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Abstract

The Pure Shear (PS) crack specimen is widely employed to assess the fracture toughness of soft elastic
materials. It serves as a valuable tool for investigating the behavior of crack growth in a steady-state
manner following crack initiation. One of its advantages lies in the fact that the energy release rate (J)
remains approximately constant for sufficiently long cracks, independent of crack length. Additionally,
the PS specimen facilitates the easy evaluation of J for long cracks by means of a tension test conducted
on an uncracked sample. However, the lack of a published expression for short cracks currently restricts
the usefulness of this specimen. To overcome this limitation, we conducted a series of finite element (FE)
simulations utilizing three different constitutive models, namely the neo-Hookean (NH), Arruda-Boyce
(AB), and Mooney-Rivlin (MR) models. Our finite element analysis (FEA) encompassed practical crack
lengths and strain levels. The results revealed that under a fixed applied displacement, the energy release
rate (J) monotonically increases with the crack length for short cracks, reaches a steady-state value when
the crack length exceeds the height of the specimen, and subsequently decreases as the crack approaches
the end of the specimen. Drawing from these findings, we propose a simple closed-form expression for J
that can be applied to most hyper-elastic models and is suitable for all practical crack lengths, particularly

short cracks.
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1. Introduction

The pure shear specimen, proposed by Rivlin and Thomas (Rivlin and Thomas, 1953), is a valuable tool in
material research. It enables researchers to measure properties like fracture toughness (Qi et al., 2019;
Tanaka et al., 2005; Zheng et al., 2021) and to study crack growth dynamics (Zhang et al., 2022). The initial
configuration of the Pure Shear (PS) crack specimen, in its stress-free state, is depicted in Figure 1. The
sample has a height of 4 and a width of w. To be considered as a PS sample, it is required that the aspect
ratio, w/h, is significantly greater than 1. In addition, the sample thickness must be small compared to A,
thereby satisfying the condition for a plane stress state. Theoretically, an idealized PS sample should be an
infinite strip (w = infinity in Figure 1) with a semi-infinite crack. However, in practice, such a sample does
not exist. In experiments, the crack length, denoted as c, typically exceeds /4/2 but considerably less than w.
Typical geometries used in experiments are w/h = 5 with ¢/h = 1 (Pan et al., 2023; Zhang et al., 2022), or
w/h = 10/3 with ¢/h = 2/3 (Zheng et al., 2021). Here we consider the crack length spanning the entire range

of the specimen width, i.e., ¢ € (0, w) . In testing, the specimen is clamped to a stiff machine at the upper

and lower edges of the specimen, i.e., ¥ = +4/2 and a uniform vertical displacement +A /21is applied at

the clamps.
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Figure 1. Cross-section geometry of a pure shear (PS) crack sample in its reference unstressed state. The
aspect ratio, w/h, should be much greater than 1. The thickness of sample is much smaller than /4, so

plane stress condition prevails. The direct lines C,, C, are integration paths for the J integral. On C; the

deformation state is assumed to be in a state of pure shear. In testing, the upper and lower edges at
Y =+h/2 are clamped to a stiff machine and a vertical displacement of +A /2 are imposed on these
edges.

For elastic solids, this specimen offers several advantages:

o FEnergy Release Rate: The energy release rate J remains constant across a wide range of crack

lengths. This characteristic simplifies the analysis and interpretation of fracture behavior.

e Ease of Computing Energy Release Rate: J = hW_,where W_ is the strain energy density of an

ideal (w/ h — oo)pure shear uncracked specimen subjected to a vertical stretch. This formula
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incorporates all the material behavior into W_, greatly simplifying the interpretation of this

crucial parameter.

e Determination from Tensile Tests: W can be determined by conducting a stretching test on an

uncracked PS specimen. This method provides a convenient and practical way to obtain J.

