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Abstract

Motivation: Protein sequences can be broadly categorized into two classes: those which adopt stable secondary structure and fold into a do-
main (i.e. globular proteins), and those that do not. The sequences belonging to this latter class are conformationally heterogeneous and are de-
scribed as being intrinsically disordered. Decades of investigation into the structure and function of globular proteins has resulted in a suite of
computational tools that enable their sub-classification by domain type, an approach that has revolutionized how we understand and predict pro-
tein functionality. Conversely, it is unknown if sequences of disordered protein regions are subject to broadly generalizable organizational princi-
ples that would enable their sub-classification.

Results: Here, we report the development of a statistical approach that quantifies linear variance in amino acid composition across a sequence.
With multiple examples, we provide evidence that intrinsically disordered regions are organized into statistically non-random modules of unique
compositional bias. Modularity is observed for both low and high-complexity sequences and, in some cases, we find that modules are organized
in repetitive patterns. These data demonstrate that disordered sequences are non-randomly organized into modular architectures and motivate
future experiments to comprehensively classify module types and to determine the degree to which modules constitute functionally separable
units analogous to the domains of globular proteins.

Availability and implementation: The source code, documentation, and data to reproduce all figures are freely available at https://github.com/
MWPIlabUTSW/Chi-Score-Analysis.git. The analysis is also available as a Google Colab Notebook (https://colab.research.google.com/github/
MWPIlabUTSW/Chi-Score-Analysis/blob/main/ChiScore_Analysis.ipynb).

physiological and pathophysiological pathways, including
transcription (Sigler 1988, Lyons et al. 2023), DNA replica-
tion (Parker et al. 2019), as the etiological agents in certain
neurodegenerative proteinopathies (Uversky 2009), and cer-
tain IDRs drive protein phase separation, which helps orga-
nize the cell (Babu 2016). Regions of protein disorder can be
discriminated from globular domains by sequence composi-
tion alone (Uversky et al. 2000, Weathers et al. 2004) and
there exist many bioinformatic algorithms to predict the dis-
order propensity of a polypeptide (Katuwawala and Kurgan
2020).

By definition, IDRs lack a defined spatial architecture and,
with the exception of short linear motifs (Davey et al. 2012),
are thus relatively unrestrained in primary structure. As a re-
sult, there are generally lower levels of conservation between
orthologous IDRs compared to folded regions (Brown et al.

1 Introduction

The basic functional unit of a globular protein is the domain,
a polypeptide region that folds into a stable 3D structure
(Wetlaufer 1973). Many eukaryotic proteins possess a modu-
lar, multi-domain architecture resulting from the genetic du-
plication and shuffling (Patthy 1994) of the ~6000 protein
domain superfamilies (Sillitoe et al. 2021). In this way evolu-
tion has produced a vast repertoire of architecturally distinct
and functionally diverse multi-domain proteins. The domain
architecture of a protein has traditionally been the realm of
structural biology but modern bioinformatic algorithms now
enable rapid identification of a protein’s separable domains
(Jumper et al. 2021). Understanding the modular architecture
of multi-domain proteins has proven key to understanding
their function.

Approximately 40% of the eukaryotic proteome does not
fold into globular domains (Uversky 2019). These protein
sequences, which do not possess stable secondary structure,
exist in an ensemble of dynamic configurations and are de-
scribed as being intrinsically disordered (Dunker et al. 2001).
Despite their lack of structure, protein intrinsically disordered
regions (IDRs) are known to play essential roles in many

2002, 2011) and IDR primary structure often appears to lack
organization. One exception to this is seemingly non-random
regions of disordered sequences that are locally enriched in
only a small subset of amino acids, so-called Low Complexity
Regions (LCRs). Sequence gazing readily identifies LCRs by
their conspicuous local sequence bias but these can also be
quantitatively and unbiasedly discriminated on the basis of
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informational entropy (Wootton and Federhen 1993). Some
IDRs also possess multiple LCR types with distinct function-
alities (Kim and Kwon 2021, Lee ef al. 2022) and bioinfor-
matic approaches to demarcate unique LCR subsequences on
the basis of their composition and amino acid dispersion have
recently been reported (Cascarina et al. 2021, Lee et al.
2022). LCRs, however, represent but a fraction of all
disordered sequences and it is unknown if sequence-spanning
organizational principles are operative in IDRs generally.

