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Abstract
Large-scale machine learning (ML) models rely on extremely
large datasets to learn their exponentially growing number
of parameters. While these models achieve unprecedented
success, the increase in training time and hardware resources
required is unsustainable. Further, we �nd that as dataset
sizes increase, data movement becomes a signi�cant com-
ponent of overall training time. We propose NeSSA, a novel
SmartSSD+GPU training architecture to intelligently select
important subsets of large datasets near-storage, such that
training on the subset mimics training on the full dataset
with a very small loss in accuracy. To the best of our knowl-
edge, this is the �rst work to propose such a near-storage
data selection model for e�cient ML training. We have evalu-
ated our method for the CIFAR-10, SVHN, CINIC-10, CIFAR-
100, TinyImageNet, and ImageNet-100 datasets. We also test
across ResNet-20, ResNet-18, and ResNet-50 models.
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1 Introduction
Deep neural networks (DNNs) have achieved signi�cant suc-
cess in vision tasks over the last decade. This success is
largely driven by vast improvements in GPU computational
power, and the ever-increasing number of model parame-
ters. Such over-parameterized models rely on the availability
of enormous annotated datasets to achieve high accuracies
[1, 2]. However, this poses a scalability challenge. In Figure
1, we demonstrate the exponential rise in training time per
epoch for state-of-the-art image classi�cation models devel-
oped in the last decade and trained over the ImageNet-1k
dataset [3]. This increased training time also has a direct
impact on the training costs. A study by OpenAI in 2018
showed that the training costs in terms of peta�ops-s/day is
doubling every 3.4 months [4]. Signi�cantly reducing these
training costs while still ensuring high accuracy is one of
the grand challenges in ML [5].

Figure 1: Training time required per epoch for di�erent
image classi�cation models using an NVIDIA A100
GPU.

There are two main bottlenecks in training DNNs on large
datasets. First is the number of gradient computations re-
quired, which drastically increases as the dataset size in-
creases. Second is the data movement and I/O cost incurred
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when training on large datasets. NeSSA addresses both these
challenges using hardware-software co-optimization. For the
�rst bottleneck, it is important to note that each training
example has a di�erent utility in aiding model convergence.
Therefore, we can a�ord training only on the most impor-
tant data examples without compromising signi�cantly on
the �nal model accuracy. Training on this selected subset
reduces the total number of gradient computations required
for convergence. For example, selecting a subset of size (
out of a dataset of size + , reduces the number of gradient
computations by |+ |/|( |. Prior work on subset selection [6–
21] has shown promising results in trimming down vision
datasets on the CPU to 50-60% of their original size, with
an accuracy loss of 5-10%. However, these selection algo-
rithms su�er both from poor accuracy and high selection
time, negating any speed-up bene�ts obtained by �ltering
the dataset.We discuss details of suchwork in Section 2.1 and
NeSSA’s optimizations to improve accuracy and selection
time in Section 3. In order to gain any signi�cant speed-up,
the chosen selection model should be e�cient. We pro�le the
percentage of time spent on data movement to train on the
MNIST (0.5KB/image), CIFAR-10 (3KB/image), CIFAR-100
(3KB/image), and ImageNet-100 (130KB/image) datasets in
Figure 2 using an NVIDIA V100 GPU. As the dataset size
increases (50K to 130K images), the time spent on data move-
ment increases from 5.4% to 40.4% of the overall training
time. Traditional data selection methods cannot address this
overhead as they require loading the data from the disk to the
CPU before computing selections. Prior work like [22, 23]
attempt to mitigate this high I/O cost through intelligent
caching, but these works still su�er from high data move-
ments between the storage device and the cache. In recent
years, there has been a resurgence in academic and industry
research on near-storage acceleration [24–34]. Near-storage
acceleration proposes to place computation "near data", and
has emerged as a promising solution to reducing the over-
all data movement in the system. To address the second
training bottleneck, we propose using near-storage accel-
eration with the recently released Samsung SmartSSD [35]
for data ranking and selection operations. This ensures that
data selection is carried out e�ciently in the FPGA-based
compute units near SSDs, so that only a small fraction of
data is transmitted to GPUs for training. NeSSA achieves a
critical trade-o� between limited system resources and high
accuracy. We achieve a large reduction in data movement
(3.47x) and increase in training speed (5.37x), with a small
accuracy degradation of approx. 1-2%. NeSSA outperforms
prior work on subset selection, and is the closest to a model
trained on all the data (Section 4.2).

