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INVERTIBILITY OF DIGRAPHS AND TOURNAMENTS*

NOGA ALONT, EMIL POWIERSKI}, MICHAEL SAVERY?!$, ALEX SCOTT¥, AND
ELIZABETH WILMERY

Abstract. For an oriented graph D and a set X C V(D), the inversion of X in D is the
digraph obtained by reversing the orientations of the edges of D with both endpoints in X. The
inversion number of D, inv(D), is the minimum number of inversions which can be applied in
turn to D to produce an acyclic digraph. Answering a recent question of Bang-Jensen, da Silva,
and Havet we show that, for each £ € N and tournament 7', the problem of deciding whether
inv(T) < k is solvable in time O (|V(T)|?), which is tight for all k. In particular, the problem is
fixed-parameter tractable when parameterised by k. On the other hand, we build on their work to
prove their conjecture that for k > 1 the problem of deciding whether a general oriented graph D has
inv(D) < k is NP-complete. We also construct oriented graphs with inversion number equal to twice
their cycle transversal number, confirming another conjecture of Bang-Jensen, da Silva, and Havet,
and we provide a counterexample to their conjecture concerning the inversion number of so-called
‘dijoin’ digraphs while proving that it holds in certain cases. Finally, we asymptotically solve the
natural extremal question in this setting, improving on previous bounds of Belkhechine, Bouaziz,
Boudabbous, and Pouzet to show that the maximum inversion number of an n-vertex tournament is

(14 o(1))n.
Key words. inversion, digraphs, tournaments

MSC codes. 05C20, 05C76

1. Introduction. In this paper we only consider digraphs without loops, digons,
or parallel edges, for which we use the terms digraph and oriented graph interchange-
ably. For such a digraph D = (V, E) and a set X C V| the inversion of X in D is the
digraph obtained from D by reversing the direction of the edges with both endpoints
in X; we say that we invert X in D. Given a family of sets X1,..., X CV, we can
invert X7 in D, then X5 in the resulting digraph, and so on, noting that the final
digraph produced by these inversions is independent of the order in which we perform
them. If inverting X7, ..., X in turn transforms D into an acyclic digraph, then we
say that these sets form a decycling family of D. We will refer to a set X C V which
forms a decycling family by itself as a decycling set. The inversion number of D,
denoted inv(D), is defined to be the minimum size of a decycling family of D, and for
k € Ny we say that D is k-invertible if inv(D) < k.

The study of inversions began in Houmem Belkhechine’s PhD thesis [5] and con-
tinued in [6, 7, 26], in which many foundational results were established. The present
work is inspired by a recent paper of Bang-Jensen, da Silva, and Havet [4] which
studied a wide range of questions about invertibility, with an emphasis on those of
an algorithmic or extremal nature. They also posed a host of interesting conjectures
and problems, some of which we answer in this paper.
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2 N. ALON, E. POWIERSKI, M. SAVERY, A. SCOTT, AND E. WILMER

1.1. The inversion number of k-joins. The cornerstone of many of the con-
jectures made by Bang-Jensen, da Silva, and Havet in [4] is the following ‘dijoin
conjecture’. For oriented graphs L and R, the dijoin L — R from L to R is the
oriented graph consisting of vertex-disjoint copies of L and R, with an edge u® for all
uw € V(L) and v € V(R).

CONJECTURE 1.1 ([4]). For oriented graphs L and R we have inv(L — R) =
inv(L) 4 inv(R).

Noting that the left-hand side is certainly at most the right-hand side for all L
and R and that the conjecture holds trivially if inv(L) = 0 or inv(R) = 0, Bang-
Jensen, da Silva, and Havet showed it to be true when inv(L)+inv(R) < 3, and when
inv(L) = inv(R) = 2 and L and R are both strongly connected.! They also observed
(see our section 3) that the conjecture is equivalent to its restriction to tournaments.
We disprove Conjecture 1.1 by exhibiting a tournament R with inv(R) = inV(C_'g: —
R), where C_';; is the directed cycle on three vertices.

THEOREM 1.2. There exists a tournament R with inv(R) = inv(a@: — R)=3.

While Theorem 1.2 shows that the dijoin conjecture is false in general, we prove
it in the case where inv(L) = inv(R) = 2.

THEOREM 1.3. If L and R are digraphs with inv(L) = inv(R) = 2, then inv(L —
R) =4.

The proof of Theorem 1.3 relies on the strongly connected case and our next result,
which concerns the following generalisation of dijoins to arbitrarily many digraphs.
For k € N the k-join of digraphs Dy,..., Dy, written [D1,..., Dg], is the digraph
consisting of vertex-disjoint copies of D1, ..., D with an additional edge 40 whenever
u e V(D;),v e V(D;) fori < j. We write [D]; = [D, ..., D] for the k-join of k copies
of the same oriented graph D. The following result can be viewed as a k-join analogue
of the dijoin conjecture holding under certain conditions. It generalises a theorem of
Pouzet, Kaddour, and Thatte [26] which states that inv([Cs],) = k for all .

THEOREM 1.4. Let k € N and let D,..., Dy be oriented graphs. Assume that
inv(D;) <2 for all i, with equality for at most one i. Then

(1.1) inv([Dy,...,Dx)) = > inv(D;).

i=1

We will use Theorem 1.4 to confirm another conjecture from [4] which was made
based on the dijoin conjecture (see Theorem 1.6 below). Theorem 1.4 and, in turn,
Theorem 1.3 follow from a characterisation of the decycling families of size k of arbi-
trary k-joins of oriented graphs with inversion number 1. We will need some further
terminology to state this result: for a digraph D, sets Xi,...,X; C V(D), and
a vertex v € V(D), we define the characteristic vector of v in Xi,...,X) to be
(I{vex,y : i € [k]) € F5, where Ij,cx,y is the indicator function of the event v € X;.
For vectors u,v € F§ we write u - v for the usual scalar product of u and v over
F,. This is not a genuine inner product, but we say nevertheless that a collection
uy,...,u € F§ is orthonormal if w; - u; = 1 for all 7 and u; - u; = 0 for all ¢ # j.
Finally, we refer to the canonical copy of D; in D = [Dy,..., D] as the ith factor of

IThe case where inv(L) = 2 and inv(R) = 1 is not explicitly mentioned in [4], but follows easily
from the case where inv(L) = 1 and inv(R) = 2 by inverting V(L — R).
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INVERTIBILITY OF DIGRAPHS AND TOURNAMENTS 3

D. We are now ready to state our characterisation theorem, the case &k = 2 of which
was shown by Bang-Jensen, da Silva, and Havet [4]. Its proof is based on an approach
used by Pouzet, Kaddour, and Thatte [26].

THEOREM 1.5. Let D1, ..., Dy be oriented graphs with inv(D;) = 1 for all i and
let D = [D1,...,Dg] be their k-join. Then sets Xq,... X C V(lA)) form a decycling
family of D if and only if there are orthonormal vectors uy,...,u; € F% and for
each i a decycling set V; C V(D;) of the ith factor of D such that, for each i, the
vertices in V; have characteristic vector u; (in Xi ..., Xy), and all other vertices have
characteristic vector 0 (in X1 ..., Xk).

In particular, any acyclic digraph obtained from D by k inversions can also be
obtained by inverting a decycling set for each factor in turn.

1.2. Computational complexity. One focus of Bang-Jensen, da Silva, and
Havet’s paper [4] was on the computational complexity of deciding whether an oriented
graph is k-invertible. More formally, they considered, for fixed k£ € Ny, the problem
of k-INVERSION:

INPUT: an oriented graph D.
PROBLEM: inv(D) < k?

A first observation is that 0-INVERSION is equivalent to checking whether a digraph
D is acyclic, which is well known to be possible in time O(|V (D)|?) (see [12, p. 612]),
so we need only consider k& > 1.

