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Abstract

The symmetric difference of two graphs G1, G2 on the same set of vertices [n] =
{1,2,...,n} is the graph on [n] whose set of edges are all edges that belong to exactly
one of the two graphs G1,G2. Let H be a fixed graph with an even (positive) number
of edges, and let Dy (n) denote the maximum possible cardinality of a family of graphs
on [n] containing no two members whose symmetric difference is a copy of H. Is it
true that Dy (n) = 0(2(;)) for any such H? We discuss this problem, compute the
value of Dy (n) up to a constant factor for stars and matchings, and discuss several
variants of the problem including ones that have been considered in earlier work.

1 Introduction

1.1 The problem

The symmetric difference of two graph G = (V, E1) and G = (V, E3) on the same set of
vertices V' is the graph (V, Ey @ E3) where Fy @ Es is the symmetric difference between
FE4 and E», that is, the set of all edges that belong to exactly one of the two graphs. Put
V =[n]={1,2,...,n} and let H be a family of graphs on the set of vertices [n] which is
closed under isomorphism. A collection of graphs F on [n] is called an H-(graph)-code if
it contains no two members whose symmetric difference is a graph in H. For the special
case that # contains all copies of a single graph H on [n] this is called an H-code. Here
we are interested in the maximum possible cardinality of such codes for various families

H. Let Dy(n) denote this maximum, and let

denote the maximum possible fraction of the total number of graphs on [n] in an H-code.
If H consists of all graphs isomorphic to one graph H, we denote dy(n) by dg(n). Note
that if 7 consists of all graphs with less than d edges, then Dy(n) is simply the maximum
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possible cardinality of a binary code of length (72‘) and minimum distance at least d. This
motivates the terminology “graph-codes” used here.

The case H = K where K is the family of all cliques is of particular interest. This case
is motivated by a conjecture of Gowers raised in his blog post [9] in 2009 and is discussed
briefly in the comments of that blog. If H consists of all graphs with independence number
at most 2, then dy(n) > 1/8 for all n > 3, as shown by the family of all graphs on [n]
containing a triangle on the set of vertices {1,2,3}. An interesting result of Ellis, Filmus
and Friedgut [6], settling a conjecture of Simonovits and Soés, asserts that this is tight
for all n > 3. The corresponding result, that dy(n) = 1/2% for all n > 4, where H' is
the family of all graphs with independence number at most 3, is proved in [3]. A more
systematic study of the parameters Dy(n) and dy(n) for various families of graphs H
appears in the recent paper [1]. The families H considered in this work include the family
of all disconnected graphs, the family of all graphs that are not 2-connected, the family
of all non-Hamiltonian graphs and the family of all graphs that contain or do not contain
a spanning star. Additional families studied are all graphs that contain an induced or
non-induced copy of a fixed graph T', or all graphs that do not contain such a subgraph.

In this note we focus on the case that H consists of a single graph H and the case that
‘H is the family of all cliques, or all cliques up to a prescribed size. Note that trivially,
if every member of H has an odd number of edges then dy(n) > % as the family of all
graphs on [n] with an even number of edges forms an H-code.

This suggests the following intriguing question.

Question 1.1. Let H be a family of graphs closed under isomorphism. Is it true that
dy(n) tends to 0 as n tends to infinity if and only if H contains a graph with an even
number of edges ¢ Equivalently: is it true that for any fized graph H with an even number
of edges, dg(n) tends to 0 as n tends to infinity ¢

We also study the linear variant of these problems, where the H-codes considered are
restricted to linear subspaces, that is, to families of graphs on [n] closed under symmetric
difference.

1.2 Results

Recall that IC is the family of all cliques. Let IC(r) denote the set of all cliques on at most
r vertices. Let K1 ; denote the star with ¢ edges and let M; denote the matching of ¢ edges.

Theorem 1.2. For every positive integer k,
dKl,Qk (n) = Gk(l/nk) and dMl,Qk (n) = @k(l/nk)

Proposition 1.3. For every integer r > 1,

dlC(4r+3) (n) > Q).
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Proposition 1.4. For the family KC of all cliques, di(n) > 2[73/2].

Proposition 1.5. Let H be a fized graph obtained from two copies of a graph H' by
identifying the vertices of an independent set of H'. Then

dir(n) < W(rf{)‘ for all n>|V(H)|.

In particular, dg(n) tends to 0 as n tends to infinity.

