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Abstract. Entropy inequalities are crucial to the well-posedness of hyperbolic conservation
laws, which help to select the physically meaningful one among the infinite many weak solutions.
Recently, several high order discontinuous Galerkin (DG) methods satisfying entropy inequalities
were proposed, see [9, 7, 10] and the references therein. However, high order numerical methods
typically generate spurious oscillations in the presence of shock discontinuities. In this paper, we
construct a high order entropy stable essentially oscillation-free DG (ESOFDG) method for hyper-
bolic conservation laws. With some suitable modification on the high order damping term introduced
in [36, 35], we are able to construct an OFDG scheme with dissipative entropy. It is challenging to
make the damping term compatible with the current entropy stable DG framework, that is, the
damping term should be dissipative for any given entropy function without compromising high order
accuracy. The key ingredient is to utilize the convexity of the entropy function and the orthogonality
of the projection. Then the proposed method maintains the same properties of conservation, error
estimates and entropy dissipation as the original entropy stable DG method. Extensive numerical ex-
periments are presented to validate the theoretical findings and the capability of controlling spurious
oscillations of the proposed algorithm.
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1. Introduction. Hyperbolic conservation laws have been studied over the cen-
turies in the realm of gas dynamics of continuum physics. The general form of systems
of conservation laws is

∂u

∂t
+

d∑
m=1

∂fm(u)

∂xm
= 0, (x, t) ∈ Rd × (0,+∞),

u = g, on Rd × {t = 0}

(1.1)

where u = [u1, . . . , un]
T is a vector of functions denoting the conservative variables,

fm = [f1m, . . . , f
n
m]T is the vector flux function, and g : Rd → Rn is the given initial

condition. It is widely known that shock waves or contact discontinuities might be
developed at finite time, regardless of the smoothness of the initial or boundary con-
ditions. Therefore it is reasonable to seek for weak solutions and interpret (1.1) in
the sense of distribution.

Definition 1.1. A vector-valued function u ∈ L∞(Rd × (0,+∞);Rn) is called a
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weak solution of (1.1) if it satisfies (1.1) in the sense of distributions:∫ +∞

0

∫
Rd

(
u · ∂φ

∂t
+

d∑
m=1

fm(u) · ∂φ

∂xm

)
dxdt+

∫
Rd

φ · g dx
∣∣∣
t=0

= 0(1.2)

for all smooth test functions φ : Rd × [0,+∞) → Rn with compact support.

Unfortunately, the weak solution in Definition 1.1 turns out to be inadequate, as
such weak solution would not be unique in general. In order to select the “physically
relevant” solution among all weak solutions, we require the weak solution to satisfy
certain entropy criterion. To this end, we first introduce the entropy pairs as follows.

Definition 1.2. A pair of functions
[
U(u),F(u)

]
with U : Rn → R, F = [F1, . . . , Fd]

T :
Rn → Rd is called an entropy pair for (1.1) if U(u) is convex and {Fm(u)}dm=1 satisfy

F ′
m(u) = U ′(u)f ′m(u), m = 1, . . . , d,(1.3)

where U ′(u) and F ′
m(u) are row vectors and f ′m(u) is the n× n Jacobian matrix.

With the setup of entropy pairs, we now specify the additional admissibility con-
dition in order to select the physically meaningful weak solution.

Definition 1.3. A weak solution u of (1.1) is an entropy solution if the following
inequality holds:

∂U(u)

∂t
+

d∑
m=1

∂Fm(u)

∂xm
≤ 0(1.4)

for all entropy pairs
[
U(u),F(u)

]
in the weak sense, that is,∫ +∞

0

∫
Rd

(
U(u)

∂ϕ

∂t
+

d∑
m=1

Fm(u)
∂ϕ

∂xm

)
dxdt+

∫
Rd

U(g)ϕ(x, 0) dx ≥ 0(1.5)

for any ϕ ∈ C∞
c

(
Rd × [0,+∞);Rn

)
, ϕ ≥ 0.

The existence and uniqueness of the entropy solution of (1.1) can be established
for scalar conservation laws (n = 1), and for one-dimensional systems (d = 1) with
small initial variation. However, the global existence and uniqueness of the entropy
solutions for general hyperbolic conservation laws remain open and a good mathe-
matical understanding of (1.1) is largely unavailable at present. For more details on
the theory of hyperbolic conservation laws, we refer the readers to [23, 15] and the
references cited therein.

Despite that uniqueness might not be guaranteed under the entropy conditions
given in Definition 1.3, in the numerical approximation of (1.1) one would still like to
seek numerical schemes which satisfy the entropy condition on the discrete level. Such
a property is referred as entropy stability. For the first order (finite volume) method,
entropy stability analysis is well-developed based on Tadmor’s entropy conservative
fluxes and entropy stable fluxes [49, 50]. For the high order entropy stable finite
volume methods, a notable result is the TeCNO scheme proposed by Fjordholm,
Mishra and Tadmor [19], with the use of high order entropy conservative fluxes [37]
and the sign property of the essentially non-oscillatory (ENO) reconstruction [20]. In
recent years, there have been rapid developments on the entropy stable quadrature-
based discontinuous Galerkin (DG) methods. In [9], Chen and Shu proposed an
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entropy stable DG scheme on unstructured simplex meshes, in which they introduced
special Gauss-Lobatto type quadrature rules with collocated surface quadrature points
and discrete operators with the multidimensional summation-by-parts (SBP) property
[27, 18]. There also exist other different types of entropy stable DG methods in the
SBP framework, see e.g. [13, 14, 7, 8]. A comprehensive review of entropy stable DG
methods for systems of conservation laws can be found in [10]. Entropy stable DG
methods are also applied to solve other types of equations, such as convection-diffusion
equations [4, 3, 22], MHD equations [2], shallow water equations [21, 40, 51], gradient
flow problems [46], two-phase flow problems [41] and stochastic problems [39], etc.

For hyperbolic conservation laws, high order linear numerical schemes often gen-
erate spurious oscillations near the discontinuities (the Gibbs phenomenon), which
may lead to accuracy contamination in smooth regions and less robustness of the
schemes, and even possible blowups of the code. The entropy stable quadrature-
based DG methods are not exempt from this deficiency. Generally, there are two
kinds of treatments to overcome such a difficulty. One is to apply slope limiters on
the DG solutions, such as the total variation diminishing (TVD) limiters, total varia-
tion bounded (TVB) limiters [11], and weighted ENO (WENO) limiters [42, 55], etc.
The limiters work quite effectively for their simplicity, low computational cost and
with little modification required on the original codes, thus they are favored by many
researchers and engineers. Another treatment is to add artificial diffusion in the weak
formulations, which is more convenient to perform theoretical analysis. However, it
needs a subtle analysis to determine how much diffusion needs to be added, see e.g.
[29]. With suitable artificial diffusion, the smoothing effect of the diffusion is obvious
in suppressing the spurious oscillations.

The objective of this paper is to design a DG scheme with both entropy stability
and oscillation-free properties. It seems quite challenging to obtain these two proper-
ties simultaneously. In fact, [9, Remark 4.4] states that it is hard to design entropy
stable TVD/TVB limiters for hyperbolic systems. Very recently, we developed an
approach to control the spurious oscillations by introducing damping in the DG for-
mulations artificially [36, 35]. As demonstrated in [36], the proposed DG methods
can not only control the spurious oscillations, but also preserve some basic properties
of the standard DG methods such as conservation, optimal a priori error estimates
and superconvergence, etc. In this paper, we extend the damping technique to the
entropy stable quadrature-based DG methods. The newly added damping is indepen-
dent of the given entropy pair and has entropy dissipation without comprising high
order accuracy in the smooth region. Then entropy stability is obtained by using the
convexity of the entropy functions and taking only one part of the local projections
in [36]. That is, we only take the projection orthogonal to the constant states so
as to achieve the entropy stability for any given entropy pair. Compared with the
damping terms in [36], the one proposed here abandons the original hierarchical struc-
ture and the damping coefficients are also adjusted. By a careful theoretical analysis,
the proposed algorithm still maintains the properties of the standard entropy stable
quadrature-based DG methods. Finally, we take the investigations on a variety of
numerical examples to show the good performance of the constructed schemes.

