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ABSTRACT: On average, modern numerical weather prediction forecasts for daily tornado frequency exhibit no skill
beyond day 10. However, in this extended-range lead window, there are particular model cycles that have exceptionally
high forecast skill for tornadoes because of their ability to correctly simulate the future synoptic pattern. Here, model initial
conditions that produced a more skillful forecast for tornadoes over the United States were exploited while also highlight-
ing potential causes for low-skill cycles within the Global Ensemble Forecasting System, version 12 (GEFSv12). There
were 88 high-skill and 91 low-skill forecasts in which the verifying day-10 synoptic pattern for tornado conditions revealed
a western U.S. thermal trough and an eastern U.S. thermal ridge, a favorable configuration for tornadic storm occurrence.
Initial conditions for high skill forecasts tended to exhibit warmer sea surface temperatures throughout the tropical Pacific
Ocean and Gulf of Mexico, an active Madden—Julian oscillation, and significant modulation of Earth-relative atmospheric
angular momentum. Low-skill forecasts were often initialized during La Nifla and negative Pacific decadal oscillation
conditions. Significant atmospheric blocking over eastern Russia—in which the GEFSv12 overforecast the duration and
characteristics of the downstream flow—was a common physical process associated with low-skill forecasts. This work
helps to increase our understanding of the common causes of high- or low-skill extended-range tornado forecasts and could
serve as a helpful tool for operational forecasters.

SIGNIFICANCE STATEMENT: This research provides a framework for the anticipation of a more (or less) skillful
10-day tornado forecast in an operational numerical weather prediction system. High-skill forecasts were associated
with substantial tropical convection and warm sea surface temperature throughout the Pacific Ocean and Gulf of
Mexico, whereas the underlying cause of low-skill forecasts were typically associated with a blocking anticyclone over
eastern Russia. These findings are important because they permit increased or decreased confidence in a long-range
forecast of tornado occurrence based on a dynamical prediction system.

KEYWORDS: ENSO; Madden—Julian oscillation; Severe storms; Climate variability; Forecast verification/skill;
Operational forecasting

1. Introduction and background useful for lead times of 1-3 days, where forecasters often utilize
the quantification of environmental “ingredients” that are neces-
sary for the formation and sustenance of severe convective storms
(Maddox 1976; Johns and Doswell 1992; Brooks et al. 1994, 2003;
Grams et al. 2012).

Several recent efforts have focused on evaluating skill and
increasing our understanding of U.S. SCS occurrence at and
beyond the day-4-8 period (e.g., Gensini and Marinaro 2016;
Lepore et al. 2018; Gensini and Allen 2018; Baggett et al.
2018; Moore 2018; Gensini et al. 2019, 2020a; Miller et al.
2020; Moore and McGuire 2020; Miller et al. 2022). From a
strictly dynamical perspective, daily tornado and hail predic-
tions were found to be skillful relative to climatological no-

Operational severe convective storm (SCS; tornadoes, se-
vere hail, and severe convective wind gusts) forecasts, repre-
sented as convective “outlooks,” are issued by the National
Oceanic and Atmospheric Administration’s (NOAA) Storm
Prediction Center (SPC) each day with a forecast lead time
out to day 8 (https://www.spc.noaa.gov/misc/about.html). These
outlooks provide individual areal hazard probabilities within
40 km of a point for days 1 and 2, whereas the combined SCS
probability is provided for days 3-8. Day-1 SPC convective out-
look skill increased over the period 1979-2014, and increases
for days 2 and 3 have been noted since the early 2000s (Hitchens
and Brooks 2012, 2014). Increases in skill are likely attributable to
reductions in numerical weather prediction (NWP) horizontal
grid spacing, increases in vertical resolution, better representation

skill reference forecasts out to—on average—days 9 and 11,
respectively, using the Global Ensemble Forecast System

of microphysics (Dyer et al. 2016; Morrison et al. 2020), and im-
provements to our heuristic understanding of severe convective
storms (Wurman et al. 2012). SPC outlooks are less likely to be is-
sued in the day-4-8 period because of the decreasing confidence
and skill in NWP solutions with lead time (Gensini and Tippett
2019). Deterministic and ensemble forecast products are typically
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(GEFS), version 10, during spring 2016 and 2017 (Gensini
and Tippett 2019). Because the GEFS cannot explicitly simu-
late SCS hazards, a modified version (adding simulated con-
vective precipitation) of the supercell composite parameter
(SCP; Thompson et al. 2003) was used as a predictor, similar
to an environmental ingredients-based approach (Gensini and
Tippett 2019).

This study was motivated by Gensini and Tippett (2019),
where a relatively large spread in GEFS individual SCS fore-
cast skill was noted at the average lead time of zero skill (i.e.,
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of microphysics (Dyer et al. 2016; Morrison et al. 2020), and im-
provements to our heuristic understanding of severe convective
storms (Wurman et al. 2012). SPC outlooks are less likely to be is-
sued in the day-4-8 period because of the decreasing confidence
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and Tippett 2019). Because the GEFS cannot explicitly simu-
late SCS hazards, a modified version (adding simulated con-
vective precipitation) of the supercell composite parameter
(SCP; Thompson et al. 2003) was used as a predictor, similar
to an environmental ingredients-based approach (Gensini and
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where a relatively large spread in GEFS individual SCS fore-
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day 10) for spring tornado frequency. Essentially, some GEFS
forecasts were very skillful at day 10, whereas others had neg-
ative skill. This suggests that a model evaluation of high- and
low-skill forecasts may lead to identifying underlying regimes
that contribute to enhanced or reduced predictability, specifi-
cally for extreme events at extended lead times. Several re-
cent studies have followed a similar approach. For example,
the representation of upstream surface cyclones is important
in correctly predicting atmospheric blocking events within
the European Centre for Medium-Range Weather Forecast
(ECMWF) Ensemble Prediction System (EPS; Maddison et al.
2019). An ECMWF day-6 forecast was also evaluated and
showcased Europe forecast “bust” events to be characteristic
of a Rex-type blocking event (Rodwell et al. 2013). The au-
thors found initial conditions for the bust events contained
significant troughing over the U.S. Rocky Mountains and
large values of convective available potential energy through-
out the Great Plains. In addition, statistically significant higher
winter average geopotential height prediction skill for the Cli-
mate Forecast System, version 2 (CFSv2), was evident during
the negative phase of the North Atlantic Oscillation (NAO;
Hurrell et al. 2003) under El Nifio conditions, whereas larger
prediction skill was evident during positive NAO under La
Niiia conditions (Miller and Wang 2019a).

This type of model evaluation can provide operational fore-
casters with higher or lower confidence in model solutions if
certain sources of predictability or global weather regimes are
present at the time of model initialization. Moreover, it may
reveal model biases or sources of error that could prove useful
to developers. Societally, losses caused by tornadoes can be
devastating, and anticipating these events at extended lead
times allows for increased awareness and potential for mitiga-
tion. Thus, day-10 GEFS, version 12 (GEFSv12), 500-hPa
geopotential height (Z500) forecasts over the United States
are investigated in tandem with the occurrence of practically
perfect tornado day hindcasts. Initial model conditions were
then analyzed and composited for high- and low-skill day-10
forecasts. Results were then put into context related to poten-
tial sources of forcing and variability that contribute to high-
and low-skill extended-range tornado forecasts.

