated as visual representations of correlations between
methods and topological network properties. Box plots were gener-
ated to compare ARI and NMI in individual topological properties'
quartiles. Given the non-normal distribution of most variables,
median and IQR were used as the relevant summary statistics.
Across models and comparisons, all p-values were adjusted for the

false discovery rate (Benjamini & Hochberg, 1995).
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4 | RESULTS

Summary statistics for the number of communities estimated by
each method for connectomes derived from the first and second
fMRI runs are provided in Table 2. Overall, both Newman and Lou-
vain estimated on average a relatively small number of communities
(<10), whereas SBM, nSBM, and Ricci, estimated over 10 times
more communities. Finally, infomap estimated a higher number of
communities than those obtained with the Louvain method but a

lower number than SBM.

41 |
real data

Comparisons between methods applied to

Pairwise ARI and NMI statistics for modularity estimated from both
sets of fMRI runs with each of the investigated methods are sum-
marized in Table 3. At least modest similarity (based on ARI and
NMI >0.5) was estimated between the Newman and Louvain
methods, both modularity optimization approaches, and SBM and
nSBM. Otherwise, inter-method similarity was overall low to mod-
erate (ARl <0.25, NMI <0.68). For Infomap, its highest similarly was
to Louvain in both runs (0.55 (0.25) and 0.54 (0.32) respectively),
and lowest similarity to nSBM (0.08 (0.08) and 0.07 (0.08), respec-
tively for the two runs).

Intra-method modularity similarity was also estimated in the n
= 3820 brains with two rs fMRI runs. Corresponding statistics are
summarized in Table 4. Similarity measured with either ARl or NMI
was low for Newman, Louvain, and Ricci (ARI=0.15-0.34;
NMI=0.32-0.48). For SBM and nSBM, ARI was low (0.17-0.20),
but NMI was moderate (0.54-0.61). Similar results were estimated
for Infomap (see Table S1), with median (IQR) ARI=0.27 (0.22), and
median (IQR) NMI=0.41 (0.19). Note that modularity of rs net-
works may vary substantially between runs.

To assess the impact of overall graph topology on the similarity
of modularity estimates, eight global network properties were calcu-
lated from each adjacency matrix: degree assortativity, mean con-
nectivity, median connectivity, natural connectivity (a measure of
network robustness), smallworldness, efficiency, global clustering
coefficient, and topological stability. Correlograms were generated
for both ARl and NMI and showed variable correlations between
method agreement and topological characteristics. Correlations
were estimated using Spearman'’s p given the non-normal distribu-
tion of some of these parameters. Overall, for each property, the
direction of correlation was similar across methods, except for
SBM-nSBM and Newman-Louvain pairs, which showed either no
correlation or weak correlation in the opposite direction for all prop-
erties. Similarly, correlations between Ricci-Newman (and Ricci-
Louvain) ARI and topological properties were also low (p = —0.17 to
0.26). For all other pairs, negative correlations were estimated
between ARI (and similarly for NMI) and topological robustness (p =
—0.60 to —0.86) global efficiency (p = —0.59 to —0.88), and global
clustering (p = —0.55 to —0.83). Correlations between ARI (and

Summary statistics (median and inter-quartile range (IQR)) for adjusted Rand index (ARI) and normalized mutual information (NMI) estimated between each pair of community detection

methods applied to brain networks estimated from 2 fMRI runs.

TABLE 3

Method agreement based on real functional networks

Newman and
Louvain

SBM and nSBM and nSBM and
Newman Louvain

SBM and

SBM

Ricci and
Louvain

Ricci and

Ricci

Ricci

Louvain

Newman

and nSBM

Newman

and nNSBM

and SBM

5251)

First run (N

0.063 0.611

0.119 0.063

0.109
0.071

0.175 0.513

0.160
0.104
0.435

0.207
0.327
0.682

0.254

Median

IQR

Adjusted Rand index

0.030 0.166
0.632

0.039

0.069

0.077

0.112

0.329

0.813 0.441 0.495 0.409 0.466

0.501

0.661

Median

IQR

Normalized mutual

0.143 0.120 0.027 0.109 0.092 0.105 0.083 0.109

0.292

0.266

information

3820)

Adjusted Rand index

Second run (N

0.058 0.628

0.516 0.094 0.103 0.057
0.062 0.062

0.175

0.153

0.078

0.101
0.301

Median

IQR

0.174
0.635

0.025

0.031

0.077

0.134
0.470

0.139
0.402

0.266
0.585

0.469 0.395 0.444

0.421

0.817

0.576
0.383

Median

IQR

Normalized mutual

WILEY_| 22

0.209 0.173 0.026 0.105 0.096 0.096 0.084 0.115

0.407

information
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TABLE 4 Summary statistics for intra-method modularity similarity between the two fMRI runs.
Newman
Adjusted Rand index Median 0.281
IQR 0.148
Normalized mutual information Median 0.321
IQR 0.112

NMI) and degree assortativity and smallworldness were in the oppo-
site direction. Specifically, there was a moderate positive correlation
between degree assortativity and ARI, and similarly for NMI
(p =0.49-0.70) and similarly for small-worldness (p =0.54-0.80) for
most method pairs. Across methods, median connectivity was weakly
correlated with ARI and NMI (positively or negatively, p = —0.08 to
0.15). These statistics are summarized in Figure 1. Similar correlations
were found using the second fMRI run, and corresponding correlo-
grams are shown in Supplemental Figure S1.