Remark: all lower bounds are proved by exhibiting proper colorings of the relevant
Cayley graphs, and in all cases the constructed family is an affine space over Z5. Using
a simple Ramsey-theoretic argument it is not difficult to show that for an affine space
the maximum possible cardinality obtained is at most a fraction O(loglogn/logn) of all
graphs on n vertices whenever the defining family contains a fixed graph with an even
number of edges.

Since all lower bounds are obtained by what may be called linear graph-codes one can
study this separately, as done for standard error correcting codes. For the family of all
cliques K we get here an exact result (strengthening the assertion of Proposition 1.4).

Theorem 1.6. For any n > 2, the minimum possible co-dimension of a linear space of
graphs on n vertices that contains no member of K is exactly [n/2].

2 Proofs

2.1 Upper bounds

For a family of graphs H and an integer n, the Cayley graph C(n,#) is the graph whose
vertices are all graphs on the n vertices [n], where two are adjacent iff their symmetric
difference is a member of H. This is clearly a Cayley graph over the elementary abelian
2-group Z3 with N = (g) The function Dy (n) is just the independence number of this
graph, dy(n) is the so called independence ratio. Since the graph C(n,H) is vertex tran-
sitive, its independence ratio is exactly the reciprocal of its fractional chromatic number.
In order to prove an upper bound of « for its independence ratio it suffices to exhibit a
set S of vertices that contains no independent set of size larger than «|S|. This applies
also to weighted sets of vertices, but we will not use weights here.

Proof of Proposition 1.5: Let a + b denote the number of vertices of H' where b is the
size of its independent set so that H is obtained from two copies of H' by identifying the
vertices in this independent set. Thus the number of vertices of H is 2a + b. Consider
the following set of m = |(n — b)/a]| copies of H' on subsets of the vertex set [n]. All of



them contain the same independent set on the vertices {n —b+1,n —b+2,...,n}, and
the additional vertices of copy number i are the vertices {(i —1)a+1,(i—1)a+2,...,ia},
where 1 < ¢ < m. Each of these copies can be viewed as a vertex of the Cayley graph
C = C(n,{H}). Since the symmetric difference of every pair of such copies forms a copy
of H, this set forms a clique of size m in C, implying that dgy(n) < L < |[V(H)|/n. O

The proofs of Theorem 1.2 for stars and for matchings are very similar. We describe the
proof for stars and briefly mention the modification needed for matchings. The upper
bound in Theorem 1.2 for the star K o is a special case of the result above (with H " being
a single edge). The upper bound for any prime k can be proved using the following result
of Frankl and Wilson.

Theorem 2.1 ([8]). Let p be a prime, and let ag,aq,...,a, be distinct residue classes
modulo p. Let F be a family of subsets of [n] and suppose that |F| = ag mod p for all
F € F and that for every two distinct Fy, Fy € F, |F1NFs| = a; mod p for some 1 <i <r.
Then |F| < 310 (7)-

Suppose k is a prime, n > 2k and consider the family G of all stars K 9,1 with
center 1 and 2k — 1 leaves among the vertices {2,3,...,n}. Thus |G| = (27}:_11). If two
such stars share exactly kK — 1 common leaves then their symmetric difference is a copy of
K 2. A subset of G which is independent in the Cayley graph C(n, K 2;) corresponds to
a collection of subsets of the set {2,3,...,n}, each of size 2k — 1, where the intersection of
no two of these subsets is of cardinality k — 1. Therefore, each of these sets is of cardinality
—1 modulo k£ and no intersection is of cardinality —1 modulo k. By the Frankl-Wilson
Theorem (Theorem 2.1) the cardinality of such a family is at most Zf:_ol (";1) Therefore,

for every prime k,

>iso (") 1
W < Ok(ﬁ)

In order to prove the upper bound for all k£ we need the following result of Frankl and
Fiiredi.

dK1,2k (n) <

Theorem 2.2 ([7]). For every fized positive integers £ > {1+ {3 there exist ng = no(¢) and
dy > 0 so that for all n > ng, if F is a family of £-subsets of [n] in which the intersection
of each pair of distinct members is of cardinality either at least £ — {1 or strictly smaller
than fo, then

] < dy - s ),

Proof of Theorem 1.2, upper bound: The proof for stars is essentially identical to
the one described above for prime k, using Theorem 2.2 instead of Theorem 2.1. Let
G be the family of all stars K 9,1 with center 1 and 2k — 1 leaves among the vertices