The rest of the paper is organized as follows. In Section 2, we briefly present some
preliminary results, including continuous entropy analysis, quadrature rules on sim-
plex elements and the corresponding SBP operators. In Section 3, we first review the
matrix-vector form of the nodal DG method, and the entropy stable DG method with
quadrature rules of collocated surface nodes, and then we propose the entropy stable
essentially oscillation-free DG (ESOFDG) method. Theoretical analysis of accuracy,
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conservation and entropy stability are also given. In Section 4, we present extensive
numerical experiments such as accuracy tests, convex and nonconvex conservation
laws, and several benchmark problems associated with compressible Euler equations.
Concluding remarks are given in Section 5.

2. Preliminaries. In this section, we will firstly present the derivation of the
entropy inequality for (1.1) on the PDE level. Then we introduce the quadrature rules
and the summation-by-parts (SBP) operators [16, 17, 47], which mimic integration by
parts at the discrete level. Next, we give a brief description of the nodal DG method.
As we shall see later, the nodal DG method in the matrix-vector form is well suited
in the SBP framework.

2.1. Continuous entropy analysis. As mentioned before, the functions
[
U(u),F(u)

]
,

where U(u) is convex and (1.3) is satisfied, is called an entropy pair. Given a strictly
convex entropy function U(u), let v = U ′(u)T be the entropy variables. Then
v′(u) = U ′′(u) is symmetric positive-definite, and the mapping u → v is invertible.
Now let us define the potential fluxes in the following:

ψm(v) = vT fm(u(v))− Fm(u(v)), m = 1, . . . , d.(2.1)

One can easily verify that

ψ′
m(v) = fm(u(v))T .(2.2)

The potential fluxes are used for the construction of the entropy conservative fluxes,
see e.g. [30, 6, 13, 14]. If the solutions to conservation laws (1.1) are smooth, then
they should satisfy an additional entropy conservation law as below

0 = U ′(u)
∂u

∂t
+

d∑
m=1

U ′(u)f ′m(u)
∂u

∂xm
=
∂U

∂t
+
∂Fm

∂xm
.(2.3)

When the solutions have discontinuities, it is natural to require the entropy to be
dissipative. This is how the definition of entropy condition in (1.4) comes from.
Integrating (1.4) in space and assuming u is compactly supported, we obtain the
following inequality:

d

dt

∫
Rd

U(u) dx ≤ 0.(2.4)

This means that the total amount of entropy is non-increasing with respect to time.
But the existence of entropy function is not that trivial to obtain. For scalar conser-
vation laws (n = 1), any convex function U(u) can be taken as an entropy function,
with the entropy fluxes Fm(u) =

∫
U ′(u)f ′m(u) du. However, for general systems, the

existence of entropy function is no longer guaranteed, and both existence and unique-
ness of entropy solutions are much more challenging. Fortunately, for most systems
we are interested in, such as shallow water equations, compressible Euler equations,
and magnetohydrodynamic (MHD) equations, we are able to find the entropy func-
tions with physical meaning. For more details readers can refer to [23] on the entropy
analysis for systems of conservation laws.

2.2. Quadrature rules and SBP operators. In this subsection, we will briefly
review the quadrature rules and SBP operators in order to rewrite the DG method
under the SBP framework. First let us take the partition of the domain. Suppose
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Ω ⊂ Rd is some polygonal computational domain, and Th = {Tκ}Nh
κ=1 is some con-

forming partition of Ω, and the simplex meshes Th are shape regular and quasi-
uniform. Assume each element Tκ is a simplex and its boundary ∂Tκ consists of
(d− 1)-dimensional simplex faces. The set of simplex faces is denoted by

Γh = {e : e = ∂Tκ ∩ ∂Tι, 1 ≤ κ, ι ≤ Nh, κ ̸= ι}.(2.5)

Let h = maxTκ∈Th
hTκ be the characteristic length of Th, where hTκ denotes the

diameter of Tκ.
In order to obtain the SBP operators, the volume and surface quadrature rules

should be carefully constructed. In this paper, we consider the diagonal-norm, multi-
dimensional SBP operators which are defined in [27], and the SBP operators of degree
k require the degree of the quadrature rules for the volume integral is at least 2k − 1
and the degree of the quadrature rules for surface integral is at least 2k, please see
[27, Theorem 3.2 and Theorem 3.4]. For multidimensional SBP operators by using a
multiblock tensor-product formulation, we refer the readers to [28, 38, 48]. For each
simplex Tκ, 1 ≤ κ ≤ Nh, suppose that there is a quadrature rule of degree at least

2k − 1 on Tκ, associated with NQ,k nodes {xκ
j }

NQ,k

j=1 and positive weights {ωκ
j }

NQ,k

j=1 ,
NQ,k ≥ NP,k with

NP,ν = dimPν(Rd) =

(
ν + d
d

)
, 0 ≤ ν ≤ k.(2.6)

For each e ∈ Γh, we also choose a (surface) quadrature rule of degree at least 2k on

e, associated with NB,k nodes {xe
s}

NB,k

s=1 and positive weights {τes }
NB,k

s=1 . Now we take

{φℓ(x)}
NP,ν

ℓ=1 as the set of basis functions of Pν(Rd), which means

{φℓ(x)}
NP,0

ℓ=1 ⊂ {φℓ(x)}
NP,1

ℓ=1 ⊂ · · · ⊂ {φℓ(x)}
NP,k

ℓ=1 .

Then we define the Vandermonde matrices, whose columns are nodal values of {φℓ(x)}
NP,ν

ℓ=1 :

V κ
ν =

[−→
φκ
1 , . . . ,

−−−→
φκ
NP,ν

]
, V e

ν =
[−→
φe
1, . . . ,

−−−→
φe
NP,ν

]
, 0 ≤ ν ≤ k,(2.7)

where
−→
φκ
ℓ =

[
φℓ(x

κ
1 ), φℓ(x

κ
2 ), . . . , φℓ(x

κ
NQ,k

)
]T

and
−→
φe
ℓ =

[
φℓ(x

e
1), φℓ(x

e
2), . . . , φℓ(x

e
NB,k

)
]T

,
1 ≤ ℓ ≤ NP,ν . Therefore, V

κ
ν is a NQ,k×NP,ν matrix and V e

ν is a NB,k×NP,ν matrix.

We also define NP,k ×NP,k polynomial differential matrices D̂m such that

∂φℓ

∂xm
(x) =

NP,k∑
r=1

D̂m,rℓ φr(x), 1 ≤ m ≤ d ,

where D̂m,rℓ is the entry of the matrix D̂m at r-th row and ℓ-th column. Then V κ
k D̂m

is the Vandermonde matrix of {∂xm
φℓ(x)}

NP,k

ℓ=1 on Tκ. We then define the continuous
and discrete inner products on Tκ and e that

(u, v)Tκ =

∫
Tκ

uv dx, (u, v)Tκ,ω =

NQ,k∑
j=1

ωκ
j u(x

κ
j )v(x

κ
j ) =

(−→
uκ

)T
Mκ−→vκ,(2.8)

⟨u, v⟩e =
∫
e

uv dS, ⟨u, v⟩e,τ =

NB,k∑
s=1

τesu(x
e
s)v(x

e
s) =

(−→
ue

)T
Be−→ve,(2.9)
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where the vector of nodal function
−→
wκ and

−→
we are given as

−→
wκ =

[
w(xκ

1 ), . . . , w(x
κ
NQ,k

)
]T
,

−→
we =

[
w(xe

1), . . . , w(x
e
NB,k

)
]T
.(2.10)

and the volume mass matrix Mκ and the surfaces mass matrix Be are diagonal ma-
trices of quadrature weights:

Mκ = diag{ωκ
1 , . . . , ω

κ
NQ,k

}, Be = diag{τe1 , . . . , τ eNB,k
}.(2.11)

According to integration by parts and algebraic accuracy of (·, ·)Tκ,ω and ⟨·, ·⟩e,τ ,
we can obtain the Summation By Parts property of modal matrices [10] and present
it in the following:

M̂κD̂m + (D̂m)T M̂κ =
∑

e∈∂Tκ

neκm B̂
e,(2.12)

where M̂κ and B̂e are given as

M̂κ = (V κ
k )TMκV κ

k , B̂e = (V e
k )

TBeV e
k ,(2.13)

and neκ = [neκ1 , . . . , n
eκ
d ]T represents the unit outward normal vector at e ∈ ∂Tκ.

More details about (2.12) can be found in [10].
In order to obtain the nodal SBP property, we recall the definitions of degree k

difference matrix Dκ
m (of the size NQ,k×NQ,k) and extrapolation matrices {Reκ}e∈∂Tκ

(of the size NB,k ×NQ,k) in [10], for which the following two conditions hold:
(i) Exactness: both Dκ

m and Reκ are exact for polynomials of degree ≤ k, i.e.

