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Abstract. For an oriented graph D and a set X ⊆ V (D), the inversion of X in D is the4
digraph obtained by reversing the orientations of the edges of D with both endpoints in X. The5
inversion number of D, inv(D), is the minimum number of inversions which can be applied in6
turn to D to produce an acyclic digraph. Answering a recent question of Bang-Jensen, da Silva,7
and Havet we show that, for each k ∈ N and tournament T , the problem of deciding whether8
inv(T ) ≤ k is solvable in time Ok(|V (T )|2), which is tight for all k. In particular, the problem is9
fixed-parameter tractable when parameterised by k. On the other hand, we build on their work to10
prove their conjecture that for k ≥ 1 the problem of deciding whether a general oriented graph D has11
inv(D) ≤ k is NP-complete. We also construct oriented graphs with inversion number equal to twice12
their cycle transversal number, confirming another conjecture of Bang-Jensen, da Silva, and Havet,13
and we provide a counterexample to their conjecture concerning the inversion number of so-called14
‘dijoin’ digraphs while proving that it holds in certain cases. Finally, we asymptotically solve the15
natural extremal question in this setting, improving on previous bounds of Belkhechine, Bouaziz,16
Boudabbous, and Pouzet to show that the maximum inversion number of an n-vertex tournament is17
(1 + o(1))n.18
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1. Introduction. In this paper we only consider digraphs without loops, digons,21

or parallel edges, for which we use the terms digraph and oriented graph interchange-22

ably. For such a digraph D = (V,E) and a set X ⊆ V , the inversion of X in D is the23

digraph obtained from D by reversing the direction of the edges with both endpoints24

in X; we say that we invert X in D. Given a family of sets X1, . . . , Xk ⊆ V , we can25

invert X1 in D, then X2 in the resulting digraph, and so on, noting that the final26

digraph produced by these inversions is independent of the order in which we perform27

them. If inverting X1, . . . , Xk in turn transforms D into an acyclic digraph, then we28

say that these sets form a decycling family of D. We will refer to a set X ⊆ V which29

forms a decycling family by itself as a decycling set. The inversion number of D,30

denoted inv(D), is defined to be the minimum size of a decycling family of D, and for31

k ∈ N0 we say that D is k-invertible if inv(D) ≤ k.32

The study of inversions began in Houmem Belkhechine’s PhD thesis [5] and con-33

tinued in [6, 7, 26], in which many foundational results were established. The present34

work is inspired by a recent paper of Bang-Jensen, da Silva, and Havet [4] which35

studied a wide range of questions about invertibility, with an emphasis on those of36

an algorithmic or extremal nature. They also posed a host of interesting conjectures37

and problems, some of which we answer in this paper.38
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2 N. ALON, E. POWIERSKI, M. SAVERY, A. SCOTT, AND E. WILMER

1.1. The inversion number of k-joins. The cornerstone of many of the con-39

jectures made by Bang-Jensen, da Silva, and Havet in [4] is the following ‘dijoin40

conjecture’. For oriented graphs L and R, the dijoin L → R from L to R is the41

oriented graph consisting of vertex-disjoint copies of L and R, with an edge # »uv for all42

u ∈ V (L) and v ∈ V (R).43

Conjecture 1.1 ([4]). For oriented graphs L and R we have inv(L → R) =44

inv(L) + inv(R).45

Noting that the left-hand side is certainly at most the right-hand side for all L46

and R and that the conjecture holds trivially if inv(L) = 0 or inv(R) = 0, Bang-47

Jensen, da Silva, and Havet showed it to be true when inv(L)+ inv(R) ≤ 3, and when48

inv(L) = inv(R) = 2 and L and R are both strongly connected.1 They also observed49

(see our section 3) that the conjecture is equivalent to its restriction to tournaments.50

We disprove Conjecture 1.1 by exhibiting a tournament R with inv(R) = inv(
# »

C3 →51

R), where
# »

C3 is the directed cycle on three vertices.52

Theorem 1.2. There exists a tournament R with inv(R) = inv(
# »

C3 → R) = 3.53

While Theorem 1.2 shows that the dijoin conjecture is false in general, we prove54

it in the case where inv(L) = inv(R) = 2.55

Theorem 1.3. If L and R are digraphs with inv(L) = inv(R) = 2, then inv(L →56

R) = 4.57

The proof of Theorem 1.3 relies on the strongly connected case and our next result,58

which concerns the following generalisation of dijoins to arbitrarily many digraphs.59

For k ∈ N the k-join of digraphs D1, . . . , Dk, written [D1, . . . , Dk], is the digraph60

consisting of vertex-disjoint copies of D1, . . . , Dk with an additional edge # »uv whenever61

u ∈ V (Di), v ∈ V (Dj) for i < j. We write [D]k = [D, . . . ,D] for the k-join of k copies62

of the same oriented graph D. The following result can be viewed as a k-join analogue63

of the dijoin conjecture holding under certain conditions. It generalises a theorem of64

Pouzet, Kaddour, and Thatte [26] which states that inv([
# »

C3]k) = k for all k.65

Theorem 1.4. Let k ∈ N and let D1, . . . , Dk be oriented graphs. Assume that66

inv(Di) ≤ 2 for all i, with equality for at most one i. Then67

inv([D1, . . . , Dk]) =
k∑

i=1

inv(Di).(1.1)68

69

We will use Theorem 1.4 to confirm another conjecture from [4] which was made70

based on the dijoin conjecture (see Theorem 1.6 below). Theorem 1.4 and, in turn,71

Theorem 1.3 follow from a characterisation of the decycling families of size k of arbi-72

trary k-joins of oriented graphs with inversion number 1. We will need some further73

terminology to state this result: for a digraph D, sets X1, . . . , Xk ⊆ V (D), and74

a vertex v ∈ V (D), we define the characteristic vector of v in X1, . . . , Xk to be75

(I{v∈Xi} : i ∈ [k]) ∈ Fk
2 , where I{v∈Xi} is the indicator function of the event v ∈ Xi.76

For vectors u,v ∈ Fk
2 we write u · v for the usual scalar product of u and v over77

F2. This is not a genuine inner product, but we say nevertheless that a collection78

u1, . . . ,uℓ ∈ Fk
2 is orthonormal if ui · ui = 1 for all i and ui · uj = 0 for all i ̸= j.79

Finally, we refer to the canonical copy of Di in D = [D1, . . . , Dk] as the ith factor of80

1The case where inv(L) = 2 and inv(R) = 1 is not explicitly mentioned in [4], but follows easily
from the case where inv(L) = 1 and inv(R) = 2 by inverting V (L → R).
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INVERTIBILITY OF DIGRAPHS AND TOURNAMENTS 3

D. We are now ready to state our characterisation theorem, the case k = 2 of which81

was shown by Bang-Jensen, da Silva, and Havet [4]. Its proof is based on an approach82

used by Pouzet, Kaddour, and Thatte [26].83

Theorem 1.5. Let D1, . . . , Dk be oriented graphs with inv(Di) = 1 for all i and84

let D̂ = [D1, . . . , Dk] be their k-join. Then sets X1, . . . Xk ⊆ V (D̂) form a decycling85

family of D̂ if and only if there are orthonormal vectors u1, . . . ,uk ∈ Fk
2 and for86

each i a decycling set Vi ⊆ V (Di) of the ith factor of D̂ such that, for each i, the87

vertices in Vi have characteristic vector ui (in X1 . . . , Xk), and all other vertices have88

characteristic vector 0 (in X1 . . . , Xk).89

In particular, any acyclic digraph obtained from D̂ by k inversions can also be90

obtained by inverting a decycling set for each factor in turn.91

1.2. Computational complexity. One focus of Bang-Jensen, da Silva, and92

Havet’s paper [4] was on the computational complexity of deciding whether an oriented93

graph is k-invertible. More formally, they considered, for fixed k ∈ N0, the problem94

of k-Inversion:95

Input: an oriented graph D.
Problem: inv(D) ≤ k?

96

A first observation is that 0-Inversion is equivalent to checking whether a digraph97

D is acyclic, which is well known to be possible in time O(|V (D)|2) (see [12, p. 612]),98

so we need only consider k ≥ 1.99

Bang-Jensen, da Silva, and Havet [4] showed that 1-Inversion is NP-complete100

using a reduction from Monotone 3-in-1 SAT. Then, using the special cases of the101

dijoin conjecture proved in that paper, they observed that for a digraph D we have102

inv(D → D) = 2 if and only if inv(D) = 1, from which it follows that 2-Inversion is103

also NP-complete. They conjectured that NP-completeness extends to k-Inversion104

for all k ≥ 3, noting that this would follow from a similar argument if the dijoin105

conjecture were true. Of course, the full dijoin conjecture is not required, and indeed106

it is easy to see that Theorem 1.4 is enough: it implies that inv(D) = 1 if and only107

if inv([D]k) = k, which reduces 1-Inversion to k-Inversion and hence shows the108

following (see section 4).109

Theorem 1.6. k-Inversion is NP-complete for all k ∈ N.110

Bang-Jensen, da Silva, and Havet also considered the computational complexity111

of the same problem when the input is restricted to tournaments. For fixed k ∈ N the112

problem of k-Tournament-Inversion is:113

Input: a tournament T .
Problem: inv(T ) ≤ k?