ARl and NMI values were also clustered based on quartiles of
each topological measure, to assess the impact of network topology
on method agreement at a more granular level. In other words, NMI
and ARI quartile membership was determined by the statistics of the
network property of interest, rather than the NMI or ARI statistics.
Boxplots for NMI based on each property-specific statistic are shown
in Figure 2 for the first run, and Figure 3 for the second second run.
Corresponding box plots for ARl are shown in Supplemental
Figures S2 and S3. NMI for SBM-nSBM was consistently highest
(compared to other methods) across quartiles and topological proper-
ties, followed by Newman-Louvain. In the third and fourth quartiles of
degree assortativity and small-worldness, NMI for the nSBM-Ricci
was also high (comparable to that for SBM-nSBM), followed by NMI
for SBM-Ricci, and the same was the case for the first and second
quartile of topological robustness, stability, efficiency, and global clus-
tering. Similar patterns were estimated in data from the second run.
No other consistent patterns of NMI as a function of topological prop-
erty statistics were identified, and NMI was overall lower (<0.5) for
most other pairs of comparisons. ARI for the Newman-Louvain com-
parison was highest across quartiles and properties, followed by the
SBM-nSBM comparison. ARI for the nSBM-Ricci and SBM-Ricci com-
parisons was highest in the bottom quartile of topological robustness,

stability, efficiency, and global clustering.

4.2 | Impact of method choice and inter-method
agreement on associations between functional
network modularity and other participant data

421 | Demographic, anthropometric, and
physiological data

ARI and NMI were grouped as a function of demographic data, includ-
ing sex [first run: n = 2509 males and n = 2741 females; second run:
n = 1782 males and n = 2038 females], race [dichtomized as white

Louvain nSBM SBM Ricci Infomap
0.341 0.174 0.198 0.146 0.271
0.133 0.066 0.071 0.165 0.216
0.462 0.605 0.537 0.480 0.413
0.116 0.050 0.052 0.335 0.187

(first run: n = 3499; second run: n = 2587) vs. nonwhite (first run:
n = 1680; second run: n = 1187), given the unbalanced ABCD cohort
in terms of race], and ethnicity [Hispanic (first run: n = 1032; second
run: n = 737) vs. non-Hispanic (first run: n=4162; second run:
n = 3052)]. Summary statistics for ARl and NMI in each of these
groups were separately estimated. In addition, in previous work, body
mass index (BMI) status has also been associated with the topological
organization of functional networks in a sample from the ABCD
cohort (Brooks et al., 2021, 2023). Participants were thus grouped by
BMI status as well (based on growth curves for age and sex (Centers
for Disease Control)), first dichotomized as with obesity (first run:
n = 681; second run: n=456) versus without obesity (first run:
n = 4570; second run: n = 3364), but also based on a more granular
categorization: with underweight (first run: n = 279; second run:
n = 209), normal BMI (first run: n = 3545; second run: n = 2611),
overweight (but not with obesity; first run: n = 746; second run:
n = 544), and with obesity. Participants were also classified based on
sleep length [recommended amount for age (first run: n = 2582; sec-
ond run: n = 1897) vs. less than recommended (first run: n = 2669;
second run: n = 1923)], aspects of sleep quality, specifically frequency
of snoring and gasping for air, which in prior work has been shown to
impact the topologies of functional networks in this cohort (Brooks
et al., 2022), and pubertal stage (pre early, mid puberty). Prior work in
this cohort has identified differences in modularity as a function of
pubertal stage (Brooks et al., 2021). Median (IQR) values for pairwise
method similarity in each of these groups are summarized in Supple-
mental Tables S2 and S3.

To assess statistical differences in ARl and NMI between groups,
simple comparisons were first performed using the nonparametric
Wilcoxon rank sum test for unpaired samples, and then simple ordi-
nary linear regression models. ARI was statistically associated with
race for all but three method pairs (Ricci-Newman, Ricci-Louvain, and
SBM-nSBM), p <.01, and NMI was statistically associated with race
for all method pairs p <.01. ARI and NMI were higher for Ricci-SBM,
and Ricci-nSBM comparisons in nonwhite participants, and higher for
Ricci-Newman, Ricci-Louvain, and Newman-Louvain comparisons in
white participants. Similar associations with race were estimated for
ARI and NMI estimated from method comparisons based on the sec-
ond fMRI run.