Dκ
mV

κ
k = V κ

k D̂m, ReκV κ
k = V e

k .(2.14)

(ii) Summation-by-parts: let Sκ
m =MκDκ

m and Eeκ = (Reκ)TBeReκ, we have

Sκ
m + (Sκ

m)T =MκDκ
m + (Dκ

m)TMκ

=
∑

e∈∂Tκ

neκmE
eκ =

∑
e∈∂Tκ

neκm (Reκ)TBeReκ,(2.15)

neκm is the m-th component of the unit outward normal neκ on e ∈ ∂Tκ.
To obtain the difference matrix Dκ

m, the L2 projection matrices are also needed.
With the help of the discrete inner product (·, ·)Tκ,ω, we have the L

2 projection matrix
of each order [7]:

Pκ
ν =

(
(V κ

ν )TMκV κ
ν

)−1
(V κ

ν )TMκ, 0 ≤ ν ≤ k.(2.16)

In particular, for ν = 0, we have the orthogonality of the operator Pκ
0 that

−→c TMκ
(−→
uκ − V κ

0 P
κ
0

−→
uκ

)
= 0, ∀

−→
uκ ∈ RNQ,k ,(2.17)

where −→c = [c, c, . . . , c]T ∈ RNQ,k is a constant vector. The existence of SBP difference
matrices is ensured by the following theorem [9, 18, 27, 10]:

Theorem 2.1. Assume that we have extrapolation matrices Reκ satisfying the
exactness property. Then the difference matrices, given by the formula

Dκ
m =

1

2
(Mκ)−1

∑
e∈∂Tκ

neκm (Reκ + V e
k P

κ
k )

TBe(Reκ − V e
k P

κ
k ) + V κ

k D̂mP
κ
k(2.18)

also satisfy the exactness property and the SBP property.



ENTROPY STABLE OFDG FOR HCL 7

For the choice of the extrapolation matrices Reκ, the readers can refer to [10,
Remark 3.2]. Now we introduce the vector of nodal values to incorporate vector-
valued functions u:

−→
uκ =

[
u(xκ

1 ), . . . ,u(x
κ
NQ,k

)
]T
,

−→
ue =

[
u(xe

1), . . . ,u(x
e
NB,k

)
]T
,(2.19)

as well as the Kronecker products

Mκ =Mκ ⊗ In, Be = Be ⊗ In, Dκ
m = Dκ

m ⊗ In, Reκ = Reκ ⊗ In,

M̂κ = M̂κ ⊗ In, D̂m = D̂m ⊗ In, Vκ
r = V κ

r ⊗ In, Ve
r = V e

r ⊗ In.

The following SBP properties still hold true

Sκ
m = MκDκ

m, Eeκ = (Reκ)TBeReκ, Sκ
m + (Sκ

m)T =
∑

e∈∂Tκ

neκmEeκ.(2.20)

3. High order entropy stable essentially oscillation-free DG schemes.
In this section, we proceed to construct the entropy stable essentially OFDG schemes
for (1.1). We first review the classic nodal DG methods and quadrature-based entropy
stable DG methods with collocated surface nodes [9, 10]. The method successfully
achieves entropy stability thanks to the SBP property of the corresponding discrete
operators [16, 17, 47] and the flux differencing technique with entropy conservative
fluxes [3, 9]. These two treatments are extremely important for the reason that they
can recover the integration by parts and chain rule at the discrete level respectively.
Now let us introduce the classic nodal DG method in the following.

3.1. Nodal DG schemes. In this subsection, we will briefly introduce the clas-
sic nodal DG schemes. Given polynomial degree k ≥ 0, we define the DG finite
element space:

Wk
h := {wh : wh|Tκ

= wκ
h ∈ [Pk(Tκ)]

n, 1 ≤ κ ≤ Nh},(3.1)

and it means wh is a vector of polynomials of degree k when restricted on Tκ. We
seek uh ∈ Wk

h such that for each wh ∈ Wk
h and 1 ≤ κ ≤ Nh, we have

(∂uκ
h

∂t
,wκ

h

)
Tκ

−
d∑

m=1

(
fm(uκ

h),
dwκ

h

dxm

)
Tκ

= −
∑

e∈∂Tκ

〈
f̂n(u

κ
h,u

κ̃
h),w

κ
h

〉
e
,(3.2)

where f̂n is the interface numerical flux function, and e = ∂Tκ ∩ ∂Tκ̃ is the interface

of the element Tκ and its adjacent element Tκ̃. Since {φℓ(x)}
NP,k

ℓ=1 are basis functions

of Pk(Rd), we can expand uκ
h and wκ

h under {φℓ(x)}
NP,k

ℓ=1 :

uκ
h(x, t) =

NP,k∑
ℓ=1

ûκ
ℓ (t)φℓ(x), wκ

h(x, t) =

NP,k∑
ℓ=1

ŵκ
ℓ (t)φℓ(x).

We now replace the continuous inner products by the volume quadrature rule and the
surface quadrature rule and rewrite (3.2) as follows:

(−→
ŵκ

)T
M̂κ d

−→
ûκ

dt
−

d∑
m=1

(
Vκ

kD̂m

−→
ŵκ

)T
Mκ−→fκm = −

∑
e∈∂Tκ

(
Ve

k

−→
ŵκ

)T
Be−−→feκ,∗n ,(3.3)
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where
−→
ûκ,

−→
ŵκ,

−→
fκm and

−−→
feκ,∗n are given as

−→
ûκ =

[
ûκ
1 , . . . , û

κ
NP,k

]T
,

−→
ŵκ =

[
ŵκ

1 , . . . , ŵ
κ
NP,k

]T
,

−→
fκm =

[
fm(uκ

1 ), . . . , fm(uNκ
Q,k

)
]T
,

−−→
feκ,∗n =

[
f̂n(u

eκ
1 ,u

eκ̃
1 ), . . . , f̂n(u

eκ
NB,k

,ueκ̃
NB,k

)
]T
.

Since
−→
ŵκ can be arbitrarily chosen, we can rewrite (3.3) into the following form:

d
−→
ûκ

dt
−
(
M̂κ

)−1
d∑

m=1

(
Vκ

kD̂m

)T
Mκ−→fκm = −

(
M̂κ

)−1 ∑
e∈∂Tκ

(
Ve

k

)T
Be−−→feκ,∗n ,(3.4)

Multiplying (3.4) by the matrix Vκ
k from the left, with the relation Vκ

k(M̂
κ)−1 =

(Mκ)−1(Pκ
k)

T we obtain the nodal formulation:

d
−→
uκ

dt
− (Mκ)−1

d∑
m=1

(Dκ
m)

T
Mκ−→fκm = −(Mκ)−1

∑
e∈∂Tκ

(Reκ)
T
Be−−→feκ,∗n ,(3.5)

by choosing
−→
uκ defined in (2.19), Dκ

m = Vκ
kD̂mPκ

k and Reκ = Ve
kP

κ
k . According to

the SBP property (2.20), we have the equivalent strong form of nodal DG formulation:

d
−→
uκ

dt
+

d∑
m=1

Dκ
m

−→
fκm = (Mκ)−1

∑
e∈∂Tκ

(
Reκ

)T
Be

(−→
feκn −

−−→
feκ,∗n

)
,(3.6)

where
−→
feκn are the vectors of extrapolated nodal values on face e ∈ ∂Tκ that

−→
feκn =

d∑
m=1

neκm
−→
feκm ,

−→
feκm = Reκ−→fκm.(3.7)

An interpretation of the relation between the modal and nodal DG formulations was
given in [10, Remark 3.4].

3.2. Entropy stable DG schemes with collocated surface nodes. Now
we continue to introduce the entropy stable nodal DG formulation based on (3.6).
The nodal DG formulation (3.6) does not satisfy any entropy inequality because the
second term on the left hand side does not satisfy the discrete chain rule. To recover
the chain rule on the discrete level, we replace the difference term in (3.6) with high
order difference operation of entropy conservative fluxes. This technique is termed by
flux differencing which is crucial to the entropy balance within an element. A deeper
understanding of the flux differencing technique was given in [10, Appendix A]. The
modified DG formulation with collocated surface nodes [9] reads

d
−→
uκ

dt
+ 2

d∑
m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ = (Mκ)−1

∑
e∈∂Tκ

(Reκ)TBe
(−→
feκn −

−−→
feκ,∗n

)
(3.8)

where ◦ denotes the Hadamard (pointwise) product of vectors and matrices, and
Fm,S(·, ·) is the matrix of pairwise combinations of entropy conservative fluxes [30, 6,
13, 14]:

Fm,S(
−→uL,

−→uR) =

 diag
(
fm,S(uL,1,uR,1)

)
· · · diag

(
fm,S(uL,1,uR,NR

)
)

...
. . .