2. Data and methods
a. Data

Daily-averaged (from the native hourly interval) data from
ECMWEF’s ERAS reanalysis (Hersbach et al. 2020) during bo-
real spring over the period 2000-19 were downloaded and
used as the verifying field for the day-10 GEFSv12 Z500 fore-
cast. Initial conditions, as well as the evolutions, were investi-
gated from ERAS by examining Z500, outgoing longwave
radiation (OLR), and sea surface temperature (SST). Geopo-
tential, zonal wind, and meridional wind at 200 hPa were used
for the calculation of wave-activity flux (WaF). Zonal wind at
each vertical level was used for the calculation of Earth-relative
atmospheric angular momentum (AAM) following the methods
outlined in Miller et al. (2022), which included constraining the
zonal integral to the Northern Hemisphere.
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Model evaluation was conducted using GEFS version 12
(GEFSv12; Guan et al. 2022) reforecasts over the period 2000-19
during boreal spring [March-May (MAM)]. GEFSv12 refore-
casts, containing one control and four perturbation runs, were
initialized once per day from 0000 UTC initial conditions and in-
tegrated to a forecast lead time of 16 days. An additional six-
perturbation cycle integrated to day 35 is also provided once weekly
on Wednesdays. GEFSv12 has recently been utilized to analyze the
performance in precipitation forecasts in India (Saminathan et al.
2021; Nageswararao et al. 2022) and additional hydrometeorologi-
cal applications (Guan et al. 2022). GEFSv12 reforecasts have also
been shown to contain smaller central U.S. 2-m temperature biases
throughout the year, and overall higher skill in predicting Z500
than its Subseasonal Experiment (SubX; Pegion et al. 2019) refore-
cast counterpart (Guan et al. 2022). Specifically, Z500 over the
United States (63°-124°W, 24°-50°N) was the forecast verification
field evaluated in section 3, and our focus was on the day-10 lead
window for a 1200-1200 UTC convective day (forecast hours
252-276 for a 0000 UTC cycle).

Tornado practically perfect hindcasts (PPH; Hitchens
et al. 2013; Gensini et al. 2020b) were used to identify tor-
nado days that occurred on high- or low-skill day-10 Z500
forecasts. Tornado PPHs represent a Gaussian-smoothed
statistical point process of event probabilities with the goal
of resembling what a perfect SPC convective outlook may
look like. Days on which the U.S. maximum tornado PPH
probability exceeded the March—June 2000-19 75th percen-
tile (17.27%) were examined. This corresponds to a tornado
PPH probability in between an “enhanced” and “moderate”
categorical threshold by the SPC, which are associated with 10%
and 30% tornado PPH probabilities, respectively. Hereinafter,
these 75th-percentile tornado PPH days are referred to as tornado
days for brevity.

b. Teleconnection indices, atmospheric blocking, and
wave activity flux

Several weather/climate teleconnection indices were explored
to identify any reoccurring and potential significant signals that
may be present during high- and low-skill tornado day forecasts.
The Madden—Julian oscillation (MJO; Baggett et al. 2018;
Gensini et al. 2019, 2020a) has recently been utilized as a source
of subseasonal-to-seasonal (S2S) predictability for SCSs, and re-
cent work discovered increased probabilities of SCSs 34 weeks
following the strongest MJO convection signal (Miller et al.
2022). CPC pentad MJO indices (NWS/CPC 2022; Baxter et al.
2014) were used to represent the MJO (as in Miller et al. 2022),
which represent the negative projection of 200-hPa velocity
potential (x200) anomalies onto the 10 time-lagged patterns of
the first extended empirical orthogonal function of pentad 200
anomalies.

Indices describing the modulation of the Arctic Oscillation
(AO), the North Atlantic Oscillation (NAO), the El Nifio—
Southern Oscillation (ENSO), Pacific decadal oscillation (PDO),
the Pacific-North American (PNA) pattern, and the quasi-biennial
oscillation (QBO) were all investigated to examine if recur-
rent phases of teleconnections were present during model
cycle initialization and day-10 tornado forecasts. All indices
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FIG. 1. The (a) anomaly correlation coefficient (ACC) and (b) root-mean-square error (RMSE) over the United
States (63°-124°W, 24°-50°N) between the GEFSv12 and ERAS Z500 fields from day 1 to day 15 for the control run
and 10 perturbation members. Box-and-whisker plots for the control run (c) ACC and (d) RMSE for all MAM Z500
forecasts. (e) Scatterplot showing the ACC vs RMSE for all control member MAM Z500 forecasts. Red and blue
circles represent the low- and high-skill forecasts, respectively.

were obtained and are available via the NOAA Physical
Sciences Laboratory (PSL; https:/psl.noaa.gov/data/climate
indices/list/).

In addition to teleconnections, two physical processes of in-
terest on these time scales are atmospheric blocking and wave
propagation. Atmospheric blocking is characterized as a quasi-
stationary, high pressure system that acts to hamper the normal
progression of the westerly jet and may induce extreme weather
conditions (Sillmann and Croci-Maspoli 2009; Buehler et al.
2011; Dole et al. 2011; Miller et al. 2020, 2021; Miller and Wang
2022, 2019b). A two-dimensional blocking index was calculated
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following the methods of Miller et al. (2021), which identifies
7500 anomalies that exceed 1.50, have an area greater than
10° X 10°, and persist for at least 5 days. Blocking indices were
calculated for day 0 (model initialization) and day 10.

Observed wave propagation for both high- and low-skill fore-
cast groups were examined by calculating the WaF (m? s~2) at
200 hPa following Takaya and Nakamura (2001). WaF indicates
a snapshot of the propagation direction of stationary or migrat-
ing waves and is nearly parallel to the group velocity. The diver-
gence/convergence of WaF indicates regions where the wave
packet is emitted/absorbed.
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FIG. 2. Two-dimensional (a),(c) Pearson r and (b),(d) mean absolute error between the GEFSv12 day-10 forecasts
and ERAS for (top) high-skill and (middle) low-skill forecasts. Also shown is the difference between the high- and
low-skill (e) ACC and (f) MAE. The yellow star indicates the location evaluated in Fig. 3, below.

c¢. Defining windows of high and low forecast skill

Anomaly correlation coefficient (ACC; Wilks 2011) and
root-mean-square error (RMSE; Wilks 2011) were first calcu-
lated for the Z500 anomaly field over the United States be-
tween the ERAS and GEFSv12 forecasts from days 1 to 15
for each ensemble member (Figs. 1a,b). Anomalies were cre-
ated by removing the 2000-19 daily averages for both the
ERAS and GEFSv12. High- and low-skill days were chosen
using the control member given initial exploratory findings
that control forecasts had consistently higher skill than the
perturbation members, which is similar to previous work
(Rodwell et al. 2013). It is important to note that the results
were similar when examining the ensemble mean, with com-
posites being more smoothed out for model conditions. A
day-10 control member forecast with an ACC = 66th percen-
tile and a RMSE = 33rd percentile was labeled as a high-skill
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forecast. A low-skill forecast day contained an ACC = 33rd
percentile and a RMSE = 66th percentile. Together, these en-
sure that a high-skill forecast is associated with relatively low
errors related to magnitude (RMSE) and pattern location
(ACCQ). A total of 88 high-skill and 91 low-skill forecasts were
identified over the study period.

d. Evaluation metrics and statistical significance

Two-dimensional fields of Pearson r correlations and
mean absolute error (MAE) for the day-10 forecasts were
calculated for both forecast groups (Fig. 2). Calculations
were made at each grid point between the ERAS and
GEFSv12 day-10 forecasts of Z500 anomalies. Both data-
sets were bilinearly interpolated to a common latitude/
longitude grid (1° X 1°) for the calculations of ACC and
RMSE.
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FIG. 3. The average (a) Pearson r and (b) MAE evolution from day 1 to day 10 at 41°N, 79°W for the high-skill (blue)
and low-skill (red) groups. The sample size for each group is located in the legend.