Based on the first run, NMI for all (but Newman-Louvain) method
pairs was statistically higher in youth with obesity (p<.02). ARI was
also correlated with obesity status but only for some pairs (p<.01).
Based on the second run, consistent associations between obesity

status and ARI for some methods were estimated, but none for NMI.
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FIGURE 1 Correlograms showing
correlations (estimated using
Spearman's p) between topological
network properties and method
agreement based on ARI (top) and NMI
(bottom), using best-run data. Red and
blue colors represent positive and
negative correlations, respectively, and
the size of squares reflects correlation
strength.

Statistical associations between sleep length and ARl and NMI were
estimated for multiple method pairs (p <.03) and were fairly consis-
tent across runs (though fewer associations were estimated for ARl in
the second run). There were no differences between Hispanic and
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non-Hispanic participants for any comparison using ARI (p >.32). All
adjusted p-values are provided in Tables 5 and 6. Corresponding
p-values based on statistical models are summarized in Tables S4
and S5.
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FIGURE 2 Boxplots for NMI (based on data from the best fMRI run), at each quartile of the estimated topological properties.

To assess the impact of method selection on biological associations
of interest, ordinary linear regression models were developed to exam-
ine the relationship between method-specific modularity estimates (the
dependent variables) and independent parameters related to sleep
length and quality, BMI (a continuous variable), BMI category, and obe-
sity status (dichotomous). Across methods, and both fMRI runs, modu-
larity was statistically associated with BMI and obesity status (p <.01).
Similarly consistent (across methods) statistical associations were esti-
mated between modularity and sleep length, difficulty breathing, snor-
ing, gasping for breath, and daytime sleepiness, in the fMRI run
(p <.03) but not the second, possibly an issue of the smaller sample
size for that run. These results are summarized in Tables 7 and 8.

422 | Cognitive outcomes

The ultimate goal of network analyses is to map the topology of
functional brain circuits onto the cognitive processes they support.

Therefore, associations between method-specific modularity esti-
mates and cognitive outcomes were investigated using a subset of
tasks from the ABCD neurocognitive battery (Luciana et al., 2018),
including the Flanker, List Sorting Working, Dimensional Card Sort,
Cash Choice, Matrix Reasoning, and Rey Auditory Verbal Learning
Tasks. Together, these measure cognitive flexibility, information
processing, attention, working memory, learning, inhibitory control,
impulsivity, and problem-solving, all processes that continue to
develop throughout adolescence and may be associated with com-
munity structure in the brain. Depending on the task outcome, lin-
ear or logistic regression models were developed, with modularity
estimated by each method as the primary independent variable and
task scores/performance measures as the dependent variables.
Models were adjusted for age, sex, race, ethnicity, and family
income. p-values were adjusted for false discovery, across methods.
Modularity estimated with all methods (except nSBM) was statisti-
cally associated with performance in the List Sorting task (p <.04).
Modularity estimated with SBM and nSBM but no other methods was
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FIGURE 3 Boxplots for NMI (based on data from the second-best fMRI run), at each quartile of the estimated topological properties.

associated with performance in the dimensional card sort
task (p <.01).

43 |
graphs

Method comparison based on synthetic

Synthetic graph modularity (the ground truth) was compared across
methods, as model parameters were systematically varied. Of particu-
lar interest was the impact of varying i on method performance. This
is the model parameter that can be directly varied in a way that simu-
lates developmental changes in the connections within and across
communities, as the brain acquires its small-world topology, a hallmark
of the fully-developed connectome in adulthood. In the real data,
median (IQR) values of u were 0.14 (0.12) and 0.17 (0.14) for the two
runs. Figure 4 shows the variation of ARI as a function of g, for each

method compared to the ground truth (top plot). Pairwise ARI for

comparisons of Ricci, SBM, and Louvain methods with all others (left,
middle, and right panels, respectively) are also shown (bottom plots).
Overall, at g < ~0.14 (which approximately corresponds to con-
nectomes that are more developed than those in the real dataset, and
are highly connected within communities with relatively sparse con-
nections between communities—a characteristic of the adult brain),
SBM, nSBM, Newman, and Louvain performed similarly with median
ARI with the ground truth > ~0.95, and Ricci flow had median ARI
~0.7. Modularity estimates based on SBM/nSBM had high agree-
ment with the ground truth at higher u ranges (up to ~0.3) as well.
Beyond these p values, their agreement progressively decreased to
median ARI ~ 0.6, which remained fairly constant across high p values.
Performance of Newman and Louvain methods decreased more rap-
idly in the u range ~0.3to~ 0.5, with ARI <0.5 at higher p values,
and almost no agreement with the ground truth (ARl <0.1) at very
high us. Ricci followed a similar trend, but its almost complete dis-

agreement with the ground truth occurred at lower u values (~0.4).
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P-values (adjusted for the false discovery rate) for Wilcoxon rank sum test comparisons of ARI and NMI (first run) across distinct

groups of participants, dichotomized based on sex (male vs. female), race (white vs. nonwhite), ethnicity (Hispanic vs. non-Hispanic), obesity
status (with vs. without obesity) and sleep length (recommended amount for age vs. less than recommended).

