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Lithium isotopic constraints on the evolution of
continental clay mineral factory and marine
oxygenation in the earliest Paleozoic Era
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The evolution of oxygen cycles on Earth's surface has been regulated by the balance between molecular oxygen
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production and consumption. The Neoproterozoic-Paleozoic transition likely marks the second rise in atmospher-
ic and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disput-
ed how marine organic carbon production and burial respond to global environmental changes and whether
these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and ele-
mental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million
years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma,
likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeo-
chemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have
notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earli-

est Paleozoic oceans.

INTRODUCTION

Although photosynthetic production of oxygen emerged early in
Earth’s history [~3.0 billion years ago (Ga)], increases in atmospheric
and marine reservoirs of oxygen, linked to fundamental shifts in the
source-sink balance of molecular oxygen, were substantially delayed
(1-3). The stepwise oxygenation of Earth’s surface environments fol-
lowing the emergence of oxygenic photosynthesis, such as the Great
Oxidation Event (GOE), occurring around 2.4 to 2.1 Ga, and the
Neoproterozoic Oxygenation Event (NOE), spanning ~0.8 Ga to 0.55
Ga, was ultimately caused by elevated production or reduced con-
sumption of molecular oxygen (4, 5). Before the rise of land plants,
the transfer and burial of photosynthetically produced marine or-
ganic carbon (OC) from the surface ocean to seafloor sediments (i.e.,
the marine biological carbon pump) likely served as the primary
source of molecular oxygen to the Earth’s surface over million-year
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timescales (6). Secular changes in OC production and burial are
closely related to shifts in biological evolution, global tectonics, and
biogeochemical cycles (2, 5, 7). Increases in the availability of nutri-
ents (e.g., phosphorus) and the emergence of new clades of primary
producers in the oceans are assumed to have intensified the biologi-
cal pump and OC burial over time and thus to have driven the rise of
atmospheric and oceanic O; levels (7-9). In today’s oceans, only a
small fraction of OC reaching the seafloor (<0.03 to 13%) will ulti-
mately be buried, while a far larger portion is broken down by micro-
bial respiration (10, 11). Therefore, factors regulating OC burial
efficiency in marine sediments may have played a critical role in
shaping global redox landscapes throughout Earth’s history. The late
Neoproterozoic to early Paleozoic is considered to mark a second
major increase in atmospheric O, levels (4, 12), although the overall
extent of global atmospheric and oceanic oxygenation during this
interval may still have been limited relative to the modern Earth
(13-16). However, the identification of drivers of secular shifts in OC
burial and the oxygenation of the oceans and atmosphere remains
contentious from the late Neoproterozoic to the early Paleozoic
(2, 17-21).

Myriad factors are proposed to influence OC burial efficiency in
marine sediments, including sedimentation rates, seawater chemistry,
temperature, the biochemical reactivity of organic particles, and min-
eral protection (i.e., interactions between OC and mineral matrices,
protecting OC from oxidation by means of sorption or inhibition of
microbial decay) (11, 21-24). Mineral protection, in particular, plays a
strong role in shaping the fate of OC in modern seafloor sediments
(25-28), particularly via binding with clays (29-31). Therefore, asso-
ciations between seafloor mineral assemblages and OC burial may be
closely related to the geological oxygen cycle and to past oceanic redox
states (19, 32, 33). Previous studies have proposed that enhanced oro-
genesis related to Gondwana amalgamation and subsequently acceler-
ated chemical weathering could have enhanced the marine burial of
OC in the late Neoproterozoic (19, 34). However, empirical evidence
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for this feedback and clear links between shifts in the continental clay
factory and global oxygenation have hitherto been limited.

Here, we report a large (n = 550) dataset of lithium isotope (8’Li)
and K/Al ratios from marine fine-grained siliciclastic rocks (i.e.,
mudstones) from Canada, the United States, Namibia, the Tarim
Basin (NW China), and South China, spanning the upper Neopro-
terozoic to the middle Cambrian [~660 million years ago (Ma) to
500 Ma] (fig. S1). We assess these data with the aim of reconstruct-
ing secular trends in the distribution of marine sedimentary clay
and continental silicate weathering patterns over this critical time
interval. These data reveal substantial increases in the production of
continental clay, concurrent with increases in the OC and uranium
content of fine-grained siliciclastic rocks, beginning in the early
Cambrian (~525 Ma). We interpret these results to be a signal for
intensified continental silicate weathering and continental clay de-
livery to the continental shelves during the early Cambrian, which
would have promoted the burial and preservation of OC in marine
sediments and thus facilitated increases in oxygen accumulation in
the earliest Paleozoic oceans.