The sequence bias observed in many IDR sequences has
motivated the development of bioinformatic algorithms to
classify disordered protein sequences on the basis of composi-
tion. These approaches have focused on annotating IDRs and
their sub-regions according to a limited set of known compo-
sitional varieties (i.e. “flavors”), such as by charged residue
content (e.g. polyampholyte or strong polyelectrolyte) (Das
and Pappu 2013, Holehouse et al. 2017) or bias for a given
amino acid type (e.g. polar residues) (Necci et al. 2016,
2020). Guided by this concept, sequence analysis tools have
been built that will demarcate regions within a protein that
match a user-defined composition (Millard et al. 2020).
Although useful, these techniques require a posteriori knowl-
edge of IDR flavors. In this sense, these methods are
“candidate-based” analysis tools, being very good at deter-
mining whether a sequence is or is not of the candidate class
but not useful in identifying new compositional varieties that
exist undiscovered within a sequence.

Here, we report the development of a statistically robust
computational algorithm that unbiasedly maps composition-
ally distinct subsequences within an IDR. Relying on the 3>
test of homogeneity, our Chi-Score Analysis quantifies vari-
ability in the fractional composition of amino acids between
two sequences. Applied intramolecularly in a moving-
window, matrix-based approach, this method can identify
sequence-spanning compositional heterogeneity to parse a
protein sequence into regions of distinct amino acid composi-
tion, regardless of what those compositions are. With multiple
examples, we show that IDRs of both low and high sequence
complexity possess local compositional bias that bestows dis-
ordered sequences with a non-random, modular architecture.
Analogous to the domain architecture of globular proteins,
we propose that modules (i.e. compositionally distinct subse-
quences) represent functionally separable units of disordered
sequences, and our unbiased, discovery-based approach to
their identification represents a promising new direction in
IDR classification. Altogether, these data demonstrate that
high-level organizational principles are at work in disordered
sequences and motivate future functional studies to under-
stand the role of modules in biology.

2 Materials and methods

2.1 Applying the y° test to compare sequence
composition

The »* test of homogeneity is used to determine whether two
distributions are from, or were sampled from, the same popu-
lation. Traditionally, the ¥ test statistic is calculated and used
to either reject or accept the null hypothesis. Here, the test
statistic is instead used as a metric scoring the compositional
difference between two sequences; a high-test statistic indi-
cates a high degree of compositional distinction.

McConnell and Parker

The »* test can be applied both intermolecularly, compar-
ing the amino acid content of different protein sequences, and
intramolecularly, comparing the amino acid content of subse-
quences within a single protein. This latter application, which
is elaborated on in the following section, applies a matrix-
based approach to parse a sequence into compositionally dis-
tinct regions from pairwise subsequence comparisons. When
two sequences are compared, the number of each residue is
first taken as the observed values (O) for the 3> formula. For
each observed value, a corresponding expected value (E) is
calculated with the following equation:

E _ Zr O"v n
nr Zror‘ 1 +Zr OrﬁZ

In this formula, 7 refers to the sequence (either 1 or 2) and »
refers to the residue (1 of 20 amino acids). To determine the
expected value for alanine residues in the first sequence, the
total number of alanine residues in the two sequences is multi-
plied by the ratio of that sequence’s length to the total length
of both sequences. The test statistic can then be calculated
with each observed/expected pair using the following
equation:

(Or, 1 + Or, 2)~

72 _ (Or, n - Er‘ n)z
v TN (Er, n)

Finally, the 40 unique scores—one for each amino acid and
sequence pair—are summed, and the test statistic is normal-
ized between zero and one. This is done by dividing this sum
by the maximum possible score for those two sequences,
which is equal to the sum of their lengths and occurs when
they have no residues in common. Sequences that have no res-
idues in common will always receive a normalized score of
one, and sequences with identical amino acid compositions
will receive a normalized score of zero.