114

One way of analysing the complexity of this problem is to use k-inversion-critical115

tournaments: we say that a tournament T is a k-inversion-critical tournament if116

inv(T ) = k but inv(T − {v}) < k for all v ∈ V (T ), and denote by ICk the set117

of k-inversion-critical tournaments. It is not difficult to see that a tournament has118

inversion number at most k if and only if it contains no element of ICk+1 ∪ ICk+2119

as a subtournament. Indeed, for any digraph D and vertex v ∈ V (D) with out-120

This manuscript is for review purposes only.



4 N. ALON, E. POWIERSKI, M. SAVERY, A. SCOTT, AND E. WILMER

neighbourhood A ⊆ V (D), adding A and A ∪ {v} to a decycling family of D − {v}121

gives a decycling family of D. We deduce that inv(D) ≤ inv(D − {v}) + 2. Hence, if122

inv(T ) > k, then by arbitrarily deleting vertices from T one by one, we can obtain a123

subtournament T ′ of T with inv(T ′) ∈ {k + 1, k + 2}. This T ′ contains a member of124

ICk+1 ∪ ICk+2 as a subtournament.125

Belkhechine, Bouaziz, Boudabbous, and Pouzet [7] showed that ICk is finite for126

all k ∈ N. Writing mk for the maximum number of vertices of an element of ICk, it fol-127

lows that k-Tournament-Inversion can be solved in time O(|V (T )|max(mk+1,mk+2)).128

Thus, in particular, k-Tournament-Inversion can be solved in polynomial time129

for any fixed k. Plainly IC1 = { # »

C3}, so m1 = 3, and IC2 was explicitly described130

in [26], giving m2 = 6. However, no upper bound on mk is known for k ≥ 3, so for131

no k ≥ 1 does the above give a concrete polynomial bound on the complexity of k-132

Tournament-Inversion. Note also that this approach does not identify a decycling133

family of size k given a k-invertible tournament, it can only confirm the existence of134

one.135

Bang-Jensen, da Silva, and Havet [4] used an alternative approach to show that136

1-Tournament-Inversion can be solved in time O(|V (T )|3) while 2-Tournament-137

Inversion can be solved in time O(|V (T )|6). The idea behind their algorithm for 1-138

Tournament-Inversion is to check whether the tournament contains a vertex which139

can be made into a source, and for 2-Tournament-Inversion they check whether140

it contains a pair of vertices which can be made into a source and a sink respec-141

tively. They went on to ask for the least real numbers rk such that k-Tournament-142

Inversion can be solved in time O(|V (T )|rk). We answer this question by showing143

that, perhaps surprisingly, for each fixed k ∈ N there is an algorithm solving k-144

Tournament-Inversion in time O(|V (T )|2). In the language of complexity theory,145

this means that the likely NP-hard problem of determining whether inv(T ) ≤ k for146

inputs k and T (see Conjecture 8.1) is fixed-parameter tractable when parameterised147

by k.2148

Theorem 1.7. For fixed k ∈ N, k-Tournament-Inversion can be solved for n-149

vertex tournaments in time O(n2). Moreover, if the input tournament is k-invertible,150

then our algorithm finds a decycling family of size at most k.151

Note that the exponent of n in this running time is optimal, since any algorithm152

solving k-Tournament-Inversion needs to inspect the orientation of every edge153

in the input tournament. However, the implied constant in the running time of our154

algorithm is doubly exponential in k, so it is unlikely to be of practical use for large k.155

1.3. Relation to other parameters. Bang-Jensen, da Silva, and Havet [4]156

also considered the relationship between the inversion number and other digraph pa-157

rameters. Two well studied parameters of particular interest are the cycle transversal158

number and the cycle edge-transversal number, defined as follows. A cycle transversal159

(or feedback vertex set) in a digraph D is a set of vertices of D whose removal from D160

leaves an acyclic digraph and the cycle transversal number of D, denoted τ(D), is the161

minimum size of a cycle transversal in D. Analogously, a cycle edge-transversal (or162

feedback arc set) in D is a set of edges of D whose removal leaves an acyclic digraph163

and the cycle edge-transversal number of D, τ ′(D), is the minimum size of a cycle164

edge-transversal in D. Note that the inequality τ(D) ≤ 2τ ′(D) always holds, since165

the endpoints of the edges in a cycle edge-transversal of D form a cycle transversal of166

2See [14] for the definition of fixed-parameter tractability and an exposition of the surrounding
theory.
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INVERTIBILITY OF DIGRAPHS AND TOURNAMENTS 5

D.167

Bang-Jensen, da Silva, and Havet [4] made the following observations concerning168

the relationships between inv(D), τ(D), and τ ′(D) for a digraph D. Firstly, we169

have inv(D) ≤ τ ′(D). This follows from the fact that if F ⊆ E(D) is a cycle edge-170

transversal of D, then since (V (D), E(D)\F ) is acyclic, there is a labelling v1, . . . , vn171

of V (D) such that #     »vjvi ̸∈ E(D) \ F if i < j. Applying the family of inversions172

({vi, vj} : i < j, #     »vjvi ∈ F ) transforms D into an acyclic digraph and hence inv(D) ≤173

τ ′(D) as claimed. They also observed that this inequality is tight for all values of174

τ ′(D) as exhibited by [
# »

C3]k, which clearly has cycle edge-transversal number k, and175

as mentioned above was shown in [26] to have inversion number k.176

Turning to τ(D), the inequality inv(D) ≤ 2τ(D) was obtained in [4] as follows.177

After observing that τ(D) = 0 implies inv(D) = 0, we may assume that τ(D) ≥ 1.178

Let S ⊆ V (D) be a cycle transversal in D of size τ(D) and pick v ∈ S. Then observe179

that D−{v} has cycle transversal number τ(D)− 1, with S \ {v} a cycle transversal.180

Moreover, as noted in Section 1.2 we have inv(D) ≤ inv(D − {v}) + 2, from which it181

follows by induction that inv(D) ≤ 2τ(D).182

Bang-Jensen, da Silva, and Havet conjectured that this inequality is tight for all183

values of τ(D). Indeed, they considered the graph V5 obtained by adding a vertex v184

and edges
# »
v1,

# »
2v,

# »
v3,

# »
4v to the (transitive) tournament on vertex set {1, 2, 3, 4} with185

edges
#»
ij for i < j, which can easily be seen to have τ(V5) = 1 and inv(V5) = 2. They186

noted that if the dijoin conjecture holds, then τ([V5]k) = k and inv([V5]k) = 2k for all187

k (in fact, since V5 is strongly connected, the case k = 2 follows from the special cases188

for which they proved the dijoin conjecture). We construct digraphs with a similar189

character to V5 which confirm their conjecture.190

Theorem 1.8. For all k ∈ N there exists an oriented graph D with inv(D) =191

2τ(D) = 2k.192

1.4. The extremal problem. Finally, we consider inv(n), defined for each193

n ∈ N as the maximum inversion number of an oriented graph (or, equivalently, a194

tournament) on n vertices. Belkhechine, Bouaziz, Boudabbous, and Pouzet [7] were195

the first to study this parameter, obtaining bounds of the form3196

n

2
− log(n) +O(1) ≤ inv(n) ≤ n+O(1).197

Their lower and upper bounds follow from counting and inductive arguments respec-198

tively (see section 7 for details), and they conjectured that inv(n) ≥
⌊
n−1
2

⌋
for all n.199

Bounds of the form above previously remained the best known, with Bang-Jensen, da200

Silva, and Havet [4] noting that the O(1) term in the upper bound can be improved201

very slightly.202

Using a random construction, we show that inv(n) = (1 + o(1))n.203

Theorem 1.9. For sufficiently large n we have204

inv(n) ≥ n−
√
2n log(n).205

Moreover, a uniformly random labelled n-vertex tournament has at least this inversion206

number with probability tending to 1.207

In section 7 we also show that inv(n) ≤ n− log(n+ 1).208

3All logarithms in this paper are taken base 2.
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1.5. Outline of the paper. The remainder of the paper is organised as follows.209