Ricciand Ricciand Ricciand Ricciand SBMand SBM and SBMand nSBMand nSBMand Newman
SBM nSBM Newman Louvain nSBM Newman Louvain Newman Louvain and Louvain
Adjusted Rand index (ARI)
Sex - - - 0.037 - - - - 0.022 -
Race <0.001 <0.001 - - - <0.001 <0.001 <0.001 <0.001 <0.001
Ethnicity - - - - - - - - - -
Obesity 0.003 0.003 - - - 0.002 0.003 0.002 - -
Status
Sleep Length ~ <0.001 <0.001 0.005 0.033 - <0.001 <0.001 <0.001 0.005 -
Normalized mutual information (NMI)
Sex = = = = = = = = = =
Race <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Ethnicity - - - - - - - - - -
Obesity status  0.015 0.015 0.015 0.015 0.018 0.017 0.015 0.020 0.016 =
Sleep length <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 =

TABLE 6 P-values (adjusted for false discovery) for Wilcoxon rank sum test comparisons of ARl and NMI (second run) across distinct groups
of participants, dichotomized based on sex (male vs. female), race (white vs. nonwhite), ethnicity (Hispanic vs. non-Hispanic), obesity status (with
vs. without obesity) and sleep length (recommended amount for age vs. less than recommended).

Ricciand Ricciand Ricciand Ricciand SBMand SBM and SBMand nSBMand nSBMand Newman
SBM nSBM Newman Louvain nSBM Newman Louvain Newman Louvain and Louvain
Adjusted Rand index (ARI)
Sex - - - - - - - - - -
Race 0.002 <0.001 - - 0.034 0.002 <0.001 0.009 0.029 <0.001
Ethnicity - - - - - - - - - -
Obesity status  0.036 0.036 0.049 0.036 - 0.036 0.036 0.036 - -
Sleep length - 0.027 - - - 0.021 0.024 0.022 - 0.021
Normalized mutual information (NMI)
Sex = = = = = = = = = =
Race <0.001 <0.001 0.002 <0.001 <0.001 = <0.001 = <0.001 <0.001
Ethnicity = = = = = = = = = =
Obesity status - - - - - - - - - -
Sleep length 0.024 0.017 0.017 0.024 0.008 0.046 0.017 = 0.013 0.046

Statistics on estimated number of communities across methods (and
ground truth) are summarized in Table 9. In these simulations, the
number of communities was inherently constrained by the range of
communities in the real data, based on the Newman method. Median
number of communities estimated with SBM and nSBM was closest
to the ground truth, followed by the Louvain method. In contrast, in
the real (and thus unconstrained in number of communities) data,
SBM and nSBM estimated large, and potentially biologically implausi-
ble, numbers of communities. In synthetic graphs, both Newman and
Ricci methods underestimated the number of communities. In the real
data, Newman estimated a relatively low number, but Ricci estimated
almost 10 times as many communities. On average, Infomap also
underestimated the number of communities in the synthetic graphs
(median =1 community, range = 1-33).

Based on inter-method ARI estimates, agreement between SBM
and all but Ricci methods, and similarly for Louvain was high at
us ~0.3, but rapidly decreased in the u range 0.3—0.6, with very
low agreement at higher x values. High u values reflect networks
topologies in which communities are difficult to detect, corresponding
to connectomes at earlier developmental stages, in which the brain
has a high number of redundant connections and not well-defined
modular organization. The performance of the Ricci flow method was
lower than other methods across u values, and poor at high i regimes.
Increasing p values are reflected in topologies where the difference in
density of edges within and across communities is decreasing, ulti-
mately resulting in networks that have weak or no community struc-
ture. For such topologies, the Ricci flow method keeps all vertices in a

single community, recognizing that there is no meaningful community
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Statistics (regression coefficients and corresponding p-values—adjusted for false discovery) for linear regression models testing the

association between method-specific modularity estimates from the first fMRI run and sleep quantity and quality parameters (from the Sleep
Disturbance Scale for Children (SDSC)), BMI and obesity status.

Newman
Sleep length Beta 0.040
p-value 0.009
Difficulty breathing Beta 0.035
p-value 0.015
Gasping for breath Beta 0.041
p-value 0.006
Snoring Beta 0.047
p-value 0.002
Daytime sleepiness Beta 0.039
p-value 0.010
BMI Beta 0.066
p-value <0.001
Obesity status (binary) Beta (non-standardized) 0.019
p-value <0.001
BMI category Beta 0.058
p-value <0.001
TABLE 8 Statistics (regression
coefficients and corresponding p-values—
adjusted for false discovery) for linear BMI
regression models testing the association
between method-specific modularity Obesity status (binary)
estimates from the second fMRI run and
sleep quantity and quality parameters
(from the Sleep Disturbance Scale for BMI category
Children (SDSC)), BMI and obesity status.

partitioning. Median number of communities estimated with this
method in synthetic graphs was indeed 1 (IQR =4). This statistic was
further impacted by the distribution of p in synthetic graphs. Finally,
when a method estimates only one community in a network that what
more than one community, by definition, the ARI value is O, although,
by the power law distribution of the community size in the generative
model, there may be a large overlap of the (single) community with
the largest community in the graph.