Anomalies of Z500, OLR, SST, blocking frequency, and
several teleconnection indices were constructed by removing
the 2000-19 daily averages (i.e., seasonal cycle) to examine
the initial state for the high- and low-skill groups. Statistical
significance of the anomalies were tested using a two-tailed
Student’s ¢ test, with the null hypothesis that the anomalies do
not differ from zero. The statistical significance of blocking
frequency anomalies was performed using a Mann-Whitney
U test for the medians. Results were considered to be signifi-
cant if the p value was less than 0.05 (95% confidence level).
Field significance was performed using the false discovery
rate (FDR; Wilks 2011) of « = 0.1 for composite anomalies of
several fields throughout the study.

3. Evaluation of GEFSv12 Z500 over the United States

The control run showed the highest average ACC through
day 14 while also containing the lowest average RMSE
through day 10 in comparison with the perturbation members
(Figs. 1a,b). Given this, the rest of the focus herein is on the
control member. Note that we are not examining the predict-
ability of the ensemble system. Rather, we are trying to un-
derstand the initial conditions associated with individual
forecasts, which by nature are individual members. The con-
trol member ACC and RMSE spread was small at shorter
lead times, and increased the largest at day 6 (Figs. 1c,d). For
example, the control run at day 10 contained spread of near
perfect ACC/RMSE to outliers of ACC equal to —0.75 (opposite
anomaly pattern from what was forecast) and RMSE > 150 m.
The median ACC experienced the largest decreases from day 9
to 10. As stated previously, focus here is on the day-10 forecasts
motivated by Gensini and Tippett (2019), where the average lead
time of zero skill for all forecasts was day 10. The high-skill fore-
casts contain ACC and RMSE values greater than the 66th per-
centile (0.65) and less than the 33rd percentile values (46.81 m),
respectively (Fig. 1e). In contrast, a low-skill forecast contains an
ACC = 0.35 and RMSE values = 62.88 m. In total, 88 high-skill
and 91 low-skill tornado events occurring at day 10 were found.

High-skill day-10 forecasts exhibited r values greater than 0.7
over the East and West Coast of the United States (Fig. 2a),
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which contrasted lower values (0-0.3) for low-skill forecasts
(Fig. 2¢). Major differences in ACC between the two groups
were found over the United States, with values greater than 0.6
higher for high-skill forecasts (Fig. 2e). Other areas of higher
Pearson r were located over the Pacific Ocean, northwest Can-
ada, and Newfoundland. The largest MAE values for both
groups were located over the Pacific Ocean (Figs. 2b,d), with
the largest group differences over the U.S. East and West
Coast, similar to the pattern found in Pearson r (Fig. 2f).
Lead-day averaged r and MAE values were also examined
at a point over the eastern United States (41°N, 79°W; yellow
dot in Fig. 2), which is collocated with the area of largest
changes in metrics between the high- and low-skill groups.
High-skill forecasts contained nearly constant r values be-
tween 0.7 and 0.8 from days 1 to 10 (Fig. 3a), while the MAE
remained between 40 and 65 m (Fig. 3b). Low-skill forecasts
had similar correlations and MAE values through day 6, fol-
lowed by a significant decrease of Pearson r and increase of
MAE through day 10. In essence, NWP evolution of the Z500
field was, on average, poor beyond day 6 for these forecasts.

4. Comparison between skillful and poorly predicted
day-10 tornado days

a. Observed characteristics of high- and low-skill
forecasts

Examining Z500 forecast evolution, locally significant posi-
tive Z500 anomalies were evident over the Alaska—Canadian
border at day 1 for the high-skill groups (Fig. 4a). The ob-
served Z500 for low-skill day-1 forecasts contained significant
positive anomalies farther west relative to that of the high-
skill forecasts (Fig. 4c), and it appears that these positive
anomalies were the greatest differences among the two
groups (Fig. 4e). Unsurprisingly, the GEFSv12 day-1 forecast
(Figs. 4a,c, contours) for both groups closely resembles the
ERAS. However, minor differences associated with the Pacific
wave train were already occurring at day 1 for the low-skill fore-
casts (Fig. 4c). Observed day-10 patterns over the United States
are relatively similar between both groups (Figs. 4b,d), show-
casing a midlevel western U.S. thermal trough and eastern
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FIG. 4. ERAS (shading) and GEFSv12 (contours) Z500 anomalies for (a),(c) day 1 and (b),(d) day 10 for the (top)
high-skill group and (middle) low-skill group. Black dots indicate ERAS anomalies statistically significant at the 95%
confidence interval. Also shown are the difference between the high- and low-skill ERAS Z500 anomalies for days
(e) 1 and (f) 10. Black stippling indicates where anomalies are locally statistically significant at the 95% confidence

level. No grid points were field significant.

U.S. thermal ridge synoptic pattern conducive for severe con-
vective storms (Miller et al. 2020). The largest differences
were associated with a significant north-south dipole in the
day-10 Z500 pattern located over eastern Russia for the high-
skill forecasts (Figs. 4b,f). Day-10 predicted Z500 field for
the high-skill group closely resembles that of the ERAS. Not
only is the U.S. trough west—east ridge pattern replicated, but
the western Pacific north-south dipole is also evident (con-
tours in Fig. 4b). GEFSv12 forecasts for the low-skill group
produced a western U.S. midlevel thermal ridge, central U.S.
thermal troughing, and southeast U.S. thermal ridging, which
was out of phase relative to the ERAS5 (Fig. 4d), leading to
low Pearson r values on the U.S. West and East Coasts
(Fig. 2¢). A closer look at the evolution of the low-skill day-
10 forecasts (Fig. 5) revealed that the GEFSv12 was too ampli-
fied with eastern Russia positive Z500 anomalies, especially at
day 6 (Fig. 5¢). By day 8 (Fig. 5d), the wave train was also out
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of phase, leading to rapidly decreasing and increasing ACC
and RMSE, respectively. In fact, positive Z500 anomalies over
eastern Russia at initialization were associated with a blocking
anticyclone.

Atmospheric blocking is a significant producer of extreme
weather (Sillmann and Croci-Maspoli 2009; Buehler et al.
2011; Dole et al. 2011; Miller and Wang 2019b; Miller et al.
2020; Miller and Wang 2022), and operational models have
difficulty forecasting the initiation, duration, and cessation of
blocking events (Tibaldi and Molteni 1990; Matsueda 2011;
Reynolds et al. 2017). A two-dimensional blocking index was
calculated and examined for both the high- and low-skill
groups. Field significant positive anomalies of blocking fre-
quency were located over eastern Russia at day 0 for the low-
skill forecasts, hinting at a potential problem for the evolution
of the flow (Fig. 6¢). Although blocking onset mechanisms have
been extensively studied—showing to be complex and varying
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(b) Low-Skill ERA5/GEFS Z500 (day 4)

FIG. 5. As in Figs. 4a—d, but for the low-skill group at (a) day 2, (b) day 4, (c) day 6, and (d) day 8. Black stippling
indicates where anomalies are locally statistically significant at the 95% confidence level.

by region (Miller and Wang 2022)—dynamics involved in block-
ing maintenance and cessation remain challenging. Owing to the
unsettled theories of blocking decay, operational models may fail
to predict the duration of the blocking life cycle (Reynolds et al.
2017). Since blocking can significantly influence the downstream
evolution of the synoptic flow (Rex 1950; Miller and Wang
2022), an overforecast blocking duration, as we see here, can
cause significant error growth in the model solution.