We propose a storage-assisted SmartSSD+GPU system for
e�cient training of large-scale ML models. Our key contri-
butions are:

Figure 2: Time distribution of training.

(1) Lighweight FPGA-based near-storage subset selection
accelerator on the SmartSSD to achieve an average of
3.47x reduction in data movement costs and end-to-
end average training speed-up of 5.37x.

(2) Quantize the selection model for high selection speed.
(3) Improve the quality of subsets selected based on the

model’s feedback to ensure that we only train on the
most important data samples.

(4) Dynamically reduce the subset size based on loss re-
duction rate during the training process to ensure that
we train on the least required data samples.

2 Background
2.1 Subset Selection
Given a training dataset ⇡ = {(G8 ,~8 )}#8=1 of # data-label
pairs indexed by + = {1, · · · ,# }, the goal of training is
to learn the set of optimal parameters \ of a model  (·;\ )
which minimize a loss function denoted by L(·; ·). We can
formulate the training process as follows:

\ ⇤ = argmin
\

1

#

#’
8=1

L( (G8 ;\ ),~8 ). (1)

The goal of subset selection is to �nd a subset ( ✓ +
that gives a similar gradient to the entire training set +
during training, but is much smaller in size. Let L8 (\ ) =
L( (G8 ;\ ),~8 ) be the loss associated with example 8 2 + .
We can formulate the problem as follows:

( = argmin
(✓+

|( |, s.t. (2)

max
\ 2⇥

| |

’
82+

rL8 (\ ) �
’
92(

rL 9 (\ ) | |  n,

where n � 0.
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There are two main categories of work in subset selection.
The �rst category uses trained models to infer sample im-
portance [6–16]. That is, a sample’s utility in improving a
model’s convergence is computed using Eq. 2 after the train-
ing process. These selection models are expensive to use as
they require a full round of training (with gradient computa-
tions), negating the speed-up bene�ts. The second category
of work uses training dynamics like loss values, gradients,
and model predictions from previous epochs to infer sample
importance for future epochs [17–20]. While this category is
cheaper to implement than the �rst, choosing subsets based
on limited information results in large accuracy degradation.
NeSSA uses the subset selection formulation in [20] as the
core component and adapts it to the SmartSSD (described in
Section 3.1) to reduce data movement, selection overheads,
and adds several optimizations (described in Section 3.2) to
achieve high accuracy.

2.2 Near-Storage Acceleration
In the big data era, data analytics is a major workload in
warehouse-scale computers with data movement occupying
an average of 80% of total time [36]. Storage read/write band-
widths have improved to 3 GBps, while commercially avail-
able Ethernet can provide about 12.5 GBps. Usually 32 drives
are plugged into this network, reducing the achievable data
transfer throughput. This di�erence is further exacerbated
in case of PCIe, driving the need of near-storage acceleration.
Near-storage acceleration also provides the additional bene-
�t of freeing up system resources for other tasks. [37] shows
that using data-centric computing for query processing frees
up 70% of CPU cycles and reduces DRAM utilization by 60%.

Samsung’s SmartSSD device is the �rst computational stor-
age device fabricated in the U.2 format [38]. It has a Xilinx
(AMD) Kintex KU15P FPGA with 4GB DRAM connected to
a 3.84TB NAND �ash over a PCIe-based peer-to-peer con-
nection. There have been several e�orts using the SmartSSD
for applications like query processing [24, 25], large-scale
data sorting [26–28], and near-storage ML inference [29, 30].
In this paper, we advocate for the use of SmartSSD for data
�ltering and selection tasks for e�cient ML training.