To examine the impact of other model parameters on method
accuracy and inter-method similarity, synthetic graphs were dichoto-
mized based on y, u <0.4 versus p > 0.4. The cutoff was based on the
ARI curves in Figure 4. Each method was then compared to the
ground truth as a function of the number of communities and median
node degree. The variation of ARI as a function of these parameters is
shown in Figure 5. For px<0.4, agreement with the ground truth
increased for all methods for graphs with 2 to ~10 communities. For
those with a higher number of communities (up to 20 communities),
ARI was 20.9 for Louvain, SBM, and nSBM, ~0.5 to ~0.8 for New-
man, and ~0.5 to ~ 0.6 for Ricci flow. The opposite trend was identi-

fied as a function of median node degree. Louvain, SBM, and nSBM

Louvain nSBM SBM Ricci
0.037 0.043 0.046 0.049
0.013 0.007 0.006 0.006
0.036 0.037 0.037 0.030
0.015 0.015 0.015 0.030
0.040 0.035 0.040 0.040
0.006 0.013 0.006 0.006
0.045 0.046 0.047 0.044
0.002 0.002 0.002 0.002
0.038 0.037 0.038 0.034
0.010 0.011 0.010 0.015
0.064 0.065 0.064 0.071
<0.001 <0.001 <0.001 <0.001
0.019 0.013 0.019 0.023
<0.001 <0.001 <0.001 <0.001
0.054 0.058 0.056 0.062
<0.001 <0.001 <0.001 <0.001
Newman Louvain nSBM SBM Ricci
Beta 0.052 0.053 0.060 0.057 0.043
p-value 0.002 0.002 0.002 0.002 0.012
Beta 0.021 0.021 0.011 0.018 0.022
p-value <0.001 <0.001 <0.001 <0.001 0.002
Beta 0.058 0.057 0.057 0.058 0.052
p-value <0.001 <0.001 <0.001 <0.001 0.002

had higher agreement (ARl >0.8) with the ground truth for median
node degree < ~60-—70, and lower agreement for higher node
degree. Similar trends were estimated for Newman and Ricci flow, but
both methods performed statistically worse even in graphs with lower
degree <50. SBM and nSBM performed better overall even in highly
connected graphs (median node degree 100), followed by Louvain,
Newman, and Ricci flow. For x>0.4, all methods except SBM and
nSBM had very low agreement with the ground truth (ARl <0.2),
across number of communities and median node degree. SBM and
nSBM-based modularity estimates were in moderate agreement with
the ground truth (ARI ~0.7 to ~0.8) for <6 communities, but ARI rap-
idly decreased for higher numbers of communities. For graphs with
more than ~10 communities, SBM and nSBM had very low agree-
ment with the ground truth, statistically similar to the other methods.
The opposite trend was identified for ARl as a function of median
node degree. All methods had low ARI for graphs with degree ~ < 50.
SBM and nSBM had significantly higher ARI in graphs with higher
median node degree (up to ~ 0.7 even for degree > 100).

Finally, ARI was examined as a function of median inter-

community connection strength, dichotomized as low versus high,
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ARI with Ground Truth
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FIGURE 4 Median ARl as a function of x. Top Plot: ARI comparing each method to ground-truth communities. Bottom plots: ARl comparing
Ricci, SBM, Newman, and Louvain (respectively) to each other and to the ground truth.

based on cutoffs estimated from the real data (bottom 10% and top
10% of connectivity values in the real adjacency matrices). The param-
eter 4 was held constant at 0.35. In the low connectivity group,
median (IQR) ARI was 0.84 (0.40) for SBM, 0.84 (0.38) for nSBM, 0.76
(0.50) for Louvain and 0.44 (0.37) for Newman. In the high connectiv-
ity group, median ARI was approximately the same for SBM, slightly
higher for nSBM (0.87 (0.39)), but lower for Louvain (0.59 (0.59)) and
Newman (0.32 (0.31)), suggesting an inverse relationship between
similarity with ground truth and connectivity for these two methods.
SBM of nSBM performed equally well in both connectivity regimes.
Ricci could not be compared to these methods, since the implementa-
tion uses only graph topology, not the connection strength (i.e., was

applied to binary graphs).

5 | DISCUSSION

Graph theoretic analyses are increasingly used to investigate the
topological characteristics of structural and functional brain networks.
These analyses have repeatedly revealed a modular connectome, in

which community structure represents a fundamental characteristic of

TABLE 9 Summary statistics (minimum, maximum, median, and
inter-quartile range (IQR)) for ground truth number of communities as
well as those detected with each method from synthetic graphs.

Number of communities

Method Minimum Maximum Median (IQR)
Ground truth 2 20 7(7)
Newman 1 22 2(1)
Louvain 1 20 5(4)
SBM 1 23 6(4)
nSBM 1 21 6(4)
Ricci flow 1 38 1(4)

the brain's organization that is critical for efficient information proces-
sing and integration, robustness to perturbations (e.g., stressors), rapid
response to cognitive demands, and learning (Bullmore &
Sporns, 2012; Sporns & Betzel, 2016). Modularity of brain networks
has been correlated with cognitive function across domains and
may be abnormally altered by neurological, neuropsychiatric, and

neurodevelopmental diseases and disorders (Fornito et al., 2015;
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FIGURE 5 Median ARI (compared to ground truth) as a function of true number of communities and degree for synthetic graphs with

1 <0.40 (left) and all graphs with p > 0.40 (right).