Differences in the WaF propagation was also found to be a
potential cause for poor model performance of the low-skill
groups. The wave propagation pathway from the ERAS was
different between the high- and low-skill groups, specifically
at days 6 and 8 (Fig. 7). WaF vectors for the high-skill fore-
casts evolved from the central Pacific to the northwest United
States, showcasing a significant meridional component at day 6
(Fig. 7a). The convergence intensified over the U.S. West Coast,

-3
Blocking Frequency [%]

FIG. 6. ERAS blocking frequency anomalies (% of days) for (a),(c) day-0 and (b),(d) day-10 (top) high-skill fore-
casts and (bottom) low-skill forecasts. Black stippling indicates where anomalies are locally statistically significant at
the 95% confidence level, whereas white stippling indicates anomalies that are field significant at the FDR level of

a=0.1.
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(a) High-Skill ERAS WAF (Day 6)

»» :“

(b) Low-Skill ERA5 WAF (Day 6)

Rt

é{iis

FIG. 7. ERA5 wave activity flux (vectors; m*> s 2) and convergence (shading; m s~2) for days (a),(b) 6; (c),(d) 8; and
(e),(f) 10 of the (left) high-skill and (right) low-skill forecasts. The scale for WaF vectors is shown in the top-right

corners of the panels.

working to amplify the thermal trough over the western United
States at day 8 (Fig. 7c). The GEFSv12 reproduced the meridio-
nal component of the WaF vectors with similar convergence off
the U.S. West Coast in the high-skill forecasts (Figs. 8a,c,e). In
contrast with the high-skill forecasts, the low-skill evolution
showed a zonal propagation with almost no meridional influ-
ence at days 6 and 8 (Figs. 7b,d), and the WaF convergence
over the western United States was weaker than the ob-
served WaF during high-skill forecasts. GEFSv12 WaF at
day 6 showed a waveguide extending from Japan to the west
of Hawaii, with no zonal propagation to the United States
(Fig. 8b), contrary to what was observed in the ERAS (Fig. 7b).
We suspect the overpredicted blocking anticyclone was pre-
venting the zonal waveguide from occurring and evolving in
GEFSv12.

Several sources of subseasonal-to-seasonal variability
(Merryfield et al. 2020) have been shown to modulate severe
convective storm occurrence, including the MJO (Thompson and
Roundy 2013; Barrett and Gensini 2013; Baggett et al. 2018;
Gensini et al. 2020a; Moore and McGuire 2020; Miller et al.
2022), the ENSO (Allen et al. 2015), the AAM budget (Gensini
and Marinaro 2016; Moore 2018; Gensini et al. 2020a), land sur-
face (Frye and Mote 2010), and sea ice (Trapp and Hoogewind
2018). To examine this variability, OLR and SST states at initiali-
zation were analyzed for both skill groups. Near opposite OLR
patterns were present, especially over the western tropical Pacific
Ocean (Figs. 9a.c.e). Locally statistically significant negative
OLR anomalies were present over the “Maritime Continent”
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along with positive anomalies over the central and eastern tropi-
cal Pacific for the high-skill forecasts, whereas the low-skill group
exhibited positive anomalies over the Maritime Continent
(negative OLR anomalies represent increased cloudiness/
precipitation). The negative OLR anomalies were associated
with the MJO (section 4b).

As mentioned, a stark contrast in SST was apparent be-
tween the high- and low-skill initialization states. Skillful fore-
casts contained field significant warmer temperatures in the
central tropical Pacific Ocean, off the west coast of the United
States, and the Gulf of Mexico (Fig. 9b). In contrast, SSTs
during initialization for the low-skill forecasts contained La
Nifia-like conditions with field significant (FDR value < 0.1)
colder SSTs than the seasonal cycle throughout the tropical
Pacific Ocean and off the west coast of the United States and
Canada (Fig. 9d). These spring conditions are known to be as-
sociated with increased probabilities of severe weather (Lee
et al. 2016), yet the GEFSv12 fails to predict the pattern evo-
lution accurately. Differences between the two skill groups
(Fig. 9f) highlight the opposite patterns with field significant
differences occurring throughout the domain.

b. The MJO and climate indices

The MJO is a primary source of subseasonal predictability
and has recently been exploited for its relation to U.S. severe
convective weather (Gensini et al. 2019; Baggett et al. 2018;
Miller et al. 2022). The CPC pentad MJO indices and AAM
for 20 days before/after the day of GEFSv12 initialization for



Jury 2023 MILLER AND GENSINI 1203

High-Skill GEFS WAF (Day 6)

FIG. 8. Asin Fig. 7, but for the GEFSv12.

both forecast groups were examined (Fig. 10). Major differ- increase in AAM is apparent between days —15 and —5
ences were evident, with the skillful forecasts being initialized  (Fig. 10b), followed by a minimum around the time of peak
~20 days following a strong active MJO which appears to  severe weather frequency (day 10). The noted increases in
propagate, on average, rather quickly (Fig. 10a). A significant ~AAM following the MJO were reminiscent of the modulation

&1
VIS ARANRRE T

ill ERA5 SS

-0.45 -0.30 -0.15 0.00 0.15 0.30 0.45
[K]

FIG. 9. ERAS (a),(c) outgoing longwave radiation (OLR; W m~2) anomalies and (b),(d) sea surface temperature
(SST; K) anomalies for the (top) high-skill group and (bottom) low-skill group. Gray contours represent Z500 anoma-
lies (m). Also shown is the difference of (¢) OLR and (f) SST between the two skill groups. Black stippling indicates
where anomalies are locally statistically significant at the 95% confidence level, whereas white stippling indicates
anomalies that are field significant at the FDR level of a = 0.1.
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F1G. 10. (a),(c) Observed CPC pentad MJO indices and (b),(d) Northern Hemisphere AAM for 20 days prior to
20 days after the date of initialization for the (top) high-skill forecast group and (bottom) low-skill group. Green shad-
ing represents “active convection.” Colored dots in (b) and (d) indicate statistically significant AAM anomalies at the

95% confidence level.

following the minimum pentad index discussed in Miller et al.
(2022). Low-skill forecasts had a slower propagating, weaker
MJO signal, and despite the significant decrease ~12 days fol-
lowing model cycle initialization, there was no apparent preced-
ing peak in AAM (Figs. 10c,d). These results were consistent
with the background state of SST (Fig. 9), where the MJO was
found to propagate faster during warm Pacific SST conditions
(El Nifo), whereas slower propagation occurred during rela-
tively cold Pacific SST conditions (Pohl and Matthews 2007). In
summary, MJO and AAM characteristics prior to model initiali-
zation indicate distinguishing signals to identify “forecasts of op-
portunity” and periods of lower forecast skill, potentially
allowing for a “forecast of forecast skill.”
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Various weather/climate teleconnection indices were exam-
ined, including the AO, NAO, Nifio-3.4 index, PDO, PNA,
and QBO for the initialization date and day 10 (Fig. 11). No
teleconnection indices were significant precursor signals for
the skillful forecasts. Statistically significant negative indices
for low-skill forecasts existed for the Nifio-3.4 and PDO at
day 0, confirming the La Nifia conditions evident in Fig. 9d
and the discussion surrounding the observed MJO. The La
Nifa and negative PDO conditions were still significant at day
10 for the low-skill forecasts. Additionally, the negative PNA
pattern occurred for both forecast skill groups, congruent
with the “high-low-high” Z500 pattern over the eastern Pacific
and the United States (Figs. 4b,d). In general, caution should
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F1G. 11. Mean values of several teleconnection indices for high- (blue) and low-skill (red)
forecasts for the (a) initialization date and (b) forecast day 10. Hatched bars indicates statistically

significant values at the 95% confidence level.

be practiced when examining such teleconnection indices for
this purpose, as they represent a particular state of the atmo-
sphere in specific geographic regions that individually may or
may not be related to the evolution of the physical synoptic
weather pattern over the CONUS.

5. Discussion and conclusions

Despite the need for extended-range prediction of severe
convective storms, the current predictability limit for daily
forecasts is, on average, ~10 days. As a result of chaos, skill in
NWP solutions decrease as model integration through time
increases. However, instances exist in which forecast solutions
are more or less skillful at day 10 (and beyond), with the for-
mer providing “forecasts of opportunity.” To examine these
instances, atmospheric and oceanic states (and their time evo-
lution) that supported a high- or low-skill day-10 forecast
were examined for 75th percentile tornado day hindcasts. The
day-10 GEFSv12 Z500 field over the United States during
these active tornado days was evaluated and split into high-
and low-skill groups based on Pearson r correlation and mean
absolute error. The observed Z500 pattern supportive of tor-
nado days over the United States at day 10 were similar for
both groups, characteristic of a midlevel western U.S. thermal
trough and eastern U.S. thermal ridge.