In addition to the chi-score, Euclidean distance has also
been applied to quantitate the similarity in amino acid compo-
sition between disordered sequences (Moesa et al. 2012, Patil
et al. 2012). This method takes the fractional content of
amino acids as Cartesian coordinates in a 20D Euclidean
space and the “distance” between any two sequences is quan-
tified. Our chi-score method builds on Euclidean distance in
several ways. First, chi-score values can be readily decom-
posed to see the contribution of each amino acid to the overall
score, thereby determining the residue type(s) that most distin-
guishes one sequence from another. Second, Euclidean dis-
tance is influenced by sequence complexity while chi-score is
not. Finally, the 5> test possesses inherent statistical power,
which we apply to determine whether subsequences are com-
positionally distinct compared to random scrambles of the
same sequence.

2.2 Applying the Chi-Score Analysis
intramolecularly to identify regions of local
compositional bias

The Chi-Score Analysis method can be applied intramolecu-
larly to identify regions of distinct amino acid compositional
bias. During the first step of this analysis, the sequence is bro-
ken up into all possible subsequences of nine different win-
dow sizes (all even integers between 6 and 22) and for each
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window size the chi-score is calculated for all subsequence
pairs. The pairwise scores are then converted to Pearson’s cor-
relation coefficients with the following equation:

n(Zxy) — (Zx)(Zy) .
\/ [anZ - (zx)z} [nZyZ - (Zy)z]

v =

After plotting the coefficients as a 2D matrix with the sub-
sequence positions along each axis, we then calculate insula-
tion scores [as used in Hi-C data processing (Lajoie et al.
20135)] for each residue position. These scores are calculated
by taking the average value in a square window that slides
along the main diagonal. Insulation score values are high
when this square is within a region of distinct amino acid
composition and low when the square is near the boundaries
between them. Therefore, we then take the residue positions
of the local minima of these insulation scores as potential
boundaries between compositionally distinct modules.

Because this is done with nine different window sizes, we
now have multiple sets of potential boundaries grouped by
the window size used to calculate them. Modules of different
length and/or complexity will be best identified with different
window sizes, so the precise positions for each boundary will
vary between the nine groups. We then regroup these bound-
aries spatially so that they are clustered with other potential
positions for the same boundary. The optimal position for
each boundary is then determined by selecting those that
maximize the chi-scores between the resulting modules.

The boundaries can now be statistically verified by calculat-
ing a z-score for each. First, the two modules separated by a
boundary are juxtaposed and randomly scrambled 500 times.
Then, the greatest chi-score between two modules that can be
achieved with a comparable boundary is determined for each
scramble. Finally, these scores are used to convert the raw
chi-score for that boundary into a z-score, which tells us how
likely it is that the predicted boundary separates truly distinct
modules or simply identifies local biases occurring by chance.
Boundaries with low z-scores are iteratively removed until
only those with significant scores remain. After a boundary is
removed, the positions are re-optimized and the z-scores are
recalculated for those that remain; the placements and
z-scores corresponding to each iteration are also stored so
that they can be recalled as desired.

2.3 Python implementation and accessibility

The code to perform these analyses was designed with Python
Version 3.10.8 and executed in Jupyter Notebook. To allow
for easy access and implementation of the analysis, we have
made it freely available in a number of formats: (i) the source
code, which contains all functions necessary to perform and
manipulate the analysis as desired, (ii) a streamlined Python
notebook that installs the algorithm and performs the analysis
on a single protein sequence, (iii) a Python notebook that per-
forms the analysis on a step-by-step basis so that the outputs
of each can be recalled as desired, and (iv) a Google Colab
notebook that lets the user input a sequence and adjust op-
tional parameters. For the easiest implementation of this
analysis, we recommend using the Google Colab notebook,
which can be found at: https://colab.research.google.com/
github/MWPlabUTSW/Chi-Score-Analysis/blob/main/ChiScore_
Analysis.ipynb. For instructions on how to use the other
implementations, as well as the code required to reproduce all

matrices shown throughout the article, please see: https:/github.
com/MWPlabUTSW/Chi-Score-Analysis.git.

