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Macrotile: Toward QoE-Aware and
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Abstract—Tile-based streaming techniques have been widely used to save bandwidth in 360° video streaming. However, it is a
challenge to determine the right tile size which directly affects the bandwidth usage. Moreover, downloading and processing many
small tiles consume a large amount of energy on mobile devices. To solve this problem, we propose to encode the video by taking into
account the viewing popularity, where the popularly viewed areas are encoded as macrotiles. We propose techniques for identifying
and building macrotiles, and adjusting their sizes to take into account practical issues such as head movement randomness. In some
cases, the user’s viewing area may not be covered by the constructed macrotiles, and then the conventional tiling scheme is used. To
support macrotile based 360° video streaming, the client selects the right tiles (a macrotile or a set of conventional tiles) with the right
quality level to maximize the QoE under bandwidth constraint. We formulate this problem as an optimization problem which is NP-hard,

and then propose a heuristic algorithm to solve it. Through extensive evaluations based on real head movement traces, we
demonstrate that the proposed algorithm can significantly improve QoE, save bandwidth usage, and reduce energy consumption.

Index Terms—360-Degree Video Streaming, Viewing Popularity, Quality of Experience (QoE), Energy Efficiency

1 INTRODUCTION

360° video is becoming more and more popular on video
platforms such as YouTube and Facebook [1], [2]. Since 360°
video is much larger than conventional video under the
same perceived quality [3], [4], [5], streaming 360° video
is much more challenging, especially over wireless (e.g.,
cellular) networks with limited bandwidth.

Many researchers [6], [7], [8] have addressed this chal-
lenge by only downloading part of the video. Since mobile
devices have limited Field-of-View (FoV), only a portion of
the downloaded video is viewed at a given time. Thus, only
the video data within this FoV, instead of the whole video,
should be downloaded to save bandwidth. To realize this
idea, one widely used approach is the tile-based streaming
[9]. In this approach, the video is broken into a sequence
of video segments and each segment contains a fixed du-
ration of video. Each segment is further divided into non-
overlapping independently decodable tiles, each of which is
encoded into multiple copies with various qualities. Based
on FoV prediction and bandwidth estimation, a user can
fetch a subset of tiles encoded at the right quality levels,
to reduce the bandwidth usage without compromising the
Quality of Experience (QoE).

The tile size can significantly affect the amount of data to
be downloaded. Dividing a video into small tiles reduces the
efficiency of video encoding. Video codecs, such as H.264
[10] and H.265 [11], use motion compensated prediction
technique for video compression, where video frames are
encoded by referencing to past or future video frames.
Dividing a video into small sized independently decodable
tiles reduces the pool of such reference frames within each
tile, and then reduces the compression efficiency. Thus, the
data size of each encoded tile will be larger and more
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bandwidth will be consumed. On the other hand, large sized
tile can improve the compression efficiency, but more data
outside of the FoV will have to be downloaded, and thus
consuming more bandwidth. Moreover, in tile-based 360°
streaming, since more data has to be downloaded, more
energy will be consumed for data transmission.

During video processing, multiple independently en-
coded tiles covering the viewing area have to be decoded.
To reduce the decoding time, multiple decoders are used to
simultaneously decode the tiles of the same video segment
[3], [5]. However, starting multiple decoders to decode the
tiles may lead to more energy consumption, since apply-
ing many concurrent decoders affects the video decoding
pipeline which involves more CPU context switches and
more computational overhead.

To address the aforementioned problems, we propose to
encode video by considering the viewing popularity; i.e.,
users may have similar viewing interests (i.e., viewing areas)
when watching the same video. By encoding these users’
viewing area as large tile (called macrotile) instead of multi-
ple small tiles, high compression efficiency can be achieved,
Since the macrotile includes less data outside of the user’s
viewing area, using macrotile can reduce the amount of
data to be downloaded, and then saving bandwidth and
energy, compared to existing approaches that download
multiple small tiles. Moreover, with macrotile, only one
decoder is needed, which reduces the computational over-
head and the energy consumption of video processing.
To construct macrotiles, we have the following challenges:
(1) How to identify the macrotiles? (2) How to determine
the right macrotile size? To address these challenges, we
exploit the historical viewing data from users watching the
same video. Due to their common interests, they may have
similar viewing areas and their viewing centers are close
to each other. We first identify these viewing centers and
cluster them together, based on which we can identify the
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macrotiles. Due to head movement randomness, users may
watch the video outside the downloaded macrotile if the
macortile is too small. To address this problem, the macrotile
is constructed to cover the user’s viewing area plus some
marginal area, which is determined based on the variations
of the user’s viewing centers.

In some cases, a user’s viewing area may not be covered
by the constructed macrotiles, and then the conventional
tiling scheme (i.e., the 4x6 tiling scheme) is used. That is,
the macrotiles are added to the conventional tiling solu-
tion to reduce the bandwidth usage for most users while
few users have to use the conventional tiling scheme. To
support macrotile based 360° video streaming, we have the
following challenges: (1) How to eliminate the impact of
head movement randomness? (2) How to determine the
right tiles (a macrotile or a set of conventional tiles) and the
right quality level such that the QoE is maximized under
the network bandwidth constraint? To address these chal-
lenges, we propose a macrotile based 360° video streaming
algorithm, which first predicts the user’s viewing area for
each video segment, and then prefetches the corresponding
macrotile or conventional tiles if necessary. We formulate
the problem as an optimization problem and propose an
algorithm to solve it.

The paper has the following contributions.

o We encode the video by considering the viewing pop-
ularity, where the popularly viewed areas are encoded
as macrotiles to save bandwidth.

e Through real measurements, we identify the energy
inefficiency problem of tile-based 360° video streaming
and apply macrotile based approach to save energy.

o We formulate the macrotile based 360° video streaming
problem as an optimization problem. Since the problem
is NP-hard, we propose a heuristic based algorithm to
solve it.

¢ Based on real head movement traces, we evaluate the
performance of the proposed algorithm. Evaluation re-
sults show that our algorithm can significantly improve
QoE, save bandwidth, and save energy.

The remaining of this paper is organized as follows. In
Section 2, we introduce the background and motivation. The
system model and the problem formulation are presented
in Section 3. Section 4 presents our macrotile based 360°
video streaming algorithm. In Section 5, we present the
evaluation results. Section 6 discusses related work and
Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of 360°
video streaming, and then give the motivation of our work.

2.1 Background

Different from conventional video streaming, 360° video
streaming provides content-rich immersive user experience,
i.e, a user can navigate in a virtual world by looking
around to interact with the virtual world. 360° video can be
viewed through dedicated head mounted display, such as
Oculus [12] and HTC Vive [13], or by placing smartphones
in headsets like Google Cardboard [14] and Samsung Gear

Fig. 1: A 360° video with 4x6 tiling.