Lithium isotope of marine mudstones as a tracer for
continental clay formation

Fined-grained marine siliciclastic rocks generally consist of a
combination of products from continental physical erosion (un-
weathered rock fragments and primary minerals), continental
chemical weathering (continentally formed clays), along with ma-
rine reverse weathering (authigenic clays precipitated into seafloor
sediments) (35). Siliciclastic sediments on continental shelves
are dominated by-products of continental physical and chemical
weathering due to high detrital sedimentation rates (36, 37), with
substantial local variation in the relative proportions of clay min-
erals to unweathered rock fragments and primary minerals (e.g.,
mica, feldspar, and quartz) controlled by tectonics- and climate-
mediated differences in weatherability in source areas (38, 39).
Continental detrital materials (e.g., mica, feldspar, and smectite)
can also be transformed into new clay minerals during deposition-
al and early diagenetic processes on the continental shelf, and
some clay minerals (e.g., chlorites) can be derived through either
continental weathering or marine authigenesis (40-43). In addi-
tion, due to elevated rates of reverse weathering (37), the accumu-
lation of authigenic clays in Neoproterozoic and early Paleozoic
marine sediments may have been greater than in the modern
ocean, potentially diluting continental weathering products and
further hampering their identification in marine mudstones. Dis-
tinguishing between marine authigenic clays, continental clays,
and unweathered primary silicates within ancient sedimentary
successions through conventional petrographic and mineralogical
analyses has proven challenging. Lithium isotopes represent a
promising tool to explore the extent of continental clay contribu-
tion to marine siliciclastic sediments, as clay minerals preferen-
tially incorporate the lighter Li isotope (°Li) relative to upper
crustal materials (44-47). Continentally formed clays and marine
authigenic clays can also exhibit distinct 8’Li signatures as a result
of large expected 8'Li differences between their precipitating fluids
(48-49). Under steady-state conditions with respect to the global
marine Li cycle, seawater 8’Li reflects a balance between all input
and removal fluxes and their isotopes. Therefore, 8’Li values of
marine authigenic clays, which were likely the predominant sink
for seawater Li during the Precambrian (50), are likely to be
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roughly equal to the average 8’Li value of Li sources to the ocean
(i.e., the weighted average of the 8’Li values of river waters and
hydrothermal fluids) and potentially distinctly higher than those
of continental clays and unweathered primary silicate minerals
(51-53). Substantial continental clay formation during chemical
weathering, on the other hand, can be distinguished by notably
negative 8'Li values, associated with incongruent weathering of
primary silicate minerals, given that the average 8’Li value of the
upper continental crust (UCC) is roughly 0%o (per mil) (38, 54,
55). Today, rock provenance and silicate weathering intensity are
likely the primary levers on the 8Li values of riverine detrital ma-
terials delivered to the oceans (38, 55). Studies of modern river
sediments su%gest that modern continental denudation is canni-
balistic, and 8’Li signatures of detrital materials are fundamentally
controlled by newly formed weathering products (enriched in the
light Li isotope relative to bedrock) and unweathered rock frag-
ments (similar 8’Li to bedrock) (38). Both marine authigenic clays
and unweathered primary silicate minerals yield higher &Li signa-
tures in siliciclastic sediments relative to continental clays, render-
ing more negative 8’Li signatures a reliable indicator for the
dominance of continental clays in marine mudstones (38, 56).
Complementary evidence comes from the abundance of potassi-
um relative to aluminum (K/Al) in marine mudstones, which also
reflects the balance between continental weathering products and
marine authigenic clays. The element K is preferentially lost to
aqueous solutions relative to Al during chemical weathering of K-
bearing primary silicate minerals (e.g., K-feldspar) (57), whereas
marine clay authigenesis typically involves the incorporation of
excess K from seawater or porewater into the clay mineral lattice
(58). Together, clays derived from continental chemical weather-
ing are expected to record negative 8'Li and low K/Al values,
whereas physically eroded rock fragments and primary silicate
minerals tend to exhibit 8’Li and K/Al values similar to UCC. In
contrast, marine authigenic clays are expected to exhibit substan-
tially higher K/Al and 8"Li values than continentally derived ma-
terials, due to uptake of K and isotopically heavy Li from seawater
reservoir.