...
diag

(
fm,S(uL,NL

,uR,1)
)

· · · diag
(
fm,S(uL,NL

,uR,NR
)
)
 ,(3.9)
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for −→uL ∈ RnNL and −→uR ∈ RnNR . Note that this method requires the collocated surface

quadrature nodes ({xe
x}

NB,k

s=1 is a subset of {xκ
j }

NQ,k

j=1 for e ∈ ∂Tκ), thus R
eκ is a simple

restriction onto e and diagonal. In [9], the authors proved the nodal DG scheme (3.8)
is conservative, entropy stable and high order accurate, under the assumptions that
fm,S is entropy conservative, and f̂n is entropy stable for any given entropy function.

3.3. Entropy stable essentially oscillation-free DG schemes. Despite the
fact that the DG scheme (3.8) possesses so many good properties, it cannot eliminate
numerical oscillations near the discontinuities. To control the non-physical oscilla-
tions, we adopt the recent developed damping technique in [36, 35] and construct a
suitable damping term for (3.8). Note that the added damping term should not con-
taminate the good properties of the entropy stable DG schemes, such as conservation,
entropy stability, and high order accuracy. By a careful construction, we present the
newly designed nodal DG scheme as follows:

d
−→
uκ

dt
+ 2

d∑
m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

= (Mκ)−1
∑

e∈∂Tκ

(Reκ)TBe
(−→
feκn −

−−→
feκ,∗n

)
− σκ(u)

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
.

(3.10)

The damping coefficient σκ(u) is defined as follows

σκ(u) = max
1≤s≤n

( 1∑
ℓ=0

h2ℓTκ

ℓ+ 1

∑
|α|=ℓ

1

Ne

∑
υ∈∂Tκ

[[
(
L∂αu

)
s
|υ]]2

) 1
2

,(3.11)

where the vector α is the multiindex of order |α| = α1 + . . . + αd, and ∂αω =
∂α1
x1

· · · ∂αd
xd
ω. The matrix L comes from the characteristic decomposition such that

d∑
i=1

nif
′
i(ū) = L−1ΛL

with n = [n1, . . . , nd]
T is the unit outward normal. ū is some average of u on the point

υ ∈ ∂Tκ, and one can either use the arithmetic average or the Roe average (which
is used in the numerical experiments later). The characteristic decomposition is not
necessarily unique and the formulation could be complicated. Fortunately, for com-
pressible Euler systems we have a relatively simple formulation, see e.g. [35]. For illus-
tration purpose, for two-dimensional compressible Euler systems u = [ρ, ρu, ρv, E]T ,

f1 =
[
ρu, ρu2 + p, ρuv, u(E + p)

]T
, f2 =

[
ρv, ρuv, ρv2 + p, v(E + p)

]T
, we take L as

follows

L =
(
γ − 1

)
c−1


1

2
(B2 + ûc) −1

2

(
B1u+ n1c

)
−1

2

(
B1v + n2c

) 1

2
B1

v̂c n2c −n1c 0
c2 −B2 B1u B1v −B1

1

2
(B2 − ûc) −1

2

(
B1u− n1c

)
−1

2

(
B1v − n2c

) 1

2
B1

(3.12)

where û, v̂, c and B1 are given as

û = un1 + vn2, v̂ = −un2 + vn1, c =

√
γp

ρ
, B1 = γ − 1, B2 = B1

u2 + v2

2
.
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For general hyperbolic systems, it might be a good way to have L to be orthonormal
by normalizing the left characteristic matrix. Since we only have the values of the
entropy variables on nodal points, we first project u into the finite element space to

obtain the coefficients of polynomials,
−→
ûκ = Pκ

k

−→
uκ, then we can obtain the derivatives

of u. [[ω|v]] denotes the jump of the function ω on the vertex υ ∈ Tκ, we only consider
the adjacent neighbors of element Tκ. Ne stands for the number of edges of ∂Tκ.
For example, see Fig. 1, the adjacent neighbors of element K are K1, K2, K3, thus
Ne = 3.

v

K6

K1

K

K3
K4

K5

K2

Fig. 1. Illustrating graph for the jumps in the
damping coefficient σκ defined in (3.11).

Remark 3.1. The equation (3.11) is one of the key ingredients of the proposed
method. Intuitively, It is designed as a smoothness indicator that it would be small in
the smooth region and large near the discontinuous region. That means in the smooth
region, the damping is small and has little effect in the DG scheme, and near the
discontinuous region, the damping is large and takes effect to compress the numerical
oscillations. To this end, in (3.11) we make use of the jumps of the numerical solution
and its derivatives across the surface to indicate the smoothness of the numerical
solution. Formally, the damping term in (3.10) makes high-order coefficients of the
DG solution to be damped by a factor exp(−σκ(u)t).

Now we are ready to provide our main theorem, which states that the nodal DG
method (3.10) is conservative, entropy stable, and maintains high order accuracy,
under the assumptions that

(H1) The volume quadrature rule has collocated surface quadrature nodes, and
Reκ is a simple restriction onto e and Eeκ is diagonal.

(H2) The simplex meshes {Th} are shape regular and quasi-uniform.
(H3) All mappings and numerical fluxes (e.g. v(u), fm(u), fm,S(uL,uR), etc)

are smooth and Lipschitz continuous.
(H4) fm,S(uL,uR) is entropy conservative and f̂n is entropy stable with respect

to the given entropy function U(u).

Theorem 3.1. If above assumptions (H1) - (H4) hold, then the scheme (3.10) is
consistent in the sense that for a smooth solution u of (1.1) and a smooth entropy
variable v with respect to U , the local truncation error is of high order:

duκ
j

dt
+ 2

d∑
m=1

NQ,k∑
i=1

Dκ
m,jifm,S(u

κ
j ,u

κ
i )−

∑
e∈∂Tκ

NB,k∑
s=1

Reκ
sj

τes
ωκ
j

(
feκn − f̂n(u

eκ
s ,u

eκ̃
s )

)
+ σκ(u)

(
uκ
j −

NQ,k∑
i=1

(V κ
0 P

κ
0 )jiu

κ
i

)
= O(hk), j = 1, . . . ,NQ,k.

(3.13)
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It is also conservative and entropy stable with respect to U given by

d

dt

( Nh∑
κ=1

(−→
1κ

)T

Mκ−→uκ

)
= 0,

d

dt

( Nh∑
κ=1

(−→
1κ

)T

Mκ−→Uκ

)
≤ 0 ,(3.14)

where
−→
Uκ =

[
U
(
uκ
1

)
, . . . , U

(
uκ
NQ,k

)]T
.

Proof. Since u is a smooth function, by the definition of the damping coefficient
σκ(u) = 0 in (3.11), we have σκ(u) = 0. From the proof in [10, Theorem 4.1], we can
obtain (3.13). And due to the fact that σκ(u) is a scalar and by the property of the
L2 projection matrix Pκ

0 in (2.17), we have(−→
1κ

)T

Mκσκ(u)
(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
= σκ(u)

(−→
1κ

)T
Mκ

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
= 0 .

(3.15)

Note that Vκ
0 =

−→
1κ, together with the conservative form of (3.8), implies the conser-

vation of u in (3.10). For the entropy stability, we have

d

dt

( Nh∑
κ=1

(−→
1κ

)T

Mκ−→Uκ

)
=

Nh∑
κ=1

(
−→
vκ)TMκ d

dt

−→
uκ.(3.16)

Since
−→
U ′(Vκ

0P
κ
0

−→
uκ

)
is a constant vector for each entropy variable, by (2.17) we have

−
(−→
vκ

)T
Mκσκ(u)

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
= −σκ(u)

(−→
U ′(−→uκ

)
−
−→
U ′(Vκ

0P
κ
0

−→
uκ

))T

Mκ
(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
(by (3.15))

(3.17)

By using the fact that entropy U ′′(u) ≥ 0, we have(
U ′(u1)− U ′(u2)

)
· (u1 − u2) ≥ 0, ∀u1, u2.(3.18)

Therefore, with the positive weights ωκ
j ≥ 0, for ∀ 1 ≤ j ≤ NQ,k we have(

U ′(u(xκ
j )
)
− U ′((Vκ

0P
κ
0

−→
uκ)j

))T (
u(xκ

j )−
(
Vκ

0P
κ
0

−→
uκ

)
j

)
ωκ
j ≥ 0 .(3.19)

Then by above inequality together with (3.17), we obtain

Nh∑
κ=1

(−→
vκ

)T
Mκσκ(u)

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
≥ 0.(3.20)

This indicates the newly added damping term is also entropy stable. Finally, by the
entropy stability of the scheme (3.8) in [9] and (3.20), we obtain (3.14).

