Turan graphs with bounded matching number
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Abstract

We determine the maximum possible number of edges of a graph with n vertices,
matching number at most s and clique number at most k for all admissible values of
the parameters.

1 The main result

The clique number of a graph G is the maximum number of vertices in a complete sub-
graph of it. The matching number of G is the maximum cardinality of a matching in G.
Two classical results in Extremal Graph Theory are Turdn’s Theorem [5] determining the
maximum number of edges t(n, k) of a graph on n vertices with clique number at most k,
and the Erdés-Gallai Theorem [2], determining the maximum possible number of edges of
a graph with n vertices and matching number at most s.

In this note we prove a common generalization. Call a graph complete k-partite if its
vertex set consists of k pairwise disjoint sets and two vertices are adjacent iff they belong
to distinct classes. Note that we allow some vertex classes to be empty. Let T'(n, k) denote
the complete k-partite graph with n vertices in which the sizes of the vertex classes are
as equal as possible, and let ¢(n, k) denote its number of edges. Let G(n,k, s) denote the
complete k-partite graph on n vertices consisting of k — 1 vertex classes of sizes as equal
as possible whose total size is s, and one additional vertex class of size n—s. Let g(n, k, s)
denote the number of its edges.

Our main result is the following.

Theorem 1.1. For alln > 2s+ 1 and every k, the mazimum possible number of edges of
a graph on n vertices with cliqgue number at most k and matching number at most s is the
mazimum between the Turdn number t(2s + 1, k) and the number g(n, k,s) defined above.
(For n < 2s 4+ 1 the mazimum is clearly t(n,k)).
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Note that for s > (n — 1)/2 the assumption about the matching number holds auto-
matically and the statement for this case is equivalent to Turan’s Theorem. Similarly, for
k >n > 2s+ 1 the statement is equivalent to the Erdés-Gallai Theorem that asserts that
the maximum possible number of edges of an n-vertex graph with matching number at

most s is the maximum between (28;1) and s(n —s) + (3).

2 Proof

Let G = (V, E) be a graph on n > 2s + 1 vertices with matching number at most s and
clique number at most k& having the maximum possible number of edges. By the Tutte-
Berge Theorem or the Edmonds-Gallai Theorem, cf., e.g. [3], there is a set of vertices B,
|B| = b so that each of the connected components Aj, As, ..., A, of G — B is odd, and so
that if the sizes of these components are

A1 =a1 > [Azs|=a2 > - > |Ap| =am > 1

then

and .
b+ Z a; =n.
i=1

(For the readers with no access to [3] we note that one way to obtain the existence of
the decomposition above proceeds by defining, for each set of vertices S, f(S) to be the
number of odd components of G — S minus |S|. Then B is a set of vertices that maximizes
f(S) and is of maximum cardinality among all such B.)

Note that a partition as above exists even if the size of the maximum matching in G
is smaller than s, since it is possible to shift vertices from some sets A; to B, if needed.

Among all such graphs with the maximum possible number of edges and all such
choices of B, A; assume that G, B, A; is one for which the sum )", af is maximum.

We use the following standard notation. For any vertex v of G, N(v) denotes its set
of neighbors. If C is a set of vertices of G, put No(v) = N(v) N C and let G¢ denote the
induced subgraph of G on C.

We first prove the following lemma, which is a simple consequence of the Zykov sym-
metrization method introduced in [6]. For completeness we include a short proof.

Lemma 2.1. Without loss of gemerality we may assume that every two non-adjacent

vertices of B have the same neighborhood.

Proof. We first show that non-adjacency is an equivalence relation on B. Indeed, this

relation is trivially reflexive and symmetric. Suppose it is not transitive, then there are



three distinct vertices u, v, w in B so that uv, uw are non-edges but vw is an edge. If the
degree d(u) of u is smaller than d(v), then replacing the neighborhood of u by that of v
the number of edges increases. The clique number does not increase, as any new clique K
must contain u, but then it cannot contain v, and (K — {u}) U {v} is a clique of the same
size before the replacement. The matching number also stays at most s, as demonstrated
by the set of vertices B after the replacement which shows that the matching number is
at most b+ ;" (a; —1)/2 = s. Thus, by the assumption that G has a maximum possible
number of edges it follows that d(u) > d(v). The same argument shows that d(u) > d(w).
But in this case the graph obtained by replacing the neighborhood of v by that of v and
the neighborhood of w by that of u provides the desired contradiction. Indeed, it has more
edges than G, clique number at most that of G, and matching number at most s. This
shows that the induced subgraph of G on B is a complete k-partite graph with vertex
classes Bi,..., By (some of which may be empty). For each nonempty B; let u; be a
vertex of B; of maximum degree. Replacing the neighborhood of each other vertex of B;
by that of u;, the number of edges can only increase, the clique number does not increase
and the matching number stays at most s. This completes the proof of the lemma. ]

Lemma 2.2. a; =1 for all 2 <i<m.