High-skill GEFSv12 forecasts reproduced the geopotential
height pattern at 500 hPa well, whereas the pattern for the
low-skill forecasts was out of phase and propagated too
quickly. High-skill forecasts were also associated with north-
ward wave activity flux propagation and strong convergence
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off the west coast of the United States. These forecasts also
were characteristic of field significant negative OLR anoma-
lies over the Maritime Continent and warmer-than-average
SSTs throughout the tropical Pacific and Gulf of Mexico.
Additionally, high-skill forecasts exhibited a strong MJO
15-20 days prior to model initialization, which lead to a signif-
icant modulation of AAM, which is consistent with previous
research (Gensini et al. 2019, 2020a; Miller et al. 2022).

In contrast to the high-skill forecasts, WaF propagation for
the low-skill forecasts contained nearly zonal WaF vectors.
Colder than normal SSTs were evident throughout the tropi-
cal and eastern Pacific, reminiscent of La Nifia conditions. A
weaker and slower MJO was evident relative to the high-skill
group, and no significant peak in AAM occurred prior to fore-
cast initialization. The most prominent feature with low-skill
forecasts was a blocking anticyclone over eastern Russia dur-
ing model initialization, in which the GEFSv12 overforecast
the duration of the block. This is perhaps not too surprising,
as theories of atmospheric blocking onset, maintenance, and
decay are still unsettled, and research has shown that models
often fail to predict the duration of atmospheric blocking
events (Reynolds et al. 2017).

This research is the first step in understanding under what ini-
tialization conditions an extended-range GEFSv12 forecast for
tornado conditions may promote higher or lower forecast skill.
Inherently, this study exposes forecasts of opportunity, which
could be leveraged as windows of enhanced dynamical model
forecast skill for operational forecasters. These results promote
the further possibility of aiding in the creation of medium-range
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tornado outlooks—but most importantly—permit the assess-
ment of forecast confidence and allow for the potential to
“forecast the forecast skill.” For example, if a blocking anticy-
clone is present over the Northwest Pacific, GEFSv12 forecasts
may not evolve properly due to the overprediction of blocking
duration and subsequent impacts on the downstream flow. Ad-
ditional model diagnostic studies for other variables may further
aid in our understanding of potential biases and sources of er-
rors for extended-range prediction of extreme weather events
like tornadoes.
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day 10) for spring tornado frequency. Essentially, some GEFS
forecasts were very skillful at day 10, whereas others had neg-
ative skill. This suggests that a model evaluation of high- and
low-skill forecasts may lead to identifying underlying regimes
that contribute to enhanced or reduced predictability, specifi-
cally for extreme events at extended lead times. Several re-
cent studies have followed a similar approach. For example,
the representation of upstream surface cyclones is important
in correctly predicting atmospheric blocking events within
the European Centre for Medium-Range Weather Forecast
(ECMWF) Ensemble Prediction System (EPS; Maddison et al.
2019). An ECMWF day-6 forecast was also evaluated and
showcased Europe forecast “bust” events to be characteristic
of a Rex-type blocking event (Rodwell et al. 2013). The au-
thors found initial conditions for the bust events contained
significant troughing over the U.S. Rocky Mountains and
large values of convective available potential energy through-
out the Great Plains. In addition, statistically significant higher
winter average geopotential height prediction skill for the Cli-
mate Forecast System, version 2 (CFSv2), was evident during
the negative phase of the North Atlantic Oscillation (NAO;
Hurrell et al. 2003) under El Nifio conditions, whereas larger
prediction skill was evident during positive NAO under La
Niiia conditions (Miller and Wang 2019a).

This type of model evaluation can provide operational fore-
casters with higher or lower confidence in model solutions if
certain sources of predictability or global weather regimes are
present at the time of model initialization. Moreover, it may
reveal model biases or sources of error that could prove useful
to developers. Societally, losses caused by tornadoes can be
devastating, and anticipating these events at extended lead
times allows for increased awareness and potential for mitiga-
tion. Thus, day-10 GEFS, version 12 (GEFSv12), 500-hPa
geopotential height (Z500) forecasts over the United States
are investigated in tandem with the occurrence of practically
perfect tornado day hindcasts. Initial model conditions were
then analyzed and composited for high- and low-skill day-10
forecasts. Results were then put into context related to poten-
tial sources of forcing and variability that contribute to high-
and low-skill extended-range tornado forecasts.

2. Data and methods
a. Data

Daily-averaged (from the native hourly interval) data from
ECMWEF’s ERAS reanalysis (Hersbach et al. 2020) during bo-
real spring over the period 2000-19 were downloaded and
used as the verifying field for the day-10 GEFSv12 Z500 fore-
cast. Initial conditions, as well as the evolutions, were investi-
gated from ERAS by examining Z500, outgoing longwave
radiation (OLR), and sea surface temperature (SST). Geopo-
tential, zonal wind, and meridional wind at 200 hPa were used
for the calculation of wave-activity flux (WaF). Zonal wind at
each vertical level was used for the calculation of Earth-relative
atmospheric angular momentum (AAM) following the methods
outlined in Miller et al. (2022), which included constraining the
zonal integral to the Northern Hemisphere.
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Model evaluation was conducted using GEFS version 12
(GEFSv12; Guan et al. 2022) reforecasts over the period 2000-19
during boreal spring [March-May (MAM)]. GEFSv12 refore-
casts, containing one control and four perturbation runs, were
initialized once per day from 0000 UTC initial conditions and in-
tegrated to a forecast lead time of 16 days. An additional six-
perturbation cycle integrated to day 35 is also provided once weekly
on Wednesdays. GEFSv12 has recently been utilized to analyze the
performance in precipitation forecasts in India (Saminathan et al.
2021; Nageswararao et al. 2022) and additional hydrometeorologi-
cal applications (Guan et al. 2022). GEFSv12 reforecasts have also
been shown to contain smaller central U.S. 2-m temperature biases
throughout the year, and overall higher skill in predicting Z500
than its Subseasonal Experiment (SubX; Pegion et al. 2019) refore-
cast counterpart (Guan et al. 2022). Specifically, Z500 over the
United States (63°-124°W, 24°-50°N) was the forecast verification
field evaluated in section 3, and our focus was on the day-10 lead
window for a 1200-1200 UTC convective day (forecast hours
252-276 for a 0000 UTC cycle).

Tornado practically perfect hindcasts (PPH; Hitchens
et al. 2013; Gensini et al. 2020b) were used to identify tor-
nado days that occurred on high- or low-skill day-10 Z500
forecasts. Tornado PPHs represent a Gaussian-smoothed
statistical point process of event probabilities with the goal
of resembling what a perfect SPC convective outlook may
look like. Days on which the U.S. maximum tornado PPH
probability exceeded the March-June 2000-19 75th percen-
tile (17.27%) were examined. This corresponds to a tornado
PPH probability in between an “enhanced” and “moderate”
categorical threshold by the SPC, which are associated with 10%
and 30% tornado PPH probabilities, respectively. Hereinafter,
these 75th-percentile tornado PPH days are referred to as tornado
days for brevity.

b. Teleconnection indices, atmospheric blocking, and
wave activity flux

Several weather/climate teleconnection indices were explored
to identify any reoccurring and potential significant signals that
may be present during high- and low-skill tornado day forecasts.
The Madden—Julian oscillation (MJO; Baggett et al. 2018;
Gensini et al. 2019, 2020a) has recently been utilized as a source
of subseasonal-to-seasonal (S2S) predictability for SCSs, and re-
cent work discovered increased probabilities of SCSs 34 weeks
following the strongest MJO convection signal (Miller et al.
2022). CPC pentad MJO indices (NWS/CPC 2022; Baxter et al.
2014) were used to represent the MJO (as in Miller et al. 2022),
which represent the negative projection of 200-hPa velocity
potential (x200) anomalies onto the 10 time-lagged patterns of
the first extended empirical orthogonal function of pentad 200
anomalies.