3 Results
3.1 Development of a bioinformatic algorithm to
identify local compositional bias in IDRs

Protein disordered regions lack stable secondary structure
and are thus relatively unrestrained in primary structure.
Consistently, IDRs often have weak linear sequence conserva-
tion (Brown et al. 2002, Zarin et al. 2019) and no visually dis-
cernible sequence patterns, suggesting they lack a defined
organization. We hypothesized that local compositional bias
may bestow disordered sequences with a sequence-spanning
level of organization undetectable by current methods. We
therefore developed a bioinformatic algorithm to determine in
an unbiased and quantitative fashion if amino acids are non-
randomly distributed across the length of a protein sequence
and to map this information back onto the sequence. Our ap-
proach implements the y* test statistic to compare the frac-
tional content of amino acids between two sequences as a
measure of compositional dispersion (see Section 2). Applied
in this way, the chi-score quantifies how different the amino
acid proportions (i.e. composition) are between two
sequences.

The chi-score metric can be applied intramolecularly to
identify compositionally biased regions (Fig. 1A). In the first
step of our algorithm, the sequence is broken into all possible
subsequences for a specified window size and all pairwise chi-
scores are calculated (Fig. 1A-a). Each chi-score is then con-
verted to a Pearson’s correlation coefficient, which better
resolves compositionally biased regions and sequence-
spanning patterns (Fig. 1A-b). Subsequently, the mean corre-
lation coefficient of each subsequence is calculated from a
subsequence-centered square window and these “insulation
scores” are plotted against residue position (Fig. 1A-c).
Finally, local minima from the insulation score plot are calcu-
lated and recorded as potential boundaries between composi-
tionally distinct regions (Fig. 1A-d). These steps are
completed for nine sets of pairwise chi-scores—each using a
different even integer window size between 6 and 22 to define
the original subsequences—which results in nine sets of
boundaries (Fig. 1A-d).

The boundaries, which were originally grouped by window
size, are then clustered by residue proximity (Fig. 1A-d) and
the optimal boundary positions are determined by selecting
the placements within each group that maximize the mean
chi-score between the surrounding regions (Fig. 1A-e). The
statistical strength of each boundary is then determined by
calculating a z-score. To do this, the two juxtaposed regions
separated by each boundary are scrambled 500 times and the
boundary position resulting in the maximum chi-score identi-
fied. This results in a set of 500 chi-scores, one for each
scramble, from which the mean (and standard deviation) is
determined and used to calculate the gz-score for the
corresponding boundary (Fig. 1A-f). Finally, low scoring
boundaries are iteratively removed and those that remain are
re-optimized and scored until only high-confidence bound-
aries remain.

To demonstrate the utility of this algorithm in identifying
compositional bias, we first tested its effectiveness at differen-
tiating human languages (Fig. 1B). We translated a quote into
English (Eng), Japanese (Jpn), Yoruba (Yrb), Spanish (Spn),
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“All advances of scientific understanding, at every
level, begin with a speculative adventure, an imaginative
preconception of what might be true.”