In section 2 we introduce some further notation, definitions, and preliminary obser-210

vations which will be useful in the rest of the paper. In the very short section 3 we211

prove Theorem 1.2, constructing a counterexample to the dijoin conjecture. Our re-212

sults on the inversion number of k-joins, Theorem 1.3, Theorem 1.4, and Theorem 1.5,213

are proved in section 4, along with Theorem 1.6. Section 5 concerns the complexity214

of k-Tournament-Inversion and contains the proof of Theorem 1.7. We give the215

proof of Theorem 1.8 in section 6. In section 7 we discuss the existing bounds on216

inv(n) before proving Theorem 1.9 and giving an improved upper bound. Finally,217

in section 8 we restate some conjectures and questions from previous papers which218

remain open and pose some new ones of our own.219

Note added. Almost simultaneously with the initial release of this paper, Aubian,220

Havet, Hörsch, Klingelhoefer, Nisse, Rambaud, and Vermande announced indepen-221

dent work [2] on some of the problems we address here. Specifically, they prove a222

stronger version of Theorem 1.2 (in fact, they prove that a strong version of our Con-223

jecture 8.9 holds provided at least one of ℓ and r is odd and at least 3) and they show224

upper and lower bounds on inv(n) of forms similar to those we give in subsection 1.4.225

2. Notation and preliminaries. In this section we detail some of the defini-226

tions, observations, and notation to be used in the rest of the paper. As noted above,227

all digraphs will be oriented graphs, that is, loopless directed graphs with at most one228

edge between each pair of vertices. An acyclic digraph is a digraph with no directed229

cycles. In the case where the digraph is a tournament, we use the term transitive230

instead of acyclic. Note that for each n ∈ N there is a unique unlabelled transitive231

tournament on n vertices. To a transitive tournament T we associate the total order232

< on V (T ) where u < v for all u, v ∈ V (T ) such that # »uv ∈ E(T ). We write [n] for233

the set {1, 2, . . . , n}. For a digraph D and a set S ⊆ V (D) we write D − S for the234

digraph produced by deleting the vertices in S from D. We now give the following235

key definitions.236

Definition 2.1. Recall that for a digraph D, sets X1, . . . , Xk ⊆ V (D), and a237

vertex v ∈ V (D), the characteristic vector of v in X1, . . . , Xk is (I{v∈Xi} : i ∈ [k]) ∈238

Fk
2 , where I{v∈Xi} is the indicator function of the event v ∈ Xi. Define an equivalence239

relation ∼ on V (D) by setting u ∼ v if u and v have the same characteristic vector in240

X1, . . . , Xk. The atoms of X1, . . . , Xk in D are the equivalence classes of this relation.241

Note that, equivalently, the atoms of X1, . . . , Xk in D are the atoms of the set242

algebra on V (D) generated by X1, . . . , Xk, and that there are at most 2k atoms for243

given D and X1, . . . , Xk. The next observation will be useful throughout the paper.244

Observation 2.2. Let D be a digraph and suppose that u, v ∈ V (D) are joined by245

an edge in D. Let X1, . . . , Xk ⊆ V (D). Write u,v ∈ Fk
2 for the characteristic vectors246

of u and v in X1, . . . , Xk respectively. Then the edge between u and v undergoes a net247

change in orientation when X1, . . . , Xk are inverted in D if and only if u · v = 1.248

This follows from the fact that u · v is the parity of the number of X1, . . . , Xk249

which contain both u and v. An obvious implication of Observation 2.2 is that given250

D and X1, . . . , Xk, for every pair of (not necessarily distinct) atoms A and B, either251

all edges {ab : a ∈ A, b ∈ B} undergo a net orientation change when X1, . . . , Xk are252

inverted, or none of them do. In particular, for every vertex v and atom A, either all253

edges {va : a ∈ A} change orientation or none of them do.254

Finally, we note some simple observations which will be used freely in what follows.255

(i) If D′ is a subdigraph of an oriented graph D, then inv(D′) ≤ inv(D).256

This manuscript is for review purposes only.
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(ii) For every oriented graph D and every non-negative integer k ≤ inv(D), there257

exists a spanning subdigraph of D with inversion number k.258

(iii) If X1, . . . , Xk is a decycling family of an oriented graph D, then D can be259

extended to a tournament T for which X1, . . . , Xk is still a decycling family.260

In particular inv(T ) = inv(D).261

For (ii), delete edges of D one by one, noting that the inversion number drops by at262

most 1 at each step. For (iii), invert the decycling family in D, extend the resulting263

acyclic digraph to a transitive tournament, then invert the decycling family again.264

3. A counterexample to the dijoin conjecture. In this short section we give265

a counterexample to the dijoin conjecture of Bang-Jensen, da Silva, and Havet [4],266

that is, the conjecture that inv(L → R) = inv(L) + inv(R) for all oriented graphs L267

and R. As noted in the introduction, this conjecture is equivalent to its restriction268

to tournaments. Indeed, suppose that L and R are digraphs with inv(L → R) <269

inv(L) + inv(R). Extend L → R to a tournament of the same inversion number and270

observe that this tournament is L′ → R′ for some tournaments L′ and R′ extending L271

and R respectively. These clearly satisfy inv(L′) ≥ inv(L) and inv(R′) ≥ inv(R), so we272

have tournaments L′ and R′ with inv(L′ → R′) < inv(L)+inv(R) ≤ inv(L′)+inv(R′).273

Proof of Theorem 1.2. Let L be a copy of
# »

C3. Suppose that R is a tournament274

with inv(R) = 3 for which there exist disjoint A,B,C ⊆ V (R) such that A∪B, A∪C275

and B ∪ C form a decycling family of R. Then for distinct vertices u, v ∈ V (L) the276

sets A ∪ B ∪ {u, v}, A ∪ C ∪ {u, v} and B ∪ C ∪ {u, v} form a decycling family of277

L → R, demonstrating that278

inv(L → R) = 3 < 4 = inv(L) + inv(R).279

One way to construct such an R is as follows: let R be the tournament with280

vertex set [9], let A = {1, 3}, B = {4, 6}, and C = {7, 9}, and let the edge ij be281

directed backwards (that is, from j to i when i < j) if and only if i and j are both in282

A ∪ B ∪ C, but not both in A, B, or C. It is clear that inverting A ∪ B, A ∪ C and283

B ∪ C transforms R into a transitive tournament, and a computer check shows that284

inv(R) = 3, as required.285

4. Decycling families of k-joins. In this section we prove Theorem 1.5, which286

characterises the decycling families of size k of k-joins of digraphs each with inversion287

number 1. We will then deduce Theorem 1.4 from this characterisation, and use288

Theorem 1.4 to obtain Theorem 1.3 and Theorem 1.6. The bulk of the work in our289

proof of Theorem 1.5 is put towards proving Lemma 4.1, which deals with the case290

D̂ = [
# »

C3]k.291

Lemma 4.1. Let k ∈ N, let D̂ = [
# »

C3]k, and let X1, . . . , Xk ⊆ V (D̂) be a decycling292

family of D̂. Then there exist orthonormal vectors u1, . . . ,uk ∈ Fk
2 such that in the293

ith factor of [
# »

C3]k, one vertex has characteristic vector 0 and the other two have294

characteristic vector ui.295

We will use the setup that Pouzet, Kaddour, and Thatte [26] introduced in their296

proof that inv(D̂) = k. The first part of our argument is essentially a reformulation297

of theirs, but we include it for completeness and to build intuition.298

Proof of Lemma 4.1. Let T be the transitive tournament obtained by inverting299

the sets X1, . . . , Xk in D̂, and let < be the total order on V (D̂) associated to T .300

Note that for all i, after inverting X1, . . . , Xk the ith factor has one vertex that has301

out-edges to the other two vertices in the factor and exactly one of these edges has302
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undergone a net reversal. Thus we can label the vertices in the ith factor as ui, vi, wi303

where #           »uiviwi is a directed 3-cycle in D̂, and the edge between ui and wi undergoes a304

net reversal underX1, . . . , Xk while the edge between ui and vi does not. In particular,305

we will use throughout that ui < vi, wi and that, by Observation 2.2, ui · vi = 0 and306

ui ·wi = 1 where ui,vi,wi ∈ Fk
2 are the respective characteristic vectors of ui, vi, wi307

in X1, . . . , Xk. We have the following claim, originally proved in [26].308

Claim 4.2 ([26]). The vectors u1, . . . ,uk ∈ Fk
2 are linearly independent.309

Proof. The statement is equivalent to the claim that for all non-empty I ⊆ [k]310

we have
∑

i∈I ui ̸= 0. Fix such an I and note that it is sufficient to show that311

there exists some x ∈ Fk
2 such that (

∑
i∈I ui) · x ̸= 0. Let m ∈ I be such that312

ui < um for all i ∈ I \ {m}. Note that um < vm, wm, so by the transitivity of T313

we have ui < vm, wm for all i ∈ I. It is straightforward to deduce from this that314

for all i ∈ I \ {m}, the orientations of the edges uivm and uiwm are either both315

unchanged after X1, . . . , Xk are inverted, or both reversed. By Observation 2.2, in316

other words we have ui · vm = ui · wm for all i ∈ I \ {m}. On the other hand we317

have um ·vm = 0 while um ·wm = 1, so it follows by linearity of the dot product that318