Remark 3.2. From the proof of Theorem 3.1, we can see that a more natural

idea is to construct the damping term with the entropy variables, that is σκ(u)
(−→
vκ −

Vκ
0P

κ
0

−→
vκ

)
. We can still have the properties of conservation and entropy dissipation,

however, the numerical investigations indicate this choice does not control the spurious
oscillations well, thus it is not adopted.



12 Y. LIU, J. LU AND C.-W. SHU

Remark 3.3. Note that the projection in the damping term in (3.10) is slightly
different from [35], since here we only use the projection Pκ

0 for the sake of entropy
stability. This is because if U ′(u) is not a linear function with respect to u, then it
is hard to to make use of the L2 projection property to obtain the entropy stability

when U ′(Vκ
rP

κ
r

−→
uκ

)
, r ≥ 1 are not the values of some polynomial at nodes.

Remark 3.4. Since the damping term in (3.10) vanishes in the evolution scheme
of the cell average, the positive preserving limiter, which was developed by Zhang and
Shu in [53, 54] and does not increase entropy [9, Theorem 3.7], can also be applied
to ESOFDG scheme (3.10). It is worth noting that we do not use any limiters to
demonstrate the robustness of the ESOFDG method in the numerical experiments.

3.4. Entropy stable essentially OFDG method on the general set of
nodes. Next, we introduce three approaches to obtain the entropy stable DG method-
ology for arbitrary volume and surface quadrature rules. The first one is the so-called
hybridized SBP operators approach proposed by Chan in [7, 8]. The key idea is
to combine volume nodes and surface nodes together to obtain the hybridized SBP
operators. The second approach is the global SBP operators approach, which was
developed by Crean et al. in [13, 14]. The key idea is to view the nodal values on
different elements as a whole, grouping them into a single global vector. Then the
global SBP operators should be constructed accordingly and the entropy dissipation
function with respect to U can ensure the entropy stable property. The third approach
is to enforce the entropy balance directly [1], in which the method was written in the
more general residual distribution framework. A simple linear correction term would
be added in the original nodal DG scheme to obtain the entropy stable property. For
the general cases, we present a generic form as follows:

d
−→
uκ

dt
= rκ

(−→
ug

)
, ug =


−→
u1

...
−−→
uNh

(3.21)

with ug being the global column vector of the nodal values on the whole elements.
The scheme (3.21) has the following properties:

Nh∑
κ=1

(−→
1κ

)T
Mκrκ

(−→
ug

)
= 0,

Nh∑
κ=1

(−→
vκ

)T
Mκrκ

(−→
ug

)
≤ 0.(3.22)

The corresponding entropy stable essentially OFDG scheme is written as

d
−→
uκ

dt
= rκ

(−→
ug

)
− σκ(u)

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
.(3.23)

Theorem 3.2. If (H1) - (H4) hold true, the scheme (3.23) is conservative and
entropy stable.

Proof. The proof is similar to Theorem 3.1 and thus omitted.

4. Numerical experiments. In this section we show some numerical results to
justify the good performance of the proposed algorithm. In one-dimensional problems,
we use the three-point Gauss-Lobatto quadrature for k = 1, and four-point Gauss-
Lobatto quadrature for k = 2 and five-point Gauss-Lobatto quadrature for k = 3.
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We also use its tensor-product for two-dimensional problems. In the figures below,
for simplicity we only plot the cell averages within each cell instead of showing the
full polynomial. Note that the full polynomial solution may still contain some slight
oscillations near the discontinuities, please see [35] for more details. We also use the
classic fourth order Runge-Kutta method as our time-stepping method, and the time
step size τ = O(h). To be more specific, we take the one-dimensional ESOFDG
schemes for illustration purpose. For one-dimensional problems, we take the CFL
condition as

τ =
CFL

λ0 + a0
h,

where λ0 is the maximum of the spectral radius of the Jacobian f ′(u) over each
element, and a0 = maxκ σ

κ(u) defined in (3.11). The CFL number is a constant
and one can take e.g. CFL = c/(2k + 1), c is a constant. Note that the standard
DG methods have the empirical CFL number that c = 1 [12]. And in the numerical
simulation, we take c less than 1 for the ESOFDG schemes.

In several numerical examples we plot the total entropy against time by the for-
mulation

total entropy =
∑
κ

NQ,k∑
j=1

ωκ
j U

(
uκ
h(x

κ
j , tn)

)
at time level t = tn. Throughout the paper, the entropy stable fluxes are chosen as
the local Lax-Friedrichs (LFF) fluxes [9] that

hLLF(a, b) =
1

2

(
f(a) + f(b)− α(b− a)

)
,

where the parameter α is taken as α = max(|f ′(u−
j+ 1

2

)|, |f ′(u+
j+ 1

2

)|) for the scalar flux

function, in order to ensure the monotonicity and the entropy stability of the LLF
flux on the element interfaces, we must approximate α properly. For Euler equations
we use the two-rarefaction approximation [25] to estimate the bounds of wave speeds
for Euler equations with 1 ≤ γ ≤ 5/3. The explicit formulation of α can be found in
[9, Theorem A.2].

Moreover, for one-dimensional compressible Euler equations with u = [ρ, ρu,E]T ,
f(u) = [ρu, ρu2 + p, u(E + p)]T , we use the entropy function and entropy variables as

U = − ρs

γ − 1
, v =

[
γ − s

γ − 1
− ρu2

2p
,
ρu

p
, −ρ

p

]T
,(4.1)

where s = log(pρ−γ) is the physical specific entropy, and the entropy conservative
flux was recommended by Chandrashekar in [6]:

fS(
−→uL,

−→uR) =
[
(ρ̄)logū, (ρ̄)logū2 + p̃, ū

( (p̃)log

γ−1 + ˜̃E
)]T

(4.2)

where z̄ =
1

2
(zL + zR), (z̄)

log =
zR − zL

log zR − log zL
and

β =
ρ

2p
, p̃ =

ρ̄

2β̄
, (p̃)log =

(ρ̄)log

2(β̄)log
, ˜̃E =

1

2
(ρ̄)log(2ū2 − u2) + p̃.

One can also use the affordable entropy conservative flux which was suggested by
Ismail and Roe [30]. Since the results of numerical examples do not have obvious
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differences with these two fluxes, we only report the results when using the en-
tropy conservative flux of Chandrashekar. For two-dimensional compressible Euler
equations with u = [ρ, ρu, ρv, E]T , f1(u) = [ρu, ρu2 + p, ρuv, u(E + p)]T , f2(u) =
[ρv, ρuv, ρv2 + p, v(E + p)]T , we use the entropy function and entropy variables as

U = − ρs

γ − 1
, v =

[
γ − s

γ − 1
− ρ(u2 + v2)

2p
,
ρu

p
,
ρv

p
, −ρ

p

]T
,(4.3)

and the entropy conservative fluxes are given as

f1,S(
−→uL,

−→uR) =


(ρ̄)logū

(ρ̄)logū2 + p̃
(ρ̄)logūv̄

ū
( (p̃)log

γ−1 + ˜̃E
)
 , f2,S(

−→uL,
−→uR) =


(ρ̄)logv̄
(ρ̄)logūv̄

(ρ̄)logv̄2 + p̃

v̄
( (p̃)log

γ−1 + ˜̃E
)
 ,(4.4)

where the notations are the same as in one-dimensional case except

˜̃E =
1

2
(ρ̄)log

(
2(ū2 + v̄2)− u2 + v2)

)
+ p̃.

For more details we refer the readers to [6, 9, 7]. The ratio of the specific heat γ is
taken to be 1.4 for air unless specified otherwise. Throughout this paper, we just use
the high order numerical quadrature rule to approximate the errors in the L2 norm
instead of integrating them exactly. We put the codes for Example 2 and Example 14
on GitHub, one can download the codes at https://github.com/YongLiu12/Entropy-
stable-OFDG

4.1. One-dimensional problems.

Example 1. We firstly consider the linear scalar conservation laws that ut+ux = 0
with periodic boundary condition. Two initial conditions are taken as follows:
(a) The smooth case: u0(x) = sin(πx)2 + 1, x ∈ (−1, 1).
(b) The non-smooth case:

u0(x) =

{
sin(πx), − 0.5 ≤ x ≤ 0.5,

0, otherwise.