Griffa et al., 2013; Koubiyr et al., 2019; Ma et al., 2017). Despite the
role of the connectome's community structure in brain function and
cognition, there is neither a methodological gold standard for its esti-
mation nor a systematic approach for selecting an optimal method.
This has contributed to the reproducibility crisis in the Neuroscience
field in general, and that of connectomics more specifically, and has
limited the interpretation of findings based on method-dependent
brain community structure and modularity. It is also unclear how dif-
ferent methods perform in terms of absolute accuracy and reliability,
as well as relative to each other, as a function of graph topology. It is
further unclear how method-dependent modularity estimates are
mapped onto differences in associations between this topological
property and cognitive, behavioral, and other individual data.

This study has systematically addressed these gaps in knowledge
using a historically large dataset of developing brain connectomes
estimated from over 5000 early adolescents in the ABCD study, and a
large dataset of data-inspired synthetic graphs with controlled param-
eters. It has focused on three classes of methods, including state-of-
the-art and widely used approaches in Neuroscience (the Newman

and Louvain methods, which maximize modularity) and more novel to

the field probabilistic (Bayesian inference within the SBM framework)
and geometric (Ricci flow) methods. In secondary comparisons, it has
also applied Infomap, an increasingly popular method, to the data.
Using synthetic graphs that together represented the topologies of
connectomes from early life (underdeveloped) to adulthood (optimally
developed), the study has investigated the topological parameters that
may impact method performance, and their differential effects on
inference. Using the real data, which captured the inherent heteroge-
neity of the developing connectome, the study has compared modu-
larity estimates from different methods and the consistency of their
associations with physiological, demographic, and cognitive data. To
assess reliability of the findings, all methods were applied to rs data
from two fMRI runs.

The primary study finding is that different types of community
detection methods can vyield highly dissimilar modularity estimates,
which raises the issue of method selection, as well accuracy and
reproducibility of results with different approaches. Although there
was modest similarity between modularity estimates obtained with
the Newman and Louvain methods, both of which use modularity

maximization as the basis for community detection, modest similarity
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between Louvain and Infomap, and, as expected, higher
similarity between SBM and its nSBM variant, there was low agree-
ment between all other pairwise method comparisons. These results
were consistent across fMRI runs. In part, this dissimilarity may be
attributed to different approaches and metrics used by these
methods, but also to the underlying characteristics of the graphs. Prior
work on comparison of community detection methods in synthetic
graphs and real networks (mostly unrelated to the brain) has shown
that performance depends on multiple parameters, including node
degree distribution, network connectivity, and size and distribution of
communities (Funke & Becker, 2019; Orman & Labatut, 2009; Taya
et al.,, 2016; Yang et al., 2016). The synthetic brain graph results are
aligned with prior findings and confirm this dependence.

To understand the role of topology on community estimation,
agreement between methods was examined as a function of each
brain's network topological properties. Results were consistent across
fMRI runs. Moderate positive correlations between method agree-
ment (ARl and NMI) and degree assortativity and small-worldness
were estimated for most methods, which suggests that the higher the
modular organization (reflected in both the affinity of nodes connect-
ing to similar nodes, e.g., within the same community, and high local
(within community) connectivity but sparse inter-community connec-
tivity), the higher the similarity of community structure identified with
different approaches. In turn, this indicates that in developed brain
networks, which are likely to have high assortativity and a small-world
organization, these methods may yield similar results. For such topolo-
gies, community detection analyses are likely to have relatively low
method bias. However, in underdeveloped (or neurodegenerating)
brain networks where, these properties are either not yet optimized
or are no longer optimal, sensitivity and specificity in detecting com-
munities may vary substantially between methods. In weakly and/or
redundantly connected networks, communities may be harder to
detect, and method bias is likely to be high. A range of weak to mod-
erate negative correlations was estimated between method agree-
ment and global efficiency, clustering, and natural connectivity
(@ measure of topological robustness). The latter increases with the
number of network connections, and may thus favor edge redun-
dancy, which, in turn, makes it difficult to reliably identify communi-
ties. The negative correlation between global clustering coefficient
and method agreement was surprising. This coefficient is based on
node triplets—the ratio of closed triplets to all triplets, which reflects
clustering within the network. The negative correlation suggests that
for networks that cluster to a higher degree, community detection
methods are more likely to differ in the partitions they generate. It is
possible that small clusters may negatively impact method agreement,
that is, a higher number of small communities may lower the probabil-
ity of community overlap and matching between methods.