The mentioned advantages are contingent upon certain assumptions, some of these were investigated in
prior research (Kahle et al., 2023; Pidaparti et al., 1989; Yeoh, 2001) . For example, the energy release rate
derived by Rivlin and Thomas (Rivlin and Thomas, 1953) did not account for edge effects. Therefore, the
actual energy release rate may differ from this value unless the crack is “sufficiently long” and the samples
have “large” aspect ratios. The questions are: What criteria define “sufficiently long” or “large”? and how
do these criteria depend on the strain hardening characteristics or the applied stretch ratio? For instance,
Treloar used an aspect ratio of 15 in his classic experiments (Treloar, 1944), while in recent years, many
researchers used considerably smaller aspect ratios. More specifically, Pan et. al., (Pan et al., 2023) and
Zhang et al., (Zhang et al., 2022) used an aspect ratio of 5 while Zheng et al., (Zheng et al., 2021) used an
aspect ratio of 10/3. Smaller aspect ratio samples are preferred due to the challenges of clamping wide
samples made of soft elastic materials. Due to limited availability and the need for homogeneity, small

samples are employed in biological material research.

Using stretching data from an uncracked PS sample to determine /¥, can lead to additional error. Yeoh (Yeoh,

2001) conducted a study using a neo-Hookean model and finite element analysis (FEA). The study revealed
that the force required to stretch an uncracked PS sample can be 10% less than that of an ideal, uncracked

PS sample (w /4 —> o), unless the aspect ratio is greater or equal to 5. This result highlights the
importance of the end effects and suggested that /¥ determined using a stretch test can be underestimated

by more than 10% for specimens with aspect ratios smaller than 5. In the same paper (Yeoh, 2001), Yeoh
also studied the dependence of J on crack length. In a recent study by Kahle et al. (Kahle et al., 2023), the
influence of aspect ratio onJ was investigated. Their samples had a fixed crack length of 20 mm and a width
of 60 mm. In their simulations, the aspect ratios were varied by adjusting the sample height. Their findings
indicate that, for the given crack length, J is within 10% of its ideal value if the aspect ratio is greater than

2.

Our paper aims to address existing gaps in literature. We carefully carried out a series of finite element
simulations using Abaqus. We achieve improved resolution and present a more universally applicable
approximation expression upon normalization, in comparison to the work of Pidaparti et al. (Pidaparti et

al., 1989), in which virtual crack extension method was used. Also, we investigate the effects of strong



strain stiffening at large stretches by using Arruda-Boyce (AB) constitutive model (Arruda and Boyce,
1993). Effects of weaker hardening are investigated by using the Mooney-Rivlin (MR) model (Mooney,
1940; Rivlin, 1948a). This feature was not considered in Yeoh's work (Yeoh, 2001) which was based on
the neo-Hookean model (Rivlin, 1948b). Additionally, we are especially interested in examining the
relationship between energy release rate and crack length, a topic that Kahle et al. (Kahle et al., 2023) did
not study. As stated by Kahle et al. (Kahle et al., 2023), their findings are influenced by the strain stiffening

behavior of the polymer, which makes it difficult to establish a universal criterion. We also study how

aspect ratio, stretch and the constitutive model effects the evaluation of /. One notable outcome of our

current work is the presentation of a simple analytical formula for the energy release rate, which is

applicable to most practical crack lengths and stretch ratio.

Our motivation to examine the relation between energy release rate and crack length originates from crack
growth experiments. While the works of Yeoh (Yeoh, 2001) and Kahle et al., (Kahle et al., 2023)
predominantly concentrate on the determination of fracture toughness, the use of a PS specimen also
provides valuable information into crack growth dynamics. Traditionally, a long initial crack is used in
crack growth experiments to maintain a constant energy release rate throughout the experiment. However,
conducting experiments with short cracks can also yield valuable information. In a recent study conducted
by our research group (Wang et al., 2023) , we studied delayed fracture in Polydimethylsiloxane (PDMS)
using short cracks in PS samples (with aspect ratio w/h=35/10), a departure from the standard long-crack
experiments. As we will show, cracks growing from a short starter crack grow into an increasing energy
release rate field and thus we attain in a single sample a full range of crack speeds and energy release rates.
This enables us to systematically investigate the relationship between crack growth rates and the energy

release rate by manipulating the initial crack length.