The computational domain is (−1, 1) and the final time is taken as T = 1.2 and
T = 5.0 for case (a) and (b) respectively. Both of these two cases are using the square
entropy function U(u) = u2/2.

From Table 1, we observe the optimal convergence rate for the smooth solution
in Example 1. In Fig. 2(a), we can clearly see the spurious oscillation is controlled
well and we also plot the discrete entropy against time in Fig. 2(b). Although we
have not proved the entropy stability of the fully discrete schemes with the explicit
Runge-Kutta time discretization method, we are still able to observe the phenomenon
of dissipative entropy.

Example 2. In this example, we consider the Burgers’ equation that ut+
(u2
2

)
x
=

0 with periodic boundary condition. The initial condition is u0(x) = 2 sin(x) + 1,
x ∈ (0, 2π). Since any convex function can be chosen as the entropy function for
scalar conservation laws, we adopt the entropy function U(u) = 0.1eu + 0.45u2 as an
example and compute the solution at different final time T = 0.3 and T = 5. Note
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Table 1
Errors and orders of the case (a) in Example 1 with the final time T = 1.2.

k = 1 k = 2 k = 3

N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16 1.819E-02 – 1.148E-03 – 2.545E-04 –
32 3.277E-03 2.473 8.899E-05 3.690 9.937E-06 4.679
64 6.291E-04 2.381 9.234E-06 3.269 3.605E-07 4.785
128 1.363E-04 2.207 1.081E-06 3.095 1.315E-08 4.777
256 3.238E-05 2.073 1.326E-07 3.027 5.482E-10 4.584
512 7.978E-06 2.021 1.649E-08 3.007 2.799E-11 4.292

Fig. 2. The numerical solution and entropy of the case (b) in Example 1 with final time
T = 5.0, k = 2, N = 128.

(a) Numerical solution. (b) Entropy against time.

that the exact solution u(x, t) stays smooth when T = 0.3 so we can test the accuracy
of the ESOFDG scheme. When T = 5, the exact solution develops a discontinuity
and spurious oscillations may occur for classic high order DG schemes.

For nonlinear scalar equations, we also observe optimal convergence for k = 1, 2, 3
in Table 2. When T = 5, a shock has appeared due to the nonlinearity, and we observe
the ESOFDG scheme captures the shock well without visible oscillations in Fig. 3.
We also compute the evolution of the exact entropy, and we can see the numerical
entropy coincides with it well in Fig. 3(b).

Table 2
Errors and orders in Example 2 with the final time T = 0.3.

k = 1 k = 2 k = 3

N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16 1.852E-02 – 3.125E-03 – 6.374E-04 –
32 4.631E-03 1.999 3.381E-04 3.028 5.770E-05 3.466
64 1.163E-03 1.993 4.326E-05 3.147 3.899E-06 3.888
128 2.901E-04 2.003 5.258E-06 3.040 2.033E-07 4.261
256 7.244E-05 2.002 6.504E-07 3.015 1.010E-08 4.331
512 1.810E-05 2.001 8.102E-08 3.005 5.488E-10 4.202

Example 3. In the following we consider the Riemann problem [32] for the one-
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Fig. 3. The numerical solution and entropy in Example 2 with the final time T = 5, k =
2, N = 128.

(a) Numerical solution. (b) Entropy against time.

dimensional nonconvex scalar hyperbolic conservation law ut + f(u)x = 0 with

f(u) =
u(1− u)

4
, u <

1

2
; f(u) =

u2

2
− u

2
+

3

16
, u ≥ 1

2
.(4.5)

The initial condition is

u(x, 0) = ul, x <
1

4
; u(x, 0) = ur, x ≥ 1

4
.

The computational domain is Ω = (0, 1). We test two cases in the following:
(i) ul = 0, ur = 1, and the final time is T = 1;
(ii) ul = 1, ur = 0, and the final time is T = 2.

We also take three kinds of entropy functions for comparison as follows:

[a] U(u) =
1

2
u2;

[b] U(u) = 0.1eu + 0.45u2;

[c] U(u) = u arctan(20u)− 1

40
log(1 + 400u2).

Nonconvex hyperbolic conservation laws are very challenging in computation,
because if their numerical schemes are not carefully constructed, they may fail to
converge to the unique entropy solution or may be too slow to converge that would
require impractically fine meshes [32]. These three kinds of entropy functions corre-
spond to different entropy stability. The first entropy is the classic square entropy,
thus the entropy stability is equivalent to the L2-norm stability which is obtained in
the classic DG framework. The second entropy is artificially constructed which is the
same as in Example 2. The third one can be viewed as a smooth approximation of
the Kruzhkov’s entropy U(u) = |u| [33]. In Fig. 4, we observe the ESOFDG scheme
works well for all three kinds of entropy functions. The discrete entropy against time
is also plotted for different initial conditions. In Fig. 4(d), the entropy increases for
the reason that the boundary terms do not vanish and we can only obtain entropy
stability instead of entropy dissipation that

d

dt

( Nh∑
κ=1

(−→
1κ

)T

Mκ−→Uκ

)
≤ C
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where C > 0 is some positive constant. For instance, with entropy [a] we have the
entropy flux

F (u) =

∫
U ′(u)f ′(u) du =


−u

3

6
+
u2

8
, u <

1

2
,

u3

3
− u2

4
+

1

32
, u ≥ 1

2
.

Then for the I.C. (ii) we have

d

dt

( Nh∑
κ=1

(−→
1κ

)T

Mκ−→Uκ

)
≤ −F (ur) + F (ul) =

11

96
≈ 0.11.

From Fig. 4(d), the tangent of the evolution curve of entropy [a] is about 0.09 which
is less than 0.11.

Fig. 4. The numerical solution and entropy in Example 3 with I.C. (i) and (ii), k = 2, N = 128.

(a) Numerical solution, I.C. (i). (b) Entropy against time, I.C. (i).

(c) Numerical solution, I.C. (ii). (d) Entropy against time, I.C. (ii).

Example 4. Consider a Riemann problem for one-dimensional Buckley-Leverett
equation with the flux function defined as

f(u) =
4u2

4u2 + (1− u)2
,(4.6)

and the initial condition is given as

u(x, 0) = ul, x ≤ 0; u(x, 0) = ur, x > 0.(4.7)

We consider two kinds of initial conditions as follows:
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(i) ul = 2, ur = −2;
(ii) ul = −3, ur = 3.

We take the computational domain Ω = (−4, 4), and the final time T = 10. We take
three kinds of entropy functions as follows:

[a] U(u) =
1

2
u2;

[b] U(u) = u arctan(20u)− 1

40
log(1 + 400u2);

[c] U(u) = (u− 1) arctan(u− 1)− 1

2
log(u2 − 2u+ 2) .

The first entropy function is the standard square entropy, and the second one is
a mollified version of the Kruzhkov’s entropy U(u) = |u| [33] and the third one is a
mollified version of the translated Kruzhkov’s entropy U(u) = |u−1|. In Fig. 5(a) and
(b), we observe that numerical solutions of entropies [a] and [b] do not agree with the
reference solution. But the numerical solution of entropy [c] gives satisfactory results
thanks to the carefully chosen entropy function. As mentioned before, the entropy [c]
is an approximation to the entropy function U(u) = |u−1|, which emphasizes the state
near u = 1. For the initial condition (ii), the numerical solution obtained by using
entropy [b] is better than the other two, see Fig. 5(c) and (d). Similar observations
are also mentioned in [9]. This implies the entropy pair should be carefully chosen for
the nonconvex hyperbolic conservation laws, otherwise the numerical scheme might
generate the entropy violating solutions.

Fig. 5. The numerical solution and entropy in Example 4 with I.C. (i) and (ii), k = 2, N = 128.

-4 -2 0 2 4

-2

-1

0

1

2

3

(a) Numerical solution, I.C. (i). (b) Entropy against time, I.C. (i).

(c) Numerical solution, I.C. (ii). (d) Entropy against time, I.C. (ii).

Example 5. Now let us consider two well-known Riemann problems for one-dimensional
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Euler equations. Both of them have the following Riemann type initial conditions:

U(x, 0) = UL, x < 0; U(x, 0) = UR, x > 0.