-Peter Medawar
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Figure 1. A bioinformatic algorithm to measure compositional dispersion across a sequence. (A) For a given sequence, (a) pairwise chi-scores are
calculated for all window-defined subsequences and plotted as a matrix. Window sizes include every even size from 6-22. Then, for each window size,
(b) chi-scores are converted to Pearson’s correlation coefficients, (c) insulation scores are calculated to define local minima, which represent
compositional boundaries, and (d) the minima identified for all window sizes are grouped according to proximity. From these groups, (e) each boundary
placement is optimized to maximize chi-score and (f) z-scores are calculated for each boundary element and are used to iteratively remove non-significant
boundaries. (B) The Chi-Score Analysis method can distinguish between human languages on the basis of alphabet usage. A quote from Peter
Medawar’s Romane Lecture was translated into five languages and each translation was strung end-to-end for analysis. “Eng” = English, “Jpn" =

Japanese, “Yrb"” = Yoruba,

and Polish (Pol), appended the translations one after another,
and then analyzed the resulting string of text with the Chi-
Score Analysis. This approach proved highly effective at dis-
criminating between languages based on their differential
character usage (all texts were Romanized and composed of
the same 26 letter alphabet). Regions off the diagonal with
relatively high correlation reveal languages with more similar
alphabet usage, such as English and Spanish or Yoruba and
Japanese. Conversely, regions off the diagonal with relatively
low correlation reveal languages with differential alphabet us-
age, such as Polish and Yoruba. We next applied the method
to a protein sequence to determine whether it can parse a se-
quence by “molecular language” (Fig. 1C). Fused in Sarcoma
(FUS) is known to possess multiple compositionally biased
regions with unique functionality (Wang et al. 2018, Murthy
et al. 2021) and our method accurately identifies these, reveal-
ing three major language types: G/S-Y-G/S repeats, RGG
repeats, and a more complex sequence type, which corre-
sponds to the folded domains of the protein (RRM and Zn
finger domains). Analysis of off-diagonal correlated regions
reveals homology amongst the three RGG-enriched regions
and the two regions which have a globular structure. These
data establish the utility of the Chi-Score Analysis in parsing
sequences by local compositional bias.

“Spn" = Spanish, and “Pol” = Polish. (C) The Chi-Score Analysis method can distinguish between regions of sequence bias
in the human protein FUS. Boundaries are shown for 95% confidence level.

3.2 IDRs have a non-random, modular organization

Having established the algorithm on a sequence with conspic-
uous local sequence bias (Fig. 1C), we next applied it to a
disordered region that lacks recognizable sequence patterning.
The Origin Recognition Complex (ORC, composed of Orcl-
6) is an essential DNA replication initiation factor that con-
tains an IDR in the Orc1 subunit that is necessary for recruit-
ment to chromatin (Parker et al. 2019). In Caenorbabditis
elegans, the Orc1 IDR is predicted to be 245 amino acids long
and, except for two short, LCRs, has no apparent sequence
organization (Fig. 2A). However, Chi-Score Analysis reveals a
strikingly non-random, sequence-spanning level of organiza-
tion with regions of distinct compositional bias juxtaposed in
a repetitive pattern (Fig. 2B). Given the modular appearance,
we will refer to these compositionally biased regions as
“modules.” The Orcl IDR has module types which can be
loosely categorized as either basic, neutral, or acidic. In this
sequence the basic modules (residues 1-51, 106-167, 186-
232) and acidic modules (residues 52-68, 80-105, 168-185,
233-2435) alternately repeat throughout the sequence, with
the neutral module type appearing only once (residues
69-79). While charge-based classification is convenient, a
more careful investigation of module sequences (Table 1)
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Figure 2. High-complexity disordered regions are non-randomly organized. (A) The C.elegans Orc1 protein has a long N-terminal IDR (Orc1-IDR, residues
1-245) as predicted by Metapredict (Emenecker et al. 2021) but no obvious sequence patterning. (B) Chi-Score Analysis reveals a strikingly modular
architecture for Orc1-IDR with alternately repeating blocks of like-type sequences. Boundaries are shown for 95% confidence level and a sequence
entropy plot is shown above the matrix. (C) Modularity is lost when the sequence of Orc1-IDR is randomly scrambled.

Table 1. Module sequences for the Orc1 IDR.