Proof. By Lemma 2.1 every two non-adjacent vertices of B have the same neighborhood.
Since G contains no clique of size k + 1 this means that Gp is a complete k-partite graph.
Let By, Ba,..., By be the vertex classes of this induced subgraph, with |B;| > |Bs| >
... > |Bg| (where some of these classes may be empty).

Claim 2.3. Without loss of generality we may assume that for every 1 < i < m there is
a vertex v; € A; which has no neighbor in By.

Proof of Claim: If By = () this is surely true. We can thus assume that |By| > |Ba| >
... > |Bg| > 1. Since the size w(G) of the largest clique of G is at most k, no vertex in A;
is adjacent to a member of each Bj, 1 < j < k. If all vertices of A; are adjacent to By, (to
all of it, as all vertices in By have the same neighborhood), choose j so that some vertex
v € A; has no neighbors in B;. We can now swap B; and By, in the neighborhood of each
v € A;. This is done as follows. If v is connected to both B; and By, leave it connected
to both, and if it is connected to By but not to B; remove all its edges to By, and connect
it to all members of B;j. This can only increase the number of edges, as |By| < |Bj|. Note
also that swapping B; and By as above cannot increase the size of the maximum clique
as any new clique created this way includes a vertex of Bj, some vertices of A;, and no
vertex of Bj. Replacing the vertex from Bj; by any one of By gives a clique of the same
size in the graph before the swap. Since the matching number also stays at most s, as
shown by B, this completes the proof of the claim. O



Returning to the proof of the lemma assume it is false and a1 > as > 3. Let v; € Ay
and vg € Ag be as in the claim. Now modify G into G’ by defining A} = A;UAs\{v2}, 4} =
{va}, keeping B’ = B and only changing the edges incident with v; and ve as follows. The
new neighborhood of v; is

N'(v1) = Na, (v1) U Na, (v2) U (Np(v1) N Np(v2)).

The new neighborhood of vy is Np(v1) U Np(v2). Note that G4, is connected.

The total number of edges is unchanged, and (a1, a2) changed to (a1 +a2—1,1) implying
that the matching number stays at most s, as both a; + a9 — 1 and 1 are odd. The clique
number stays at most k. Indeed, any new clique containing v, is of size at most k since
neither v1 nor vy are adjacent to By in G. Any new clique K in G’ containing v contains
in A/ either only vertices of A; or only vertices of Ay — {v2} (in addition to v1). In the
first case, since Nj(v1) C Np(v1), the same clique appears also in G. In the second case,
since Np(v1) C Np(v2), (K — {v1}) U{v2} is a clique in G, of the same size as K. Since
(a1 +az — 1)? + 12 > a? + a3 this yields a contradiction and completes the proof of the

lemma. O

By the lemma it follows that a; = 2s — 2b + 1. We consider several possible cases, as
follows.

Case 1: b= 0. In this case a; = 2s + 1 and all other vertices of G are isolated, showing
that the number of edges is at most ¢(2s + 1, k).

Case 2: b= s. In this case a; = 1 and all the components of G — B are isolated vertices.
The induced subgraph of G on the union of B with arbitrarily chosen additional |s/(k—1)|
components (each of size 1) has at most ¢(s + [s/(k — 1), k) edges. Any other vertex can
be connected only to the vertices of B, namely has degree at most s. Therefore the total
number of edges e(G) of G satisfies

e(G) <t(s+|s/(k—=1)],k)+ (n—s—[s/(k—1)])s.
This suffices for the proof since

g(n,k,s)=t(s,k—1)+s(n—s)=t(s+|s/(k=1)],k)+(n—s—|s/(k—=1)])s (1)

Case 3: |B|+a;1 =2s—b+1<s+[s/(k—1)]. This is similar to Case 2. The induced
subgraph of G on the union of B with A; and with additional components having total
size s+ |s/(k—1)| spans at most t(s+ |s/(k—1)], k) edges. Any other vertex has degree
at most b < s and the desired estimate follows as before.

Case 4: |B|+a;=2s—b+1>s+|s/(k—1)]. Inthiscase 0 <b<s—[s/(k—1]+1.
Define
f(b) =t(2s —b+1,k) +b(n—2s+b—1).