In a dataset of over 5000 developing connectomes, topological
network heterogeneity is expected to be high. Thus, method agree-
ment was also examined in stratified subcohorts, based on demo-
graphic, anthropometric, and physiological parameters previously
reported as significant contributors to this heterogeneity, and

modulators of the organization of the early adolescence connectome

(Brooks et al., 2021, 2022). Several method pairs had higher agree-
ment in subcohorts of participants with obesity and than those who
obtained less than the recommended sleep amount. In prior work, we
have reported lower global clustering and topological robustness in
early adolescents who do not obtain sufficient sleep or have
unhealthy excess BMI. Given the negative correlations between these
properties and method agreement, these results are not surprising.
Similarly, sex- and race-related differences in method agreement may
reflect differences in sleep and BMI in these groups. For example, we
have previously identified racial disparities in sleep quantity and qual-
ity in nonwhite participants from this cohort, as well as statistically
higher BMI in some racial groups (Brooks et al., 2022). These findings
suggest that increased cohort homogeneity may be correlated with
higher inter-method agreement.

Given substantial dissimilarity between method types, the impact
of method choice on associations between method-specific modular-
ity and cognitive measures, sleep quantity and quality, BMI, obesity
status, and performance in multiple cognitive tasks that require the
activation of distributed brain networks (and domain-specific commu-
nities) was next assessed. Consistent modularity associations with
sleep, BMI-related measures, and performance in the list sorting task
were estimated across methods (and some of them for both fMRI
runs), which indicates method invariance, at least for these associa-
tions. Inconsistent associations were estimated for the dimensional
card sort task (only with SBM and nSBM-based modularity), which
suggests that method selection could impact the identification of rela-
tionships between modularity and cognitive performance. It is also
possible that some methods may better resolve smaller clusters
(i.e., finer structure and thus a large number of communities), and
these higher-resolution communities correlate with some cognitive
outcomes. However, the Ricci method also estimated a relatively large
number of communities, but the Ricci-based modularity association
with this particular task was nonsignificant. Without a ground truth,
the accuracy of any of these higher-resolution communities are
impossible to assess.

To investigate method accuracy and impact of the underlying net-
work topology on it, a large dataset of synthetic graphs was analyzed.
Topological properties estimated from the data were used to system-
atically vary the parameters of the LFR model used to generate the
graphs. The number of communities was constrained to vary within
the range estimated from the real data, using the Newman method.
Method accuracy and agreement were examined as a function of
within-community connectivity relative to the remaining network,
node degree, and number of communities, all properties that in the
real data analyses emerged as important contributors to method
agreement. Although each parameter was varied separately, the
resulting graphs included complex combinations of topological charac-
teristics. Due to issues of convergence of some graphs, the median
parameter p in the synthetic graphs was higher than that in the real
data but did span ranges that would correspond to underdeveloped
(early life) to fully developed (young adulthood) brain networks.

The synthetic graph analysis led to several important findings.

First, there are topological regimes, related to the local community
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connections relative to the rest of the network, in which most
methods performed similarly for networks with high numbers of com-
munities and low median node degree, with the exception of Ricci
flow. These regimes correspond to fairly well-developed connectomes
but also overlapped with the u range in the real data (< 0.2). In other
topological regimes, corresponding to underdeveloped or degenerat-
ing connectomes, and thus networks with less clearly identifiable
community structure, SBM and its nSBM variant performed signifi-
cantly better than all other methods. SBM uses Bayesian inference for
community detection. The advantage of using statistical inference
within the SBM framework is that the algorithm aims to identify both
the node community assignment and interaction between communi-
ties based on the latent network structure. Being the only probabilistic
method investigated in this study, it may also be more robust to the
uncertainty associated with community structure in noisy (as a result
of incomplete maturation or degeneration) and/or redundantly or
weakly connected networks. The synthetic graph results also further
highlight differences between methods based on their underlying
assumptions. For example, Ricci flow assumes that edges within com-
munities are denser than edges across communities. When this
assumption does not hold (or is reversed), Ricci flow cannot detect
multiple communities. In contrast, SBM does not require such an
assumption and finds a separation when the intra-community and
inter-community probabilities differ.

In real graphs, the estimation of community structure was not
constrained for any of the methods, so that they can be compared
fairly given that Newman and Louvain are entirely unsupervised
approaches. Thus, no upper limit on the estimated number of commu-
nities was imposed on SBM/nSMB and Ricci flow. This led to a
median number of communities by these methods that was on aver-
age ~8 to ~18 times higher than the number estimated by Newman
and Louvain. Prior work has shown that the number of communities
in brain networks in youth is typically low (Tooley et al., 2022), and
close to the number estimated by Newman and Louvain. In synthetic
graphs, the number of communities was inherently constrained by the
Newman-based estimated range in the real data. In these graphs,
SBM and nSBM estimated numbers of communities that were closest
to the ground truth, whereas all other methods underestimated this
number, with Ricci producing the lowest number of communities.
Therefore, if constrained, by imposing a biologically reasonable upper
limit on the number of communities, SBM may be the most accurate
community detection approach in brain networks.