{2,3,...,n}. Thus |G| = (272__11). If two such stars share exactly & — 1 common leaves
then their symmetric difference is a copy of K o;. Therefore, by Theorem 2.2 above with
£ =2k—1,0; =y = k—1, the maximum cardinality of a subset of G which is independent
in the Cayley graph C(n, K1) is at most some cx(n — 1)k~ for all sufficiently large n.
This supplies the required upper bound
— ¥ 1
sl <o),

for dKl’%(n). The proof for matchings is similar, starting with the family of all subsets
of cardinality 2k — 1 of a fixed matching of cardinality |n/2]. The symmetric difference
of any two matchings that share exactly £ — 1 common edges is a copy of M. Thus the
proof can proceed exactly as in the case of stars. O

2.2 Lower bounds

In order to lower bound the independence number of a Cayley graph C = C(n,H) it
suffices to upper bound its chromatic number. One way to do so is to assign to each edge
e of the complete graph on [n]| a vector v, € Zj for some r, so that for every H € H,
Y e B(H) Ve # 0, where the sum is computed in Zj. Given these vectors, we can assign
to each graph G on [n] the color ) ¢ i) ve (computed, of course, in Z3). This is clearly
a proper coloring of C' by at most 2" colors. Note that the matrix whose columns are
the (g) vectors v is the analogue of the parity-check matrix of a linear error correcting
code in the traditional theory of codes, and the color defined above is the analogue of the

syndrome of a word, see, e.g., [10] for more information about these basic notions.

Proof of Theorem 1.2, lower bound: For stars, it suffices to show that the chromatic
number of the Cayley graph C = C(n, Kj ;) is at most O(n*). Let s be the smallest
integer so that 2° — 1 > n. As shown by the columns of the parity check matrix of a
BCH-code with designed distance 2k + 1 there is a collection S of 2° — 1 binary vectors
of length r = ks so that no sum of at most 2k of them (in Z5%) is the zero vector. Fix a
proper edge coloring ¢ of K, by n colors. For each edge e let v, be the vector number c(e)
in S. This gives the desired lower bound for stars. For matchings we use essentially the
same construction, starting with a (non-proper) edge coloring of K,, by n colors in which
each color class forms a star. g

Proof of Proposition 1.3, lower bound: As in the previous proof, but the initial
edge-coloring now is defined by ¢(ij) = i for all ¢ < j and the binary vectors selected
are taken from the columns of the parity check matrix of a code with designed distance
2r + 2. Let U be the set of vertices of a clique of size at least 2 and at most 4r + 3. Then
U contains at least 1 and at most 2r + 1 vertices ¢ for which there is an odd number of



vertices of U with index strictly larger than i. Therefore the sum of vectors corresponding
to the edges of the clique on U is equal to a sum of at most 2r + 1 column vectors of the
parity check matrix, which is nonzero. O

Proof of Proposition 1.4, lower bound: This follows from the construction in the
proof of Theorem 1.6 described in the next section.

3 Linear graph-codes

Proof of Theorem 1.6: The theorem is equivalent to the statement that for all n > 2
the minimum possible r = r(n) so that there are graphs G, ..., G, on the vertex set [n]
such that every clique on a subset of cardinality at least 2 of [n] contains an odd number
of edges of at least one graph G, is 7 = [n/2]. It clearly suffices to prove the upper bound
for odd n (that imply the result for n — 1) and the lower bound for even n (implying the
result for n 4+ 1). The upper bound is described in what follows. Let n > 3 be odd. Split
the numbers [n — 1] = {1,2,...,n — 1} into the (n — 1)/2 blocks B; = {2i — 1,2i} for
1 <i<(n—1)/2. Let G; be the graph consisting of all edges of the n — 2i triangles with
a common base B; on the vertices B; U {j} for 2i < j < n. Our family of graphs is the
set of these (n — 1)/2 graphs G;. Let K be an arbitrary clique on a subset A of at least
2 vertices in [n]. If A contains a full block B; for some i, then it contains exactly 2z + 1
edges of G;, where z is the cardinality of the intersection of A with {2i+1,2i+2,...,n}.
As this is odd for all x > 0 we may assume that A contains no block B;. In this case,
let j be the second largest element in A (recall that |A| > 2). Clearly j < n — 1, hence
it is contained in one of the blocks B;. But in this case G; contains exactly one edge
of the clique K, completing the proof of the upper bound. Note that it is simple to give
additional constructions with the same properties as any set of graphs that spans the same
subspace as the graphs above will do. In particular, we can replace one of the graphs G;
by the complete graph K,,, which is the sum of all graphs Gj;.