Module # Module sequence

1 MNTRKSETSKTVSATPVKRRSTRITN
LPKSAPKIVKRSSVRLRGAPQCTYK
SDSSSSSSSSDSDGED
EYAATKDELKAV
DHDNQMEIDFSDEIGENFSEEDSCSD
KENRRVTRSRTPTRLEETPSKRLAREL
SKASVSKVSTSKTLFKESKSPR
KVEISRKTNKARV
FQEEDDDDEDDFSDEIDEKF
YSKTNKRTPITIKIPSKMITQKVTPLVISKTPGGT
LRTRRRARQ
NSEELEDLVDPLDS

[SLRF RO )

NI -RN o)

reveals greater complexity than a simple alternation of charge,
with non-charged residues also being differentially patterned.
Notably, the majority of Orc1 IDR modules identified by the
Chi-Score Analysis are not annotated in Uniprot as having
“Compositional bias,” emphasizing the importance of our
discovery-based approach (see Supplementary File S1 for a
list of module sequences and a comparison with Uniprot
annotations).

The discovery of a statistically non-random, sequence-
spanning level of organization in the Orcl IDR was unex-
pected. Importantly, amino acid content alone does not pro-
duce this type of organization. To demonstrate this, we
reran the analysis on a random scramble of the Orcl IDR
(Fig. 2C). In this example, modules are not only visually ab-
sent but there were additionally no statistically significant
boundaries output by our algorithm. Likewise, composition-
ally biased modules are absent from Orc1’s folded domains
(Supplementary Fig. S2) which, compared to the IDR, have a
far more uniform sequence landscape. This is consistent with
prior work showing that the lengthwise distribution of
amino acids in globular domains does not differ substan-
tially from randomized sequences containing equivalent pro-
portions of amino acids (Mitra and Rani 1993, White and
Jacobs 1993, White 1994). These data suggest that local
compositional bias is an organizational principle unique to
disordered sequences.

3.3 Many disordered sequences have local
compositional bias

The strikingly modular architecture of FUS (Fig. 1C)—a low
complexity IDR—as well as Orcl (Fig. 2B)—a high-
complexity sequence—prompted us to investigate whether
this type of organization is widely operative in disordered
sequences. We therefore extended our studies to assess modu-
larity of several other protein disordered regions with known
biological and pathological significance, including human
TDP-43 (Fig. 3A), Spt6 (Fig. 3B), Nucleolin (NCL) (Fig. 3C),
KMT2B (Fig. 3D), and Caulobacter crescentus Ribonuclease
(RNase) E (Fig. 3E). These analyses, which we briefly describe
below, show that local compositional bias is pervasive
amongst IDRs and bestows disordered sequences with a mod-
ular architecture. Conversely, local compositional bias
appears largely absent from folded domains, at least for the
proteins under consideration here (analysis of full-length
sequences is shown in Supplementary Fig. S2).

We analyzed the C-terminal IDR of the protein TDP-43
(residues 259-414, Fig. 3A), an RNA processing factor that
forms pathological aggregates in neurodegenerative disease.
Our analysis identified five modules, one of which corre-
sponds precisely to a region harboring an abundance of path-
ological ~missense mutations and which functions
independently as TDP-43’s amyloidogenic core (residues 320-
PAMMAAAQAALQSSWGMMGMLAS-342) (Jiang et al.
2013, Conicella et al. 2016, Cao et al. 2019, Lin et al. 2020).
These data suggest that modules, like a folded domain, can
behave as functionally separable units. Interestingly, none of
the TDP-43 modules identified by our analysis are annotated
in Uniprot (Supplementary File S1). Chi-Score Analysis of the
N-terminal IDR of Spt6 reveals several highly distinct mod-
ules (residues 1-310, Fig. 3B) which, together with the prior
literature (Lyons et al. 2023), suggests that modules can also
demonstrate emergent behavior, with their functionality de-
rived from the cooperative interactions of modules.
Specifically, we identified a repetitive pattern of basic and
acidic modules, and recent data show that these alternating
blocks of charge mediate selective partitioning of Spt6 into
MED1 condensates to control transcriptional activation
(Lyons et al. 2023). We anticipate that understanding module
types and patterning will help elucidate the rules underlying
selective partitioning in biomolecular condensates. This idea
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Figure 3. Many IDRs have a modular architecture. Chi-Score Analysis for (A) human TDP-43 C-IDR (residues 259-414), (B) human Spt6 N-IDR (residues 1-
310), (C) human NCL, (D) human KMT2B N-IDR (residues 1-962), and (E) C.crescentus RNaseE C-IDR (residues 543-907). Boundaries are shown for 95%
confidence level and a sequence entropy (“E") plot is shown above each matrix. NCL contains four tandem RNA binding domains, which are contained
within the largest module in the matrix and appear compositionally uniform. (F) IDRs should not be thought of as indivisible units but as modular
sequences with region-specific physicochemical features and biological function.