Another experimental example is the work of (Stocek et al., 2013) where they conducted a fatigue test on
a pure-shear specimen with a short initial crack length. Their approach allows them to acquire fatigue crack

growth rate over a wide range using a single specimen and cyclic stretch level.

The paper is structured as follows: Section 2 outlines our approach for deriving a formula for the energy
release rate that accommodates practical crack lengths and different strain stiffening behavior. In Section 3,
we present the finite element analysis (FEA) that assesses the validity of our approach from Section 2. We
also present a useful formula which relates the energy release rate to the crack length. Finally, the paper

concludes with a discussion and summary.



2. Energy release rate (J) and Material Model

2.1 Energy release rate (J)

In the following, the material behavior is taken to be isotropic, hyper-elastic and incompressible with strain
energy density function W =®(/,1,), where [ =trC,1, = [(z‘rC)2 - tr(C2 )]/2 are invariants of the
right Cauchy-Green tensor C.  As shown by Rice (Rice, 1968) and Knowles and Sternberg (Knowles and

Sternberg, 1972), the energy release rate of a crack in an elastic solid can be computed using the path
independent integral J. For the PS sample in Figure 1, the finite strain version of J is given by:
hi2 A2

J= [ (X =w/2,Y)dY - [ O(X =—w/2,Y)dY, (1)

—h/2 —h/2

where O(X,Y) = (D(] | (X Y ),1 ) (X Y )) denotes the strain energy density of a material point located at
(X ,Y) in the reference configuration. Here, we choose a certain path, although these integrals can be

evaluated for any X well ahead of the crack and any X well behind the crack, respectively. The energy

release rate of a PS specimen with a long crack is obtained by taking w/k to infinity. In this limit, the stress

and strain at distances far behind the crack tip is zero, so ® (X =-w/2,Y)=0 while the stress and strain

field far ahead of the crack is homogeneous and is identical to stretching an uncracked, ideal (aspect ratio

w/h — ) PS specimen uniaxially with stretch ratio A = A/ & . Specifically,/, =1, = A> + 17 +1 on
Cs, so the strain energy density on C; is related to the applied stretch ratio A by
w, (l) = q)(lz +AT LA+ AT+ 1) , independent of position. Thus, in a typical PS sample with a
sufficiently long crack, we obtain the result of Rivlin and Thomas (Rivlin and Thomas, 1953):
hi2 .

J= [ wdy= [ &(X=w/2,¥)dY = [W,(2)dY =hW,(1)=J, )

G+C, —h/2 G
Note W in Eq. (2) can be obtained experimentally by determining the area under the nominal stress versus
stretch ratio curve in a stretch test of an uncracked PS sample, as was done by (Zheng et al., 2021).
Equation (2) is not suitable in two situations: when the crack length is small compared with the height of
the specimen or when it is excessively long. In the first scenario, the second integral in Eq. (1) cannot be

ignored, even though the first integral in Eq. (1) can still be well approximated by Eq. (2). In the second

scenario, the crack is so long that it approaches the right end of the specimen. As a result, the deformation
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state along Cs is no longer homogeneous, so the first integral in Eq. (1) may no longer be accurately

represented by Eq. (2). Obviously, for long cracks, the second integral can be safely neglected.

Since J depends solely on the strain energy density evaluated along paths C; or Cs, dimensional analysis

implies that

J=hWoof(c/h,w/h,A/H,cl.) 3)

Here f(c/h,w/h,A/H,c,) isadimensionless functionandc,,i =1,2,... are dimensionless parameters

in the constitutive model.

Later we will see from the simulation results for the material models, range of stretch ratios and aspect
ratios we studied, the dimensionless function f can be well approximated by a simple form. Note for small
crack lengths, i.e., ¢/ h <<1, we can expand f'in a Taylor series about ¢/A = (. Since J =0 when ¢ = 0, the

first term expansion of the series is:

JxaW.c, c/h<<1 4)

where & = F(W/ h,A/H,Ci) = df/d(C/h)L/h:O and is expected to approach a constant for large w/#4 .