VR [15]. In tile-based 360° video steaming, the device first
downloads encoded 360° video (i.e., video tiles) from the
video servers. During video processing, to decode multiple
encoded tiles covering the viewing area in time, multiple de-
coders are commonly used to concurrently decode the tiles
of the same video segment [3], [5]. After video decoding, the
original 360° frames are retrieved and buffered in the video
buffer, waiting to be rendered. Unlike the conventional 2D
video processing where the decoded frames can be directly
displayed on the screen, in 360° video processing, the actual
viewing video content (called FoV frame) is rendered before
being displayed. Based on user’s head orientation, a coordi-
nated projection is performed to map the 3D coordinates of
the viewing area to 2D coordinates, and accordingly gener-
ate the FoV frames. After projection, the display processor
reads the generated FoV frames from the video buffer and
displays on the screen.

The tile size can significantly affect the amount of data
to be downloaded and processed. To illustrate this, we
conducted experiments based on the head movement data
traces of 48 users watching a 360° video [16]. The video has
4K resolution (i.e., 3840x2160) with 30 frames per second
(fps). The video is divided into a series of video segments.
Each segment has one second of video, which is further di-
vided into tiles based on the commonly used tiling schemes,
represented by (rows x columns); i.e., 1x1 (no tiling), 4x4
[17], 4x6 [5], [18], [19], [20], 4x8 [21], 6x12 [22], and 8x12
[21]. For fair comparison, FFmpeg [23] with encoder x264 is
applied to crop and encode the tiles with the same encoding
parameters. The user’s viewing area is determined by the
viewing center and the FoV of the device, i.e., 100 degrees
horizontally and vertically [19], [24], [25], [26]. As shown in
Figure 1, the video is divided into 4 rows and 6 columns,
i.e., 24 tiles. Each dot represents the viewing center of one
user. The dashed yellow, cyan, green, and purple blocks
represent the rightmost, leftmost, up-most, and down-most
viewing areas of all users (i.e., the group of users in Figure
1), respectively.

2.2 Motivation for Saving Bandwidth

We use Figure 2 to identify the bandwidth inefficiency
problem of traditional tile-based approach, which provides
motivation for our macrotile based approach. In Figure 2(a),
we compare the effectiveness of different tiling approaches.
The coverage ratio is the video data within FoV divided by
all downloaded video data. The boundary area of some tiles
may not be within FoV, and then the boundary area (the
coverage ratio) will be different for different tiling schemes.
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Fig. 2: (a) Compression efficiency and coverage efficiency of different tiling schemes. (b) A comparison of bandwidth usage.

To compare them, we define a metric called coverage effi-
ciency, which is the coverage ratio normalized based on the
largest coverage ratio of these tiling schemes. Similarly, the
compression efficiency is the compression ratio normalized
based on the largest compression ratio of these tiling ap-
proaches, where the compression ratio [26] is defined as the
total amount of data needed to represent the tiles covering
the FoV divided by the total encoded data. From Figure 2(a),
we can see that smaller tiles (e.g., 8x12) achieves higher cov-
erage efficiency while larger titles (e.g., 1x1) achieves higher
compression efficiency. This is because the spatial /temporal
redundancy with large tiles can be easily identified and
removed to achieve higher compression efficiency, but such
redundancy is harder to identify with small tiles.

The downloaded video data (or the bandwidth usage)
is related to the coverage efficiency and compression ef-
ficiency. In Figure 2(b), we draw the bandwidth usage,
normalized based on the 1x1 tiling scheme, of different tiling
schemes. Compared to the 1x1 tiling scheme which delivers
the entire video, data size can be reduced when the video
is divided into smaller tiles and then only tiles covering
the user’s viewing area are downloaded. However, when
the tiles are too small (smaller than 4x8), the compression
efficiency drops and thus increasing the amount of down-
loaded data. For example, the bandwidth usage of 8x12
tiling becomes larger than that of 1x1 tiling. Thus, how to
find the right tiling is a challenge.

To address this challenge, we construct a large sized
tile (i.e., the red block in Figure 1), called macrotile, which
covers all viewing areas (dashed blocks). This macrotile
has high compression efficiency because of the large tile
size. It has high coverage efficiency because only one large
tile is used instead of 12 tiles, represented by the cyan
blocks. On the other hand, none of the conventional tiling
approaches can achieve both high compression efficiency
and high coverage efficiency. As can be seen from Figure
2(b), compared to 4x6 tiling (the best scheme), macrotile
further cuts the bandwidth usage by 61%.

2.3 Motivation for Saving Energy

We use Figure 3 to identify the energy inefficiency problem
of existing approach, which provides motivation for our
macrotile based approach. Video processing includes two
parts: video decoding and view generation. In existing
tile-based approach, to accelerate video decoding, multiple
decoders can be applied to decode the tiles in parallel;
however, this also increases the energy consumption. Fig-
ure 3(a) shows the tradeoff between decoding time and

power consumption in existing tile-based approach (i.e., the
4x6 tiling scheme). Here, we use hardware-accelerated me-
dia codec (i.e., MediaCodec) to achieve real-time decoding.
The power consumption of video decoding is the difference
between the total power and that of the idle system. As
can be seen from Figure 3(a), when the number of decoders
increases, the decoding time drops but the power consump-
tion increases. This is because applying multiple concurrent
decoders makes the video decoding pipeline much complex,
which leads to tedious CPU context switches and high
computational overhead. For instance, when the number
of decoders increases from 1 to 9, the total decoding time
decreases from 1.17 sec to 0.48 sec (around 2.5X), but the
power consumption increases from 229 mW to 785 mW
(around 3.5X).

To illustrate the energy consumption of video processing
(i.e., video decoding and view generation) in conventional
tile-based approach, Figure 3(b) draws the energy consump-
tion as a function of the number of decoders used, normal-
ized based on that of using one decoder. After decoding,
based on the coordinate mapping, the view is generated by
drawing the pixel values onto the display (more details in
Section 5). As shown in the figure, the energy consumption
decreases as the number of decoders reduces from 1 to 4,
and then increases as more decoders are used. On the other
hand, the macrotile approach uses only one decoder which
has low decoding time (less number of tiles) and low power
consumption, i.e., it can cut the energy consumed for video
processing by 44% compared to using four decoders (the
best solution) in conventional tile-based approach.

Based on the results shown in Figure 2 and Figure 3,
we can see the benefits of the macrotile approach on saving
bandwidth and energy. To construct macrotiles, we exploit
the historical viewing data from users watching the same
video. Since most users have common interests, they may
have similar viewing areas and their viewing centers are
close to each other. In Section 4, we present techniques to
identify and cluster these viewing centers, based on which
macrotiles can be constructed.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the video model, the QoE model,
and the problem formulation for 360° video streaming.

3.1 Video Model

The video is divided into a sequence of video segments
and each segment has a fixed duration of video. Each
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Fig. 3: (a) Time and power consumed for decoding a video segment in conventional tile-based approach. (b) A comparison

of energy consumption in video processing.

segment is further divided into C tiles using a conventional
tiling scheme (e.g., 4x6). To save bandwidth and energy,
M macrotiles are constructed (details in Section 4). At the
server, each tile (and macrotile) is encoded into V' copies cor-
responding to V different qualities. The 360° video stream-
ing can be viewed as a sequence of downloading tasks. For
each task, the client selects the right tiles (a macrotile or a set
of conventional tiles) with the right quality. Let L denote the
video length of the downloaded but not yet viewed video in
the buffer, in terms of seconds, when the client requests the
tiles. To avoid stall events (or rebuffering), the tiles should
be completely downloaded before the buffer is drained out
(L = 0) by the video player at the client side.