(
∑

i∈I ui) ·vm ̸= (
∑

i∈I ui) ·wm. One of these two dot products is thus non-zero, and319

we deduce that
∑

i∈I ui ̸= 0, as required.320

We now build on Claim 4.2 as follows.321

Claim 4.3. Let ℓ ∈ [k] and suppose that the vectors ui,vi,wi for ℓ ≤ i ≤ k all lie322

in a subspace V of Fk
2 of dimension k − ℓ+ 1. Then uℓ, . . . ,uk are orthonormal, and323

for all ℓ ≤ i ≤ k we have ui = wi and vi = 0.324

Proof. We will prove the claim by reverse induction on ℓ. In the ℓ = k case325

the claim follows easily from the fact that uk · wk = 1 while uk · vk = 0. Thus,326

let ℓ ≤ k − 1 and write [ℓ, k] for {ℓ, ℓ + 1, . . . , k}. Let z be the <-minimal vertex327

among vℓ, . . . , vk, wℓ, . . . , wk. Write z ∈ V ⊆ Fk
2 for the characteristic vector of z in328

X1, . . . , Xk and let t ∈ [ℓ, k] be such that z ∈ {vt, wt}. By Claim 4.2, the vectors329

uℓ, . . . ,uk form a basis of V so there exists I ⊆ [ℓ, k] such that z+
∑

i∈I ui = 0.330

First suppose that I ̸∈ {∅, {t}} and let m ∈ I be such that ui < um for all331

i ∈ I \{m}. If m ̸= t, then we have z < vm, wm, so z ·vm = z ·wm by Observation 2.2.332

As in the proof of Claim 4.2, we have ui ·vm = ui ·wm for all i ∈ I\{m}, but um ·vm ̸=333

um·wm, so (z+
∑

i∈I ui)·vm ̸= (z+
∑

i∈I ui)·wm, and hence z+
∑

i∈I ui ̸= 0. Ifm = t,334

then let j ∈ I \ {t} and note that z < vj , wj by the minimality of z. Consequently,335

z ·vj = z ·wj . Moreover, since um = ut < z, we have um < vj , wj . From this it follows336

that ui < vj , wj for all i ∈ I. Thus, ui ·vj = ui ·wj for all i ∈ I \ {j}, while uj ·vj ̸=337

uj ·wj . Hence, similarly to above, we have (z +
∑

i∈I ui) · vj ̸= (z +
∑

i∈I ui) ·wj ,338

so z+
∑

i∈I ui ̸= 0.339

The remaining cases are I = ∅ and I = {t}, so we have z ∈ {0,ut}. Suppose that340

z = ut. If z = vt, then we have vt = z = ut, so vt ·wt = ut ·wt = 1, i.e. the edge341

between vt and wt undergoes a net reversal under X1, . . . , Xk. This would imply that342

wt < vt = z, which contradicts the minimality of z. Similarly, if z = wt, then since343

the edge between ut and vt is not inverted, neither is the edge between wt and vt, so344

vt < wt = z, another contradiction. Therefore z = 0. This means no edges incident345

to z are reversed when X1, . . . , Xk are inverted so by the minimality of z we have346

z = vℓ.347

We have shown that vℓ = 0, so the only vertex among the ui, vi, wi with i ≥ ℓ348

which precedes vℓ in < is uℓ. It follows that uℓ is the least element among the ui, vi, wi349

with i ≥ ℓ. Hence, by Observation 2.2 we have uℓ · ui = uℓ · vi = uℓ · wi = 0 for350
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all i ≥ ℓ + 1, so if V ′ is the subspace of V spanned by the ui,vi,wi with i ≥ ℓ + 1,351

then uℓ · x = 0 for all x ∈ V ′. We have uℓ ·wℓ = 1, so V ′ is a proper subspace of V ,352

but uℓ+1, . . . ,uk ∈ V ′ are linearly independent, so we deduce that V ′ has dimension353

k − ℓ. Therefore by the induction hypothesis uℓ+1, . . . ,uk are orthonormal, and we354

have ui = wi and vi = 0 for i ≥ ℓ+ 1.355

To complete the induction step it remains to show that uℓ = wℓ and uℓ · uℓ = 1.356

The latter follows from the fact that uℓ, . . . ,uk is a basis for V with uℓ · ui = 0 for357

all i ≥ ℓ+1, but wℓ ∈ V has uℓ ·wℓ = 1. For the former, note that wℓ =
∑

i∈I ui for358

some I ⊆ [ℓ, k] and by the established properties of the ui this set I contains exactly359

those i for which ui ·wℓ = 1. Thus, we certainly have ℓ ∈ I. Suppose that ui ·wℓ = 1360

for some i ≥ ℓ + 1. Since wi = ui and vi = 0, by Observation 2.2 we find that the361

cycle #            »wℓviwi appears in T , which is a contradiction. Hence I = {ℓ} and uℓ = wℓ, as362

required.363

The lemma now follows from the ℓ = 1 case of Claim 4.3.364

We will now deduce Theorem 1.5 from the lemma. In the proof, we will use the365

easy fact that every family of orthonormal vectors in Fk
2 is linearly independent.366

Proof of Theorem 1.5. The sufficiency of the given conditions for X1, . . . , Xk to367

be a decycling family of D̂ is straightforward to verify using Observation 2.2. This368

observation also allows the ‘in particular’ part of the theorem statement to be easily369

deduced from the preceding part. It remains to prove that the given conditions are370

necessary.371

Given a decycling family X1, . . . , Xk of D̂, extend D̂ to a tournament T for which372

X1, . . . , Xk is still a decycling family. For each i, let Ti be the subtournament of T373

induced on the vertex set of the ith factor of D̂. Since Di contains a directed cycle,374

so does Ti, and hence the latter contains a copy of
# »

C3. We can thus find a copy of375

[
# »

C3]k in T whose ith factor is contained in Ti. It follows by Lemma 4.1 that there are376

orthonormal vectors u1, . . . ,uk ∈ Fk
2 and for each i a triangle #           »uiviwi in Ti such that ui377

and wi have characteristic vector ui and vi has characteristic vector 0 in X1, . . . , Xk.378

We next show that for all i, all vertices in Ti have characteristic vector either379

ui or 0 in X1, . . . , Xk. Let z ∈ V (Ti) and let z be its characteristic vector. Since380

u1, . . . ,uk form a basis of Fk
2 , there exists J ⊆ [k] such that z =

∑
j∈J uj . If there381

exists ℓ ∈ J \{i}, then z ·uℓ = uℓ ·uℓ = 1 and hence the directions of the edge between382

z and uℓ and the edge between z and wℓ are reversed under X1, . . . , Xk. If ℓ < i, then383

the cycle #         »uℓvℓz appears in T and if i < ℓ, then the cycle #         »zvℓwℓ appears in T . We have384

a contradiction in both cases, so J = ∅ or J = {i} as desired.385

We have shown that all vertices in the ith factor of D̂ have characteristic vector386

either ui or 0 in X1, . . . , Xk. The effect on this copy of Di of inverting these sets in387

D̂ is therefore the same as inverting the set of vertices with characteristic vector ui,388

which we call Vi. The latter is therefore a decycling set for the ith factor of D̂. This389

completes the proof of the theorem.390

Theorem 1.4 now follows easily.391

Proof of Theorem 1.4. It is clear that the left-hand side of equation (1.1) is at392

most the right-hand side. For the reverse inequality, let D̂ = [D1, . . . , Dk] and393

note that we may assume that none of the Di have inversion number 0. Indeed,394

if inv(Di) = 0 for some i ≥ 2, then view D̂ as the (k − 1)-join [D1, . . . , Di−2, Di−1 →395

Di, Di+1, . . . , Dk] and, since inv(Di−1 → Di) = inv(Di−1), the result follows by in-396

duction on k. The case where i = 1 can be handled similarly.397

Thus, consider the case where inv(Di) = 1 for all i and suppose for a contradiction398
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that X1, . . . , Xk is a decycling family of D̂ with Xk = ∅. By Theorem 1.5 there exist399

k orthonormal, and hence linearly independent, vectors in Fk
2 each of which occurs as400

the characteristic vector of some vertex of D̂ in X1, . . . , Xk. This contradicts the fact401

that all such vectors have a 0 in their final coordinate. Hence, in this case, inv(D̂) = k.402

It remains to check the case where inv(Dj) = 2 for some j and inv(Di) = 1 for403

all i ̸= j. Start by letting D′
j be a spanning subdigraph of the jth factor of D̂ with404

inv(D′
j) = 1, then define D̂′ to be the digraph obtained by replacing the jth factor of405