Indices describing the modulation of the Arctic Oscillation
(AO), the North Atlantic Oscillation (NAO), the El Nifio—
Southern Oscillation (ENSO), Pacific decadal oscillation (PDO),
the Pacific-North American (PNA) pattern, and the quasi-biennial
oscillation (QBO) were all investigated to examine if recur-
rent phases of teleconnections were present during model
cycle initialization and day-10 tornado forecasts. All indices
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FIG. 1. The (a) anomaly correlation coefficient (ACC) and (b) root-mean-square error (RMSE) over the United
States (63°-124°W, 24°-50°N) between the GEFSv12 and ERAS Z500 fields from day 1 to day 15 for the control run
and 10 perturbation members. Box-and-whisker plots for the control run (c) ACC and (d) RMSE for all MAM Z500
forecasts. (e) Scatterplot showing the ACC vs RMSE for all control member MAM Z500 forecasts. Red and blue
circles represent the low- and high-skill forecasts, respectively.

were obtained and are available via the NOAA Physical
Sciences Laboratory (PSL; https:/psl.noaa.gov/data/climate
indices/list/).

In addition to teleconnections, two physical processes of in-
terest on these time scales are atmospheric blocking and wave
propagation. Atmospheric blocking is characterized as a quasi-
stationary, high pressure system that acts to hamper the normal
progression of the westerly jet and may induce extreme weather
conditions (Sillmann and Croci-Maspoli 2009; Buehler et al.
2011; Dole et al. 2011; Miller et al. 2020, 2021; Miller and Wang
2022, 2019b). A two-dimensional blocking index was calculated
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following the methods of Miller et al. (2021), which identifies
7500 anomalies that exceed 1.50, have an area greater than
10° X 10°, and persist for at least 5 days. Blocking indices were
calculated for day 0 (model initialization) and day 10.

Observed wave propagation for both high- and low-skill fore-
cast groups were examined by calculating the WaF (m? s~2) at
200 hPa following Takaya and Nakamura (2001). WaF indicates
a snapshot of the propagation direction of stationary or migrat-
ing waves and is nearly parallel to the group velocity. The diver-
gence/convergence of WaF indicates regions where the wave
packet is emitted/absorbed.
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FIG. 2. Two-dimensional (a),(c) Pearson r and (b),(d) mean absolute error between the GEFSv12 day-10 forecasts
and ERAS for (top) high-skill and (middle) low-skill forecasts. Also shown is the difference between the high- and
low-skill (e) ACC and (f) MAE. The yellow star indicates the location evaluated in Fig. 3, below.

c¢. Defining windows of high and low forecast skill

Anomaly correlation coefficient (ACC; Wilks 2011) and
root-mean-square error (RMSE; Wilks 2011) were first calcu-
lated for the Z500 anomaly field over the United States be-
tween the ERAS and GEFSv12 forecasts from days 1 to 15
for each ensemble member (Figs. 1a,b). Anomalies were cre-
ated by removing the 2000-19 daily averages for both the
ERAS and GEFSv12. High- and low-skill days were chosen
using the control member given initial exploratory findings
that control forecasts had consistently higher skill than the
perturbation members, which is similar to previous work
(Rodwell et al. 2013). It is important to note that the results
were similar when examining the ensemble mean, with com-
posites being more smoothed out for model conditions. A
day-10 control member forecast with an ACC = 66th percen-
tile and a RMSE = 33rd percentile was labeled as a high-skill
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forecast. A low-skill forecast day contained an ACC = 33rd
percentile and a RMSE = 66th percentile. Together, these en-
sure that a high-skill forecast is associated with relatively low
errors related to magnitude (RMSE) and pattern location
(ACCQ). A total of 88 high-skill and 91 low-skill forecasts were
identified over the study period.

d. Evaluation metrics and statistical significance

Two-dimensional fields of Pearson r correlations and
mean absolute error (MAE) for the day-10 forecasts were
calculated for both forecast groups (Fig. 2). Calculations
were made at each grid point between the ERAS and
GEFSv12 day-10 forecasts of Z500 anomalies. Both data-
sets were bilinearly interpolated to a common latitude/
longitude grid (1° X 1°) for the calculations of ACC and
RMSE.
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FIG. 3. The average (a) Pearson r and (b) MAE evolution from day 1 to day 10 at 41°N, 79°W for the high-skill (blue)
and low-skill (red) groups. The sample size for each group is located in the legend.

Anomalies of Z500, OLR, SST, blocking frequency, and
several teleconnection indices were constructed by removing
the 2000-19 daily averages (i.e., seasonal cycle) to examine
the initial state for the high- and low-skill groups. Statistical
significance of the anomalies were tested using a two-tailed
Student’s ¢ test, with the null hypothesis that the anomalies do
not differ from zero. The statistical significance of blocking
frequency anomalies was performed using a Mann-Whitney
U test for the medians. Results were considered to be signifi-
cant if the p value was less than 0.05 (95% confidence level).
Field significance was performed using the false discovery
rate (FDR; Wilks 2011) of « = 0.1 for composite anomalies of
several fields throughout the study.

3. Evaluation of GEFSv12 Z500 over the United States

The control run showed the highest average ACC through
day 14 while also containing the lowest average RMSE
through day 10 in comparison with the perturbation members
(Figs. 1a,b). Given this, the rest of the focus herein is on the
control member. Note that we are not examining the predict-
ability of the ensemble system. Rather, we are trying to un-
derstand the initial conditions associated with individual
forecasts, which by nature are individual members. The con-
trol member ACC and RMSE spread was small at shorter
lead times, and increased the largest at day 6 (Figs. 1c,d). For
example, the control run at day 10 contained spread of near
perfect ACC/RMSE to outliers of ACC equal to —0.75 (opposite
anomaly pattern from what was forecast) and RMSE > 150 m.
The median ACC experienced the largest decreases from day 9
to 10. As stated previously, focus here is on the day-10 forecasts
motivated by Gensini and Tippett (2019), where the average lead
time of zero skill for all forecasts was day 10. The high-skill fore-
casts contain ACC and RMSE values greater than the 66th per-
centile (0.65) and less than the 33rd percentile values (46.81 m),
respectively (Fig. 1e). In contrast, a low-skill forecast contains an
ACC = 0.35 and RMSE values = 62.88 m. In total, 88 high-skill
and 91 low-skill tornado events occurring at day 10 were found.

High-skill day-10 forecasts exhibited r values greater than 0.7
over the East and West Coast of the United States (Fig. 2a),
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which contrasted lower values (0-0.3) for low-skill forecasts
(Fig. 2¢). Major differences in ACC between the two groups
were found over the United States, with values greater than 0.6
higher for high-skill forecasts (Fig. 2e). Other areas of higher
Pearson r were located over the Pacific Ocean, northwest Can-
ada, and Newfoundland. The largest MAE values for both
groups were located over the Pacific Ocean (Figs. 2b,d), with
the largest group differences over the U.S. East and West
Coast, similar to the pattern found in Pearson r (Fig. 2f).
Lead-day averaged r and MAE values were also examined
at a point over the eastern United States (41°N, 79°W; yellow
dot in Fig. 2), which is collocated with the area of largest
changes in metrics between the high- and low-skill groups.
High-skill forecasts contained nearly constant r values be-
tween 0.7 and 0.8 from days 1 to 10 (Fig. 3a), while the MAE
remained between 40 and 65 m (Fig. 3b). Low-skill forecasts
had similar correlations and MAE values through day 6, fol-
lowed by a significant decrease of Pearson r and increase of
MAE through day 10. In essence, NWP evolution of the Z500
field was, on average, poor beyond day 6 for these forecasts.