Compared with CPU-based selection models used in prior
work (Section 2.1), SmartSSD-based acceleration provides
customization, fast selection, and low data movement. We
discuss the speed-up obtained in Section 4.3. Compared with
ASIC-based data �ltering, NeSSA provides a low-cost solu-
tion which can be recon�gured to target multiple ML models
and datasets. NeSSA uses the low-power FPGA on-board
the SmartSSD (approx. 7.5W) for data �ltering. Such energy
e�ciency cannot be achieved through GPU-based accelera-
tion (Eg. Nvidia K1200 GPU: 45W, Nvidia A100 GPU: 250W).
Given that we select a subset of size ( from a dataset of size+ ,

Figure 3: System setup

NeSSA reduces the data movement in the system by a factor
of |+ |/|( | compared with an FPGA without on-board SSD.
Findings by prior work also support our idea to use SmartSSD
for data �ltering. [33] identi�es two characteristics which
make a workload suitable for FPGA-based near-storage ac-
celeration. First, the workload should display a high relative
data ratio. That is, more data should be read/written to/from
the storage than over the drive-host interconnect. If a subset
of size ( is selected from a dataset of size + where + >> ( ,
then the data ratio of |+ |/|( | is high. Second, the workload
should display low operational intensity. Here, operational
intensity is the number of cycles spent on processing one in-
put. If the operational intensity is high, then the accelerator
will not saturate the available high drive bandwidth. Using
a selection model based on training dynamics allows us to
satisfy this condition.

3 System Design and Optimizations
We describe our system setup in Figure 3. The steps involved
in our proposed training paradigm are as follows:

(1) Read the training data from the SSD to the FPGA on-
board the SmartSSD using the peer-to-peer transfer
feature.

(2) Run the selection model described in Section 3.1 and
transfer the selected subset to the target model on the
GPU.

(3) Train the target model on the subset.
(4) Use the quantized weights and the target model’s loss

as feedback to improve the selection model on the
FPGA, and decide the number of samples to include in
future subsets (discussed in Section 3.2). This feedback
loop ensures that we maintain a high accuracy and
train on the least required samples.

(5) Repeat for all epochs.
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3.1 Selection Model to Reduce Training Costs
As directly solving (2) is NP-hard, [20] �nds an upper-bound
for the gradient estimation error as follows:

min
(✓+

k

’
82+

rL8 (\ ) �
’
92(

rL 9 (\ )k



’
82+

min
92(

krL8 (\ ) � rL 9 (\ )k. (3)

The RHS of Eq. 3 is the :-medoid problem as formulated
by [39] and the set ( which minimizes the estimation error
is given by the set of medoids. Intuitively, these medoids
minimize the maximum pairwise distances between data
points and themselves, making them the most representative
data samples. For a speci�c value of : , the set of :-medoids
(⇤C at iteration C can be found as:

(⇤C 2argmin (✓+
|( |:

’
82+

min
92(

krL8 (\C ) � rL 9 (\C )k2 . (4)

The minimization problem (4) can be turned into maximizing
a submodular facility location objective as described in [20]
and is the subset selection model we use:

(⇤C 2 argmin(✓+ |( |, B .C . (5)

� (() =
’
82+

max
92(

(20 � krL8 (\C ) � rL 9 (\C )k2),

where 20 is a constant satisfying 20 � krL8 (\C )�rL 9 (\C )k2,
for all 8, 9 2 + . The computational complexity of running
this selection model is O(# ) using stochastic methods [40],
and can be further improved using lazy evaluation [41] and
distributed implementations [42].

3.2 Optimizations to Ensure High Accuracy
As discussed in Section 2, selection methods depending only
on training dynamics su�er from poor accuracy and in-
creased data movement. While adapting the data selection
to the SmartSSD reduces data movement, we propose the
following optimizations to improve the understanding of the
dataset and accuracy:

3.2.1 Feedback of Quantized Weights : The selection
model on the FPGA requires predictions (forward pass) be-
fore computing the set of medoids (Section 3.1) for which we
use a quantized version of the target model. After training
the target model on the subset, we quantize its weights and
transfer back to the FPGA forming a feedback loop. This
ensures that the selection model is continuously updated to
best infer the relative importance of training examples over
time, and only select the most informative samples. This
optimization allows us to achieve higher accuracy than prior
work which do not use such a feedback loop (Section 4.2).