To prove the lower bound assume 7 is even and let Gy, ... Gy, 51 be a family of n/2—1
graphs on [n]. We have to show that there is a clique on at least 2 vertices containing an
even number of edges of each G;. We show that in fact there is such a clique on an even
number of vertices. To do so we apply the classical theorem of Chevalley and Warning
(cf., e.g., [2] or [13]). Recall that it asserts that any system of polynomials with n variables
over a finite field in which the number of variables exceeds the sum of the degrees, which
admits a solution, must admit another one (in fact, the number of solutions is divisible by
the characteristics). Associate each vertex ¢ with a variable z; over Zs and consider the
following homogeneous system of polynomial equations over Zy. For each graph Gy in our



family,
Z riry = 0.
ijeEE(Gs)
In addition, add the linear equation ;" ; x; = 0.

The sum of the degrees of the polynomials here is 2(n/2 — 1) + 1 = n — 1, which
is smaller than the number of variables. Since the system is homogeneous it admits
the trivial solution x; = 0 for all i. Any other solution (which exists by the Chevalley
Warning Theorem) gives a clique on the set of vertices {i : z; = 1} which is nonempty, of
even cardinality, and contains an even number of edges (possibly zero) of each G;. This

establishes the lower bound and completes the proof of Theorem 1.6. O

4 Concluding remarks and open problems

e Question 1.1, which is equivalent to the problem of deciding whether or not for any
fixed nonempty graph H with an even number of edges dy(n) tends to 0 as n tends

to infinity, remains wide open.

An interesting special case is whether or not dg,(n) = o(1). It is also interesting
to decide whether or not dg,(n) > ﬁ It is not difficult to show that the latter
can be deduced from the existence of an edge coloring of K,, by n°® colors with no
copy of K4 in which every color appears an even number of times. Indeed, such a
coloring together with the columns of the parity check matrix of a BCH code with
designed distance 7 supplies the lower bound above using the reasoning in the proofs
of some of the results here. I have just learned from Zach Hunter and Dhruv Mubayi
that such an edge coloring is described in [5], modifying the constructions in [11],

[4]. Therefore dg,(n) > ﬁ

e Gowers conjectured in [9] that any family of a constant fraction of all graphs on [n],
where n is sufficiently large, contains two graphs G, G2 such that G» is a subgraph
of G and the symmetric difference of the two graphs (that is, the set of all edges of
G that are not in Gg) forms a clique. This is clearly stronger than the conjecture
that di(n) tends to 0 as n tends to infinity, which is also open. As explained in
[9] the question of Gowers can be viewed as the first unknown case of a polynomial

version of the density Hales-Jewett Theorem.

e As mentioned in the remark following the statement of Proposition 1.5, it is not
difficult to show that for every graph H with an even number of eges the maximum
possible cardinality of a linear family of graphs on [n] in which no symmetric differ-
ence is a copy of H, is 0(2@)). As the proof applies Ramsey’s Theorem, it provides
very weak bounds. It will be interesting to establish tighter bounds for the linear
case. Theorem 1.6 provides an example of a tight result of this form.



e The problem considered above can be extended to hypergraphs. More generally, it
can be extended to other versions of problems about binary codes, where the coordi-
nates of each codeword are indexed by the elements of some combinatorial structure,
and the forbidden symmetric differences correspond to a prescribed family of sub-
structures. Here is an example of a problem of this type. What is the maximum
possible cardinality of a collection of binary vectors whose coordinates are indexed
by the elements of the ordered set [n], where no symmetric difference of two dis-
tinct members of the collection forms an interval of length which is a cube of an
integer? The corresponding Cayley graph here has 2" vertices, and it is triangle-free
by Fermat’s last Theorem for cubes. Its independece number, which is the answer
to the question above, is 0(2"). Indeed, this follows from the Furstenberg-Sarkézy
Theorem and its extensions [12], by considering the maximum possible cardinality
of an independent set in the induced subgraph on the set of all vertices that are
characteristic vectors of an interval [i] = {1,...,4} for 0 <i < n.

e Some of the discussion here suggests the problem of determining or estimating the
smallest number of colors in an edge coloring of K, in which every copy of a given
graph H (or every copy of any member of a prescribed family H of graphs) intersects
at least one of the color classes by an odd number of edges. This appears to be an
interesting variant of classical questions in Ramsey Theory and deserves further
study.
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