Equation (4) is J for short cracks. This result is consistent with a previous analysis of Rivlin (Rivlin and

Thomas, 1953) for single edge crack specimens.
2.2 Material models:

We consider incompressible isotropic hyper-elastic solids. Even with these assumptions, the number of

constitutive models for nonlinear elasticity is far too many to explore. We focus on energy functions that

depend only on /,, although the important case of MR which depends on I; and I, is also considered. The

models used in FEA are: (1) neo-Hookean (NH) (Rivlin, 1948b), (2) Arruda-Boyce (AB) (Arruda and
Boyce, 1993), and (3) Mooney-Rivlin (MR) (Mooney, 1940; Rivlin, 1948a). Note models (2) and (3)
represent two ends of the spectrum of stiffening behavior, i.e., the neo-Hookean model has little provision
for strain hardening, whereas the Arruda-Boyce model has finite extensibility. In addition, in uniaxial
tension, the MR solid strain softens in comparison relative to the NH solid. Thus, our choice of strain
energy density function should cover the full spectrum of strain stiffening behavior. The strain energy

density function for the NH and MR models are:



Wi = [11_3]’ WMchl[Il_?’]"'Cz[lz_?’] (5a,b)

(SRR

where 4 is the shear modulus in all three models. In Mooney-Rivlin model, ,u=2(c1 +cz). It is

interesting to note that W is the same for MR and NH model since I; = I, on C3. The AB strain energy

density follows the implementation in ABAQUS, which is a truncated form of the original AB model, i.e.:

(5¢)

o (4-3), (27 -9) . 1z —227) . 19(1; —§1) . 519(1; —2113)
2 20n 1050n 70001 673750n

where n is the number of chain segments. The factor » in AB model represents the limit of chain

extensibility where the strain energy goes to infinity. Note that in the truncated form, although the strain

hardening behavior can be captured, the strain energy density does not approach infinity as /; — 3n. The

small strain shear modulus 4, is related to 4,in Eq. (5¢) by

99 513 42039 j
: (5d)

=4, | I+—+ + +
H=a 0( 5n 1750 8751°  67375n"

W, corresponding to these models is obtained by substituting 7, = 7, = 2> + 1 +1 into Eq. (5a-c). The
key idea is that if Eq. (3) is valid, a plot of J =.J/J_ against the normalized crack length & = ¢ / 4 should
demonstrate independence from the material model employed. For instance, in the case of the AB model,
the plot of 7 should remain the same regardless of the choice of n, while in the MR model, it should be
independent of ¢, / ¢, . In this study, computations are performed using \/_ =3 and \/_ =7 for the AB

model. Computations using the MR model are carried out using the material model parameters given in
Greensmith’s paper (Greensmith, 1963). The elastic constants for the four rubbers used in his experiments
are reported in Table 2 of Greensmith’s paper. In our simulations, we selected two of these rubbers

(vulcanizates A and D in Greensmith’s paper). These two rubbers have the largest difference in shear

modulus and strain hardening behavior (reflected by ¢, /c,). Since both rubbers obey MR model, we
denote them by MR1 and MR2 respectively. Specifically, the constants are: MR1: ¢, = 70kPa, ¢, =80
kPa (¢, /c,=0.88, 1, =300kPa ); and MR2: ¢, =239kPa, ¢, =112kPa (¢, /c, =2.13, u, =902kPa

). Note that MR1 exhibits less strain hardening than MR2. The uniaxial tension and pure shear behavior of

all constitutive models is plotted in Figure 2.