Bang-Jensen, da Silva, and Havet [4] showed that 1-INVERSION is NP-complete
using a reduction from MONOTONE 3-IN-1 SAT. Then, using the special cases of the
dijoin conjecture proved in that paper, they observed that for a digraph D we have
inv(D — D) = 2 if and only if inv(D) = 1, from which it follows that 2-INVERSION is
also NP-complete. They conjectured that NP-completeness extends to k-INVERSION
for all £ > 3, noting that this would follow from a similar argument if the dijoin
conjecture were true. Of course, the full dijoin conjecture is not required, and indeed
it is easy to see that Theorem 1.4 is enough: it implies that inv(D) = 1 if and only
if inv([D]) = k, which reduces 1-INVERSION to k-INVERSION and hence shows the
following (see section 4).

THEOREM 1.6. k-INVERSION is NP-complete for all k € N.

Bang-Jensen, da Silva, and Havet also considered the computational complexity
of the same problem when the input is restricted to tournaments. For fixed k € N the
problem of k-TOURNAMENT-INVERSION is:

INPUT: a tournament 7.
PROBLEM: inv(T) < k?

One way of analysing the complexity of this problem is to use k-inversion-critical
tournaments: we say that a tournament T is a k-inversion-critical tournament if
inv(T) = k but inv(T — {v}) < k for all v € V(T), and denote by ZCj the set
of k-inversion-critical tournaments. It is not difficult to see that a tournament has
inversion number at most k if and only if it contains no element of ZCy41 U ZCj4o
as a subtournament. Indeed, for any digraph D and vertex v € V(D) with out-

This manuscript is for review purposes only.
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4 N. ALON, E. POWIERSKI, M. SAVERY, A. SCOTT, AND E. WILMER

neighbourhood A C V(D), adding A and A U {v} to a decycling family of D — {v}
gives a decycling family of D. We deduce that inv(D) < inv(D — {v}) + 2. Hence, if
inv(T) > k, then by arbitrarily deleting vertices from T' one by one, we can obtain a
subtournament 7" of T" with inv(T”) € {k + 1,k 4+ 2}. This T” contains a member of
ZCl+1 UZCkyo as a subtournament.

Belkhechine, Bouaziz, Boudabbous, and Pouzet [7] showed that ZCy, is finite for
all k € N. Writing my, for the maximum number of vertices of an element of ZCy, it fol-
lows that k-TOURNAMENT-INVERSION can be solved in time O(|V (T)|ax(m+1.mu+2)),
Thus, in particular, k—TOURNAMIﬂ\I}T—INVERSION can be solved in polynomial time
for any fixed k. Plainly ZC; = {C3}, so my = 3, and ZCy was explicitly described
in [26], giving ms = 6. However, no upper bound on my, is known for & > 3, so for
no k > 1 does the above give a concrete polynomial bound on the complexity of k-
TOURNAMENT-INVERSION. Note also that this approach does not identify a decycling
family of size k given a k-invertible tournament, it can only confirm the existence of
one.

Bang-Jensen, da Silva, and Havet [4] used an alternative approach to show that
1-TOURNAMENT-INVERSION can be solved in time O(|V (T')|?) while 2-TOURNAMENT-
INVERSION can be solved in time O(|V(T)|®). The idea behind their algorithm for 1-
TOURNAMENT-INVERSION is to check whether the tournament contains a vertex which
can be made into a source, and for 2-TOURNAMENT-INVERSION they check whether
it contains a pair of vertices which can be made into a source and a sink respec-
tively. They went on to ask for the least real numbers r; such that k- TOURNAMENT-
INVERSION can be solved in time O(|V(T")|"™). We answer this question by showing
that, perhaps surprisingly, for each fixed ¥ € N there is an algorithm solving k-
TOURNAMENT-INVERSION in time O(|V(T)|?). In the language of complexity theory,
this means that the likely NP-hard problem of determining whether inv(7T) < k for
inputs k and T (see Conjecture 8.1) is fixed-parameter tractable when parameterised
by k.2

THEOREM 1.7. For fixed k € N, k-TOURNAMENT-INVERSION can be solved for n-
vertex tournaments in time O(n?). Moreover, if the input tournament is k-invertible,
then our algorithm finds a decycling family of size at most k.

Note that the exponent of n in this running time is optimal, since any algorithm
solving k-TOURNAMENT-INVERSION needs to inspect the orientation of every edge
in the input tournament. However, the implied constant in the running time of our
algorithm is doubly exponential in k, so it is unlikely to be of practical use for large k.

1.3. Relation to other parameters. Bang-Jensen, da Silva, and Havet [4]
also considered the relationship between the inversion number and other digraph pa-
rameters. Two well studied parameters of particular interest are the cycle transversal
number and the cycle edge-transversal number, defined as follows. A cycle transversal
(or feedback vertex set) in a digraph D is a set of vertices of D whose removal from D
leaves an acyclic digraph and the cycle transversal number of D, denoted 7(D), is the
minimum size of a cycle transversal in D. Analogously, a cycle edge-transversal (or
feedback arc set) in D is a set of edges of D whose removal leaves an acyclic digraph
and the cycle edge-transversal number of D, 7/(D), is the minimum size of a cycle
edge-transversal in D. Note that the inequality 7(D) < 27/(D) always holds, since
the endpoints of the edges in a cycle edge-transversal of D form a cycle transversal of

2See [14] for the definition of fixed-parameter tractability and an exposition of the surrounding
theory.
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INVERTIBILITY OF DIGRAPHS AND TOURNAMENTS 5

D.

Bang-Jensen, da Silva, and Havet [4] made the following observations concerning
the relationships between inv(D), 7(D), and 7/(D) for a digraph D. Firstly, we
have inv(D) < 7/(D). This follows from the fact that if F¥ C E(D) is a cycle edge-
transversal of D, then since (V (D), E(D)\ F) is acyclic, there is a labelling vy, ..., v,
of V(D) such that v;0; ¢ E(D)\ F if i < j. Applying the family of inversions
({vi,v;}: 4 < j,v;0; € F) transforms D into an acyclic digraph and hence inv(D) <
7/(D) as claimed. They also observed that this inequality is tight for all values of
7/(D) as exhibited by [C_)'g,] &, which clearly has cycle edge-transversal number k, and
as mentioned above was shown in [26] to have inversion number k.

Turning to 7(D), the inequality inv(D) < 27(D) was obtained in [4] as follows.
After observing that 7(D) = 0 implies inv(D) = 0, we may assume that 7(D) > 1.
Let S C V(D) be a cycle transversal in D of size 7(D) and pick v € S. Then observe
that D — {v} has cycle transversal number 7(D) — 1, with S\ {v} a cycle transversal.
Moreover, as noted in Section 1.2 we have inv(D) < inv(D — {v}) + 2, from which it
follows by induction that inv(D) < 27(D).

Bang-Jensen, da Silva, and Havet conjectured that this inequality is tight for all
values of 7(D). Indeed, they considered the graph Vs obtained by adding a vertex v
and edges v_l>, 2_1)), v_?:,ﬂ to the (transitive) tournament on vertex set {1,2,3,4} with
edges ij for i < j, which can easily be seen to have 7(V5) = 1 and inv(V5) = 2. They
noted that if the dijoin conjecture holds, then 7([Vs]x) = k and inv([Vs]x) = 2k for all
k (in fact, since Vs is strongly connected, the case k = 2 follows from the special cases
for which they proved the dijoin conjecture). We construct digraphs with a similar
character to V5 which confirm their conjecture.

THEOREM 1.8. For all k € N there exists an oriented graph D with inv(D) =
27(D) = 2k.

1.4. The extremal problem. Finally, we consider inv(n), defined for each
n € N as the maximum inversion number of an oriented graph (or, equivalently, a
tournament) on n vertices. Belkhechine, Bouaziz, Boudabbous, and Pouzet [7] were
the first to study this parameter, obtaining bounds of the form?

g —log(n) + O(1) <inv(n) <n+O(1).

Their lower and upper bounds follow from counting and inductive arguments respec-
tively (see section 7 for details), and they conjectured that inv(n) > [ 251 for all n.
Bounds of the form above previously remained the best known, with Bang-Jensen, da
Silva, and Havet [4] noting that the O(1) term in the upper bound can be improved
very slightly.

Using a random construction, we show that inv(n) = (1 + o(1))n.

THEOREM 1.9. For sufficiently large n we have

inv(n) > n —+/2nlog(n).

Moreover, a uniformly random labelled n-vertex tournament has at least this inversion
number with probability tending to 1.