3.2 QoE Model

The user’s perceived QoE for watching a video is defined as
the average QoE values for all video segments. For each
video segment k, similar to [5], [27], [28], [29], the QoE
model quantifies the user perceived quality by considering
the following metrics: average video quality, quality varia-
tion, and rebuffering. The QoE model is defined as follows:

Q(Vk') = QO(Vk:) - WUIU(Vk) - err(vk,) (1)

where V), represent the video qualities of the tiles being
downloaded for segment k, () is the average quality, I,
is the quality impairment caused by quality variation, I, is
the quality impairment caused by rebuffering event, and w,
and w, are the weights for quality variation and rebuffering,
respectively. Qo, I,,, and I, are defined as follows.

o Average Quality. Because the user perceived quality is
only determined by the video content within the view-
ing area, the average quality is calculated over all tiles
in the viewing area, as shown in Eq. 2

Qo(Vi) = a(Vi) @

where V) represents the average video quality (i.e.,
video bitrate) of the tiles in the viewing area, ¢(.) is
a mapping function that maps the video quality of a
segment to the user perceived quality [6].

o Quality Variation. The quality variation between two
consecutive video segments may cause users discom-
fort such as dizziness, and thus should be considered
in the QoE model. When a user downloads a set of
tiles, the quality variation of these tiles will affect the
user’s perceived quality, and should also be considered

in the QoE model [5]. The following equation defines
the quality variation.

L(Vk) = |Qo(Vi) — Qo(Vi1)| + Vi ®)

where |Qo(Vx) — Qo(Vi—1)| represents the inter-
segment temporary quality variation (i.e., the quality
variation between the k' and (k—1)" video segment),
V. represents the intra-segment spacial quality varia-
tion, which is calculated as the standard deviation of
Vi [5].

o Rebuffering. Rebuffering will significantly affect the QoE
since the video will freeze during rebuffering events.
The rebuffering time is defined as follows.

S(Vk)

L) = (25

7L30)+ (4)

where S(Vy) is the segment data size, R is the down-
loading throughput, and (z)4+ = maz{xz,0}.

3.3 Problem Formulation

Before formalizing the macrotile based 360° video streaming
problem, we introduce some notations. Let 3y, (57) repre-
sent if the corresponding macrotile (or conventional tile) will
be downloaded. Specifically, 5}, = 1 if the macrotile m en-
coded at quality level v is downloaded, and the bandwidth
usage is By,; otherwise 87, = 0. 8¢ = 1 if the tile c encoded
at quality level v is downloaded, and the bandwidth usage
is BY; otherwise 8 = 0. A user should download the
macrotile to cover his viewing area. If such macrotile does
not exist, or not enough to cover his viewing area, a set of
conventional tiles will be downloaded.

In our macrotile based approach, the goal is to maximize
the user’s perceived QoE under the network bandwidth
constraints. This can be achieved by selecting the right tiles
(a macrotile or a set of conventional tiles) with the right
quality level for each video segment. We formalize this
optimization problem as follows.
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where Q(.) is the QOE as defined in Eq. 1, R is the network
bandwidth, and 1(z) = 1 if and only if > 0, otherwise
1(z) = 0. Constraint (5a) enforces that either a macrotile or
a set of conventional tiles is downloaded for the viewing
area. Constraint (5b) states that only one quality version
of a conventional tile is downloaded. Similarly, only one
quality version of a macrotile is downloaded, which can
be inferred from Constraint (5a). Constraint (5c) guarantees
that the video data can be successfully downloaded before
its playback.

Given the user’s viewing area, that is, assuming the
candidate macrotile (and the candidate set of conventional
tiles) covering the viewing area is known, the problem in
Eq. 5 can be decomposed into two sub-problems: one is to
determine the right quality level for the macrotile and the
other is to determine the right quality levels for the tiles.
Then, the one with better QoE will be the solution for Eq.
5. If the QoE model does not consider the quality variation
of the tiles, i.e., the overall QoE will be the average quality
level of the downloaded tiles, the latter sub-problem can be
simplified as Eq. 6, where C is the set of conventional tiles
covering the viewing area.

max

,
S5 Q(8) (6)

ceCv=1

v
s.t. Z Bl =1, forceC (6a)
v=1 .
DD BBI<R-L (6b)

ceCv=1
Lemma 1. The problem in Eq. 6 is NP-hard.
Proof. The problem can be proved to be NP-hard via a

reduction from the multiple-choice knapsack (MCK) prob-
lem. In the MCK problem, there are a number of classes of

items in which each item has a value and weight. Given a
knapsack with a weight limit, the problem is to choose one
item from each class such that the total value is maximized
and the total weight is no more than the weight limit.

For any instance of the MCK problem, we can construct
an instance of the problem in Eq. 6 in the following way. We
construct a tile ¢ as a class, where the quality versions (V)
of this tile corresponds to the items of the class. For the v'"
version, its quality level v is set to the value of the v*" item,
and its bandwidth usage B is set to the weight of the v'"
item. The network bandwidth limit RL is set to the weight
limit of the knapsack.

A solution to this instance of the problem in Eq. 6
maximizes the total quality of the tiles. When the quality
versions are seen as items, the solution chooses one item
from each class to maximize the total value of items under
the weight constraint. Therefore, the solution to this prob-
lem is also a solution to the MCK problem, which completes
the reduction and hence the proof. O

Theorem 1. The macrotile based 360° video streaming problem
is NP-hard.

Proof. The macrotile based 360° video streaming problem in
Eq. 5 is much harder than the problem in Eq. 6, because the
problem in Eq. 6 is a sub-problem of Eq. 5. Based on Lemma
1, the problem in Eq. 5 is NP-hard, and thus the macrotile
based 360° video streaming problem is NP-hard. O

Because the macrotile based 360° video streaming prob-
lem is NP-hard, we can only propose a heuristic based
algorithm.

4 MACROTILE BASED 360° VIDEO STREAMING

In this section, we first describe how to construct macrotiles
and then present our macrotile based 360° video streaming
algorithm.

4.1 Identifying Macrotiles based on Viewing Areas

Most users have similar viewing interests when watching
the same 360° video. Thus, they have similar viewing areas
and their viewing centers are close to each other. To con-
struct macrotiles, we have to first identify these viewing
centers, and cluster them together. Since the number of
clusters (macrotiles) is not known as a priori, many well-
known clustering algorithms such as k-means clustering,
cannot be directly applied. Although other non-parametric
clustering algorithms such as the density-based clustering
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algorithm (DBSCAN) [30] do not need to know the number
of clusters before hand, they may lead to another problem.
That is, the cluster may keep growing and become too
large, losing the benefit of saving bandwidth and energy.
For example, in Figure 4(a), since the viewing centers of
a cluster span a large area, the constructed macrotile (the
red block) becomes too large. Then, the benefits of using
macrotile to save bandwidth will be lost. To address these
problems, we propose the following clustering algorithm.