The first test case is Sod’s problem [45]. The initial conditions are

[ρL, uL, pL]
T = [1, 0, 1]T , [ρR, uR, pR]

T = [0.125, 0, 0.1]T .

The second one is Lax’s problem [34]. The initial conditions are

[ρL, uL, pL]
T = [0.445, 0.698, 3.528]T , [ρR, uR, pR]

T = [0.5, 0, 0.571]T .

The computational domain Ω = (−5, 5) and the terminal time T = 1.3.

In Example 5, we consider the shock tube problems with one-dimensional com-
pressible Euler systems. The density of the numerical solutions are shown in Fig.
6. The numerical solutions of both Sod’s problem and Lax’s problem have good
performances without obvious oscillations.

Fig. 6. The density profile and entropy for Sod’s problem and Lax’s problem in Example 5
with the final time T = 1.3, k = 2, N = 128.

(a) Density profile, Sod’s problem. (b) Entropy vs. time, Sod’s problem.

(c) Density profile, Lax’s problem. (d) Entropy vs. time, Lax’s problem.

Example 6. Now we consider the Shu-Osher’s problem [44]. This example de-
scribes the interaction between a right-moving Mach = 3 shock and sine waves in
density. It is often used to test high order numerical schemes because both shocks
and complicated smooth flow structures co-exist. The initial conditions are given as

ρ(x, 0) = 3.857143, u(x, 0) = 2.629369, p(x, 0) = 10.33333, x < −4,

ρ(x, 0) = 1 + 0.2 sin(5x), u(x, 0) = 0, p(x, 0) = 1, x > −4.

The computational domain is Ω = (−5, 5) and the final time is T = 1.8.
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The plots of density with 128 cells are displayed in Fig. 7(a) and the discrete entropy
is also plotted in Fig. 7(b). We again observe the entropy decreases as time evolves.
The ESOFDG scheme has comparable performance to the one in [44] without using
any limiters.

Fig. 7. The density profile and entropy for Shu-Osher’s problem in Example 6 with the final
time T = 1.8, k = 2, N = 128.

(a) Density profile. (b) Entropy against time.

Example 7. We consider here the interaction of two blast waves [52]. This prob-
lem involves multiple reflections of shocks and rarefaction waves off the walls. The
initial conditions are given as

ρ(x, 0) = 1, u(x, 0) = 1, p(x, 0) =


103, 0 < x < 0.1,

10−2, 0.1 < x < 0.9,

102, 0.9 < x < 1.

The computational domain is Ω = (0, 1) and the reflective boundary conditions are
imposed on both left and right boundaries. The final time is T = 0.038.

This example easily generates negative density and negative pressure numerically
if no oscillation control procedure is used. The classic DG scheme tends to blow up
due to the occurrence of the negative density and negative pressure. The ESOFDG
scheme, on the other hand, could proceed without using any limiters. Fig. 8 shows the
profile of density at T = 0.038 with 800 cells. All shocks and structures are resolved
correctly without obvious oscillations.

Example 8. We consider the one-dimensional Sedov point blast problem [54] which
models the expanding wave by an intense explosion in the perfect gas. The authors
successfully computed this problem by using both the positivity preserving limiter
and TVB limiter in [54]. The initial conditions are ρ(x, 0) = 1, u(x, 0) = 0 and
E(x, 0) = 10−12 everywhere except E(x, 0) = E0/h0, E0 = 3, 200, 000 in the center
cell, h0 is the length of the center cell. The computational domain is Ω = (−2, 2) and
the final time is T = 10−3. The formula of the exact solution can be found in [43].

In Fig. 9, we show the profile of density with 128 cells at time T = 10−3 for
the one-dimensional Sedov point blast problem in Example 8. The ESOFDG scheme
gives satisfactory numerical results and we again observe that the discrete entropy
decreases with time during the simulation, which indicates the fully discrete scheme
is also entropy stable.
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Fig. 8. The density profile and entropy for two blast waves problem in Example 7 with the
final time T = 0.038, k = 2, N = 800.

(a) Density profile. (b) Entropy against time.

Fig. 9. The density profile and entropy for Sedov point blast problem in Example 8 with the
final time T = 10−3, k = 2, N = 128.

(a) Density profile. (b) Entropy against time.

4.2. Two-dimensional problems.

Example 9. Consider the two-dimensional linear scalar conservation law

ut + ux + uy = 0, (x, y) ∈ Ω

with periodic boundary condition. We consider two initial conditions in the following.
(a) The smooth case: u0(x, y) = sin(2x) cos(2y) + 0.5, Ω = (0, π) × (0, π). The final

time T = 1.2.
(b) The non-smooth case:

u0(x, y) =

1, r ≤ 1

8

(
3 + 3sin 5θ

)
,

0, elsewhere,

where (r, θ) are the polar coordinates. The computational domain Ω = (−1, 1)×
(−1, 1). The final time is T = 1.8.

We use the entropy function U(u) = 0.1eu + 0.45u2 for both cases.

In Table 3, we report the errors and convergence orders of the numerical solution
in L2 norm for k = 1, 2, 3 in Example 9. We observe the (k+1)th order of convergence
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for all k, which is better than the prediction of truncation error analysis. For non-
smooth solutions, we observe the ESOFDG scheme sharply captures the interfaces of
the shock in Fig. 10.

Table 3
Errors and orders of the case (a) in Example 9 with the final time T = 1.2.

k = 1 k = 2 k = 3

N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16× 16 1.903E-02 – 1.177E-03 – 8.232E-05 –
32× 32 4.065E-03 2.227 9.589E-05 3.618 3.106E-06 4.728
64× 64 9.671E-04 2.072 9.579E-06 3.323 1.402E-07 4.469

128× 128 2.386E-04 2.019 1.108E-06 3.112 7.651E-09 4.196
256× 256 5.946E-05 2.005 1.355E-07 3.031 4.589E-10 4.059
512× 512 1.485E-05 2.001 1.685E-08 3.008 2.841E-11 4.014

Fig. 10. The numerical solution and entropy of the case (b) in Example 9 with final time
T = 1.8, k = 2, Nx ×Ny = 128× 128.

(a) Numerical solution.

Nx*Ny=128*128

(b) Entropy against time.

Example 10. Consider the following two-dimensional Burgers’ equation

ut +
(u2
2

)
x
+
(u2
2

)
y
= 0, (x, y) ∈ Ω.

with the two cases in the following:
(a) The initial condition is u0(x, y) = sin(π(x+ y)) and periodic boundary condition.

The computational domain is Ω = (0, 2)× (0, 2), and we take the final time that
T = 0.2.

(b) Riemann problem [24]. The initial condition is

u0(x, y) =



−1

5
, if x <

1

2
, y >

1

2
,

−1, if x ≥ 1

2
, y >

1

2
,

1

2
, if x <

1

2
, y ≤ 1

2
,

4

5
, if x ≥ 1

2
, y ≤ 1

2
.
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The exact solution for t > 0 can be found in [24]. The computational domain is
Ω = (0, 1)× (0, 1) and the final time is T = 0.5.

We take U(u) = cosh(u) as the entropy function for both cases.

For the case (a) in Example 10, the errors and orders are shown in Table 4 and
the convergence rates are optimal at least for k = 1, 2. The numerical solution of case
(b) in Example 10 is displayed in the left panel of Fig. 11, and the absolute value
error is plotted in the right panel where it uses the base 10 logarithmic scale. We can
see the numerical error is small away from the shock waves.

Table 4
Errors and orders of the case (a) in Example 10 with the final time T = 0.2.

k = 1 k = 2 k = 3

N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16× 16 1.462E-02 – 2.319E-03 – 4.225E-04 –
32× 32 3.723E-03 1.973 3.161E-04 2.875 3.199E-05 3.723
64× 64 9.336E-04 1.996 4.090E-05 2.950 2.568E-06 3.639

128× 128 2.341E-04 1.996 5.305E-06 2.947 2.347E-07 3.452
256× 256 5.900E-05 1.988 7.063E-07 2.909 2.229E-08 3.397
512× 512 1.500E-05 1.975 9.575E-08 2.883 2.092E-09 3.413

Fig. 11. The numerical solution and entropy of the case (b) in Example 10 with final time
T = 0.5, k = 2, Nx ×Ny = 128× 128. Error is shown in the base 10 logarithmic scale.

(a) Numerical solution.

x

y

(b) Absolute value of error

Example 11. We now test the Riemann problem proposed in [32] which is very
challenging to many high-order numerical schemes for the reason that the solution
has a two-dimensional composite wave structure. We have the flux functions as

f(u) = [sinu, cosu]T ,(4.8)

and the initial condition is given as

u(x, y, 0) =


7π

2
, x2 + y2 <

1

2
,

π

4
, otherwise.