RESULTS

Long-term &’Li records presented here for marine mudstones from
multiple, geographically disparate regions, spanning the upper Neo-
proterozoic to middle Cambrian, exhibit a notable shift toward nega-
tive values at ~525 Ma (Fig. 1B). Most mudstones deposited before
~525 Ma have 8’Li values ranging between those of modern UCC (~0
to 1.2%o) and unweathered igneous rocks (~3 to 5%o) (38, 54). Thus,
marine mudstones deposited during this period are likely dominated
by weakly chemically weathered products, which is consistent with
relatively elevated K/Al values recorded in the same suite of samples
(Fig. 1A). In addition, relatively higher 8'Li and K/Al signals before
~525 Ma could also reflect a high relative abundance of marine authi-
genic clays, particularly in light of extensive marine authigenic clay
formation and low seawater 8'Li values previously inferred for Pre-
cambrian oceans (37, 50). By contrast, mudstones deposited after
~525 Ma document negative &’Li values (as low as —6%o) and lower
K/Al (aslow as 0.1), notably lower than those of modern UCC (Fig. 1).
Such negative 8’Li and low K/Al records in marine mudstones are
interpreted to reflect relatively high contributions from continentally
derived incongruent weathering products (i.e., continental clays),
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Fig. 1. Marine siliciclastic mudstone ’Li and K/Al records from South China,
Tarim Bain (northwestern China), Canada, the United States, and Namibia
(~660 Ma to 500 Ma). The black curves show weighted smoothing fits for 8Li and
K/Al data generated in this study with 2 sigma uncertainties (the dotted lines high-
light intervals with relatively scarce data). The black and gray dashed lines in (A)
represent average K/Al ratios of modern UCC (86) and authigenic clay-dominated
core sediments from the lower part of site U1366 in the South Pacific Gyre (87), re-
spectively. The tan and green areas in (B) represent the &’Li ranges of the modern
UCC and igneous rocks, respectively (54).

relative to unweathered rock fragments and marine authigenic clays
(55,57, 59).

DISCUSSION

Shift in Li isotopes of marine mudstones after the

early Cambrian

The &Li values of marine mudstones in our dataset exhibit a pro-
nounced inflection in the early Cambrian (~525 Ma), as indicated by
both the raw data and the bootstrap-resampled means used to assess
the statistical significance of these results (Fig. 2A). Marine mud-
stones deposited before ~525 Ma exhibit higher 8'Li values, with the
great majority of samples lying between 0 and 3%o. We interpret these
samples to reflect predominance by a mixture of poorly weathered
rock fragments, potentially with contributions from marine authi-
genic clays. By contrast, although heavier §’Li values also persist,
younger mudstones deposited after ~525 are marked by significant
shift in distribution to a greater relative abundance of distinctively
negative 8'Li values between —5 and —2%o (Fig. 2A). Critically, trends
in K/AL to first order, correspond to those described for &’Li (Fig. 2B).
Therefore, we infer that mudstones deposited before 525 Ma and
characterized by both elevated 8’Li and high K/Al values likely reflect
the high relative abundance of poorly weathered continental detrital
materials. In addition, following delivery to the continental shelves,
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the newly formed continental clays may be susceptible to marine
authigenesis and exchange with seawater (37, 41, 42), potentially di-
luting the preservation of primary continental signals in marine mud-
stones. Previous studies have proposed that rates of marine clay
authigenesis may also have reduced across this interval (37, 50); how-
ever, decreases in the extent of marine authigenesis are unlikely to
solely cause the notably negative 8’Li records in mudstones after ~525
Ma without abundant continental clay contribution of isotopically
light Li. Together, marine mudstones in our dataset with coupled neg-
ative 8’Li and low K/Al signatures can provide the most conservative
estimate of substantial continental clay accumulation in marine sedi-
ments. Hence, we interpret samples in our dataset deposited after
~525 Ma to represent pulses of increased continental clay influx to
marine sediments.