4. Comparison between skillful and poorly predicted
day-10 tornado days

a. Observed characteristics of high- and low-skill
forecasts

Examining Z500 forecast evolution, locally significant posi-
tive Z500 anomalies were evident over the Alaska—Canadian
border at day 1 for the high-skill groups (Fig. 4a). The ob-
served Z500 for low-skill day-1 forecasts contained significant
positive anomalies farther west relative to that of the high-
skill forecasts (Fig. 4c), and it appears that these positive
anomalies were the greatest differences among the two
groups (Fig. 4e). Unsurprisingly, the GEFSv12 day-1 forecast
(Figs. 4a,c, contours) for both groups closely resembles the
ERAS. However, minor differences associated with the Pacific
wave train were already occurring at day 1 for the low-skill fore-
casts (Fig. 4c). Observed day-10 patterns over the United States
are relatively similar between both groups (Figs. 4b,d), show-
casing a midlevel western U.S. thermal trough and eastern
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(b) High-Skill ERA5/GEFS Z500 (day 10)

FIG. 4. ERAS (shading) and GEFSv12 (contours) Z500 anomalies for (a),(c) day 1 and (b),(d) day 10 for the (top)
high-skill group and (middle) low-skill group. Black dots indicate ERAS anomalies statistically significant at the 95%
confidence interval. Also shown are the difference between the high- and low-skill ERAS Z500 anomalies for days
(e) 1 and (f) 10. Black stippling indicates where anomalies are locally statistically significant at the 95% confidence

level. No grid points were field significant.

U.S. thermal ridge synoptic pattern conducive for severe con-
vective storms (Miller et al. 2020). The largest differences
were associated with a significant north-south dipole in the
day-10 Z500 pattern located over eastern Russia for the high-
skill forecasts (Figs. 4b,f). Day-10 predicted Z500 field for
the high-skill group closely resembles that of the ERAS. Not
only is the U.S. trough west—east ridge pattern replicated, but
the western Pacific north-south dipole is also evident (con-
tours in Fig. 4b). GEFSv12 forecasts for the low-skill group
produced a western U.S. midlevel thermal ridge, central U.S.
thermal troughing, and southeast U.S. thermal ridging, which
was out of phase relative to the ERAS5 (Fig. 4d), leading to
low Pearson r values on the U.S. West and East Coasts
(Fig. 2¢). A closer look at the evolution of the low-skill day-
10 forecasts (Fig. 5) revealed that the GEFSv12 was too ampli-
fied with eastern Russia positive Z500 anomalies, especially at
day 6 (Fig. 5¢). By day 8 (Fig. 5d), the wave train was also out
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of phase, leading to rapidly decreasing and increasing ACC
and RMSE, respectively. In fact, positive Z500 anomalies over
eastern Russia at initialization were associated with a blocking
anticyclone.

Atmospheric blocking is a significant producer of extreme
weather (Sillmann and Croci-Maspoli 2009; Buehler et al.
2011; Dole et al. 2011; Miller and Wang 2019b; Miller et al.
2020; Miller and Wang 2022), and operational models have
difficulty forecasting the initiation, duration, and cessation of
blocking events (Tibaldi and Molteni 1990; Matsueda 2011;
Reynolds et al. 2017). A two-dimensional blocking index was
calculated and examined for both the high- and low-skill
groups. Field significant positive anomalies of blocking fre-
quency were located over eastern Russia at day 0 for the low-
skill forecasts, hinting at a potential problem for the evolution
of the flow (Fig. 6¢). Although blocking onset mechanisms have
been extensively studied—showing to be complex and varying
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(b) Low-Skill ERA5/GEFS Z500 (day 4)

FIG. 5. As in Figs. 4a—d, but for the low-skill group at (a) day 2, (b) day 4, (c) day 6, and (d) day 8. Black stippling
indicates where anomalies are locally statistically significant at the 95% confidence level.

by region (Miller and Wang 2022)—dynamics involved in block-
ing maintenance and cessation remain challenging. Owing to the
unsettled theories of blocking decay, operational models may fail
to predict the duration of the blocking life cycle (Reynolds et al.
2017). Since blocking can significantly influence the downstream
evolution of the synoptic flow (Rex 1950; Miller and Wang
2022), an overforecast blocking duration, as we see here, can
cause significant error growth in the model solution.

Differences in the WaF propagation was also found to be a
potential cause for poor model performance of the low-skill
groups. The wave propagation pathway from the ERAS was
different between the high- and low-skill groups, specifically
at days 6 and 8 (Fig. 7). WaF vectors for the high-skill fore-
casts evolved from the central Pacific to the northwest United
States, showcasing a significant meridional component at day 6
(Fig. 7a). The convergence intensified over the U.S. West Coast,

-3
Blocking Frequency [%]

F1G. 6. ERAS blocking frequency anomalies (% of days) for (a),(c) day-0 and (b),(d) day-10 (top) high-skill fore-
casts and (bottom) low-skill forecasts. Black stippling indicates where anomalies are locally statistically significant at
the 95% confidence level, whereas white stippling indicates anomalies that are field significant at the FDR level of

a=0.1.
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(a) High-Skill ERAS WAF (Day 6)

»» :“

(b) Low-Skill ERA5 WAF (Day 6)

Rt

é{iis

FIG. 7. ERA5 wave activity flux (vectors; m*> s 2) and convergence (shading; m s~2) for days (a),(b) 6; (c),(d) 8; and
(e),(f) 10 of the (left) high-skill and (right) low-skill forecasts. The scale for WaF vectors is shown in the top-right

corners of the panels.

working to amplify the thermal trough over the western United
States at day 8 (Fig. 7c). The GEFSv12 reproduced the meridio-
nal component of the WaF vectors with similar convergence off
the U.S. West Coast in the high-skill forecasts (Figs. 8a,c,e). In
contrast with the high-skill forecasts, the low-skill evolution
showed a zonal propagation with almost no meridional influ-
ence at days 6 and 8 (Figs. 7b,d), and the WaF convergence
over the western United States was weaker than the ob-
served WaF during high-skill forecasts. GEFSv12 WaF at
day 6 showed a waveguide extending from Japan to the west
of Hawaii, with no zonal propagation to the United States
(Fig. 8b), contrary to what was observed in the ERAS (Fig. 7b).
We suspect the overpredicted blocking anticyclone was pre-
venting the zonal waveguide from occurring and evolving in
GEFSv12.

Several sources of subseasonal-to-seasonal variability
(Merryfield et al. 2020) have been shown to modulate severe
convective storm occurrence, including the MJO (Thompson and
Roundy 2013; Barrett and Gensini 2013; Baggett et al. 2018;
Gensini et al. 2020a; Moore and McGuire 2020; Miller et al.
2022), the ENSO (Allen et al. 2015), the AAM budget (Gensini
and Marinaro 2016; Moore 2018; Gensini et al. 2020a), land sur-
face (Frye and Mote 2010), and sea ice (Trapp and Hoogewind
2018). To examine this variability, OLR and SST states at initiali-
zation were analyzed for both skill groups. Near opposite OLR
patterns were present, especially over the western tropical Pacific
Ocean (Figs. 9ac.e). Locally statistically significant negative
OLR anomalies were present over the “Maritime Continent”
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along with positive anomalies over the central and eastern tropi-
cal Pacific for the high-skill forecasts, whereas the low-skill group
exhibited positive anomalies over the Maritime Continent
(negative OLR anomalies represent increased cloudiness/
precipitation). The negative OLR anomalies were associated
with the MJO (section 4b).