There are two important parameters, A and v in the
algorithm. A determines if two viewing centers should be
in a cluster based on their distance, and they belong to
the same cluster if their distance is less than or equal to
A. The clustering performance is affected by A. If X is too
small, some viewing centers may not be clustered together
even though they should. If X is too large, the cluster may
include viewing centers far away, i.e., users with different
viewing interests are clustered together. The size of a cluster
is determined by <, ie., the distance between any two
viewing centers in the cluster should not be farther than ~.
If «y is too large, the cluster may grow too large. By contrast,
if v is too small, too many clusters may be constructed. To
determine A\ and ~, we also need to consider the effects of the
conventional tile size, since the macrotiles are built on top
of the conventional tiling scheme to reduce the bandwidth
usage. Take the 4x6 tiling scheme as an example, as shown
in Figure 1. Some users sharing similar viewing interest
download two columns of tiles, while others download
three columns of tiles; i.e., the difference is one column of
conventional tiles. In Section 5.2, we will set up A and
based on experiments.

Let P denote a set of points, where each point (p € P)
represents the viewing center of a user. Let dist(p, ¢) denote
the Euclidean distance between two points p and ¢q. Let
N, ={q|q € PAqg#pAdist(p,q) < A} denote p’s close
neighbors. The clustering algorithm is as follows.

(a) Initiate the cluster with the point that has the maximum
number of close points, i.e., p = argmax,c p | Np|.

(b) Expand the cluster by adding points which are close
to any point inside the cluster. The expanding process

continues until no more close points can be found.

(c) Check if the maximum distance between any two points
in the cluster is larger than +. If so, the cluster is split
into two clusters using k-means clustering algorithm.

(d) Remove the clustered points from P.

(e) Repeat step (a) to (d) until P = 0.

4.2 Macrotile Optimization

Based on the above algorithm, we can cluster users’ viewing
centers. If a macrotile is constructed for each cluster to cover
all viewing areas of the users, the macrotile may be too
large. The problem is illustrated in Figure 4(b), where the
macrotile represented by the green block is much larger
than the user’s viewing area (the dashed green block). On
the other hand, due to head movement randomness, users
may watch the video outside of the downloaded macrotile
if it is too small. Therefore, it is important to find the right
macrotile size based on the cluster.

To determine the right size of the macrotile, we need to
decide which users’ viewing areas should be included, such
that the bandwidth usage of downloading the macrotile
(By) is less than that of downloading a set of conventional
tiles (B.). B,, and B, denote the data size of the constructed
macrotile and the data size of the conventional tiles covering
the same viewing area, respectively.

To address the impact of head movement randomness,
the macrotile should cover the user’s viewing area plus
some marginal. The marginal area can be determined based
on the variation of the user’s viewing centers (i.e., x and y
coordinates), which are recorded at a fixed sampling rate
(e.g., 50 Hz) during video streaming. The variation of x
(y) coordinates within a video segment is defined as the
standard deviation of the x (y) coordinates. Figure 5 shows
such variations when a user watches a video [16], listed in
Table 1. The user’s head movement data are collected under
two different settings. For videos 1 to 4, users are instructed
to focus on the video content. For videos 5 to 8, users are free
to explore the video; i.e., the variation can be affected by the
video content and the user’s unique viewing behavior. As
can be seen from Figure 5, the variation of x (y) coordinates
within a video segment is small. The variations on x and y
directions are presented in terms of degrees, which can be
converted to pixels by multiplying the video resolution. Let
A, and A, denote the variations along x and y directions,
respectively. Then, the constructed macrotile should cover
the user’s viewing area plus % (%) marginal area on both
sides of its x (y) direction.

To formalize the problem of macrotile construction, a
binary variable ¢; is introduced for user ¢, where o; = 1
if the user’s viewing area is a macrotile, i.e., the user is able
to download the constructed macrotile; otherwise, a; = 0,
i.e., the user downloads a set of conventional tiles. The
problem of macrotile construction can be formulated with
Eq. 7, where the goal is to minimize the total bandwidth
usage for all users in a cluster when downloading either the
constructed macrotile or a set of conventional tiles encoded
at the same quality level.

N
O[iBm + (1 — O[i)BC (7)

i=1

min

{ai}
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TABLE 1: Video traces.

Algorithm 1: Macrotile Based 360° Video Streaming

Input:r, L,V

Output: §;, or {5}

[ ID | Length | Content [[ ID T Length | Content |
1 4:38 Idol Dancing 5 2:44 Conan Show
2 6:13 Festival Gala 6 3:21 Freestyle Skiing
3 2:52 Showtime Boxing 7 2:44 Football Match
4 6:01 Basketball Match 8 4:52 Moving Rhinos

where N; is the number of users in the j'* cluster. After
solving Eq. 7, we can construct the macrotile with all a; = 1
users’ viewing areas.

Although a brute force search can find an optimal solu-
tion for Eq. 7, its computational complexity is O(2"7). To
reduce the computation time, we propose an iterative ap-
proach, similar to the random sample consensus paradigm
[31]. Each iteration has the following steps.

(a) Randomly select a subset of users’ viewing areas.

(b) Encode the macrotile, and let B,,, denote the bandwidth
usage for the constructed macrotile.

(c) Check if user i € {1,...N;} is covered by the con-
structed macrotile. If so, o; = 1; otherwise, a; = 0.

(d) If the total bandwidth usage (i.e., vazfl ;B + (1 —
a;)B.) is less than that of the previous iteration, up-
date the macrotile with that constructed in the current
iteration.

If the user only downloads the macrotile covering the
predicted viewing area, some area may be blank when
the user suddenly navigates outside of the downloaded
macrotile. To address this problem, in addition to down-
loading the tiles (or macrotile) covering the viewing area
with high quality, the remaining tiles are also downloaded,
but with the lowest quality. More specifically, for each
constructed macrotile, as shown in Figure 4(c), we crop the
remaining area into four parts by cutting the video along
the two horizontal edges of the constructed macrotile. These
four parts are also downloaded, but the extra bandwidth
usage is very small, since the compression efficiency is high
and these videos are encoded with the lowest quality level.

4.3 Macrotile Based 360° Video Streaming

In this subsection, we propose a macrotile based 360° video
streaming algorithm, which first predicts the user’s viewing
area for each video segment, and then prefetches the cor-
responding macrotile or the conventional tiles if necessary.
The goal is to select the right tiles (a macrotile or a set of
conventional tiles) with the right quality level such that the
QoE is maximized under the network bandwidth constraint.