We further evaluate the characteristics of the analyzed mudstones
by examining the relationships between Na/Al, Li/Al, K/Al and §'Li
values, based on a modern riverine framework for detrital materials
(Fig. 2) (38). We normalize elemental abundances to Al concentra-
tions to mitigate possible effects of dilution by quartz and/or organic
matter on the geochemical signals recovered. Compared to primary
igneous rocks, marine sedimentary rocks are associated with high Li/
Al low Na/Al and low average &’Li values (38). Accordingly, a simple
mixture of eroded fragments of igneous and sedimentary rocks would
result in clear correlations of Na/Al to Li/Al and of 8Li to Li/Al be-
tween the two endmembers of igneous and sedimentary rocks (Fig. 2,
C and D), as seen in modern river sediments (38, 60). However, the
absence of clear correlations between endmembers of igneous rock
and sedimentary rock observed for the studied mudstones suggests
that the lower Cambrian 8’Li shift observed in our dataset was likely
not induced by changes in the provenance (e.g., source lithology) of
continental weathering products (Fig. 2, C and D). During chemical
weathering of primary silicate minerals, Li, Na, and K are preferen-
tially lost relative to Al (58, 59), leading to lower Li/Al, Na/Al, and K/
Al values of continental weathering products relative to crustal pre-
cursor lithologies. By contrast, marine reverse weathering would re-
sult in additional K and Li accumulation in mudstones, scavenged
from seawater or pore water (48, 58). Together, we interpret substan-
tial shifts toward negative 8’Li and low Na/Al Li/Al, and K/Al values
in marine mudstones, relative to average values of the modern UCC
(Fig. 2, B to D), to reflect episodes of enhanced chemical silicate
weathering and increased continental clay influx to the continen-
tal shelf.

Enhanced continental weathering and clay mineral factory
after the early Cambrian

It has been widely argued that, before the proliferation of land plants,
continental silicate weathering was predominantly driven by physi-
cal erosion during the Precambrian and early Paleozoic, with com-
paratively limited formation of continental clays (42, 61). Previous
research has suggested that marine oxygenation since the Neopro-
terozoic may have been driven by increased OC burial efficiencies
linked to gradual increases in the abundance of phyllosilicates in ma-
rine mudstones (19), though this framework has subsequently been
reinterpreted to reflect enrichments of micaceous minerals (physical
eroded products) rather than clays derived from continental chemi-
cal weathering (43). In this study, mineralogical anal;/ses of typical
marine mudstone samples, with either high or low &'Li signatures,
indicate no substantial changes in aluminosilicate mineralogy from
the late Neoproterozoic to the Cambrian. In particular, we do not
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Fig. 2. Analyses of Li isotopes and elemental ratios before and after the early Cambrian (~525 Ma). (A) Distribution and bootstrap-resampled means (n = 10,000;
generated by repeatedly sampling data from a training dataset and refitting a given model for each sample) for &’Li records in marine mudstones deposited before and
after the early Cambrian, and cross-plots of (B) &’Li versus K/Al, (C) 87Li versus Li/Al, and (D) Na/Al versus Li/Al of marine mudstones. The light green areas in (C) and (D)
represent “endmember” compositions of igneous rock (Li/Al ~ 3 parts per million (ppm)/wt %, Na/Al = 0.32, 87Li ~ +4.5%o) and fine-grained sedimentary rock (Li/Al ~ 9.5
ppm/wt %, Na/Al ~ 0.08, 8’Li ~ —0.5%o0) (38). The black curve in (C) and line in (D) represent a binary mixture of igneous and sedimentary rock endmembers. The green
squares in (B) to (D) represent the average composition of modern UCC (54, 86). The arrows in (B) to (D) denote predicted variations in marine mudstone geochemical
composition associated with increases in continental weathering (gray) and marine reverse weathering (purple). Cross-correlation coefficients (R?) and probability values

(P values) were calculated to test the degree of covariations in (C) and (D).