In section 7 we also show that inv(n) <n —log(n + 1).

3All logarithms in this paper are taken base 2.

This manuscript is for review purposes only.
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6 N. ALON, E. POWIERSKI, M. SAVERY, A. SCOTT, AND E. WILMER

1.5. Outline of the paper. The remainder of the paper is organised as follows.
In section 2 we introduce some further notation, definitions, and preliminary obser-
vations which will be useful in the rest of the paper. In the very short section 3 we
prove Theorem 1.2, constructing a counterexample to the dijoin conjecture. Our re-
sults on the inversion number of k-joins, Theorem 1.3, Theorem 1.4, and Theorem 1.5,
are proved in section 4, along with Theorem 1.6. Section 5 concerns the complexity
of k-TOURNAMENT-INVERSION and contains the proof of Theorem 1.7. We give the
proof of Theorem 1.8 in section 6. In section 7 we discuss the existing bounds on
inv(n) before proving Theorem 1.9 and giving an improved upper bound. Finally,
in section 8 we restate some conjectures and questions from previous papers which
remain open and pose some new ones of our own.
Note added. Almost simultaneously with the initial release of this paper, Aubian,
Havet, Horsch, Klingelhoefer, Nisse, Rambaud, and Vermande announced indepen-
dent work [2] on some of the problems we address here. Specifically, they prove a
stronger version of Theorem 1.2 (in fact, they prove that a strong version of our Con-
jecture 8.9 holds provided at least one of £ and r is odd and at least 3) and they show
upper and lower bounds on inv(n) of forms similar to those we give in subsection 1.4.

2. Notation and preliminaries. In this section we detail some of the defini-
tions, observations, and notation to be used in the rest of the paper. As noted above,
all digraphs will be oriented graphs, that is, loopless directed graphs with at most one
edge between each pair of vertices. An acyclic digraph is a digraph with no directed
cycles. In the case where the digraph is a tournament, we use the term transitive
instead of acyclic. Note that for each n € N there is a unique unlabelled transitive
tournament on n vertices. To a transitive tournament 7" we associate the total order
< on V(T) where u < v for all u,v € V(T) such that w0 € E(T). We write [n] for
the set {1,2,...,n}. For a digraph D and a set S C V(D) we write D — S for the
digraph produced by deleting the vertices in S from D. We now give the following
key definitions.

DEFINITION 2.1. Recall that for a digraph D, sets Xi,..., Xy C V(D), and a
verter v € V(D), the characteristic vector of v in X1,..., X}, is (I{yex,) =@ € [k]) €
F%, where Iiyex,y is the indicator function of the event v € X;. Define an equivalence
relation ~ on V(D) by setting u ~ v if u and v have the same characteristic vector in
Xq,...,X,. The atoms of X1,..., Xy in D are the equivalence classes of this relation.

Note that, equivalently, the atoms of X;,..., X, in D are the atoms of the set
algebra on V(D) generated by X1, ..., Xy, and that there are at most 2% atoms for
given D and Xq,..., Xj. The next observation will be useful throughout the paper.

OBSERVATION 2.2. Let D be a digraph and suppose that u,v € V(D) are joined by
an edge in D. Let X1,..., Xy C V(D). Write u,v € F% for the characteristic vectors
of u and v in Xq,..., Xy respectively. Then the edge between u and v undergoes a net
change in orientation when Xy, ..., Xy are inverted in D if and only ifu-v = 1.

This follows from the fact that u - v is the parity of the number of Xi,..., X
which contain both w and v. An obvious implication of Observation 2.2 is that given
D and X,..., X}, for every pair of (not necessarily distinct) atoms A and B, either
all edges {ab: a € A,b € B} undergo a net orientation change when X,..., X} are
inverted, or none of them do. In particular, for every vertex v and atom A, either all
edges {va: a € A} change orientation or none of them do.

Finally, we note some simple observations which will be used freely in what follows.

(i) If D’ is a subdigraph of an oriented graph D, then inv(D’) < inv(D).

This manuscript is for review purposes only.
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(ii) For every oriented graph D and every non-negative integer k < inv(D), there
exists a spanning subdigraph of D with inversion number k.
(iii) If X4,..., Xy is a decycling family of an oriented graph D, then D can be
extended to a tournament 7' for which Xi,..., X} is still a decycling family.
In particular inv(7T) = inv(D).
For (ii), delete edges of D one by one, noting that the inversion number drops by at
most 1 at each step. For (iii), invert the decycling family in D, extend the resulting
acyclic digraph to a transitive tournament, then invert the decycling family again.

3. A counterexample to the dijoin conjecture. In this short section we give
a counterexample to the dijoin conjecture of Bang-Jensen, da Silva, and Havet [4],
that is, the conjecture that inv(L — R) = inv(L) + inv(R) for all oriented graphs L
and R. As noted in the introduction, this conjecture is equivalent to its restriction
to tournaments. Indeed, suppose that L and R are digraphs with inv(L — R) <
inv(L) 4+ inv(R). Extend L — R to a tournament of the same inversion number and
observe that this tournament is L’ — R’ for some tournaments L’ and R’ extending L
and R respectively. These clearly satisfy inv(L’) > inv(L) and inv(R') > inv(R), so we
have tournaments L’ and R’ with inv(L’ — R’) < inv(L)+inv(R) < inv(L')+inv(R’).

Proof of Theorem 1.2. Let L be a copy of C—’g Suppose that R is a tournament
with inv(R) = 3 for which there exist disjoint A, B, C C V(R) such that AUB, AUC
and B U C form a decycling family of R. Then for distinct vertices u,v € V(L) the
sets AU BU{u,v}, AUC U{u,v} and BU C U {u,v} form a decycling family of
L — R, demonstrating that

inv(L - R) =3 <4 =inv(L) +inv(R).

One way to construct such an R is as follows: let R be the tournament with
vertex set [9], let A = {1,3}, B = {4,6}, and C = {7,9}, and let the edge ij be
directed backwards (that is, from j to ¢ when ¢ < j) if and only if ¢ and j are both in
AUBUC, but not both in A, B, or C. It is clear that inverting AU B, AU C and
B U C transforms R into a transitive tournament, and a computer check shows that
inv(R) = 3, as required. |

4. Decycling families of k-joins. In this section we prove Theorem 1.5, which
characterises the decycling families of size k of k-joins of digraphs each with inversion
number 1. We will then deduce Theorem 1.4 from this characterisation, and use
Theorem 1.4 to obtain Theorem 1.3 and Theorem 1.6. The bulk of the work in our
proof gf) Theorem 1.5 is put towards proving Lemma 4.1, which deals with the case
D = [Cs]g.

LEMMA 4.1. Letk €N, let D = [C—’g:]k, and let X, ..., Xy, C V(D) be a decycling
family of D. Then there exist orthonormal vectors uy,...,u, € F% such that in the
ith factor of [Csli, one vertex has characteristic vector 0 and the other two have
characteristic vector u;.

We will use the setup that Pouzet, Kaddour, and Thatte [26] introduced in their

proof that inv(D) = k. The first part of our argument is essentially a reformulation
of theirs, but we include it for completeness and to build intuition.

Proof of Lemma 4.1. Let T' be the transitive tournament obtained by inverting
the sets X1,..., X, in D, and let < be the total order on V(D) associated to T.
Note that for all 4, after inverting X, ..., X the i¢th factor has one vertex that has
out-edges to the other two vertices in the factor and exactly one of these edges has

This manuscript is for review purposes only.
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undergone a net reversal. Thus we can label the vertices in the ith factor as u;, v;, w;
where u;v;w; is a directed 3-cycle in D, and the edge between u; and w; undergoes a
net reversal under X7, ..., X; while the edge between u; and v; does not. In particular,
we will use throughout that u; < v;, w; and that, by Observation 2.2, u; - v; = 0 and
u; - w; = 1 where u;,v;,w; € IF’§ are the respective characteristic vectors of wu;, v;, w;
in Xy,...,X);. We have the following claim, originally proved in [26].

CraM 4.2 ([26]). The vectors uy, ..., u; € F& are linearly independent.