To predict the user’s viewing area (i.e., the viewing
center), we use the ridge regression model [32] since it can
deal with overfitting problems. When a user watches 360°
video, his viewing centers, represented by (X, y) coordinates,
are recorded by the sensors embedded in the headset. The
viewing center coordinates are recorded at a fixed sampling
rate (e.g., 50 Hz), and then the recorded x and y coordinates
collected at different times will form a stream of time series
data. Such data can be used to train the model and predict
the future. More specifically, taking x coordinates as an
example, the user’s most recent video watching history can
be used to predict the x coordinate of the user’s viewing
center of the video segment that will be downloaded. Since

1 Predict the user’s viewing area

2 Determine the macrotile m and the set of tiles C
3 if m exists then

4 | return SelectMacrotile(m,r, L)

5 else

6 | return SelectCtilings(C,r, L)

7 end

8

9

function SelectMacrotile(m, r, L):
forv<+ Vtoldo
if By, <r-L then

| return j3;,
end
end
return 85}
end
function SelectCtilings (C,r, L):
forv+ V to1do
if ) .o BJ <r-Lthen

| Bo=1 forceC
end
end
' =r-L—3 c.B// the remaining bandwidth
sort(C) // sort tiles in ascending order of distance
foreach c € C do

if ' >= (B — BY) then

= -
SR B o

=
e

// v1 is the lowest quality level

I
BE &I

NN NN
B RENR

27 C'=C"u{c}
28 v =r — (BT —BY)
29 end

end
if |C’| > 1|C| then
| B&="Tt =1 forceC

w W
B R]s8

33 end
34 return {387}
35 end

the video player buffer is very small, the coordinates of the
most recent viewed segment have strong correlation with
the segment to be downloaded. Thus, the ridge regression
model can better predict the viewing center of the down-
loading segment, and then predict the user’s viewing area.

Based on the predicted viewing area, the algorithm
determines whether there is a macrotile which can cover
the predicted viewing area plus some marginal area. If such
a macrotile exists, the algorithm searches from the highest
quality level until finding the highest possible quality level
for the macrotile such that the macrotile encoded at this
quality level can be successfully downloaded (line 9-16 in
Algorithm 1).

In some cases, such macrotile may not exist, and then
conventional tiles will be downloaded. The algorithm will
determine the quality levels of these conventional tiles (lines
17-35 in Algorithm 1), and the details are as follows. The
algorithm first determines the highest possible quality level
for these tiles that can be successfully downloaded under
the network condition. If the remaining bandwidth is large
enough, the algorithm increases the quality level to one
level higher for some tiles. Since tiles closer to the viewing
center may have larger impact on user’s perceived quality,
the algorithm increases the quality of the tiles based on
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the distance between the viewing center and the center of
the tile, i.e., tiles are sorted in the ascending order of their
distance to the viewing center. The algorithm searches from
the tile closest to the viewing center, and finds the maximum
number of tiles that can increase the quality level (by one)
based on the amount of remaining bandwidth. As the QoE
is affected by quality variations, the quality level increase
is performed only when more than half of the downloaded
tiles can increase their quality levels.

5 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
macrotile based 360° video streaming algorithm and com-
pare it to existing solutions.

5.1 Experiment Setup

The performance evaluation is based on the head movement
data traces of 48 users watching eight 360° videos [16]. Table
1 shows the details of the eight videos, which cover different
scenarios such as performance, TC show, sports, etc. For
each video, we randomly select forty users” head movement
data traces to construct video tiles (and macrotiles), and the
other eight data traces are used to evaluate the performance.

The 360° video streaming system, as shown in Figure 6,
consists of two major components, the server and the client.
The sever module constructs video tiles (and macrotiles)
and handles video requests from the client. Similar to
DASH, the video server delivers the meta data of video
tiles (and macrotiles) for each video segment to the client,
and the client makes decision on selecting the right tiles (a
macrotile or a set of conventional tiles) with the right quality
level based on the viewing area prediction and bandwidth
estimation. During video playback, the tiles in the viewing
area are first decoded and stitched, and then played by the
player. The sensors embedded in the mobile device will
collect the user’s head movement data, which can be used
for viewing area prediction.

At the server, similar to [5], [27], [33], each video is
divided into a sequence of segments. Each segment lasts
one second, and it is further divided spatially into tiles (and
macrotiles). Then, we use FFmpeg [23] with encoder x264 to
encode all tiles (and macrotiles) into five quality levels (5 to
1, with 5 being the highest quality) using different constant
rate factor (crf) values from 18 to 38 with an interval of 5 [5].

At client, the FoV of the mobile device is set to be 100 de-
grees horizontally and vertically. Similar to [3], the harmonic
mean of the downloading throughput of the past several
segments is used to estimate the network bandwidth, which
can eliminate the impacts of network fluctuations. More
bandwidth estimation methods can be found in [34], [35],
which is out of the scope of this paper. Similar to [5], we
use the ridge regression model to predict the user’s viewing
area (i.e., the viewing center). For the QoE model, we set the
weights as (w,, wy) = (0.25, 0.25), which is a used setting in
[29].

In our evaluation, a LTE network throughput trace [36]
is used to simulate the network traffic. This trace shows
various patterns to reflect various network traffic. We also
linearly scale the trace to generate two different network

FoV
predictor

Fig. 7: Experimental setup for power measurement.

conditions, called frace 1 and trace 2, where the network
throughput of trace 1 is twice that of trace 2. In trace 2, the
average throughput is 4.8 Mbps, varying between 1.3 Mbps
and 10.9 Mbps.

In 360° video streaming, power can be consumed for
data transmission, video decoding, and view rendering.
We measure the power consumption using three types of
phones, i.e., Google Pixel 3, LG Nexus 5X, and Samsung
Galaxy 520. Because the battery connectors on the smart-
phone are very small, it is a challenge to connect them to
the power monitor. To address this problem, we build a new
battery interceptor based on Flex Printed Circuit Boards.
The interceptor can be connected to the smartphone’s moth-
erboard through the corresponding battery connector, and
it uses a custom designed circuit to modify the battery
connection. As shown in Figure 7, with this custom de-
signed interceptor, the smartphone can be connected to the
Monsoon power monitor, which directly supplies power to
the smartphone and accurately measures the power con-
sumption.

We compare the performance of our macrotile based
360° video streaming algorithm (i.e., Mtiling) with the fol-
lowing two approaches. The first is the conventional tiling
approach (Ctiling) which has been widely used in [5], [18],
[19], [20], [37]. In this approach, each video segment is
divided into files with fixed size using a conventional tiling
scheme (e.g., 4x6). The second approach is the fixed tiling
approach (Ftiling), where each video segment is divided
into a fixed number of tiles which may have different sizes.
Similar to [25], each segment is first divided into 450 small
blocks (i.e., the 15x30 tiling), which are then clustered into
ten tiles based on users’ views.

5.2 Performance of Macrotile Construction

In the evaluation, we empirically set -y to be the width of
a conventional tile and A = ~/4. To avoid constructing
unnecessary macrotiles that cover too few users, a macrotile
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is only constructed if it covers at least five users (i.e., 10% of
the users in the dataset).

5.2.1 Macrotile Coverage

We first use the eight videos listed in Table 1 to evaluate
the how our macrotile construction algorithm performs.
Among these eight videos, users are more focusing on the
video content in videos 1 to 4, while showing their unique
behavior patterns for videos 5 to 8. As shown in Figure 8(a),
more than 95% video segments need only one macrotile for
videos 1 to 3, because users have similar viewing interests
and they are instructed to focus on the video content in these
videos. In video 4 (basketball match), although users’ gazing
directions frequently move, more than 96% video segments
only require one or two Macrotiles. Different from videos 1
to 4, users in videos 5 to 8 are free to explore. As a result,
more Macrotiles are needed. As shown in the figure, even
under this setting, Only one or two Macrotiles are needed
for more than 92% video segments.