3.2.2 Selecting from Samples That are Not Learned
- Subset Biasing : As more data samples are learned, an
e�cient selection model should focus more on the harder
examples that are di�cult for the target model to learn and
produce large gradients. Samples producing small gradients
are already learned and can be ignored. We record losses
of the current training examples from the most recent �ve
epochs, mark the samples with small values, and drop the
marked samples from the training set every twenty epochs.
We found that dropping samples every twenty epochs was
a conservative trade-o� between training on the smallest
subset, and ensuring that we still give the model su�cient
time to learn all the data points. Then, we select subsets based
on Eq. 5 only from the remaining elements. This ensures that
we train on the least required training examples. We discuss
the impact of this optimization in Section 4.2.

3.2.3 Selecting Subsets from Smaller Data Partitions -
Dataset Partitioning : The subset selection algorithm dis-
cussed in Section 3.1 computes pairwise similarities between
all examples from the same class label at the beginning of
each epoch. When the training set becomes larger, the cost of
computing these pairwise similarities scales up quadratically.
To e�ciently select the subset on an FPGA with limited on-
chip memory (4.32MB), we randomly partition the training
set into several chunks, and select a smaller subset from each
chunk. This way, we do not need to �t the gradients from an
entire class onto the on-chip memory, but only the gradients
from a single chunk. For example, for a mini-batch size of
< and subset size : to be selected from # data points, we
partition the dataset into :/< random chunks and select<
examples from each chunk to get a total : number of exam-
ples in the subset. We discuss the impact of this optimization
in Section 4.2.

4 Evaluation
In this Section, we �rst describe our experimental setup and
then the performance results obtained. We evaluate NeSSA
to address three main topics: (1) Accuracy comparison with
models trained on the full dataset and prior work on sub-
set selection (Section 4.2), (2) End-to-end training speed-up
(Section 4.3), (3) Quantitative bene�ts of using our storage-
assisted SmartSSD+GPU training setup (Section 4.4).

4.1 Experimental Setup
The datasets and models used in our experiments are listed
in Table 1. We train the models for 200 epochs with batch
size of 128, initial learning rate of 0.1 divided by 5 at the
60th, 120th, and 160th epochs, weight decay of 54 � 4, and
Nesterov momentum of 0.9.
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Table 1: Dataset overview

D������ C������ T���� N������

CIFAR�10 [43] 10 50� R��N���20
SVHN [44] 10 73� R��N���18
CINIC�10 [45] 10 90� R��N���18
CIFAR�100 [43] 100 50� R��N���18
T���I����N�� [46] 200 100� R��N���18
I����N���100 [3] 100 130� R��N���50

Table 2: Accuracy and data ratio trained by NeSSA com-
pared with the same model trained on the full dataset.

D������ A�� D��� (%) N�SSA (%) S����� (%)

CIFAR�10 92.02 90.17 28
SVHN 95.81 95.18 15
CINIC�10 81.49 80.26 30
CIFAR�100 70.98 69.23 38
T���I����N�� 63.40 63.66 34
I����N���100 84.60 83.76 28

4.2 Performance Evaluation
We compare the performance of NeSSA for all tested datasets
with a model trained on the full dataset in Table 2. NeSSA
achieves comparable accuracy by training on just 15-38% of
the dataset. The rest of the dataset is automatically pruned
away during training by our optimizations described in Sec-
tion 3.2. To quantify the improvement in accuracy obtained
using each of these optimizations, we analyze the perfor-
mance for the CIFAR-10 dataset in Table 3. Here, "Vanilla"
refers to NeSSA without subset biasing (Section 3.2.2) and
dataset partitioning (Section 3.2.3). "SB" and "PA" refer to
the implementations with subset biasing and partitioning
respectively. "Goal" refers to a model trained with the full
dataset. We also compare the accuracy obtained on di�er-
ent subset sizes by NeSSA and prior CPU-based state-of-
the-art subset selection work [20][17] in Table 3. Overall,
NeSSA outperforms prior work and is the closest to the goal
accuracy. Compared with [17], NeSSA uses a submodular-
optimization based selection methods which attempts to min-
imize the total dissimilarity between data points instead of
the total squared error. Compared with [20], NeSSA includes
several optimizations as described in Section 3.2 which sig-
ni�cantly improve the quality of the selected subsets. Specif-
ically, adding feedback between the target model and the
selection model allows the selection of only the most impor-
tant training examples. We also achieve higher performance
with the same subset size due to the subset biasing and par-
titioning optimizations.