Proof. The statement is equivalent to the claim that for all non-empty I C [k]
we have } ,.;u; # 0. Fix such an I and note that it is sufficient to show that
there exists some x € F% such that (},.;u;) - x # 0. Let m € I be such that
u; < Uy, for all ¢ € T\ {m}. Note that u,, < v, wn, so by the transitivity of T
we have u; < vy, w, for all ¢ € I. Tt is straightforward to deduce from this that
for all ¢ € I\ {m}, the orientations of the edges w;v,, and u;w,, are either both
unchanged after Xi,..., X} are inverted, or both reversed. By Observation 2.2, in
other words we have u; - v, = u; - wy,, for all ¢ € I\ {m}. On the other hand we
have u,, - v,, = 0 while u,, - w,, = 1, so it follows by linearity of the dot product that
(> ier i) Vin # (D_;e7 Wi) - Wi One of these two dot products is thus non-zero, and
we deduce that ), u; # 0, as required. 0

We now build on Claim 4.2 as follows.

Cramm 4.3. Let ¢ € [k] and suppose that the vectors w;, v, w; for £ < i <k all lie
in a subspace V of F5 of dimension k — £+ 1. Then uy,...,u are orthonormal, and
for all ¥ < i <k we have u; = w; and v; = 0.

Proof. We will prove the claim by reverse induction on ¢. In the ¢ = k case
the claim follows easily from the fact that ug - wi = 1 while ug - vy = 0. Thus,
let £ < k —1 and write [¢,k] for {¢{,£+ 1,...,k}. Let z be the <-minimal vertex

among vy, . .., Uk, W, ..., Wg. Write z € V C F} for the characteristic vector of z in
X1,..., Xk and let ¢ € [¢,k] be such that z € {v;,w;}. By Claim 4.2, the vectors
uy, ..., u, form a basis of V' so there exists I C [/, k] such that z + >, ;u; = 0.

First suppose that I ¢ {0,{t}} and let m € I be such that u; < w,, for all
i€ I\{m}. If m # t, then we have z < vy, Wy, SO Z+Vyy, = Z-W;,, by Observation 2.2.
As in the proof of Claim 4.2, we have u;-v,, = u;-w,, for all i € I'\{m}, but u,,-v,, #
Uy, Wi, 80 (24D iy W) Vi # (24D, Wi) Wi, and hence z+) -, u; # 0. If m = ¢,
then let j € I\ {t} and note that z < vj, w; by the minimality of z. Consequently,
z-v; = z-w;. Moreover, since u,, = u; < z, we have u,, < v;j,w;. From this it follows
that u; < vj,w; for all ¢ € I. Thus, u;-v; =u,;-w; for all i € I'\ {j}, while u;-v; #
u; - w;. Hence, similarly to above, we have (z + ), ;W) - v; # (2 + > _;c; W) - Wy,
s0zZ+ ) u #0.

The remaining cases are I = () and I = {t}, so we have z € {0,u;}. Suppose that
z = w;. If 2 = v, then we have vi =z = ug, SO vy - Wy = ug - wy = 1, i.e. the edge
between v; and w; undergoes a net reversal under X1, ..., X;. This would imply that
wy < vy = z, which contradicts the minimality of z. Similarly, if z = w;, then since
the edge between u; and v; is not inverted, neither is the edge between w; and vy, so
v < wy = z, another contradiction. Therefore z = 0. This means no edges incident
to z are reversed when Xj,..., X are inverted so by the minimality of z we have
Z = Uy.

We have shown that v, = 0, so the only vertex among the u;,v;, w; with ¢ > ¢
which precedes v, in < is uy. It follows that wuy is the least element among the w;, v;, w;
with ¢ > ¢. Hence, by Observation 2.2 we have uy - u; = up-v; = up - w; = 0 for
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all i > £+ 1, so if V' is the subspace of V spanned by the u;, v;, w; with i > £+ 1,
then uy - x =0 for all x € V/. We have u; - w, = 1, so V' is a proper subspace of V,
but ugiq,...,ur € V/ are linearly independent, so we deduce that V' has dimension
k — £. Therefore by the induction hypothesis ug41,...,u; are orthonormal, and we
have u; = w; and v; =0 for i > ¢+ 1.

To complete the induction step it remains to show that uy = wy and uy - uy = 1.
The latter follows from the fact that uy,...,u; is a basis for V with uy - u; = 0 for
alli > £+1, but wy € V has ug - w, = 1. For the former, note that wy = >, u; for
some I C [¢, k] and by the established properties of the u; this set I contains exactly
those i for which u; - w, = 1. Thus, we certainly have £ € I. Suppose that u;-w, =1
for some ¢ > ¢ + 1. Since w; = u; and v; = 0, by Observation 2.2 we find that the
cycle wgv;w; appears in T, which is a contradiction. Hence I = {£} and u, = wy, as
required. 0

The lemma now follows from the ¢ = 1 case of Claim 4.3. 0

We will now deduce Theorem 1.5 from the lemma. In the proof, we will use the
easy fact that every family of orthonormal vectors in F4 is linearly independent.

Proof of Theorem 1.5. The sufficiency of the given conditions for Xi,..., X} to
be a decycling family of D is straightforward to verify using Observation 2.2. This
observation also allows the ‘in particular’ part of the theorem statement to be easily
deduced from the preceding part. It remains to prove that the given conditions are
necessary. R R

Given a decycling family X,..., X of D, extend D to a tournament 7" for which
Xi,..., X is still a decycling family. For each i, let T; be the subtournament of T
induced on the vertex set of the ith factor of D. Singe> D; contains a directed cycle,
so does T;, and hence the latter contains a copy of C5. We can thus find a copy of
[C3]k in T whose ith factor is contained in T;. It follows by Lemma 4.1 that there are
orthonormal vectors uy,...,u; € IF"2C and for each i a triangle w;v;w, in T; such that u;
and w; have characteristic vector u; and v; has characteristic vector 0 in X1, ..., Xg.

We next show that for all 4, all vertices in T; have characteristic vector either
uw; or 0 in Xq,...,X,. Let 2 € V(T;) and let z be its characteristic vector. Since
uy,...,u; form a basis of F§, there exists J C [k] such that z = > jesuj. If there
exists £ € J\{i}, then z-u; = uy-uy = 1 and hence the directions of the edge between
z and uy and the edge between z and wy are reversed under X1,..., Xg. If £ < 7, then
the cycle ugvs2 appears in T and if i < £, then the cycle zvywy appears in T. We have
a contradiction in both cases, so J =0 or J = {i} as desired.

We have shown that all vertices in the ith factor of D have characteristic vector
either u; or 0 in Xy,..., Xj. The effect on this copy of D; of inverting these sets in
D is therefore the same as inverting the set of vertices with characteristic vector u;,
which we call V;. The latter is therefore a decycling set for the ith factor of D. This
completes the proof of the theorem. 0

Theorem 1.4 now follows easily.

Proof of Theorem 1.4. It is clear that the left-hand side of equation (1.1) is at
most the right-hand side. For the reverse inequality, let D = [D1,...,Dg] and
note that we may assume that none of the D; have inversion number 0. Indeed,
if inv(D;) = 0 for some i > 2, then view D as the (k — 1)-join [D1,...,D;—2,D;—1 —
D;,Dii1,...,Dg] and, since inv(D;—1 — D;) = inv(D;_1), the result follows by in-
duction on k. The case where ¢ =1 can be handled similarly.