observe notable increases in smectite or kaolinite—clay minerals
which are commonly interpreted as products of intense chemical
weathering (fig. S2). This lack of an apparent trend in smectite or
kaolinite abundance may reflect the postdepositional neomorphism
of original clay minerals, highlighting the challenges in identifying
long-term patterns in continental weathering and marine authigen-
esis from clay mineralogy alone (40, 41). In contrast, the geochemical
data presented in this study provide independent constraints on the
relative abundance of continental clays in marine mudstones. Re-
gardless of uncertainties surrounding original clay mineralogy, cou-
pled negative 8’Li and low K/Al values provide clear evidence for
enrichments in continental clays in marine mudstones after the early
Cambrian, linked to shifts in continental chemical weathering re-
gimes and potentially denudation rates. We further attribute in-
creased continental clay formation to the long-term evolution of
continental igneous rock composition, global orogeny, and climate
warming in the early-middle Cambrian (62-65). Following the break-
up of Rodinia and assembly of Gondwana, the emplacement of
large volumes of felsic rock, the development of regionally high
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continental topography, and increases in CO, outgassing rates have
been proposed to have occurred in the early Cambrian (34, 63-65).
The shift in UCC composition during this interval is also reflected by
elevated radiogenic Sr isotopes of average continental igneous rocks
(66) along with decreases in the radiogenic Nd isotope value of ma-
rine sediments (67). Aligned with global climatic and environmental
changes, a shift to more felsic weatherable terranes, characterized by
higher Al/(Mg + Ca) ratios, may have preferentially induced more
clay formation relative to the products of mafic rock weathering (68-
71). This effect may have been further enhanced by the extreme
greenhouse climate (62, 63) and high rates of CO, outgassing and
orogenesis (34, 63) inferred for the early Cambrian, which may have
facilitated the development of floodplains and foreland basins adja-
cent to mountains, along with a more active hydrological cycle (72,
73). Together, shifts in global tectonic activity and climate during the
early Cambrian likely played a critical role in intensifying silicate
weathering and continental clay formation before the rise of land
plants. Negative 8’Li signals have also been documented by mud-
stones deposited during the Cryogenian interglacial interval (Fig. 1B)
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and are interpreted to reflect transient increases in silicate weather-
ing intensity due to an increased supply of fresh silicate minerals, a
warming climate, and active hydrological conditions during postgla-
cial intervals (74). However, this inferred Cryogenian intensification
of silicate weathering was ultimately a short-lived response to post-
glacial perturbation, rather than signaling a secular shift in continen-
tal weathering regime (74).

Effects of the continental clay mineral factory on global
marine redox evolution

Compared to the Neoproterozoic, the early-middle Cambrian may
have been marked by an overall decrease in the area of anoxic seafloor
although, globally, marine and atmospheric oxygen levels still re-
mained low (14, 15, 75, 76). Despite long-standing debates regarding
the underlying mechanisms, increased OC burial fluxes were likely
the most critical factor in triggering an increase in the baseline of at-
mospheric and marine oxygen levels between the Proterozoic and the
middle Paleozoic (2, 8, 17). Although subsequent work has ques-
tioned whether commonly invoked mechanisms, such as the evolu-
tion of complex eukaryotes (17), could have feasibly driven a shift in
marine export productivity (21), other studies have suggested that el-
evated continental denudation and marine sedimentation rates driv-
en by intensified orogenesis, potentially amplified by increased rates
of continental clay influx to continental shelves, could have enhanced
OC burial efficiencies and facilitated increases in atmospheric and
marine oxygen levels during the early Phanerozoic (19, 34). However,
the extent to which changes in continental weathering, nutrient sup-
ply, OC burial, and marine redox state are correlated remains poorly
constrained. We therefore further compare our Li isotope data to
marine mudstone records of phosphorus (P), total OC (TOC), and
uranium (U) contents from the Sedimentary Geochemistry and Pa-
leoenvironments Project (SGP) database (77). Assessment of SGP
compilations, drawing on more than 6000 independent sedimentary
records, allows us to approximate global-scale patterns in average nu-
trient availability, OC burial, and marine oxygenation from the late
Neoproterozoic to the Cambrian (Fig. 3, B to D) (12). Although we
have not analyzed these data in a multivariate framework or account-
ed for sampling biases, the first-order pattern shows systematic in-
creases in the TOC and U contents of marine mudstones across this
interval, suggesting that enhanced OC burial in marine sediments
and decreased global anoxic seafloor area (12, 16, 18, 78, 79) appear to
be coincident with shifts in 8’Li toward more negative values (Fig. 3).
The transition of primary-producer communities from predominant-
ly cyanobacteria to eukaryotic algae and increased seawater nutrient
(e.g., P) levels have been proposed to have enhanced marine produc-
tivity and fostered a more efficient biological pump since the Neopro-
terozoic. However, the initial rise of eukaryotic algae and marine P
availability occurred in the early Neoproterozoic (8, 20), substantially
earlier than the increase in TOC and U contents in the SGP compila-
tions (Fig. 3). On the basis of comparisons of our newly analyzed and
compiled sedimentary 8’Li, TOC, U, and P data, we suggest that
intensified OC burial across this interval may instead have been pri-
marily controlled by increased influx of continental clay to marine
sediments in continental shelf settings (Fig. 3). New P compilations
in this study also show appreciable peaks after ~525 Ma (Fig. 3B),
potentially indicative of an increased marine P reservoir. In addi-
tion to possible post-Ediacaran reorganization of the marine P cycle
(80), enhanced continental weathering, as identified by sedimentary
8’Li records in this study, as well as increases in average crustal P
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concentrations (81), could have contributed to elevated marine P
availability in the early Cambrian.