The number of edges of G is clearly at most f(b). Indeed, the induced subgraph on BU A;
spans at most t(2s —b+ 1, k) edges, and all remaining vertices have degrees at most b. We
claim that in the relevant range of b, f(b+ 1) — f(b) is an increasing function of b. Note
that the claim here is not that the function f(b) itself is increasing (in general it is not),
but that its (discrete) derivative is increasing, that is, it is a discrete convex function. To

prove the claim note that
fb+1)—f(b)=n—2s+2b—[t(2s — b+ 1,k) — t(2s — b, k)]
When b increases by 1, the term (n — 2s + 2b) increases by 2, and the term
t(2s — b+ 1,k) —t(2s — b, k)

can only decrease (as it is the difference in the total size of the largest k — 1 classes among
the k nearly equal classes of the corresponding Turan graphs, and this quantity can only
decrease (by at most 1) when decreasing the number of vertices 2s — b by 1). This shows
that f(b+1)— f(b) is increasing in the range above. Therefore, if f(b) obtains a maximum
at some b > 0 in this range, that is, f(b) > f(b—1), then it must be that the maximum is
obtained at the largest possible b in this range, which is b = s — |s/(k — 1] + 1. But this
is covered by Case 3, completing the proof. [J

3 Extension

It may be interesting to extend Theorem 1.1 by replacing the forbidden clique K1 by
other forbidden subgraphs. This means to determine the maximum possible number of
edges of an H-free graph on n vertices with matching number at most s. An old known
result of Abbott, Hanson and Sauer [1] settles the case that H is a star with s + 1 edges.

Recall that a graph H is color-critical if it contains an edge whose deletion decreases
its chromatic number. It is not difficult to prove the following, combining the initial part
of our proof here with the known result of Simonovits [4] about the Turdn numbers of
color-critical graphs. Here we include a slightly simpler proof which avoids the application
of the Tutte-Berge or the Gallai-Edmonds Theorems.

Proposition 3.1. For every fixed color-critical graph H of chromatic number k + 1 > 2,
any s > so(H) and any n > no(s), the mazimum possible number of edges of an H-free

graph on n vertices with matching number at most s is g(n, k, s).

Proof. The graph G(n,k,s) described before the statement of the main theorem is k
chromatic and hence H-free. Since its matching number is s this implies that the number
of edges of this graph, which is g(n, k, s), is a lower bound for the maximum considered
in the proposition. To prove the upper bound, let H,k,s be as above and let G be an
H-free graph on n vertices with matching number at most s having the maximum possible



number of edges. Assume, further, that s is sufficiently large as a function of H and that
n is sufficiently large as a function of s.

Note, first, that G cannot contain more than s vertices of degrees exceeding 2s. Indeed,
otherwise let {z1,x2,...2s+1} be s+ 1 such vertices. For each z;, in order, let y; be an
arbitrarily chosen neighbour of x; which differs from all z; and all previously chosen y;.
As there are only s+i—1 < 2s such forbidden vertices (we do not have to count the vertex
x; itself) there is always a choice for y;. This gives a matching of size s + 1, contradicting
the assumption.

Let X be the set of all vertices of degree exceeding 2s. By the paragraph above | X| < s.
Put Y =V — X. In the induced subgraph of G on Y every degree is at most 2s and thus,
by Vizing’s Theorem, its chromatic index is at most 2s + 1. As there is no matching
of size s + 1, it follows that the number of edges in this induced subgraph is at most
(2s + 1)s. As the total number of edges incident with the vertices in X is smaller than
|X|n (with room to spare) it follows that if |X| < s then the number of edges of G is
smaller than (s — 1)n + (2s + 1)s. This is smaller than g(n, k, s) for n exceeding, say, 352
(we make no attempt to optimize ng(s)), showing that we may assume that | X| = s. Put
X ={z1,22,...,25}.

We claim that Y = V — X is an independent set in GG. Indeed, if it contains an edge
z1z2 we can, as before, use the fact that the degree of each vertex of X exceeds 2s to
pick distinct y; € Y — {21, 22} so that x;y; is an edge for each 4, contradicting again the
assumption about the matching number. Thus Y is indeed independent.

Let Z be an arbitrary subset of Y =V — X of size m = |s/(k — 1)]. By the result
of Simonovits, for s > so(H) the induced subgraph of G on X U Z contains at most
t(s+m, k) edges. In addition, all other edges of G are incident with the vertices of X, as Y is
independent. Therefore, the total number of edges of G is at most t(s+m, k)+(n—s—m)s =
g(n, k, s) where the last equality follows from (1). This completes the proof. O
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