Thus, consider the case where inv(D;) = 1 for all ¢ and suppose for a contradiction
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that X5,..., X} is a decycling family of D with X, = 0. By Theorem 1.5 there exist
k orthonormal, and hence linearly independent, vectors in F% each of which occurs as
the characteristic vector of some vertex of D in Xy,..., X;. This contradicts the fact

that all such vectors have a 0 in their final coordinate. Hence, in this case, inv(D) = k.
It remains to check the case where inv(D;) = 2 for some j and inv(D;) = 1 for

all ¢ # j. Start by letting D; be a spanning subdigraph of the jth factor of D with
inv(D}) = 1, then define D’ to be the digraph obtained by replacing the jth factor of
D by D;-. Assume for a contradiction that Xi,..., Xy is a decycling family of D, in
which case it is also a decycling family of D'. Theorem 1.5 thus Zields a vector u; € F%
with u; - u; :Al such that all the vertices in the jth factor of D’ (and hence also the
jth factor of DA) have characteristic vector either 0 or u; in Xi,..., Xj. Inverting
X1,..., X, in D therefore has the same effect on its jth factor as inverting the set of

vertices with characteristic vector u;. It follows that this set of vertices is a decycling
set for D;, contradicting inv(D;) = 2. o

As mentioned in the introduction, it follows from Theorem 1.4 that for any di-
graph D we have inv(D) = 1 if and only if inv([D]x) = k, which in turn implies
Theorem 1.6 (which states that k-INVERSION is NP-complete for all k¥ € N). Indeed,
Theorem 1.4 directly gives inv([D];) = k in the case inv(D) = 1, and if inv(D) = 0
then clearly inv([D];) = 0. If inv(D) > 1, then there are subdigraphs D’ and D" of
D with inv(D’) =1 and inv(D”) = 2. The k-join D" — [D'];—1, which has inversion
number k + 1 by Theorem 1.4, is a subdigraph of [D]; and thus inv([D]g) > k+ 1 as
required.

Finally, we deduce Theorem 1.3 (which states that inv(L — R) = 4 for all di-
graphs L and R with inversion number 2) from Theorem 1.4. We will use the fact,
shown in [4], that if L and R are strongly connected digraphs with inv(L), inv(R) > 2,
then inv(L — R) > 4.

Proof of Theorem 1.3. Let L and R be digraphs with inv(L) = inv(R) = 2. Tt
is immediate that inv(L — R) < 4, so it is sufficient to prove the lower bound. For
this, extend L — R to a tournament T of the same inversion number and let the
tournaments to which L and R are extended be L’ and R’ respectively. Note that
inv(L'),inv(R') > 2and T is L' — R'.

Every tournament can be written as the k-join of its strongly connected com-
ponents, so let L' be [Ly,..., Ly, ] and R’ be [Ry,..., Ry,] for some k1,ke € N and
strongly connected tournaments Li,...,Lg,, R1,...,Ry,. Since inv(L’) > 2, either
there is some L; with inv(L;) > 2, or there are i < j such that inv(L;) = inv(L;) = 1.
An analogous condition holds for R'. If there are ¢ and j such that inv(L;), inv(R;) >
2, then since T contains L; — R;, we have inv(T') > inv(L; — R;) > 4 by the above
result of [4]. Otherwise, either there exist ¢ < j such that inv(L;) = inv(L;) =1, in
which case inv(T) > inv([L;, L;, R]) = 4 by Theorem 1.4, or there exist ¢ < j with
inv(R;) = inv(R;) = 1, in which case it follows similarly that inv(T") > 4. |

5. Complexity of k-Tournament-Inversion. In this section we prove Theo-
rem 1.7 by constructing, for each fixed k € N, an algorithm solving k- TOURNAMENT-
INVERSION in time O(|V(T)[?). Our proof uses a technique known as iterative com-
pression; see [14] for a description of this method and other applications of it. The
most involved part of our proof concerns the ‘compression step’ of the algorithm.
This step is handled by the following lemma, which roughly says that for constant k,
given an n-vertex tournament 7Ty and a decycling family of Ty of constant size, in time
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INVERTIBILITY OF DIGRAPHS AND TOURNAMENTS 11

linear in n we can find a decycling family of Ty of size k if one exists. Throughout
this section, we represent a total order < on a finite set S = {s1,..., 8, } by the tuple
($1,--+,8m) where s1 < -+ < Sy,

LEMMA 5.1. Fix k,s € N. There is an algorithm which solves the following prob-
lem for n-vertex tournaments in time O(n):

INPUTS:

e a tournament Ty;

e a decycling family X1, ..., Xs of Ty (transforming Ty into T, say);
e the order on V(Ty) associated to T.

OUuTPUTS:

EITHER

e that Ty is not k-invertible;

Or

e a decycling family Y1,..., Yy of Ty (transforming Ty into T', say);
e the order on V(Ty) associated to T".

We now use iterative compression to prove Theorem 1.7 before returning to
Lemma 5.1.

Proof of Theorem 1.7. Fix k > 1. We will induct on n to define an algorithm solv-
ing the following problem for n-vertex tournaments in time C}, - n? for some constant

Ck:

INPUT:

e a tournament Tj.

OupuTs:

EITHER

e that Tj is not k-invertible;

Or

e a decycling family Y7, ..., Yy of Ty (transforming Ty into T, say);
e the order on V(T}) associated to T

In particular, this algorithm solves k-TOURNAMENT-INVERSION.

Fix n > 2 and assume that we have defined such an algorithm for all smaller
tournaments. Let T be an n-vertex tournament and pick some v € V(Tj). Applying
the induction hypothesis, in time Cj - (n — 1) we either find that Ty — {v} is not
k-invertible or we obtain a decycling family X;,..., Xy of Ty — {v} and the order on
V(Toy) \ {v} associated to the transitive tournament obtained by inverting these sets
in Ty. In the former case, it follows that T} is also not k-invertible and we can output
that fact. In the latter case, let A be the out-neighbourhood of v in Ty, and define
X1 = AU{v} and Xy 42 = A. Then X, ..., X0 is a decycling family of Ty, and we
can obtain the order associated to the resulting transitive tournament by adding v to
the previous order as the maximal element. By Lemma 5.1 we can now, in linear time,
either find that Ty is not k-invertible or obtain a decycling family Yi,..., Yy of Tg
of size k and the order associated to the transitive tournament obtained by inverting
these sets in Ty. As required, this algorithm runs in time Cj, - (n — 1)? + O(n), which
is at most Cy - n? if C}, is large enough. 0
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It is left to prove Lemma 5.1. To this end, we describe an algorithm which explores
what happens if, starting from T, we invert Xq,..., X and k further sets Y7,..., Y%
to obtain a tournament Ty, where ¥ = (Y3,...,Y%). Since Ty is the tournament
obtained by inverting Yi,...,Ys in Tp, these k sets are a decycling family of Ty if
and only if Ty is transitive. If we were to examine each possibility individually there
would be too many for this exploration process to be tractable. However, the fact that
we are starting from a transitive tournament 7" makes it possible to identify cycles
in the final tournament Ty without fully specifying the sets Y7,...,Ys. This means
there are far fewer cases to consider, indeed few enough that the exploration process
is linear in n for fixed k and s.

Proof of Lemma 5.1. Fix k,s € N and let Ty, X1,...,Xs, and T be as in the
statement of the lemma. Let n = |V (Tp)| and label the vertices of Ty as uq, ..., uy in
T-increasing order. With notation as above, we wish to investigate for which Y the
tournament Ty is transitive. For each Y we write u; € F§+k for the characteristic vec-
tor of u; in Xy,...,Xs,Y1,..., Y, (suppressing the dependence on Y in the notation)
and then let u = (uy,...,u,). There is a bijective correspondence between Y and u
and it will be more convenient to work with the latter, so let T, = Ty and write U
for the set of all possible u. Our first aim is to determine in linear time whether there
exists u € U such that Ty is transitive, and to identify such a u if so.

The tournament T, is transitive exactly when it contains no cyclic triples. It is
straightforward to use Observation 2.2 to show that this is equivalent to the condition
that there are no a < b < ¢ in [n] such that u, - up = up - u. but u, - vy # u, - .
We describe the triple (ug, up, u.) as bad if this occurs. Thus, Ty, is transitive if and
only if B(u) = {(ug, up, u.): a < b < ¢} contains no bad triples, and Ty is k-invertible
if and only if B = {B(u): u € U} contains a set which is free of bad triples. Our
algorithm will construct this set B and check whether any of its elements are free of
bad triples. If one of these sets is free of bad triples, then we need to be able to
output a corresponding decycling family of Tj, so for each B € B we will also record
some u € Y for which B = B(u).