D̂ by D′
j . Assume for a contradiction that X1, . . . , Xk is a decycling family of D̂, in406

which case it is also a decycling family of D̂′. Theorem 1.5 thus yields a vector uj ∈ Fk
2407

with uj · uj = 1 such that all the vertices in the jth factor of D̂′ (and hence also the408

jth factor of D̂) have characteristic vector either 0 or uj in X1, . . . , Xk. Inverting409

X1, . . . , Xk in D̂ therefore has the same effect on its jth factor as inverting the set of410

vertices with characteristic vector uj . It follows that this set of vertices is a decycling411

set for Dj , contradicting inv(Dj) = 2.412

As mentioned in the introduction, it follows from Theorem 1.4 that for any di-413

graph D we have inv(D) = 1 if and only if inv([D]k) = k, which in turn implies414

Theorem 1.6 (which states that k-Inversion is NP-complete for all k ∈ N). Indeed,415

Theorem 1.4 directly gives inv([D]k) = k in the case inv(D) = 1, and if inv(D) = 0416

then clearly inv([D]k) = 0. If inv(D) > 1, then there are subdigraphs D′ and D′′ of417

D with inv(D′) = 1 and inv(D′′) = 2. The k-join D′′ → [D′]k−1, which has inversion418

number k + 1 by Theorem 1.4, is a subdigraph of [D]k and thus inv([D]k) ≥ k + 1 as419

required.420

Finally, we deduce Theorem 1.3 (which states that inv(L → R) = 4 for all di-421

graphs L and R with inversion number 2) from Theorem 1.4. We will use the fact,422

shown in [4], that if L and R are strongly connected digraphs with inv(L), inv(R) ≥ 2,423

then inv(L → R) ≥ 4.424

Proof of Theorem 1.3. Let L and R be digraphs with inv(L) = inv(R) = 2. It425

is immediate that inv(L → R) ≤ 4, so it is sufficient to prove the lower bound. For426

this, extend L → R to a tournament T of the same inversion number and let the427

tournaments to which L and R are extended be L′ and R′ respectively. Note that428

inv(L′), inv(R′) ≥ 2 and T is L′ → R′.429

Every tournament can be written as the k-join of its strongly connected com-430

ponents, so let L′ be [L1, . . . , Lk1
] and R′ be [R1, . . . , Rk2

] for some k1, k2 ∈ N and431

strongly connected tournaments L1, . . . , Lk1 , R1, . . . , Rk2 . Since inv(L′) ≥ 2, either432

there is some Li with inv(Li) ≥ 2, or there are i < j such that inv(Li) = inv(Lj) = 1.433

An analogous condition holds for R′. If there are i and j such that inv(Li), inv(Rj) ≥434

2, then since T contains Li → Rj , we have inv(T ) ≥ inv(Li → Rj) ≥ 4 by the above435

result of [4]. Otherwise, either there exist i < j such that inv(Li) = inv(Lj) = 1, in436

which case inv(T ) ≥ inv([Li, Lj , R]) = 4 by Theorem 1.4, or there exist i < j with437

inv(Ri) = inv(Rj) = 1, in which case it follows similarly that inv(T ) ≥ 4.438

5. Complexity of k-Tournament-Inversion. In this section we prove Theo-439

rem 1.7 by constructing, for each fixed k ∈ N, an algorithm solving k-Tournament-440

Inversion in time O(|V (T )|2). Our proof uses a technique known as iterative com-441

pression; see [14] for a description of this method and other applications of it. The442

most involved part of our proof concerns the ‘compression step’ of the algorithm.443

This step is handled by the following lemma, which roughly says that for constant k,444

given an n-vertex tournament T0 and a decycling family of T0 of constant size, in time445
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linear in n we can find a decycling family of T0 of size k if one exists. Throughout446

this section, we represent a total order < on a finite set S = {s1, . . . , sm} by the tuple447

(s1, . . . , sm) where s1 < · · · < sm.448

Lemma 5.1. Fix k, s ∈ N. There is an algorithm which solves the following prob-449

lem for n-vertex tournaments in time O(n):450

Inputs:
• a tournament T0;
• a decycling family X1, . . . , Xs of T0 (transforming T0 into T , say);
• the order on V (T0) associated to T .
Outputs:
Either
• that T0 is not k-invertible;
Or
• a decycling family Y1, . . . , Yk of T0 (transforming T0 into T ′, say);
• the order on V (T0) associated to T ′.

451

We now use iterative compression to prove Theorem 1.7 before returning to452

Lemma 5.1.453

Proof of Theorem 1.7. Fix k ≥ 1. We will induct on n to define an algorithm solv-454

ing the following problem for n-vertex tournaments in time Ck · n2 for some constant455

Ck:456

Input:
• a tournament T0.
Ouputs:
Either
• that T0 is not k-invertible;
Or
• a decycling family Y1, . . . , Yk of T0 (transforming T0 into T , say);
• the order on V (T0) associated to T .

457

In particular, this algorithm solves k-Tournament-Inversion.458

Fix n ≥ 2 and assume that we have defined such an algorithm for all smaller459

tournaments. Let T0 be an n-vertex tournament and pick some v ∈ V (T0). Applying460

the induction hypothesis, in time Ck · (n − 1)2 we either find that T0 − {v} is not461

k-invertible or we obtain a decycling family X1, . . . , Xk of T0 − {v} and the order on462

V (T0) \ {v} associated to the transitive tournament obtained by inverting these sets463

in T0. In the former case, it follows that T0 is also not k-invertible and we can output464

that fact. In the latter case, let A be the out-neighbourhood of v in T0, and define465

Xk+1 = A∪{v} andXk+2 = A. Then X1, . . . , Xk+2 is a decycling family of T0, and we466

can obtain the order associated to the resulting transitive tournament by adding v to467

the previous order as the maximal element. By Lemma 5.1 we can now, in linear time,468

either find that T0 is not k-invertible or obtain a decycling family Y1, . . . , Yk of T0469

of size k and the order associated to the transitive tournament obtained by inverting470

these sets in T0. As required, this algorithm runs in time Ck · (n− 1)2 +O(n), which471

is at most Ck · n2 if Ck is large enough.472
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It is left to prove Lemma 5.1. To this end, we describe an algorithm which explores473

what happens if, starting from T , we invert X1, . . . , Xs and k further sets Y1, . . . , Yk474

to obtain a tournament TY , where Y = (Y1, . . . , Yk). Since TY is the tournament475

obtained by inverting Y1, . . . , Yk in T0, these k sets are a decycling family of T0 if476

and only if TY is transitive. If we were to examine each possibility individually there477

would be too many for this exploration process to be tractable. However, the fact that478

we are starting from a transitive tournament T makes it possible to identify cycles479

in the final tournament TY without fully specifying the sets Y1, . . . , Yk. This means480

there are far fewer cases to consider, indeed few enough that the exploration process481

is linear in n for fixed k and s.482

Proof of Lemma 5.1. Fix k, s ∈ N and let T0, X1, . . . , Xs, and T be as in the483

statement of the lemma. Let n = |V (T0)| and label the vertices of T0 as u1, . . . , un in484

T -increasing order. With notation as above, we wish to investigate for which Y the485

tournament TY is transitive. For each Y we write ui ∈ Fs+k
2 for the characteristic vec-486

tor of ui in X1, . . . , Xs, Y1, . . . , Yk (suppressing the dependence on Y in the notation)487

and then let u = (u1, . . . ,un). There is a bijective correspondence between Y and u488

and it will be more convenient to work with the latter, so let Tu = TY and write U489

for the set of all possible u. Our first aim is to determine in linear time whether there490

exists u ∈ U such that Tu is transitive, and to identify such a u if so.491

The tournament Tu is transitive exactly when it contains no cyclic triples. It is492

straightforward to use Observation 2.2 to show that this is equivalent to the condition493

that there are no a < b < c in [n] such that ua · ub = ub · uc but ua · ub ̸= ua · uc.494

We describe the triple (ua,ub,uc) as bad if this occurs. Thus, Tu is transitive if and495

only if B(u) = {(ua,ub,uc) : a < b < c} contains no bad triples, and T0 is k-invertible496

if and only if B = {B(u) : u ∈ U} contains a set which is free of bad triples. Our497

algorithm will construct this set B and check whether any of its elements are free of498

bad triples. If one of these sets is free of bad triples, then we need to be able to499

output a corresponding decycling family of T0, so for each B ∈ B we will also record500

some u ∈ U for which B = B(u).501

We will now explain how the above can be achieved in linear time. First note that502

we may assume that n ≥ 4. Let U ′ be the set of all possible vectors u′ = (u1, . . . ,un−1)503

of characteristic vectors of u1, . . . , un−1 in X1, . . . , Xs, Y1, . . . , Yk. For u′ ∈ U ′, let504