From Figure 8(b), we can see that most users are covered
by the Macrotiles. For example, in videos 1 to 4, about 90%
of users can be served by the Macrotiles. Even for videos
5 to 8 where users are free to explore, more than 80% of
users are served by the Macrotiles. Since the viewing areas
of most users are covered by the Macrotiles, most of them
only need to download these Macrotiles to save bandwidth
and energy. Note that there are still some users not covered
by macrotiles, where conventional tiles are used. This is
because the viewing centers of these users are more likely
to be far away from those covered by the macrotile, and
adding them into the macrotile may waste bandwidth.

5.2.2 Macrotile vs. Conventional Tile

Using Macrotiles can significantly reduce the bandwidth
consumption by reducing the amount of data needed for
encoding the FoV area. To quantify the data size reduction,
we compare the data size of both approaches covering the
same area encoded with the same quality level. Figure 9
shows the cumulative distribution function (CDF) of the
data size with Macrotile, normalized based on the data size
of the corresponding conventional tiles. From the figure, we
can see that using Macrotile can significantly reduce the data
size, since higher compression efficiency can be achieved by
using larger Macrotile instead of smaller conventional tiles.
For example, as can be seen in Figure 9(a), with the lowest
video quality level (i.e., level 1), the median data size of
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Fig. 9: The data size CDFs of using macrotile, normalized
based on that of the corresponding conventional tiles (Only
showing four videos to save space.)

using macrotile is about 22% of that of conventional tile.
That is, using macrotile can reduce the bandwidth by 78%
(i.e., 1-0.22 = 0.78) compared to using conventional tiles.
With similar calculations, downloading macrotiles encoded
at quality level 5, 4, 3, and 2 can save bandwidth by 46%,
55%, 65%, and 71%, respectively.

5.3 Performance of Macrotile Based 360° Video

Streaming

We evaluate the performance of the macrotile based 360°
video streaming based on the user’s head movement data
trace. Similar to [5], [33], [38], the playback buffer is set to
three seconds.

5.3.1 QoE Comparison

In Figure 10, we compare the QoE of our Mtiling approach
with other solutions (the Ctiling approach and the Ftiling
approach) using two network traces (trace 1 and trace 2)
which represent different network conditions. As shown in
the figure, our Mtiling approach significantly outperforms
Ctiling and Ftiling for both traces. By exploiting the idea of
macrotile, Mtiling can achieve high encoding efficiency and
high coverage efficiency. This is in contrast to the Ftiling
approach and the Ctiling approach, which have to divide
the user viewing area into small tiles, and then reducing the
encoding efficiency and coverage efficiency. Also, cutting
the video region outside the macrotile into small tiles, will
reduce the efficiency of video encoding, resulting in higher
bandwidth requirements in Ctiling and Ftiling. As a result,
with the same amount of network bandwidth, users using
our Mtiling approach can download macrotiles with higher
video quality, whereas users in Ctiling and Ftiling can only
download small tiles with lower video quality and thus
reducing the QoE.

The QoE difference will be more clear when the network
bandwidth becomes the bottleneck. More specifically, when
the network bandwidth is cut by half, i.e., from network
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Video 6

trace 1 in Figure 10(a) to network trace 2 in Figure 10(b),
the QoE in Mtiling only drops a little bit, but the QoE in
Ctiling and Ftiling significantly drops. For example, in video
1, when the network condition changes from trace 1 to trace
2, the QOE for the Ctiling approach drops by 66.1%, the QoE
for Ftiling drops by 49.5%, but the QoE for our Mtiling only
drops by 16.1%.

Figure 10(c) summarizes the results in Figure 10(a) and
Figure 10(b) by averaging the results of all eight videos. It
uses the Ctiling approach as the baseline, and shows the
QoE improvement of our Mtiling approach and the Ftiling
approach. When network trace 1 is used in the evaluation,
the Mtiling approach can improve the QoE by 64.1%, and
Ftiling can improve the QoE by 32.5%. When network trace
2 is applied, our Mtiling approach can improve the QoE by

for video 6 are plotted as a boxplot. As can be seen in
Figure 11, our Mtiling approach achieves much higher video
quality than Ftiling and Ctiling for both network trace 1
and network trace 2. Moreover, Mtiling has less quality
variation for network track 1, where most video segments
are requested at the highest video quality. For network
track 2, the quality variation in our Mtiling approach varies,
because Mtiling can still download video segments in high
quality, but sometimes it is necessary to download low
quality segments. As for rebuffering events, Mtiling has the
least amount of rebuffering events among all three.

Ablation Study. To deal with the problem of users’ head
movement randomness, macrotiles are constructed by con-
sidering the users’ viewing area plus some marginal area,
which is determined based on the variations of the users’
viewing centers. Fig. 12 shows the ablation study of the
performance improvement when considering the marginal
area in macrotile construction. The Mtiling_base approach
is one variation of our Mtiling approach, where macrotiles
are constructed by using only the users’ viewing areas
without considering the marginal area. As we can see
from the figure, Mtiling_base outperforms Ctiling and Ftiling
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since Mtiling_base encodes the popularly viewed areas as a
large tile, and Mtiling outperforms Mtiling_base since Mtiling
considers the marginal area for constructing macrotiles.
Compared to Mtiling_base, Mtiling achieves significant QoE
improvement especially when users experience high head
movement randomness while watching 360° videos under
poor network conditions. More specifically, for Video 1
where users are instructed to focus on the video content
(i.e., low users” head movement randomness), compared to
Mtiling_base, Mtiling enhances the QoE by 5.5% for network
trace 1 and 15.1% for network trace 2. For Video 6 where
users are free to explore the video (i.e., high users’ head
movement randomness), compared to Mtiling base, Mtiling
improves the QoE by 15.1% under good network conditions
(trace 1) and 30.9% under poor network conditions (trace 2).

To evaluate the impacts of users’ random head move-
ment, we introduce two metrics, FoV coverage ratio (x) and
consumed bitrate (r.). The FoV coverage ratio is defined as
the percentage of the user’s FoV that is covered by video
tiles with high quality. The consumed bitrate (r.) is defined
as the average bitrate of the video content within the user’s
FoV, that is r. = r, - kK + r; - (1 — k), where 7, is the
video bitrate of high quality tiles and 7; is the lowest video
bitrate if the user watches outside the predicted viewing
area. Fig. 13 compares the FoV coverage ratio and consumed
bitrate for different approaches. In all approaches, to address
the problem of users” head movement randomness, in ad-
dition to downloading the tiles (or macrotile) covering the
predicted viewing area with high quality, the remaining tiles
are also downloaded with the lowest quality. The difference
is that Mtiling encode the popularly viewed video area as
a macrotile and other remaining video area as four parts
to improve encoding efficiency, while Ftiling and Ctiling
have to divide the user viewing area and the video region
outside the macrotile into small tiles, and the Mtiling_base
approach is one variation of Mtiling which uses only the
users’ viewing areas without considering the marginal area.