We will now explain how the above can be achieved in linear time. First note that
we may assume that n > 4. Let U’ be the set of all possible vectors u’ = (uy,...,u,_1)
of characteristic vectors of uy,...,up—1 in Xq,...,Xs,Y1,...,Ys. For u’ € U, let
B'(v) = {(ug,up,uc): 1 <a<b<c<n-—1}and let B = {B'(u'): u' e U'}. We
may assume inductively that there is a constant C' depending only on k£ and s such
that in time C'- (n—1) we can construct B’ and associate to each B’ € B’ some u’ € U’
such that B’ = B’(u’). For the induction step, we need to show that we can use this
to obtain in time C the set B and for each B € B some u € U such that B = B(u).

The key observation is that there are only 2°T* possible characteristic vectors for
each of uq, ..., up, so the number of triples of characteristic vectors is at most 23(s1k)
and the sizes of B and B’ are at most 22”""" . In particular, there are only boundedly
many pairs (B’,u,) where B’ € B’ and u,, is a possible characteristic vector for u,,.
For each such pair, we can construct in bounded time the set S(B’,u,) consisting
of all triples in B’, and all triples of the form (v;,v;,u,) for (vi,vs,vs) € B’ and
1 <i<j<3. It is not hard to see that B equals the set of all sets S(B’,u,) and
that each S(B’,u,) can be associated with the u € U formed by appending u,, to the
u’ € U’ associated with B’. Indeed, given B’ and u,, and defining u as in the previous
sentence, since n > 4, we have S(B’,u,) = B(u). For the other direction, given
u=(ug,...,u,) €U and letting u’ = (uy,...,u,—_1), we have B(u) = S(B’(u'), u,).

We can construct this set in bounded time and then forget about all but one of
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INVERTIBILITY OF DIGRAPHS AND TOURNAMENTS 13

the elements of U associated to each B € B. Thus, in constant time we have obtained
B and for each B € B some u € U such that B = B(u), and the induction continues.

Once we have constructed B in linear time, since it has bounded size we can check
whether any of its members is free of bad triples in bounded time. If not, then Ty is
not k-invertible. If so, then pick B € B with no bad triples and use the u associated to
it to construct a decycling family Y3, ..., Y} of Ty. Let T be the transitive tournament
obtained by inverting these sets in Tj.

It remains to show that we can obtain the order on V(Tp) associated to 7" in
linear time. Inverting the sets Xi,...,X,,Y1,...,Y, transforms T into 7’, and we
have the characteristic vector of each vertex in these sets as well as the order on the
vertices associated to T. We can therefore in linear time obtain the atoms of these
s + k inversions and for each atom A the restriction to A of the order associated to
T. By reversing the order on each atom whenever the edges within it undergo a net
reversal under the inversions, we obtain the order on that atom associated to T”. The
T’-minimal vertex is now the minimal vertex of one of the atoms under their current
orderings. There are at most 2°** atoms so we can identify the 7’-minimal vertex in
constant time. After deleting this vertex from its atom, the second smallest vertex
according to 1" is one of the new minimal vertices of the atoms so can be found in
constant time again. Continuing in this way we can obtain the full ordering in linear
time, as required. 0

Note that the implicit constant in the running time given by this proof is doubly
exponential in s + k.

6. Cycle transversals. In this section we will prove Theorem 1.8, constructing
for each k € N a digraph D with 7(D) = k and inv(D) = 2k. We will use the so-called
Eventown theorem, proved independently by Berlekamp [8] and Graver [17].

THEOREM 6.1 (Eventown [8], [17]). Let n € N and let F C P([n]) be a family of
subsets of [n] such that |Fy N Fy| is even for all Fy, Fy € F. Then |F| < 27/21,

For a digraph D and vertices u, v, w € V(D), we will say that v and v differ on w
if either uw, wd € F(D) or v, wu € E(D). We are now ready to prove the theorem.

Proof of Theorem 1.8. Fix k € N and let n € N be large and divisible by 2*.

We will define a digraph D on vertex set {ug,...,ux—1,v0,...,0,—1} and then show
that it satisfies the conditions of the theorem. Start by including all directed edges
1)75)7 for i < j, so that the subdigraph of D induced on {vg,...,v,—_1} is a transitive

tournament. For ¢ € {0,...,k—1} and j € {0,...,n— 1}, add the edge w;v; if in the
binary expansion of j, the digit in the 2 place is a 0, and add the edge v;u; otherwise.
For ease of exposition we will not include any edges among the w; (though including
any combination of such edges would still give a valid construction), so this completes
the definition of D. As noted above, the removal of the vertices ug, ..., ur_1 from D
leaves an acyclic digraph, so 7(D) < k.

It remains to show that inv(D) > 2k, as then inv(D) = 27(D) = 2k follows from
inv(D) < 27(D). Suppose for a contradiction that Xi,..., Xop—1 C V(D) form a
decycling family of D and let D’ be the acyclic digraph obtained by inverting these
sets in D. Consider the characteristic vectors of vg,...,v,_1 in Xi,..., Xor_1, which
we will denote by vq,...,v,_1 € ngfl respectively. Let K = 2F. By the pigeonhole
principle, if n is large enough, then there exist distinct 4,7’ € {0,...,n/K — 1} such
that

(Vike, Vik 41y -+ 5 V(ig1)K—1) = (VilK, VilK 115 -+ 5 V(4 1) K —1)-
We may assume that ¢ = 0 and ¢/ = 1.
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We will show that vy,...,vk_1 are pairwise distinct and that v; - v; is constant
as i,j € {0,..., K — 1} vary. We claim that these conditions force a contradiction.
Indeed, in the case where v; - v; = 0 for all 4,j, we have that the v; are indicator
vectors of pairwise distinct subsets of [2k — 1] which each have even size, and each
pair of which have even intersection. By Eventown, every such collection has at most
2(2k=1)/2 < 9k — K members, giving the required contradiction. On the other hand,
if v;-v; =1 for all 7, j, then consider the ‘complement’ vectors wy, ..., Wx_1, which
have 1’s where the v; have 0’s and 0’s where the v; have 1’s. It is straightforward
to use the fact that the vectors have odd length to show that these w; are pairwise
distinct and satisfy w; - w; = 0 for all 4, j, from which we can derive a contradiction
as above.

We continue by showing that the vectors vy, ..., vk _1 are pairwise distinct, which
is equivalent to showing that each of vy, ...,vx_1 is in a different atom. Suppose for
a contradiction that v; and v; are in the same atom for some ¢ < j in {0,..., K —1},
and note that vi 4 ; and v ; are in this atom too by assumption. By the construction
of D there is some £ € {0,...,k—1} such that v; and v; differ on uy in D. Since they
are in the same atom as each other, they also differ on uy in D'. If v;up, ugv; € E(D'),
then to avoid a cyclic triple in D’ we have v;0; € E(D’). This means that the edges
within v; and v;’s atom have the same orientations in D as they do in D’, so in
particular we have v;0x4; € E(D'). Moreover v; and vy, are in the same atom and
are either both in-neighbours of u, in D or both out-neighbours, so since v;u; € E(D’)
we also have vx;u; € E(D’). Hence, the cycle v;0x1;u; appears in D’. Similarly if
vjug, upv; € E(D'), then we have v;0; € E(D’). In this case the edges within the atom
of v; and v; switch orientation between D and D', so the cycle v;usvx; appears in
D’. In both cases we have the desired contradiction, and we deduce that the vertices

Vg, ...,V _1 are all in different atoms.