B′(u′) = {(ua,ub,uc) : 1 ≤ a < b < c ≤ n − 1} and let B′ = {B′(u′) : u′ ∈ U ′}. We505

may assume inductively that there is a constant C depending only on k and s such506

that in time C ·(n−1) we can construct B′ and associate to each B′ ∈ B′ some u′ ∈ U ′507

such that B′ = B′(u′). For the induction step, we need to show that we can use this508

to obtain in time C the set B and for each B ∈ B some u ∈ U such that B = B(u).509

The key observation is that there are only 2s+k possible characteristic vectors for510

each of u1, . . . , un, so the number of triples of characteristic vectors is at most 23(s+k)511

and the sizes of B and B′ are at most 22
3(s+k)

. In particular, there are only boundedly512

many pairs (B′,un) where B′ ∈ B′ and un is a possible characteristic vector for un.513

For each such pair, we can construct in bounded time the set S(B′,un) consisting514

of all triples in B′, and all triples of the form (vi,vj ,un) for (v1,v2,v3) ∈ B′ and515

1 ≤ i < j ≤ 3. It is not hard to see that B equals the set of all sets S(B′,un) and516

that each S(B′,un) can be associated with the u ∈ U formed by appending un to the517

u′ ∈ U ′ associated with B′. Indeed, given B′ and un and defining u as in the previous518

sentence, since n ≥ 4, we have S(B′,un) = B(u). For the other direction, given519

u = (u1, . . . ,un) ∈ U and letting u′ = (u1, . . . ,un−1), we have B(u) = S(B′(u′),un).520

We can construct this set in bounded time and then forget about all but one of521
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the elements of U associated to each B ∈ B. Thus, in constant time we have obtained522

B and for each B ∈ B some u ∈ U such that B = B(u), and the induction continues.523

Once we have constructed B in linear time, since it has bounded size we can check524

whether any of its members is free of bad triples in bounded time. If not, then T0 is525

not k-invertible. If so, then pick B ∈ B with no bad triples and use the u associated to526

it to construct a decycling family Y1, . . . , Yk of T0. Let T
′ be the transitive tournament527

obtained by inverting these sets in T0.528

It remains to show that we can obtain the order on V (T0) associated to T ′ in529

linear time. Inverting the sets X1, . . . , Xs, Y1, . . . , Yk transforms T into T ′, and we530

have the characteristic vector of each vertex in these sets as well as the order on the531

vertices associated to T . We can therefore in linear time obtain the atoms of these532

s + k inversions and for each atom A the restriction to A of the order associated to533

T . By reversing the order on each atom whenever the edges within it undergo a net534

reversal under the inversions, we obtain the order on that atom associated to T ′. The535

T ′-minimal vertex is now the minimal vertex of one of the atoms under their current536

orderings. There are at most 2s+k atoms so we can identify the T ′-minimal vertex in537

constant time. After deleting this vertex from its atom, the second smallest vertex538

according to T ′ is one of the new minimal vertices of the atoms so can be found in539

constant time again. Continuing in this way we can obtain the full ordering in linear540

time, as required.541

Note that the implicit constant in the running time given by this proof is doubly542

exponential in s+ k.543

6. Cycle transversals. In this section we will prove Theorem 1.8, constructing544

for each k ∈ N a digraph D with τ(D) = k and inv(D) = 2k. We will use the so-called545

Eventown theorem, proved independently by Berlekamp [8] and Graver [17].546

Theorem 6.1 (Eventown [8], [17]). Let n ∈ N and let F ⊆ P([n]) be a family of547

subsets of [n] such that |F1 ∩ F2| is even for all F1, F2 ∈ F . Then |F| ≤ 2⌊n/2⌋.548

For a digraph D and vertices u, v, w ∈ V (D), we will say that u and v differ on w549

if either #  »uw, #  »wv ∈ E(D) or #  »vw, #  »wu ∈ E(D). We are now ready to prove the theorem.550

Proof of Theorem 1.8. Fix k ∈ N and let n ∈ N be large and divisible by 2k.551

We will define a digraph D on vertex set {u0, . . . , uk−1, v0, . . . , vn−1} and then show552

that it satisfies the conditions of the theorem. Start by including all directed edges553
#     »vivj for i < j, so that the subdigraph of D induced on {v0, . . . , vn−1} is a transitive554

tournament. For i ∈ {0, . . . , k− 1} and j ∈ {0, . . . , n− 1}, add the edge #     »uivj if in the555

binary expansion of j, the digit in the 2i place is a 0, and add the edge #     »vjui otherwise.556

For ease of exposition we will not include any edges among the ui (though including557

any combination of such edges would still give a valid construction), so this completes558

the definition of D. As noted above, the removal of the vertices u0, . . . , uk−1 from D559

leaves an acyclic digraph, so τ(D) ≤ k.560

It remains to show that inv(D) ≥ 2k, as then inv(D) = 2τ(D) = 2k follows from561

inv(D) ≤ 2τ(D). Suppose for a contradiction that X1, . . . , X2k−1 ⊆ V (D) form a562

decycling family of D and let D′ be the acyclic digraph obtained by inverting these563

sets in D. Consider the characteristic vectors of v0, . . . , vn−1 in X1, . . . , X2k−1, which564

we will denote by v0, . . . ,vn−1 ∈ F2k−1
2 respectively. Let K = 2k. By the pigeonhole565

principle, if n is large enough, then there exist distinct i, i′ ∈ {0, . . . , n/K − 1} such566

that567

(viK ,viK+1, . . . ,v(i+1)K−1) = (vi′K ,vi′K+1, . . . ,v(i′+1)K−1).568

We may assume that i = 0 and i′ = 1.569
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We will show that v0, . . . ,vK−1 are pairwise distinct and that vi · vj is constant570

as i, j ∈ {0, . . . ,K − 1} vary. We claim that these conditions force a contradiction.571

Indeed, in the case where vi · vj = 0 for all i, j, we have that the vi are indicator572

vectors of pairwise distinct subsets of [2k − 1] which each have even size, and each573

pair of which have even intersection. By Eventown, every such collection has at most574

2(2k−1)/2 < 2k = K members, giving the required contradiction. On the other hand,575

if vi · vj = 1 for all i, j, then consider the ‘complement’ vectors w0, . . . ,wK−1, which576

have 1’s where the vi have 0’s and 0’s where the vi have 1’s. It is straightforward577

to use the fact that the vectors have odd length to show that these wi are pairwise578

distinct and satisfy wi ·wj = 0 for all i, j, from which we can derive a contradiction579

as above.580

We continue by showing that the vectors v0, . . . ,vK−1 are pairwise distinct, which581

is equivalent to showing that each of v0, . . . , vK−1 is in a different atom. Suppose for582

a contradiction that vi and vj are in the same atom for some i < j in {0, . . . ,K − 1},583

and note that vK+i and vK+j are in this atom too by assumption. By the construction584

of D there is some ℓ ∈ {0, . . . , k− 1} such that vi and vj differ on uℓ in D. Since they585

are in the same atom as each other, they also differ on uℓ in D′. If #     »viuℓ,
#      »uℓvj ∈ E(D′),586

then to avoid a cyclic triple in D′ we have #     »vivj ∈ E(D′). This means that the edges587

within vi and vj ’s atom have the same orientations in D as they do in D′, so in588

particular we have #             »vjvK+i ∈ E(D′). Moreover vi and vK+i are in the same atom and589

are either both in-neighbours of uℓ in D or both out-neighbours, so since #     »viuℓ ∈ E(D′)590

we also have #             »vK+iuℓ ∈ E(D′). Hence, the cycle #                   »vjvK+iuℓ appears in D′. Similarly if591
#      »vjuℓ,

#     »uℓvi ∈ E(D′), then we have #     »vjvi ∈ E(D′). In this case the edges within the atom592

of vi and vj switch orientation between D and D′, so the cycle #                   »vjuℓvK+i appears in593

D′. In both cases we have the desired contradiction, and we deduce that the vertices594

v0, . . . , vK−1 are all in different atoms.595

It remains to show that vi · vj is constant as i, j ∈ {0, . . . ,K − 1} vary. Suppose596

for a contradiction that this is not the case, then there exists i ∈ {0, . . . ,K − 1} such597

that vi · vj is not constant as j ∈ {0, . . . ,K − 1} varies. For such i we can pick598

j ∈ {0, . . . ,K − 1} such that vi · vi ̸= vi · vj . Now if vi · vi = 0, then vi · vj = 1 so599

by Observation 2.2, D′ contains the cycle #                  »vK+ivjvi if i < j or the cycle #                          »vK+ivK+jvi600

if i > j. Similarly if vi · vi = 1, then D′ contains one of the cycles #                  »vivjvK+i and601
#                          »vivK+jvK+i. We have a contradiction in all cases, so the value of vi · vj is constant602

as i, j ∈ {0, . . . ,K − 1} vary, as required.603

7. Bounds on inv(n).604

7.1. Lower bounds. In this section we discuss the previous known lower bound605

on inv(n) and give the proof of Theorem 1.9. As noted in the introduction, Belkhe-606

chine, Bouaziz, Boudabbous, and Pouzet [7] used a counting argument to lower bound607

inv(n). They observed that since there are n! labelled transitive tournaments on n608

vertices, there are at most n! · 2n(k−1) labelled (k − 1)-invertible tournaments on n609

vertices. There are a total of 2n(n−1)/2 labelled n-vertex tournaments, so for any k610

such that 2n(n−1)/2 > n! · 2n(k−1) we have inv(n) ≥ k. Taking logarithms base 2 and611

rearranging, this condition becomes k < (n− 1)/2− log(n!)/n, so we have612

inv(n) ≥
⌊
n− 1

2
− log(n!)