Despite its strengths, including the investigation of several types
of methods and application to large and topologically heterogeneous
real and synthetic network datasets, this study also had some limita-
tions. First, an exhaustive comparison of available community detec-
tion methods was not performed and was beyond the scope of this
study. Prior work has compared a large number of methods
(Dimitriadis et al., 2021). Instead, the goal of the study was to com-
pare classes of methods. Representative approaches from each class
were selected based on their popularity in the Neurosciences
(Newman and Louvain), increasing applications in other fields, and
type (probabilistic—SBM, and geometric—Ricci flow). There are other

emerging methods, for example, based on deep learning (Jin
et al,, 2021; Kipf & Welling, 2017; Yang et al., 2018), that hold prom-
ise to improve community detection in complex networks such as
brain connectomes. These methods continue to be optimized but may
also have shortcomings due to the volume of data needed to train the
associated models. Furthermore, deep learning techniques often have
limited interpretability and transparency. In secondary comparisons,
we also examined the Infomap algorithm. Results from both the real
data and synthetic graphs further highlighted the high disparity of
community detection estimates and method dependence.

Another limitation of this study is that given that the generative
model used to generate the synthetic graphs is inherently similar to
SBM (though not the same). Thus, the superior performance of SBM
could be biased by the generative model choice. However, there are
differences between the LFR and SMB models, and the former was
chosen specifically because its parameters could be mapped onto
topological properties that could be estimated from the real data. Fur-
thermore, despite a systematic, data-driven approach for varying the
graph parameters, resulting models had complex topologies, with
topological characteristics that were inherently correlated with each
others. This is a limitation of all generative graph models. Also, the
performance of Ricci flow rapidly decreases when ground truth com-
munity structure drops. A context-specific optimization of this
approach at the low modularity range could be separately designed,
but this optimization was outside the scope of the present study.
Finally, it is possible that the metrics of similarity (ARl and NMI) used
in this study may, in some cases, be influenced by the skewness of
community size and number of communities distributions. Although
these are well-established and widely used metrics, additional future
investigations using other similarity measures could be valuable
(Gates et al., 2019).

Interrogation and characterization of the brain's circuit topology
across scales has been the focus of a wide range of human and animal
studies. Circuit-level experimental investigations and, more recently,
manipulations, have called for appropriate analytic tools to character-
ize the organizational complexity and fundamental properties
(e.g., community structure) of neural circuits. However, these tools
need to be carefully selected, to maximize reliability of estimated
topological properties. To the best of our knowledge, this is the first
study to systematically assess performance of different classes of
community detection methods using a large, topologically heteroge-
neous dataset of incompletely maturated human connectomes from
early adolescents, and a large dataset of data-inspired synthetic
graphs. Beyond method comparisons, this study also has assessed the
impact of method selection on associations between method-specific
modularity and individual data of interest, including cognitive mea-
sures. Thus, despite some limitations, this study makes a significant
contribution to the field and raises awareness of potential advantages
and shortcomings of different types of community detection methods.
It also provides quantitative evidence that some community detection
methods may vyield relatively similar results in networks with specific
characteristics, including clearly identifiable communities and parsimo-

nious connections between communities, but disparate results in
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other topological regimes, particularly those corresponding to highly
underdeveloped brain networks.

This study has also provided new insights into similarities of com-
munity estimates as a function of graph topology, particularly degree
assortativity, small-worldness, and sample homogeneity (based on
individual demographic, physiological, and/or anthropometric charac-
teristics), as well as insights into method performance as a function of
connectivity, number of connections within and across communities
and overall number of communities in a graph. However, it has also
provided evidence that associations between method-specific modu-
larity estimates and other data (demographic, physiological, cognitive)
could be method-dependent. Associations between some individual
characteristics, such as sleep quantity and quality, BMI and select cog-
nitive measures and modularity were found to be method-invariant,
but one association with a cognitive outcome was method-dependent.
On one hand, this may be due to higher sensitivity of some methods
to identify smaller communities that are associated with a parameter
of interest. However, method dependence may also suggest lack of
reproducibility and thus limited biological relevance. These findings
highlight the importance of reliability analysis of all modularity-related
findings, using multiple methods to ensure their consistency. Finally, it
also highlights the robustness and accuracy of Bayesian inference
within the framework of SBM (and nSBM), and thus the potential util-
ity of this method for community detection in brain networks, across
topological regimes.

6 | CONCLUSION

The topological organization and characteristics of brain networks
plays a critical role in the accuracy, reliability, and similarity of commu-
nity detection methods, with relatively low bias, high similarity, and
comparable accuracy in networks with well-defined community struc-
ture and sparse inter-community connections, but low similarity and
differential accuracy in redundantly and/or weakly connected net-
works with difficult to detect communities. A probabilistic approach,
such as Bayesian inference in the framework of SBM, may provide
robust estimates of community structure independent of topological
characteristics and may be more appropriate than widely used
methods in Neuroscience, such as Newman and Louvain. Finally, to
ensure biologically meaningful inferences, findings based on analyses
of brain network community structure should be confirmed with mul-

tiple reliable detection methods.
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