It remains to show that v; - v; is constant as ,j € {0,..., K — 1} vary. Suppose
for a contradiction that this is not the case, then there exists i € {0,..., K — 1} such
that v; - v; is not constant as j € {0,...,K — 1} varies. For such ¢ we can pick

509 j €{0,...,K — 1} such that v; - v; # v; - v;. Now if v; - v; =0, then v; - v; =1 s0
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by Observation 2.2, D' contains the cycle vxy;0;0; if i < j or the cycle Vx4 ;Uk+,0;
if ¢ > j. Similarly if v; - v; = 1, then D’ contains one of the cycles v;0;0x; and
iUk 1,0k 1. We have a contradiction in all cases, so the value of v; - v, is constant
as 1,7 €{0,..., K — 1} vary, as required. O

7. Bounds on inv(n).

7.1. Lower bounds. In this section we discuss the previous known lower bound
on inv(n) and give the proof of Theorem 1.9. As noted in the introduction, Belkhe-
chine, Bouaziz, Boudabbous, and Pouzet [7] used a counting argument to lower bound
inv(n). They observed that since there are n! labelled transitive tournaments on n
vertices, there are at most n! - 2"(*=1 labelled (k — 1)-invertible tournaments on n
vertices. There are a total of 27("~1/2 labelled n-vertex tournaments, so for any k
such that 27("=1/2 > nl. 27(k=1) we have inv(n) > k. Taking logarithms base 2 and
rearranging, this condition becomes k < (n — 1)/2 —log(n!)/n, so we have

inv(n) > {"21 - loggﬁ)J > {"21 - log(n)J ,

where for the final inequality we used n! < n™. Lower bounds on inv(n) of this form
were the best known (disregarding very slight tightenings of the argument).
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The proof of Theorem 1.9 uses the following lemma which gives a bound on the
probability that a random symmetric binary matrix has at most a certain rank. In
fact, these probabilities are known exactly [23], but we will use a simpler bound which
is essentially tight for our purposes and for which we include a short proof.

LEMMA 7.1. The probability that a uniformly random m X n symmetric matrizc
over Fy has rank at most n — s (over Fy) is at most gslos(n)=(3)

Proof. Construct the random matrix in n steps, in the ith step choosing the first
1 entries of the ¢th row of the matrix (and also, by symmetry, the ith column). For
each i € [n], let M; be the random symmetric ¢ X ¢ matrix obtained after step i.

Note that for each ¢ the nullity increases by at most 1 between M; and M; ;.
It follows that if the nullity of M, is at least s, then for all 1 < j < s —1 we
can define k; to be the smallest i such that the nullity of M; is j + 1, and we have
2<ky <ky<--+<ks_1<n. For each j, the ranks of My, 1 and My, are equal, so
the first k; — 1 entries of the k;jth row of My, lie in the (k; — 1 — j)-dimensional row
space of My, 1, which happens with probability 277, There are (Sfl) ways to choose

ki,...,ks_1 as above, so the probability that M,, has rank at most n — s is at most
n s—1 ( )
2—j < QSlog(n)— 5
(5 — 1) H - ’
j=1
as required. O

We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let T be a uniformly random tournament on vertex set
[n] and let Mp = (mgp) be the n x n matrix over Fy defined as follows. For a < b,
let mgp be 0 if ab is an edge of T' and 1 otherwise, then define my, = mgp, and finally
choose each diagonal entry uniformly at random. Note that the (g) entries of Mp
above the diagonal determine 7', and the other entries are defined such that My is a

uniformly random symmetric binary matrix.
Let s = { 2n log(n)J and write K = n — s. Suppose that inv(T) < k and let

X1,..., X, be a decycling family of T'. For each X;, let M; be the n x n binary
matrix whose (a,b) entry is 1 if and only if a,b € X;. Observe that, working over
Fy, we have rank(M;) < 1 for all 4, and thus rank(}_, M;) < k. By construction,
Mr + %, M; is a matrix whose entries above the diagonal correspond to a transitive
tournament on [n] (its diagonal entries can be anything). Let M be the set of binary
matrices corresponding in this manner to a transitive tournament on [r], and note
that |[M| = nl2".

Putting all of this together, we have that if inv(T") < k, then there exists M € M
such that rank(Mz + M) < k. For each fixed M, we have that M+ M is a uniformly
random symmetric binary matrix and hence has rank at most k& with probability at

most 2°108(—(3) by Lemma 7.1. Taking a union bound over all M € M we obtain
P(inv(T) < k) < ni2n2slosm=(3),
Since n! = O(y/n(n/e)™), the right-hand side is O(2/() where

f(n) = log(n) + nlog(n) — nlog(e) + n + slog(n) — (s)

2 2
= —n(log(e) — 1) + o(n),
and thus P(inv(7T) < k) — 0 as n — oo as desired. d
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7.2. Upper bounds. The only approach which has been used to prove upper
bounds on inv(n), introduced in [7], is to ‘solve’ one vertex at a time, as follows.
Given a tournament T, pick a vertex v and invert the set consisting of v and its
out-neighbourhood. In the resulting tournament 77, v is a sink. Using a further
inv(n — 1) inversions we can transform 77 — {v} into a transitive tournament, so
inv(n) < inv(n — 1) + 1 for all n > 2. The authors of [7] observed that inv(4) = 1,
so inv(n) < n — 3 for n > 4. For n > 6 this was improved by 1 in [4] using the fact
that inv(6) = 2 (which they attribute to [6] and which we have verified by a computer
check). We introduce a slightly different approach to prove the following.

PROPOSITION 7.2. For all n € N,

inv(n) < V;lJ +inv([”;ﬂ>.

Proof. Let n € N and let T be an n-vertex tournament. Pick v € V(T') and
write A and B for the in- and out-neighbourhoods of v respectively. We may assume
that |A] > [(n—1)/2] (the case where B is the larger of the two is similar). By
‘solving’ each vertex in B one after another, we can find at most |B| inversions which
transform T into a tournament 7" such that the subtournament of 7" induced on
B U {v} is transitive (with v as the minimal element) and every edge of 7" between
A and B U {v} is oriented away from A. With a further inv(A4) < inv(]A|) inversions
we can transform 7" into a transitive tournament. Thus, inv(7T) < |B| + inv(|A4)).

We have inv(k) < inv(k—1)+1 for all ¥ € N and we can apply this |A|—[(n —1)/2]
times to obtain inv(|A|) < inv([(n —1)/2]) + |A| — [(n — 1)/2]. Using the fact that
|A] 4+ |B| = n — 1, this yields

inv(T) < |B|+inv<[n;1—‘> 4] - [“;ﬂ - {";1 +inv<[n;1—‘>,

and the claim follows. 0

We can use this result to improve (for large n) the upper bound on inv(n).
COROLLARY 7.3. For all n € Ny, inv(n) <n —log(n + 1).

Proof. We prove the statement by induction on n, with the case n = 0 clear. If
n > 1 and the claim holds for all smaller values, then we have

e ()
<[ () ;
§nllog(n;rl),

=n—log(n+1).

IN

inv(n)

8. Conclusion. In this paper we have answered several of the questions posed
in [4]. We have shown that their ‘dijoin conjecture’, that inv(L — R) = inv(L) 4+
inv(R), is false in general, but have verified it in the case where inv(L) = inv(R) = 2
and have also shown that a k-join analogue holds under certain conditions. In addi-
tion, we have confirmed their related conjectures that k-INVERSION is NP-complete
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for all K > 1, and that the inequality inv(D) < 27(D) is tight. We have answered
their question concerning the minimal r; such that k-TOURNAMENT-INVERSION can
be solved in time O(|V(T)|™), showing that r, = 2 for all k, and have improved the
lower bound on inv(n) to show that inv(n) = (1 + o(1))n. There are, however, still
many interesting open problems in this area. Before discussing some of them, we will
touch on two operations similar to inversion.

8.1. Similar operations. We first consider an operation on permutations which
is used by molecular biologists as a model for genetic mutations, and could loosely
be seen as a vertex analogue of inversions in tournaments. Given a permutation
m=(m w2 ... my) of [n], for 1 < i < j < n, the reversal of the interval [i,j] is the
permutation obtained by reversing the order of 7;,...,m; in m. The reversal distance,
d(m), of a permutation 7 is the minimum number of reversals required to transform =
into the identity permutation. For a survey of reversals and the reversal distance (and
many other combinatorial models of genome rearrangements) see [15]. We highlight
some results of particular relevance to our work. With regards to computational
complexity, Caprara [9] showed that the problem of SORTING BY REVERSALS, that
is, determining whether d(7) < k for inputs of a permutation 7 and k € N, is NP-
complete, while Hannenhalli and Pevzner [18, 19] showed that it is fixed-parameter
tractable when parameterised by k. The natural extremal problem was solved by
Bafna and Pevzner [3] who proved that for a permutation 7 of [n], we have d(7) < n—1
with equality if and only if 7 € {~,,v, '} for an explicit ~,.