n

⌋
≥

⌊
n− 1

2
− log(n)

⌋
,613

where for the final inequality we used n! ≤ nn. Lower bounds on inv(n) of this form614

were the best known (disregarding very slight tightenings of the argument).615
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The proof of Theorem 1.9 uses the following lemma which gives a bound on the616

probability that a random symmetric binary matrix has at most a certain rank. In617

fact, these probabilities are known exactly [23], but we will use a simpler bound which618

is essentially tight for our purposes and for which we include a short proof.619

Lemma 7.1. The probability that a uniformly random n × n symmetric matrix620

over F2 has rank at most n− s (over F2) is at most 2s log(n)−(
s
2).621

Proof. Construct the random matrix in n steps, in the ith step choosing the first622

i entries of the ith row of the matrix (and also, by symmetry, the ith column). For623

each i ∈ [n], let Mi be the random symmetric i× i matrix obtained after step i.624

Note that for each i the nullity increases by at most 1 between Mi and Mi+1.625

It follows that if the nullity of Mn is at least s, then for all 1 ≤ j ≤ s − 1 we626

can define kj to be the smallest i such that the nullity of Mi is j + 1, and we have627

2 ≤ k1 < k2 < · · · < ks−1 ≤ n. For each j, the ranks of Mkj−1 and Mkj are equal, so628

the first kj − 1 entries of the kjth row of Mkj
lie in the (kj − 1− j)-dimensional row629

space of Mkj−1, which happens with probability 2−j . There are
(

n
s−1

)
ways to choose630

k1, . . . , ks−1 as above, so the probability that Mn has rank at most n− s is at most631 (
n

s− 1

) s−1∏
j=1

2−j ≤ 2s log(n)−(
s
2),632

as required.633

We are now ready to prove Theorem 1.9.634

Proof of Theorem 1.9. Let T be a uniformly random tournament on vertex set635

[n] and let MT = (mab) be the n × n matrix over F2 defined as follows. For a < b,636

let mab be 0 if
#»

ab is an edge of T and 1 otherwise, then define mba = mab, and finally637

choose each diagonal entry uniformly at random. Note that the
(
n
2

)
entries of MT638

above the diagonal determine T , and the other entries are defined such that MT is a639

uniformly random symmetric binary matrix.640

Let s =
⌊√

2n log(n)
⌋
and write k = n − s. Suppose that inv(T ) ≤ k and let641

X1, . . . , Xk be a decycling family of T . For each Xi, let Mi be the n × n binary642

matrix whose (a, b) entry is 1 if and only if a, b ∈ Xi. Observe that, working over643

F2, we have rank(Mi) ≤ 1 for all i, and thus rank(
∑

i Mi) ≤ k. By construction,644

MT +
∑

i Mi is a matrix whose entries above the diagonal correspond to a transitive645

tournament on [n] (its diagonal entries can be anything). Let M be the set of binary646

matrices corresponding in this manner to a transitive tournament on [n], and note647

that |M| = n!2n.648

Putting all of this together, we have that if inv(T ) ≤ k, then there exists M ∈ M649

such that rank(MT +M) ≤ k. For each fixed M , we have that MT +M is a uniformly650

random symmetric binary matrix and hence has rank at most k with probability at651

most 2s log(n)−(
s
2) by Lemma 7.1. Taking a union bound over all M ∈ M we obtain652

P(inv(T ) ≤ k) ≤ n!2n2s log(n)−(
s
2).653

Since n! = O(
√
n(n/e)n), the right-hand side is O(2f(n)) where654

f(n) =
log(n)

2
+ n log(n)− n log(e) + n+ s log(n)−

(
s

2

)
655

= −n(log(e)− 1) + o(n),656657

and thus P(inv(T ) ≤ k) → 0 as n → ∞ as desired.658
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7.2. Upper bounds. The only approach which has been used to prove upper659

bounds on inv(n), introduced in [7], is to ‘solve’ one vertex at a time, as follows.660

Given a tournament T , pick a vertex v and invert the set consisting of v and its661

out-neighbourhood. In the resulting tournament T1, v is a sink. Using a further662

inv(n − 1) inversions we can transform T1 − {v} into a transitive tournament, so663

inv(n) ≤ inv(n − 1) + 1 for all n ≥ 2. The authors of [7] observed that inv(4) = 1,664

so inv(n) ≤ n − 3 for n ≥ 4. For n ≥ 6 this was improved by 1 in [4] using the fact665

that inv(6) = 2 (which they attribute to [6] and which we have verified by a computer666

check). We introduce a slightly different approach to prove the following.667

Proposition 7.2. For all n ∈ N,668

inv(n) ≤
⌊
n− 1

2

⌋
+ inv

(⌈
n− 1

2

⌉)
.669

Proof. Let n ∈ N and let T be an n-vertex tournament. Pick v ∈ V (T ) and670

write A and B for the in- and out-neighbourhoods of v respectively. We may assume671

that |A| ≥ ⌈(n− 1)/2⌉ (the case where B is the larger of the two is similar). By672

‘solving’ each vertex in B one after another, we can find at most |B| inversions which673

transform T into a tournament T ′ such that the subtournament of T ′ induced on674

B ∪ {v} is transitive (with v as the minimal element) and every edge of T ′ between675

A and B ∪ {v} is oriented away from A. With a further inv(A) ≤ inv(|A|) inversions676

we can transform T ′ into a transitive tournament. Thus, inv(T ) ≤ |B|+ inv(|A|).677

We have inv(k) ≤ inv(k−1)+1 for all k ∈ N and we can apply this |A|−⌈(n− 1)/2⌉678

times to obtain inv(|A|) ≤ inv(⌈(n− 1)/2⌉) + |A| − ⌈(n− 1)/2⌉. Using the fact that679

|A|+ |B| = n− 1, this yields680

inv(T ) ≤ |B|+ inv

(⌈
n− 1

2

⌉)
+ |A| −

⌈
n− 1

2

⌉
=

⌊
n− 1

2

⌋
+ inv

(⌈
n− 1

2

⌉)
,681

and the claim follows.682

We can use this result to improve (for large n) the upper bound on inv(n).683

Corollary 7.3. For all n ∈ N0, inv(n) ≤ n− log(n+ 1).684

Proof. We prove the statement by induction on n, with the case n = 0 clear. If685

n ≥ 1 and the claim holds for all smaller values, then we have686

inv(n) ≤
⌊
n− 1

2

⌋
+ inv

(⌈
n− 1

2

⌉)
,

≤
⌊
n− 1

2

⌋
+

⌈
n− 1

2

⌉
− log

(⌈
n− 1

2

⌉
+ 1

)
,

≤ n− 1− log

(
n+ 1

2

)
,

= n− log(n+ 1).

687

8. Conclusion. In this paper we have answered several of the questions posed688

in [4]. We have shown that their ‘dijoin conjecture’, that inv(L → R) = inv(L) +689

inv(R), is false in general, but have verified it in the case where inv(L) = inv(R) = 2690

and have also shown that a k-join analogue holds under certain conditions. In addi-691

tion, we have confirmed their related conjectures that k-Inversion is NP-complete692
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for all k ≥ 1, and that the inequality inv(D) ≤ 2τ(D) is tight. We have answered693

their question concerning the minimal rk such that k-Tournament-Inversion can694

be solved in time O(|V (T )|rk), showing that rk = 2 for all k, and have improved the695

lower bound on inv(n) to show that inv(n) = (1 + o(1))n. There are, however, still696

many interesting open problems in this area. Before discussing some of them, we will697

touch on two operations similar to inversion.698

8.1. Similar operations. We first consider an operation on permutations which699

is used by molecular biologists as a model for genetic mutations, and could loosely700

be seen as a vertex analogue of inversions in tournaments. Given a permutation701