As shown in the figure, Mtiling achieves lower FoV

coverage ratio compared to Ctiling (Fig. 13(a)), but Mtil-
ing achieves much higher consumed bitrate than Ctiling
(Fig. 13(b) and (c)). This is because Mtiling can download
macrotiles encoded at much higher bitrate, but Ctiling needs
to download much more video content (more tiles) en-
coded at much lower bitrate. This improvement is signifi-
cant especially when the network condition becomes poor
(in trace 2), where Mtiling can still successfully download
macrotiles in much higher video bitrate, while Ftiling and
Ctiling must download video tiles in lower video bitrate.
As shown in Fig. 13(a), compared to Mtiling_base which
constructs macrotiles without considering marginal area,
Mtiling improves the FoV coverage ratio by 4.9% for video
1 where users are more likely to focus on the video content,
and improves by 9.6% for video 6 where users are free to
explore the video. The improvement on FoV coverage ratio
leads to the improvement on QoE for Mtiling compared to
Mtiling_base as shown in Fig. 12.

The Effect of Weight on QoE. For comprehensive compar-
ison, we evaluate the performance of macrotile based 360°
video streaming using various weight settings, similar to
[29]. We set (w,=1, w,=1) to equally consider the metrics,
(wy=4, wy=1) to minimize quality variation, and (w,=1,
wy=4) to minimize rebuffering. Note that the QoE model
in [29] does not consider the quality impairment caused by
intra-segment spacial quality variation. Taking video 3 as
an example, as shown in Fig. 14. As can be seen, though
the QoE values for all approaches vary, the trends do not
change, i.e., Mtiling achieve much higher QoE than Ctiling
and Ftiling for different weight settings on the QoE model.

5.3.2 Visual Quality

In addition to comparing the QoE, we also evaluate and
compare the perception performance of the three methods in
terms of two objective quality indicators: Structural Similar-
ity (SSIM) index [39] and Peak Signal-to-Noise Ratio (PSNR)
[40]. SSIM and PSNR are frequently used to quantify the
quality that a user can perceive on a compressed image. In
calculating these two metrics, the original frame (i.e., the
uncompressed image) is used as a reference and compared
with the corresponding compressed image. With a higher
SSIM (PSNR) value, the visual quality a user can perceive
becomes better. For the comparisons of visual quality, the
actual view of a user is generated using the macrotile
downloaded for Mtiling (or tiles downloaded for Ctiling and
Ftiling), while the “reference” view is generated using the
raw uncompressed video. The views are generated using
lossless H.264 encoding setting (that is, crf=0 in X264 codec).
SSIM and PSNR for each video segment are evaluated
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frame by frame based on the view actually watched by the
user and the reference view. We use the average values of
SSIM and PSNR over all video frames in a video segment
to represent the SSIM and PSNR of that video segment,
respectively.

We take video 1 as an example to show the comparisons
of visual quality, as illustrated in Figure 15. As can be
seen in the figure, the Mtiling approach achieves much
higher PSNR and SSIM than both the Ctiling and Ftiling
approaches. As shown in Figure 15(a), when network con-
ditions are good (i.e., network trace 1), the median PSNR
value for Mtiling is 47.3dB, and it is 41.1dB for Ctiling,
and 43.5dB for the Ftiling approach. When the network
condition becomes poor (i.e., network trace 2), as shown in
Figure 15(b), the Mtiling approach still achieves much higher
PSNR value (44.5dB) than the Ctiling approach (35.8dB) and
the Ftiling approach (41.6dB). Figure 15(c) and Figure 15(d)
present the same trend. When comparing the SSIM index,
Mtiling significantly outperforms Ctiling and Ftiling. For
network trace 1, the median SSIM is 0.994 for Mtiling, 0.987
for Ctiling, and 0.989 for Ftiling. For network trace 2, the
median value of SSIM index for the Mtiling approach is 0.99.
It is 0.971 for the Ctiling approach, and 0.983 for the Ftiling
approach.

5.3.3 Bandwidth Usage

In this subsection, we compare the bandwidth usage of
different approaches, where the bandwidth usage is nor-
malized based on that of Ctiling. From Figure 16(a), we can
see that the Mtiling approach only uses about 70% of the
bandwidth required in the Ctiling approach when network
trace 1 is used. This bandwidth usage is reduced to 60%
when network trace 2 is used as shown in Figure 16(b). The
Mtiling approach achieves high bandwidth saving due its
high compression efficiency. Recall that Mtiling encodes the
video area viewed by many users as a macrotile, and the rest
video area outside the macrotile is divided into four large
parts, thus achieves high compression efficiency. However,
the Ftiling approach divides the video into large number of
tiles, which reduces the video encoding efficiency and thus
cost much higher bandwidth compared to Mtiling.

To summarize the results in Figures 16(a) and (b) by
averaging eight videos, Figure 16(c) shows the overall
bandwidth saving of the Mtiling approach and the Ftiling
approach compared to the Ctiling approach. As can be seen,
compared to Ctiling, Mtiling reduces the bandwidth usage
by 32.6% for network trace 1, while Ftiling only reduces
the bandwidth usage by 4.1%. For network trace 2, Mtiling
reduces the bandwidth usage by 38.5% compared to Ctiling,

which is much higher than Ftiling. Recall that the objective
of the macrotile based 360° video streaming is to maximize
the QoE. As shown in Figure 10(c), compared to the Ctiling
approach, Mtiling improves QoE by 64.1% and 226.1% for
network trace 1 and trace 2, respectively. Downloading
macrotiles encoded at high quality can significantly improve
the QoE and reduce the bandwidth usage, which demon-
strates the effectiveness of Mtiling.

5.3.4 Energy Comparisons

In this subsection, we compare different approaches in terms
of energy consumption. We first show results measured
using a Pixel 3 phone in Figure 17. More specifically, Figures
17 (a) and (b) compare different approaches when differ-
ent videos are streamed under various network conditions
(trace 1 or 2). To better summarize the comparison results,
Figure 17 (c) shows how the Ftiling approach and the Mtiling
approach perform compared to the Ctiling approach. That
is, it shows the energy consumption of Ftiling and Mtiling,
normalized based on Ctiling. As shown in the figure, Mtiling
can reduce the energy consumption by about 30% compared
to Ctilting. By using macrotiles, the Mtiling approach has
high compression efficiency and it can reduce the amount
of data to be downloaded, and thus reduce the energy
consumption of data communication. Furthermore, Mtiling
only uses one decoder, which reduces the computational
overhead and the energy consumption of video processing.
On the other hand, multiple decoders are needed in Ctiling
and Ftiling in order to quickly decode the video tiles and
then resulting in higher energy consumption.

We also compare the energy consumption using two dif-
ferent kinds of phones: LG Nexus 5x and Samsung Galaxy
520. The results are drawn in Figure 18, which shows the en-
ergy consumption of Ftiling and Mtiling, normalized based
on Ctiling. In general, similar to the results in Figure 17 (c),
our Mtiling approach has the lowest energy consumption
and it significantly outperforms Ctiling and Ftiling.