Building on our geochemical data, we further used a global bio-
geochemical multiple-box model (33) to evaluate the effects of en-
hanced silicate weathering and continental clay formation on global
carbon, oxygen, and nutrient cycling, with additional parameteriza-
tion to represent the protection of OC by continental clay minerals
(see the Supplementary Materials for detailed model description).
The initial continental clay influx to continental shelf sediments was
assumed to be 25% of modern values, a value selected to represent low
chemical weathering intensity and limited continental clay formation
during the Proterozoic (19, 42). We then simulated shifts in atmo-
spheric pO,, dissolved O, concentration in the deep ocean, and the
efficiency of OC burial on the continental shelf accompanied by grad-
ual increases in continental clay influx to continental shelf sediments
(Fig. 4). The terrestrial OC burial flux was set to zero in these simula-
tions with the assumption of extremely limited terrestrial export pro-
ductivity before the rise of land plants. Given estimated pO, levels of
5 to 40% PAL (present atmospheric level) for the late Neoproterozoic
atmosphere (82), our model results suggest that gradually accelerated
continental clay delivery to continental shelves could lead to notable
increases in OC burial efficiency. This shift in OC burial efficiency, in
turn, could have led to relatively substantial (albeit still low in absolute
magnitude, compared to the modern Earth system) increases in at-
mospheric and marine oxygen levels. For instance, a twofold increase
in the burial flux of continental clays in marine sediments following
the early Cambrian, as also estimated in (19), could have resulted in
a ~50% increase in atmospheric pO, and an approximately eightfold
increase in the dissolved O, concentrations of the intermediate-depth
and deep ocean (>100-m depth in the model) (Fig. 4). Future work
will hopefully further resolve remaining uncertainties regarding the
scope of clay-OC interactions. However, these data indicate that
changes in continental clay formation and delivery can potentially
serve as important levers on the global oxygen cycle. In sum, the syn-
thesis of our Li isotope data and the results of this numerical model-
ing exercise indicate that amplified delivery of continental clays to
coastal and shallow-marine settings may have facilitated increases in
atmospheric and global ocean levels after the early Cambrian (14, 15,
75, 82). Although early Paleozoic oxygen levels were likely character-
ized by lower and more variable oxygen levels than those of the mod-
ern Earth (Fig. 3) (13, 14, 16, 82), increases in continental clay
production and delivery may have decreased sedimentary dissolved
oxygen consumption, leading to a progressive expansion of oxygen-
ated seawater during the early radiation of animals.

MATERIALS AND METHODS

Sampling

In this study, the Li isotope and K/AI data are largely based on
classic stratotype sections with well-established biostratigraphic, che-
mostratigraphic, and chronostratigraphic frameworks. The sampling
intervals are illustrated in fig. S1, mainly consisting of mudstones,
shales, and silty shales from the following: (i) South China: Cryoge-
nian Datangpo Formation; Ediacaran Doushantuo Formation (Mem-
ber II and Miaohe Member) and Lantian Formation (Member II);
lower Cambrian Liuchapo Formation, Yanjiahe Formation, Shuijing-
tuo Formation, Jiumenchong Formation, Niutitang Formation, and
Zhalagou Formation; middle Cambrian Shipa Formation, Balang
Formation, Duliujiang Formation, and Kaili Formation. (ii) Canada:
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Fig. 3. Long-term records of §’Li, U content, TOC content, and P content in marine mudstones, and key environmental evolution from the Cryogenian to the middle
Cambrian (~660 Ma to 500 Ma). (A) The key biotic, environmental, and tectonic events (8, 12) and curves of atmospheric CO, (in parts per million by volume) and atmospheric O,
relative to present atmospheric level (PAL) from the NEOCARBSULF model (82). Data compilations of (B) P content, (C) TOC content, and (D) U contents are from Sedimentary Geo-
chemistry and Paleoenvironments Project (77); (E) &’Li data generated by this study, and evolution of average & Sr/%Sr ratios of zircon-bearing igneous rocks (black curve) (66).