π = (π1 π2 . . . πn) of [n], for 1 ≤ i < j ≤ n, the reversal of the interval [i, j] is the702

permutation obtained by reversing the order of πi, . . . , πj in π. The reversal distance,703

d(π), of a permutation π is the minimum number of reversals required to transform π704

into the identity permutation. For a survey of reversals and the reversal distance (and705

many other combinatorial models of genome rearrangements) see [15]. We highlight706

some results of particular relevance to our work. With regards to computational707

complexity, Caprara [9] showed that the problem of Sorting by Reversals, that708

is, determining whether d(π) ≤ k for inputs of a permutation π and k ∈ N, is NP-709

complete, while Hannenhalli and Pevzner [18, 19] showed that it is fixed-parameter710

tractable when parameterised by k. The natural extremal problem was solved by711

Bafna and Pevzner [3] who proved that for a permutation π of [n], we have d(π) ≤ n−1712

with equality if and only if π ∈ {γn, γ−1
n } for an explicit γn.713

Inversions in digraphs can also be thought of as generalisations of edge reversals,714

i.e. the operations which reverse the orientation of a single edge. It is not difficult to see715

(using an argument from subsection 1.3) that the minimum number of such operations716

required to transform a digraph D into an acyclic digraph is equal to τ ′(D), the cycle717

edge-transversal number of D. Determining this quantity is the famous feedback arc718

set problem, which has been widely studied (see [21] for an overview). In particular719

the problem of determining for inputs D and k whether τ ′(D) ≤ k was one of the720

first shown to be NP-complete [20] and it remains NP-complete when the input is721

restricted to tournaments [1, 10]. However, Chen, Liu, Lu, O’Sullivan, and Razgon722

[11] showed that this problem is again fixed-parameter tractable when parameterised723

by k. On the extremal side, it was shown by Spencer [27, 28] that the maximum724

cycle edge-transversal number of an n-vertex tournament is 1
2

(
n
2

)
−Θ(n3/2) and that725

a random labelled n-vertex tournament has this cycle edge-transversal number with726

probability tending to 1. Bounds of this form remain the best known (see also [13, 25]).727

8.2. Open problems. We have shown (in Theorem 1.7) that the problem which728

takes as inputs a tournament T and an integer k ∈ N, and asks whether inv(T ) ≤ k, is729

fixed-parameter tractable when parameterised by k. In keeping with the pattern ex-730

hibited in the settings discussed in subsection 8.1, Bang-Jensen, da Silva, and Havet [4]731

conjectured that the full problem is NP-complete.732

Conjecture 8.1 ([4]). The problem of deciding whether inv(T ) ≤ k for inputs733

of k ∈ N and a tournament T is NP-complete.734

Note that Theorem 1.7 does not make any progress towards disproving this be-735

cause the implied constant in the O(n2) running time is not polynomial in k. In fact,736

as noted above, the constant arising from our algorithm is doubly exponential in k.737

However, again in keeping with both settings discussed in subsection 8.1 (and indeed738

many natural fixed-parameter tractable problems), we conjecture that this constant739

can be taken to be singly exponential in k, perhaps with a higher power of n.740
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Conjecture 8.2. There exist constants c1, c2 > 0 such that, for any k ∈ N,741

k-Tournament-Inversion can be solved in time O(2k
c1 |V (T )|c2).742

As discussed in the introduction, the set ICk of k-inversion-critical tournaments743

was shown to be finite for all k in [7]. They explicitly described IC1 and IC2, for the744

latter using results of Gallai [16] (see [24] for an English translation) and Latka [22],745

but for k ≥ 3 very little is known about these sets. In particular, it would be interest-746

ing to determine mk, the maximum number of vertices in a tournament in ICk, for747

k ≥ 3.748

Question 8.3 ([4]). What is the value of mk for k ≥ 3?749

Finding the minimum possible size of a k-inversion-critical tournament is equiv-750

alent to the problem of determining inv(n). The best known bounds on inv(n) for751

large n are now752

n−
√
2n log(n) ≤ inv(n) ≤ n− log(n+ 1),753

and it would be interesting to tighten these further.754

Question 8.4. What is the asymptotic behaviour of n− inv(n)?755

In light of our improved lower bound on inv(n), the lack of an explicit construc-756

tion for a tournament of large inversion number is even more apparent: no n-vertex757

construction with inversion number more than about n/3 (as given by the (n/3)-join758

[
# »

C3]n/3) is known.759

Problem 8.5. Construct n-vertex tournaments with inversion number closer to760

inv(n).761

Belkhechine, Bouaziz, Boudabbous, and Pouzet ([6]; see [4]) defined for each762

n ∈ N a tournament Qn on vertex set [n] in which for i < j the edge ij is oriented763

towards j, except if j = i+ 1, in which case it is oriented towards i, and conjectured764

that these graphs satisfy inv(Qn) =
⌊
n−1
2

⌋
.765

Conjecture 8.6 ([6]). For all n ∈ N we have inv(Qn) =
⌊
n−1
2

⌋
.766

The conjecture is known to hold for n ≤ 8 [7, 4], and it is certainly true that767

inv(Qn) ≤
⌊
n−1
2

⌋
for all n since the sets768

{2, 3}, {4, 5}, {6, 7}, . . . , {2 ⌊(n− 1)/2⌋ , 2 ⌊(n− 1)/2⌋+ 1}769

form a decycling family of Qn.770

Defining the inversion distance, inv(T, T ′), between two labelled tournaments T771

and T ′ on the same vertex set to be the minimum number of inversions required772

to transform T into T ′, we remark that the matrix rank techniques developed in773

subsection 7.1 can be used to show that the maximum inversion distance between774

two n-vertex tournaments is exactly n − 1. Moreover, combining these ideas with775

Lemma 7.1 gives an upper bound of 2(
n
2)+n−(s2)+s log(n) on the number of labelled776

tournaments within inversion distance n− s of a given labelled tournament.777

It is natural in this context to study the random walk W on the space of labelled778

tournaments on [n] where each step in the walk consists of picking a uniform random779

subset of [n] and inverting that set in the current tournament. In particular, we ask780

the following.781

Question 8.7. What is the mixing time of W? Does it satisfy the cutoff phe-782

nomenon?783
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Returning to the dijoin conjecture, Theorem 1.3 completes the work of Bang-784

Jensen, da Silva, and Havet in showing that the conjecture holds in the cases where785

inv(L), inv(R) ≤ 2. We have also shown (Theorem 1.4) a k-join analogue of the dijoin786

conjecture for collections of 2-invertible digraphs D1, . . . , Dk at most one of which has787

inversion number 2. We conjecture that this final condition can be removed.788

Conjecture 8.8. Let k ∈ N and let D1, . . . , Dk be oriented graphs satisfying789

inv(Di) ≤ 2 for all i. Then790

inv([D1, . . . , Dk]) =
k∑

i=1

inv(Di).791

On the other hand, Theorem 1.2 gives a counterexample to the dijoin conjecture792

where inv(L) = 1 and inv(R) = 3. From this, we can obtain counterexamples with793

inv(L) = k and inv(R) = 3 for any k ∈ N: let L = [
# »

C3]k and let R be as in the proof794

of Theorem 1.2. The tournaments obtained from these by inverting the whole vertex795

set give counterexamples in which inv(L) = 3 and inv(R) = k. We conjecture that796

here 3 can be replaced with any larger integer, or in other words that the only values797

of inv(L) and inv(R) for which the dijoin conjecture always holds are those where798

inv(L), inv(R) ≤ 2 or where one of inv(L) or inv(R) is 0.799

Conjecture 8.9. For all ℓ, r ∈ N with ℓ ≥ 3 or r ≥ 3 there exist oriented graphs800

L and R with inv(L) = ℓ and inv(R) = r, but inv(L → R) < ℓ+ r.801

This conjecture is equivalent to the claim that for all r ≥ 3 there exists a tour-802

nament R with inv(R) = inv(
# »

C3 → R) = r. To see that this follows from the803

conjecture, note that for r ≥ 3, if inv(L) = 1 and inv(R) = inv(L → R) = r,804

then we can extend L → R to a tournament T = L′ → R′ with inversion num-805

ber r. Clearly inv(R′) = r and inv(L′) ≥ 1, so L′ contains a copy of
# »

C3. Thus,806

r = inv(R′) ≤ inv(
# »

C3 → R′) ≤ inv(T ) = r, as required. The converse follows from807

the arguments of the previous paragraph.808

Finally, we noted in subsection 1.2 that inv(D) ≤ inv(D − {v}) + 2 for all di-809

graphs D and vertices v ∈ V (D). It is certainly the case that this inequality is tight810

for some D and v. Indeed, a reformulation of Theorem 1.8 yields the stronger state-811

ment that for all k ∈ N there exists a digraph D and a set S ⊆ V (D) with |S| = k812

such that for all T ⊆ S we have inv(D−T ) = inv(D)−2|T |. We conjecture, however,813

that the inequality inv(D) ≤ inv(D − {v}) + 2 cannot be tight for all vertices v in a814

given digraph D.815

Conjecture 8.10. Let D be a digraph with at least one vertex. Then there exists816

v ∈ V (D) such that inv(D − {v}) ≥ inv(D)− 1.817
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