5.3.5 Energy Comparison of Different Components

To have a better understanding of the energy compari-
son results presented in the last section, we also measure
the energy consumption of different components (i.e., data
transmission, video decoding, and view rendering) in 360°
video streaming.

We have done some experiments to measure the power
consumption of data transmission. During these experi-
ments, a wget daemon runs in the background (with screen
off) to download data from the server. Then, we cache the
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Fig. 18: Energy comparisons (a) Nexus 5X and (b) Galaxy
S20.

dataset [16] locally on the smartphone, based on which we
watch 360° videos with 4K resolution (i.e., 3840x2160), and
measure the power consumption of video decoding and
view rendering. There are three cases. 1) The first case is
the baseline case, in which the video player is turned on but
no video is played. 2) The second case is the decoding case.
In this case, the video is decoded but no view is generated.
That is, the output buffer containing the decoded video is
sent to the codec immediately after decoding a video frame,
and the decoded data is not forwarded to the render engine.
Note that the power difference between the second case
and the first case will be the power consumption of video
decoding. In our Mtiling streaming, only one decoder is
needed. In other tile-based streaming such as Ctiling and
Ftiling, similar to [3], [5], four decoders are used to decode
the tiles in parallel. 3) The third case is for local video
playback. After the video is decoded, the player retrieves
the head orientation and renders the video. The power
difference between the third case and the second case will be
the power consumption for view rendering. Here, the power
consumption of the screen is not considered, because it relies
on many factors such as screen model, size, brightness,
etc. Table 2 shows the power consumption for 360° video
streaming when different tiling approaches are used.

Figure 19 compares different components of energy con-
sumption when video 6 is streamed under network trace
2. As shown in the figure, our Mtiling approach can save
energy for both data transmission and video processing
when compared to the Ctiling approach and the Ftiling
approach for all three types of phones. For example, with
Pixel 3, as shown in Figure 19 (b), the Mtiling approach can
reduce the energy consumed for data transmission by 26.1%
when compared to the Ctiling approach. There are two parts

from the memory based on the coordinate mapping (i.e.,
projection), which is much less than that of video down-
loading and video decoding. Note that the view generation
in 360° video streaming is different from virtual reality (VR)
applications such as gaming, where more video frames have
to be rendered in real time, and thus demanding much more
computations and energy.

6 RELATED WORK

In the literature, researchers have proposed two ways to
save bandwidth on 360° video streaming: tile-based stream-
ing and offset projection. In offset projections, such as
pyramid projection [41] and offset cubic projection [2], the
entire sphere is encoded, and more pixels are assigned to
the directions that the users have a great possibility to look
at. Different versions of the video are encoded, and each
version focuses in a different direction on the sphere. During
video streaming, the video version for which the pixel
concentration most likely fit to the user’s viewing direction
is downloaded. However, offset projection techniques can
increase the storage overhead at the server. For example, in
Facebook 360° video platform, 22 versions are generated for
each quality level of each video fragment, corresponding to
different directions of pixel concentration [9]. In addition,
offset projection techniques can incur a lot of processing
burden on the client devices. For example, in the offset cubic
projection, the texture color of the corners and/or edges is
sampled from two different neighbouring surfaces during
the rendering process, thus creating artifacts at the seams.
In order to obtain better visual quality, hardware support
and/or advanced software technology is needed for smooth
filtering between surfaces [42].

In tile-based streaming, a video is first projected to an
equirectangular flat plane which has uniform pixel density
on both horizontal and vertical directions, and then sliced
into non-overlapping blocks (called video tiles). Only the
video tiles that overlap the viewing area the user probably
watches will be downloaded in high quality. Other tiles
outside of the viewing area will not be downloaded or will
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TABLE 2: Power consumption (mW) for 360° video streaming using different approaches.
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Fig. 19: Comparing different components of energy consumption.

be downloaded at low video quality to reduce the huge
demand on network bandwidth. Tile-based streaming meth-
ods are widely utilized in 360° video streaming because of
their easy implementations. Videos can be cut into fixed size
tiles [3], [5], [29], [43], [44] or cut into a fixed number of
video tiles of different sizes [9], [25]. However, how to set
a proper value (i.e., a constant number of video tiles) for
these fixed tiling methods is still an open research problem.
In these methods, the video region frequently watched by
a large number of users (i.e., the region that can be served
by a macrotile) is cut into unnecessary small video tiles,
which reduces the video encoding efficiency. In addition,
cutting the video region outside a macrotile into small tiles,
will also reduce the encoding efficiency and then incur more
bandwidth usage. As a complement to the traditional fixed
tiling methods, we propose to encode the video content
frequently watched by the users into a macrotile, and cut
the video region outside a macrotile into four large blocks
as a compensation for the macrotile, which can obtain both
high encoding efficiency and high coverage efficiency.

There are a number of studies on saving energy for video
streaming in mobile environments. One way is to reduce the
power consumed by the wireless interface when streaming
video from the video server [45], [46]. For instance, Hu et
al. [45] proposed techniques to reduce energy consumption
based on whether users will stick on watching the video,
skip video watching or abandon watching early. Wu et al.
[46] proposed techniques to save energy for video stream-
ing in heterogeneous networks. Other researchers studied
how to save energy for video processing on the client
devices [28], [47], [48]. In [28], an adaptive CPU frequency
adjustment approach was proposed to reduce the energy
consumption of video streaming. In [47], the environment
(vibration or shaking impact) during video streaming is
leveraged to design video bitrate adaptation algorithms to
save energy. In [49], the authors proposed to save energy by
reducing the less important video frames in each segment,
and designed a control theory based algorithm to optimize

QoE and energy. In [50], considering the distance between
the user’s eyes and the screen, a resolution dynamic scaling
method is proposed to reduce energy consumption. In [48],
the brightness of the display screen is dynamically adjusted
to save energy. Unlike these aforementioned techniques,
based on real experimental measurements, we identified
the root causes of energy inefficiency of tile-based 360°
video streaming and proposed a macrotile based 360° video
streaming algorithm that can save energy while improving
the QoE.

7 CONCLUSIONS

In this paper, we proposed a macrotile based 360° video
streaming algorithm in which popularly viewed areas are
encoded as macrotiles. To build macrotiles, we leverage the
historical viewing data when users watch the same video.
We first identify the viewing centers of these users and then
cluster them together so that we can identify the macrotiles.
For supporting video streaming service, the conventional
tiling scheme (i.e., 4x6) is also used because the constructed
macrotiles might not cover the viewing area of a small
number of users who can randomly explore the video. For
video streaming, the client selects the right tiles (macrotiles
or a set of regular tiles) with the right quality level for
each video segment in order to maximize QoE under band-
width constraints. The macrotile based 360° video streaming
problem is formulated as an optimization problem. Since
the problem is NP hard, we proposed a heuristic based
algorithm to solve it. Based on real head movement data
traces, we evaluated and demonstrated that the proposed
algorithm can significantly improve QoE and reduce energy
consumption compared to existing solutions.
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