is supported by Chi-Score Analysis of full-length NCL
(Fig. 3C), where we identify a pattern of modules within its
N-terminal IDR that was recently shown to mediate the pro-
tein’s selective partitioning into the nucleolus (King et al.
2022). Finally, we identified numerous modules of variable
composition and size within the N-terminal IDR of KMT2B
(Fig. 3D) and the C-terminal IDR of RNase E (Fig. 3E).
Module sequences for each protein can be found in
Supplementary File S1.

Altogether, these data suggest that local compositional bias
represents an organizational principle that is widely operative
in disordered sequences and inspires fundamental questions
about the role of IDR modularity in biology and disease. A
significant advantage of the Chi-Score Analysis method is that
compositionally distinct regions can be discovered solely on
the basis of amino acid bias without user-defined search crite-
ria. Even in the small set of sequences analyzed here, this un-
biased approach to module identification suggests a level of
IDR compositional diversity (i.e. flavors) that dwarfs existing
classification paradigms (Supplementary File S1).

4 Conclusion

We find that the sequences of both low and high-complexity
IDRs are non-randomly organized into regions with local
compositional bias. This concept, like the structural hierarchy
(1° — 4° structure), bears the hallmarks of a fundamental or-
ganizational principle: it is generalizable to any sequence, it
appears to be broadly operative, and it enables the unbiased
sub-division of a sequence into component parts. These

features have enabled the structural hierarchy to provide a
comprehensive classification of folded sequence space, a long-
standing objective in the field of protein disorder.
Collectively, these findings warrant a conceptual shift away
from IDRs as indivisible functional units to viewing them as
modular sequences with region-specific physical, chemical,
and functional properties (Fig. 3F). To this extent, individual
IDR modules and their combinations may represent the func-
tional analog of the globular protein’s domain, whose many
types and arrangements produce the diversity of cellular func-
tions that are needed for life. This concept has empirical sup-
port from studies of transcription factor transactivation
domains (Sigler 1988) and prion domains (Ross et al. 2004,
2005) where subsequences in extended regions of disorder
contribute specific functionality strictly on the basis of their
composition.

This work calls for the comprehensive classification of
module types and their combinations to determine whether
there exist distinct classes or a continuum of compositional
varieties. Such work will benefit from other sequence charac-
terization parameters, such as charge distribution (Das and
Pappu 2013) and binary sequence patterning (Cohan et al.
2022). While the evolutionary preservation of modules pro-
vides strong a priori evidence that modules are important for
biology, future studies are needed to systematically relate
module type with functionality. Beyond this, many other im-
portant questions remain, including the use of genetic mecha-
nisms to shuffle modules and produce novel functionalities,
the biophysical properties of isolated modules and emergent
properties of multi-module sequences, and whether a modular
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view of IDRs clarifies the mechanism of disease-associated
mutations and rationalizes specificity in IDR-enriched biomo-
lecular condensates. In the immediate, we hope the concept of
IDR modularity as a generalizable organizational principle
serves as a framework for generating hypotheses for IDR
functional mechanisms and provides a rational approach for
dissecting this enigmatic class of sequences (Fig. 3F). To facili-
tate these types of studies, the code required to run these anal-
yses is freely available and easily implemented (see Section 2).
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