Figure 4: Training time averaged across epochs for
NeSSA, prior work, and a model trained on the full
dataset.

Figure 5: Accuracy of NeSSA and a model trained on
the full dataset over the training process.

4.3 End-to-End Training Speed-Up
In Figure 4, we compare the average time taken to train one
epoch for the CIFAR-10 dataset with the ResNet-20 model
using NeSSA, prior CPU-based subset selection techniques
like [17, 20], and a model trained on the full dataset. Overall
across datasets, NeSSA gains an end-to-end training speed-
up of 5.37x compared with training on the full dataset, 4.3x
compared with [20], and 8.1x compared with [17]. We also
�nd that NeSSA converges close to the optimal solution faster
than a model trained on the entire dataset. This is because
NeSSA ensures that the model constantly trains on examples
which will accelerate it’s convergence the most, rather than
selecting random batches of data. We demonstrate the faster
convergence on all datasets in Table 1 in Figure 5. NeSSA
reaches closer to convergence within the �rst 30 epochs of
training for all datasets compared with a model trained on
the full dataset (solid series is higher than dotted series of
the same color).
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Table 3: Accuracy comparison of NeSSA with di�erent optimizations and prior work. The column names marked
in bold is NeSSA and the values marked in bold is the setting with best performance (closest to "Goal").

S����� (%) V������ (%) SB (%) PA (%) SB+PA (%) CRAIG[20] K�C������ [17] G��� (%)

10 82.76 87.61 83.56 87.75 87.07 65.72 92.44
30 89.51 90.42 90.68 90.49 89.12 88.49 92.44
50 90.59 91.89 91.81 91.92 90.32 90.14 92.44

Table 4: Resource utilization

R������� A�������� U��� (%)

LUT 432� 67.53
FF 919� 23.14
BRAM 738 50.30
DSP 1962 42.67

Figure 6: Data transfer throughput between FGPA and
on-board SSD (average of read/writes)

4.4 Bene�ts of using Storage-Assisted Training
SSD to FPGA transfers on-board the SmartSSD can theo-
retically achieve up to 3GBps data transfer rates. In a con-
ventional setting where FPGA does not have direct access
to the on-board SSD and uses CPU memory as temporary
storage, the e�ective bandwidth is reduced to 1.4 GBps.
Therefore, data transfer rates are on average 2.14x faster
using the SmartSSD. Along with this speed-up, reducing the
dataset size by selecting subsets also reduces the volume of
data transferred over the interconnect. Overall, our method
achieves an average data movement reduction of 3.47x across
datasets. We pro�le the e�ective data transfer rates between
the FPGA and on-board SSD (average of reading and writing
from/to on-board SSD) in Figure 6. For the CIFAR-10 dataset
where each image size is 0.003MB, using a batch size of 128
images, data transfer rates achieved are 1.46 GBps. As the

dataset and image sizes increase, the available bandwidth is
better saturated. In case of the ImageNet-100 dataset where
each image is 0.126 MB, using a batch size of 128 images
achieves a data transfer throughput of 2.28 GBps. There-
fore, as the dataset size increases, using storage-assisted ML
training becomes more e�ective and necessary. Particularly
using FPGA-based storage-assisted training provides a low-
cost solution (Table 4) which allows low selection and data
transfer time (Figure 4) compared with CPU-based selection
algorithms and training on the full dataset.

5 Conclusion
We present a SmartSSD+GPU training setup to intelligently
select subsets of large datasets near-storage and train only
on the selected data while maintaining high accuracy. NeSSA
achieves 3.47x reduction in data movement and end-to-end
training speed-up average of 5.37x with a negligible loss in
accuracy compared with a model trained on the full dataset.
We are currently working on extending this work for larger
datasets and models scaling over multiple SmartSSDs and
GPUs.
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