As mentioned, a stark contrast in SST was apparent be-
tween the high- and low-skill initialization states. Skillful fore-
casts contained field significant warmer temperatures in the
central tropical Pacific Ocean, off the west coast of the United
States, and the Gulf of Mexico (Fig. 9b). In contrast, SSTs
during initialization for the low-skill forecasts contained La
Nifia-like conditions with field significant (FDR value < 0.1)
colder SSTs than the seasonal cycle throughout the tropical
Pacific Ocean and off the west coast of the United States and
Canada (Fig. 9d). These spring conditions are known to be as-
sociated with increased probabilities of severe weather (Lee
et al. 2016), yet the GEFSv12 fails to predict the pattern evo-
lution accurately. Differences between the two skill groups
(Fig. 9f) highlight the opposite patterns with field significant
differences occurring throughout the domain.

b. The MJO and climate indices

The MJO is a primary source of subseasonal predictability
and has recently been exploited for its relation to U.S. severe
convective weather (Gensini et al. 2019; Baggett et al. 2018;
Miller et al. 2022). The CPC pentad MJO indices and AAM
for 20 days before/after the day of GEFSv12 initialization for
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High-Skill GEFS WAF (Day 6)

FIG. 8. Asin Fig. 7, but for the GEFSv12.

both forecast groups were examined (Fig. 10). Major differ- increase in AAM is apparent between days —15 and —5
ences were evident, with the skillful forecasts being initialized  (Fig. 10b), followed by a minimum around the time of peak
~20 days following a strong active MJO which appears to  severe weather frequency (day 10). The noted increases in
propagate, on average, rather quickly (Fig. 10a). A significant ~AAM following the MJO were reminiscent of the modulation

&1
VIS ARAARRE S

ill ERA5 SS

-0.45 -0.30 -0.15 0.00 0.15 0.30 0.45
[K]

FIG. 9. ERAS (a),(c) outgoing longwave radiation (OLR; W m~2) anomalies and (b),(d) sea surface temperature
(SST; K) anomalies for the (top) high-skill group and (bottom) low-skill group. Gray contours represent Z500 anoma-
lies (m). Also shown is the difference of (¢) OLR and (f) SST between the two skill groups. Black stippling indicates
where anomalies are locally statistically significant at the 95% confidence level, whereas white stippling indicates
anomalies that are field significant at the FDR level of a« = 0.1.
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F1G. 10. (a),(c) Observed CPC pentad MJO indices and (b),(d) Northern Hemisphere AAM for 20 days prior to
20 days after the date of initialization for the (top) high-skill forecast group and (bottom) low-skill group. Green shad-
ing represents “active convection.” Colored dots in (b) and (d) indicate statistically significant AAM anomalies at the

95% confidence level.

following the minimum pentad index discussed in Miller et al.
(2022). Low-skill forecasts had a slower propagating, weaker
MJO signal, and despite the significant decrease ~12 days fol-
lowing model cycle initialization, there was no apparent preced-
ing peak in AAM (Figs. 10c,d). These results were consistent
with the background state of SST (Fig. 9), where the MJO was
found to propagate faster during warm Pacific SST conditions
(El Nifo), whereas slower propagation occurred during rela-
tively cold Pacific SST conditions (Pohl and Matthews 2007). In
summary, MJO and AAM characteristics prior to model initiali-
zation indicate distinguishing signals to identify “forecasts of op-
portunity” and periods of lower forecast skill, potentially
allowing for a “forecast of forecast skill.”
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Various weather/climate teleconnection indices were exam-
ined, including the AO, NAO, Nifio-3.4 index, PDO, PNA,
and QBO for the initialization date and day 10 (Fig. 11). No
teleconnection indices were significant precursor signals for
the skillful forecasts. Statistically significant negative indices
for low-skill forecasts existed for the Nifio-3.4 and PDO at
day 0, confirming the La Nifia conditions evident in Fig. 9d
and the discussion surrounding the observed MJO. The La
Nifa and negative PDO conditions were still significant at day
10 for the low-skill forecasts. Additionally, the negative PNA
pattern occurred for both forecast skill groups, congruent
with the “high-low-high” Z500 pattern over the eastern Pacific
and the United States (Figs. 4b,d). In general, caution should
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F1G. 11. Mean values of several teleconnection indices for high- (blue) and low-skill (red)
forecasts for the (a) initialization date and (b) forecast day 10. Hatched bars indicates statistically

significant values at the 95% confidence level.

be practiced when examining such teleconnection indices for
this purpose, as they represent a particular state of the atmo-
sphere in specific geographic regions that individually may or
may not be related to the evolution of the physical synoptic
weather pattern over the CONUS.

5. Discussion and conclusions

Despite the need for extended-range prediction of severe
convective storms, the current predictability limit for daily
forecasts is, on average, ~10 days. As a result of chaos, skill in
NWP solutions decrease as model integration through time
increases. However, instances exist in which forecast solutions
are more or less skillful at day 10 (and beyond), with the for-
mer providing “forecasts of opportunity.” To examine these
instances, atmospheric and oceanic states (and their time evo-
lution) that supported a high- or low-skill day-10 forecast
were examined for 75th percentile tornado day hindcasts. The
day-10 GEFSv12 Z500 field over the United States during
these active tornado days was evaluated and split into high-
and low-skill groups based on Pearson r correlation and mean
absolute error. The observed Z500 pattern supportive of tor-
nado days over the United States at day 10 were similar for
both groups, characteristic of a midlevel western U.S. thermal
trough and eastern U.S. thermal ridge.

High-skill GEFSv12 forecasts reproduced the geopotential
height pattern at 500 hPa well, whereas the pattern for the
low-skill forecasts was out of phase and propagated too
quickly. High-skill forecasts were also associated with north-
ward wave activity flux propagation and strong convergence
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off the west coast of the United States. These forecasts also
were characteristic of field significant negative OLR anoma-
lies over the Maritime Continent and warmer-than-average
SSTs throughout the tropical Pacific and Gulf of Mexico.
Additionally, high-skill forecasts exhibited a strong MJO
15-20 days prior to model initialization, which lead to a signif-
icant modulation of AAM, which is consistent with previous
research (Gensini et al. 2019, 2020a; Miller et al. 2022).

In contrast to the high-skill forecasts, WaF propagation for
the low-skill forecasts contained nearly zonal WaF vectors.
Colder than normal SSTs were evident throughout the tropi-
cal and eastern Pacific, reminiscent of La Nifia conditions. A
weaker and slower MJO was evident relative to the high-skill
group, and no significant peak in AAM occurred prior to fore-
cast initialization. The most prominent feature with low-skill
forecasts was a blocking anticyclone over eastern Russia dur-
ing model initialization, in which the GEFSv12 overforecast
the duration of the block. This is perhaps not too surprising,
as theories of atmospheric blocking onset, maintenance, and
decay are still unsettled, and research has shown that models
often fail to predict the duration of atmospheric blocking
events (Reynolds et al. 2017).

This research is the first step in understanding under what ini-
tialization conditions an extended-range GEFSv12 forecast for
tornado conditions may promote higher or lower forecast skill.
Inherently, this study exposes forecasts of opportunity, which
could be leveraged as windows of enhanced dynamical model
forecast skill for operational forecasters. These results promote
the further possibility of aiding in the creation of medium-range
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tornado outlooks—but most importantly—permit the assess-
ment of forecast confidence and allow for the potential to
“forecast the forecast skill.” For example, if a blocking anticy-
clone is present over the Northwest Pacific, GEFSv12 forecasts
may not evolve properly due to the overprediction of blocking
duration and subsequent impacts on the downstream flow. Ad-
ditional model diagnostic studies for other variables may further
aid in our understanding of potential biases and sources of er-
rors for extended-range prediction of extreme weather events
like tornadoes.
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