lower Cambrian Ingta Formation, Mural Formation, and Mahto For-
mation; middle Cambrian Burgess Shale. (iii) United States: lower
Cambrian Parker Slate, middle Cambrian Pioche Formation, Wheeler
Formation, Marjum Formation, and Langston Formation. (iv) Na-
mibia: uppermost Ediacaran to lowermost Cambrian Spitskopf For-
mation (Feldschuhhorn Member) and Nomtsas Formation. (v) Tarim
basin, North China: lower Cambrian Yuertusi Formation. Detailed

Wei etal., Sci. Adv. 10, eadk2152 (2024) 29 March 2024

information for sample sites, ages, and stratigraphic correlations is
presented in section S1 of the Supplementary Materials.

Elemental and isotopic analyses

For trace element and isotope analyses, sample powders were first
rinsed using 1 M acetic acid to remove carbonate components from
bulk mudstones. The residuals were fully digested with distilled acids
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Fig. 4. Monte Carlo model results for the influence of continental clay burial in marine settings on marine organic carbon burial and redox evolution. (A)
Changes in atmospheric O, (PAL, present atmospheric level). (B) Changes in dissolved O, in the deep ocean (in micromolar). (C) Changes in OC burial efficiency (BE). The
initial continental clay flux was set to be 25% of that of modern levels. The Monte Carlo simulation was performed by randomly sampling the continental clay burial flux
(25 to 75% of the present level) and the continental phosphorus weathering flux (50 to 60% of the present level). The Monte Carlo simulation was run 7000 times. The
parameter n_neighbors refers to the number of neighboring points considered when estimating the density of points in a scatterplot (see the Supplementary Materials

for further discussion of this simulation).

of HE HNOs3, and HCL. Major and trace elements of the samples were
analyzed with a Thermo Scientific Element XR ICP-MS (Inductively
Coupled Plasma Mass Spectrometer) at the Yale Metal Geochemistry
Center (YMGC), Yale University, and the Metal Isotope Geochemis-
try Lab in the Centre for Research and Education on Biological Evo-
lution and Environment (CREBEE), Nanjing University. Lithium
isotopes were analyzed with a Thermo Scientific Neptune Plus/XT
MC-ICP-MS (Multicollector-Inductively Coupled Plasma Mass Spec-
trometer) combined with an ESI Apex-IR desolvating system at
YMGC and CREBEE. Each sample, containing 50 ng of Li, was puri-
fied using AG50W-X12 (200 to 400 mesh) cation resin with 0.2 M
HCIL. Detailed descriptions of sample preparation, analytical methods,
and accuracy follow that of previous studies (74) and are presented in
the Supplementary Materials.

The global biogeochemical model

Our biogeochemical model is modified from a six-box global biogeo-
chemical model, which includes representation of the carbon, oxygen,
sulfur, iron, and phosphorus cycles (33). The main modification from
the previous model is that we have linked OC burial efficiencies not
only to iron minerals but also to clay burial fluxes. We have assumed
a fixed fraction of OC burial associated with Fe oxides (OC/Fe ratio of
4), following previous studies (33, 83). The initial clay sedimentation
flux was set to be 25% of that of modern continental shelf settings (19,
84), to reflect low continental clay fluxes to marine sediments during
the Proterozoic. Terrestrial export productivity was set to 0 in these
simulations, under the assumption that limited OC burial occurred
on land before the rise of land plants. Initial atmospheric O; levels
were set at 5 to 40% PAL, based on previous estimates generated by
well-established numerical models (82, 85). Detailed descriptions of
the model parameters and sensitivity tests are presented in the Sup-
plementary Materials.

Supplementary Materials
This PDF file includes:
Supplementary text S1to S3

Figs.S1to S5

Legends for data S1 and S2
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