(4.9)

The computational domain is Ω = (−2, 2) × (−2.5, 1.5), and the final time is T = 1.
The entropy function is U(u) = cosh(u).
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The numerical result of Example 11 is shown in Fig. 12. With this suitable
entropy function, the ESOFDG scheme provides satisfactory results. We again ob-
serve that the discrete entropy monotonically decays which indicates the fully discrete
scheme is entropy stable.

Fig. 12. The numerical solution and entropy in Example 11 with final time T = 1, k =
2, Nx ×Ny = 128× 128.

(a) Numerical solution. (b) Entropy against time.

Example 12. In this example, we consider the shock vortex interactions in two
dimensions [5, 31]. A stationary Mach 1.1 shock is positioned at x = 0.5, perpen-
dicular to the x-axis. Its left state is [ρ, u, v, p]T = [1, 1.1

√
γ, 0, 1]T . An isentropic

vortex perturbation centered at (xc, yc) is added to the velocity (u, v), temperature
(T = p/ρ) and entropy (S = ln(p/ργ)) of the flow, given in the following:

[δu, δv]T =
ε

rc
eα(1−τ2)[−ȳ, x̄]T , δT = − (γ − 1)ε2

4αγ
e2α(1−τ2), δS = 0,(4.10)

where [x̄, ȳ]T = [x− xc, y − yc]
T , r = (x̄2 + ȳ2)1/2 and τ = r/rc. The parameters are

taken in the same way as in [31] that [xc, yc]
T = [0.25, 0.5]T , ε = 0.3, rc = 0.05 and

α = 0.204. The computational domain is taken as (0, 2)× (0, 1) and the final time is
T = 0.8. The left and right boundary conditions are inflow and outflow respectively,
and reflecting boundary conditions are imposed on the upper and lower boundaries.

In Fig. 13, we plot the vortex interacting with the stationary shock wave at
different time. Since we change the direction of the perturbation of the velocity
compared with that in [31], we can see the solution at t = 0.8 in which one branch of
the shock bifurcations has reached the bottom boundary and has been reflected. The
ESOFDG scheme captures the reflection well and the results are comparable to those
in [31].

Example 13. Now let us consider the two-dimensional Sedov point blast problem
[54]. The initial states are ρ(x, y, 0) = 1, u(x, y, 0) = v(x, y, 0) = 0 and E(x, y, 0) =
10−12 everywhere except E(x, 0) = E0/S0 in the lower left corner cell, where E0 =
0.244816 and S0 is the area of the lower left corner cell. The computational domain is
Ω = (0, 1.1)× (0, 1.1) and the final time is T = 1. The numerical boundary treatment
is to extend the DG solutions of ρ, v, E as even functions and u as an odd function with
respect to the left boundary, and extend the DG solutions of ρ, u,E as even functions
and v as an odd function with respect to the bottom boundary. The formula of the
exact solution can also be found in [43].
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Fig. 13. Pressure contours of the two-dimensional shock vortex interaction problem in Example
12, k = 2, Nx × Ny = 256 × 128. 30 contours: (a) t = 0.078; (b) t = 0.231; (c) t = 0.386. 90
contours from 1.19 to 1.37: (d) t = 0.544; (e) t = 0.701; (f) t = 0.8.

(a) t = 0.076. (b) t = 0.228. (c) t = 0.380.

(d) t = 0.534. (e) t = 0.689. (f) t = 0.8.

In Fig. 14, we show the density profile of the two-dimensional Sedov point blast
problem in Example 13. Same as in the one-dimensional problem, a typical low
density would appear along with shock discontinuities. The ESOFDG scheme works
well again without using any limiters.

Fig. 14. Density contour of the two-dimensional Sedov point blast problem and entropy against
time in Example 13 with final time T = 1, k = 2, Nx ×Ny = 256× 256.

(a) Numerical solution. (b) Entropy against time.

Example 14. Now let us consider the double Mach reflection problem [52]. Ini-
tially, a Mach 10 shock attacks the horizontal wall with a 60◦ angle. The reflecting
wall lies at the bottom of domain starting from x = 1/6. The initial conditions are
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given as follows.

[ρ, u, v, p]T =


[
8, 8.25 cos

(π
6

)
,−8.25 sin

(π
6

)
, 116.5

]T
, x <

1

6
+

y√
3
,

[1.4, 0, 0, 1]T , x >
1

6
+

y√
3
.

The computational domain is (0, 4)× (0, 1) and the final time is taken to be 0.2. We
have inflow boundary conditions for the left boundary and outflow boundary condition
at the right boundary. For the bottom boundary, the exact post-shock condition is
imposed for the part from x = 0 to x = 1/6 and a reflective boundary condition is
used for the rest. For the upper boundary, the post-shock condition is imposed for
the part from x = 0 to x = 1/6 + (1 + 20t)/

√
3 and the pre-shock condition is used

for the rest.

In Fig. 15, we plot the density contours of the double Mach reflection problem in
Example 14 with k = 2 on a grid with hx = hy = 1/256. We can see the flow structure
are resolved very clearly, and no instability occurs for our proposed algorithm.

Fig. 15. Density contours of double Mach reflection at t = 0.2 in Example 14, 30 contour
lines from 1.731 to 20.92, k = 2, hx = hy = 1/256.

(a) Density profile. (b) Mach stem in (a).

Example 15. In the last example, we test the high Mach number astrophysical
jets problem [26, 54]. The code could easily blow up since the negative pressure
and density could easily appear during numerical computation. Conventionally, a
positivity preserving limiter was developed to preserve the positivity of the relevant
physical quantities in [53, 54]. Now we compute the high Mach number astrophysical
jets without using any positivity preserving limiter. We consider two cases: Mach =
80 and Mach = 2000 in the following. Note that the heat capacity ratio γ = 5/3.
(a) For the Mach 80 problem, the jet initially locates at y ∈ (−0.05, 0.05), x = 0,

with the physical values [ρ, u, v, p]T = [5, 30, 0, 0.4127]T and the ambient gas is
[ρ, u, v, p]T = [0.5, 0, 0, 0.4127]T . The computational domain is (0, 2)× (−0.5, 0.5)
and the terminal time is 0.07. The boundary conditions of the rest boundaries
are outflow.

(b) For the Mach 2000 problem, the jet initially locates at y ∈ (−0.05, 0.05), x =
0. The physical values of the jet are [ρ, u, v, p]T = [5, 800, 0, 0.4127]T and the
ambient gas is [ρ, u, v, p]T = [0.5, 0, 0, 0.4127]T . The computational domain is
(0, 1)× (−0.25, 0.25) and the terminal time is 0.001. The boundary conditions of
the rest boundaries are outflow.

In Fig. 16 and 17, we show the density, pressure and temperature contours of
Mach 80 and Mach 2000 astrophysical jets in Example 15, k = 2, Nx×Ny = 320×160.
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The ESOFDG scheme successfully obtain satisfactory results compared to the results
in [54] without any occurrence of instability.

Fig. 16. High Mach astrophysical jets in Example 15, Mach = 80, k = 2, Nx×Ny = 320×160.
Scales are logarithmic.

(a) Density contour. (b) Pressure contour. (c) Temperature contour.

Fig. 17. High Mach astrophysical jets in Example 15, Mach = 2000, k = 2, Nx × Ny =
320× 160. Scales are logarithmic.

(a) Density contour. (b) Pressure contour. (c) Temperature contour.

5. Concluding remarks. In this paper, we propose an entropy stable essen-
tially oscillation-free discontinuous Galerkin method for hyperbolic conservation laws.
The entropy stable DG method [9, 10] has attracted much attention from the date of
its birth. Several key ingredients like summation-by-parts operators, flux differencing
technique and entropy conservative fluxes and entropy stable fluxes are incorporated
in the nodal DG formulation. This also brings challenges if one wants to apply the
damping technique [36, 35] to the current entropy stable DG framework. Thanks to
the convexity of the entropy functions and the orthogonality of the projection, we
are able to construct a damping term similar to the original ones. This indicates the
constructed scheme would preserve several properties such as conservation, entropy
stability and high order accuracy of the entropy stable DG method, in the meantime
it can also suppress the spurious oscillations as demonstrated in the numerical tests.
We are aware that currently there is no theoretical analysis of the oscillation control
mechanism with the damping term, and this is a possible investigation direction of
our future study.
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