Inversions in digraphs can also be thought of as generalisations of edge reversals,
i.e. the operations which reverse the orientation of a single edge. It is not difficult to see
(using an argument from subsection 1.3) that the minimum number of such operations
required to transform a digraph D into an acyclic digraph is equal to 7/(D), the cycle
edge-transversal number of D. Determining this quantity is the famous feedback arc
set problem, which has been widely studied (see [21] for an overview). In particular
the problem of determining for inputs D and k whether 7/(D) < k was one of the
first shown to be NP-complete [20] and it remains NP-complete when the input is
restricted to tournaments [1, 10]. However, Chen, Liu, Lu, O’Sullivan, and Razgon
[11] showed that this problem is again fixed-parameter tractable when parameterised
by k. On the extremal side, it was shown by Spencer [27, 28] that the maximum
cycle edge-transversal number of an n-vertex tournament is 3 (%) — ©(n3/2) and that
a random labelled n-vertex tournament has this cycle edge-transversal number with
probability tending to 1. Bounds of this form remain the best known (see also [13, 25]).

8.2. Open problems. We have shown (in Theorem 1.7) that the problem which
takes as inputs a tournament T" and an integer k € N, and asks whether inv(7T") < k, is
fixed-parameter tractable when parameterised by k. In keeping with the pattern ex-
hibited in the settings discussed in subsection 8.1, Bang-Jensen, da Silva, and Havet [4]
conjectured that the full problem is NP-complete.

CONJECTURE 8.1 ([4]). The problem of deciding whether inv(T) < k for inputs
of k € N and a tournament T is NP-complete.

Note that Theorem 1.7 does not make any progress towards disproving this be-
cause the implied constant in the O(n?) running time is not polynomial in k. In fact,
as noted above, the constant arising from our algorithm is doubly exponential in k.
However, again in keeping with both settings discussed in subsection 8.1 (and indeed
many natural fixed-parameter tractable problems), we conjecture that this constant
can be taken to be singly exponential in k£, perhaps with a higher power of n.

This manuscript is for review purposes only.



g 1 1
SIS BTN
L= O ©

~
ot
oo

)
ot
=

)
ot
ot

- ~ ~ =
ol ot ot Gt
oo D

=)

-3

761
762
763
764
765
766
767

768

769

~N N N 3]
T = W N =

~N 4

-
1 =3 =
~N

~
o0

779
780
781
782
783

18 N. ALON, E. POWIERSKI, M. SAVERY, A. SCOTT, AND E. WILMER

CONJECTURE 8.2. There exist constants c1,co > 0 such that, for any k € N,
k-TOURNAMENT-INVERSION can be solved in time O(2F™" |V (T)|2).

As discussed in the introduction, the set ZCj, of k-inversion-critical tournaments
was shown to be finite for all k in [7]. They explicitly described ZC; and ZCs, for the
latter using results of Gallai [16] (see [24] for an English translation) and Latka [22],
but for k£ > 3 very little is known about these sets. In particular, it would be interest-
ing to determine myg, the maximum number of vertices in a tournament in ZCy, for
k> 3.

QUESTION 8.3 ([4]). What is the value of my, for k > 3%

Finding the minimum possible size of a k-inversion-critical tournament is equiv-
alent to the problem of determining inv(n). The best known bounds on inv(n) for
large n are now

n —+/2nlog(n) < inv(n) < n —log(n + 1),

and it would be interesting to tighten these further.
QUESTION 8.4. What is the asymptotic behaviour of n — inv(n)?

In light of our improved lower bound on inv(n), the lack of an explicit construc-
tion for a tournament of large inversion number is even more apparent: no n-vertex
construction with inversion number more than about n/3 (as given by the (n/3)-join
[5’;;]”/3) is known.

PROBLEM 8.5. Construct n-vertex tournaments with inversion number closer to
inv(n).

Belkhechine, Bouaziz, Boudabbous, and Pouzet ([6]; see [4]) defined for each
n € N a tournament @Q),, on vertex set [n] in which for ¢ < j the edge ij is oriented
towards j, except if j = + 1, in which case it is oriented towards i, and conjectured
that these graphs satisfy inv(Q,) = | %5+ |.

CONJECTURE 8.6 ([6]). For alln € N we have inv(Q,) = |25 |.

The conjecture is known to hold for n < 8 [7, 4], and it is certainly true that
inv(Qn) < [ 251 for all n since the sets

{2,3},{4,5},{6,7},....{2|(n—1)/2],2 |(n—1)/2] + 1}

form a decycling family of @Q,,.

Defining the inversion distance, inv(T,T"), between two labelled tournaments T
and T’ on the same vertex set to be the minimum number of inversions required
to transform T into 7”7, we remark that the matrix rank techniques developed in
subsection 7.1 can be used to show that the maximum inversion distance between
two n-vertex tournaments is exactly n — 1. Moreover, combining these ideas with
Lemma 7.1 gives an upper bound of 9(8)+n=(5)+s1e(m 4y the number of labelled
tournaments within inversion distance n — s of a given labelled tournament.

It is natural in this context to study the random walk W on the space of labelled
tournaments on [n] where each step in the walk consists of picking a uniform random
subset of [n] and inverting that set in the current tournament. In particular, we ask
the following.

QUESTION 8.7. What is the mizing time of W Does it satisfy the cutoff phe-
nomenon?
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Returning to the dijoin conjecture, Theorem 1.3 completes the work of Bang-
Jensen, da Silva, and Havet in showing that the conjecture holds in the cases where
inv(L),inv(R) < 2. We have also shown (Theorem 1.4) a k-join analogue of the dijoin
conjecture for collections of 2-invertible digraphs D1, ..., Dy at most one of which has
inversion number 2. We conjecture that this final condition can be removed.

CONJECTURE 8.8. Let k € N and let Dy,..., Dy be oriented graphs satisfying
inv(D;) <2 for alli. Then

inv([Dy,...,Dx)) = > inv(D;).

i=1

On the other hand, Theorem 1.2 gives a counterexample to the dijoin conjecture
where inv(L) = 1 and inv(R) = 3. From this, we can obtain counterexamples with
inv(L) = k and inv(R) = 3 for any k € N: let L = [C_g]k and let R be as in the proof
of Theorem 1.2. The tournaments obtained from these by inverting the whole vertex
set give counterexamples in which inv(L) = 3 and inv(R) = k. We conjecture that
here 3 can be replaced with any larger integer, or in other words that the only values
of inv(L) and inv(R) for which the dijoin conjecture always holds are those where
inv(L),inv(R) < 2 or where one of inv(L) or inv(R) is 0.

CONJECTURE 8.9. For all ¢,r € N with £ > 3 orr > 3 there exist oriented graphs
L and R with inv(L) = ¢ and inv(R) = r, but inv(L — R) < £+ 7.

This conjecture is equivalent_:uo the claim that for all r > 3 there exists a tour-
nament R with inv(R) = inv(C3 — R) = r. To see that this follows from the
conjecture, note that for r > 3, if inv(L) = 1 and inv(R) = inv(L — R) = r,
then we can extend L — R to a tournament 7 = L' — R’ with inversion num-
ber r. Clearly inv(R’) = r and inv(L’) > 1, so L' contains a copy of C3. Thus,
r =inv(R') < inV(C_g — R') < inv(T) = r, as required. The converse follows from
the arguments of the previous paragraph.

Finally, we noted in subsection 1.2 that inv(D) < inv(D — {v}) + 2 for all di-
graphs D and vertices v € V(D). Tt is certainly the case that this inequality is tight
for some D and v. Indeed, a reformulation of Theorem 1.8 yields the stronger state-
ment that for all k& € N there exists a digraph D and a set S C V(D) with |S| = k
such that for all T C S we have inv(D —T') = inv(D) — 2|T'|. We conjecture, however,
that the inequality inv(D) < inv(D — {v}) + 2 cannot be tight for all vertices v in a
given digraph D.

CONJECTURE 8.10. Let D be a digraph with at least one vertex. Then there exists
v € V(D) such that inv(D — {v}) > inv(D) — 1.

Acknowledgments. We would like to thank the anonymous referees whose sug-
gestions improved the presentation and clarity of our arguments. We would also
particularly like to thank one referee for raising Conjecture 8.2 as a question.
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