Uniaxial tension, nominal stress Pure shear, nominal stress

7
------- neo-Hookean
—+— Arruda-Boyce, v/n =3
6 _ 1 6
—— Arruda-Boyce, n =7
—e— Mooney-Rivlin, ¢;/c; = 0.88
5 -{—%— Mooney-Rivlin, ¢;/cy = 2.13 oo 5 3
a X e 1 4
= S =
R e e
3 3
2r 1 28 g e neo-Hookean
—+— Arruda-Boyce, v/n =3
] ] —— Arruda-Boyce, \/n =17 |
—oe— Mooney-Rivlin, ¢;/c; = 0.88
—*— Mooney-Rivlin, ¢; /¢, = 2.13
o . . . . . . . o . . . T T T T
1 1.5 2 25 3 35 4 4.5 5 1 1.5 2 25 3 35 4 4.5 5
A A

Figure 2: Uniaxial tension (a, left) and pure shear (b, right) behavior of all constitutive models in this work.
Nominal stress P in the tension direction normalized by small strain shear modulus p is plotted versus
stretch ratio A. Notice that in pure shear state, the curves of NH and MR coincide.

3. Finite Element Analysis (FEA)

For each material model, calculations are conducted on two aspect ratios: 10/3 and 5. These values
represent the range of aspect ratios used in recent experiments. FEA is carried out using the software
ABAQUS. As shown in Figure 3, 6-node, and 8-node quadratic plane stress elements (CPS6, CPS8) are
used. The total number of elements is around 4000, and the smallest mesh size near the crack tip is
approximately s5x10°%. TheJintegral is evaluated using the built-in function in ABAQUS. Several cases
with more elements (~ 50000) are tested, and relative differences of values of the J-integral are smaller than

0.1%. More details about the simulation can be found in SI.

. TY u=0,v=A/2\

/|

traction-free cracktip v = 0, shear traction-free traction-free

Y

Figure 3: Typical mesh and elements used in FEA. Boundary conditions are indicated, u and v are
horizontal and vertical displacement respectively. Only the upper half of specimen is meshed due to
symmetry.



Results:

Figure 4 shows the normalized energy release rate 7 for NH at four different applied stretch ratios A . The

dash and solid lines represent results for two aspect ratios, w/h =10/3,5 respectively. The J integral for
short cracks with ¢/ /< 0.5 is practically independent of w/A and yields results consistent with Eq. (4),
with «; 3.7. For w/h=5, J is within 10% of J for 0.1<c¢/w<0.9, or 0.5<c/h<4.5, and for
different applied stretches. Interestingly, as the applied stretch increases, J remains closer to J, for long
cracks,i.e., ¢/ h>1. For both aspect ratios, boundary effect becomes significant as the crack approaches
the right boundary, resulting in large deviation of J fromJ . As expected, for w/ /4 =10/ 3, the edge effect
occurs slightly earlier. Specifically, J will be overestimated by 10% at ¢ = 0.85w if we take it to be AW,

while for w/h =5, this occurs at ¢ = 0.9w.

w/h =10/3,\ = 3.0
——w/h=5 =11
03 —=—w/h=5A=15
—w/h=5 A=20

w/h=5 A=3.0

0 0.5 1 1.5 2

Sk Co-w/h=10/3, A= 1.1

= °~6'J ~s-w/h=10/3,A=15

< oslf ~e-w/h =10/3,\ = 2.0
|

3 3.5 4 4.5 5

25
c/h
Figure 4. Normalized energy release rate J versus ¢/k for two aspect ratios, w/ 4 =10/3,5. Results are

plotted for four different applied stretch ratios A .
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Figure 5. Normalized energy release rate 7 versus c¢// for two specimen geometries. Material model is
AB with \/7 = 3. Results are for four different applied stretch ratios A .

Figure 5 plots 7 versus c¢/A for the AB model With\/_ = 3. For the case of \/_ =7, we observed minimal

differences in the outcomes. Therefore, the corresponding plot is provided in the Supporting Information
(SI). Despite the severe strain hardening characteristics of the AB model, the dependence of the normalized
energy release on the normalized crack length bears a striking resemblance to that of the NH model. This

result supports our scaling analysis, Eq. 3. Similar to NH materials, an increase in the applied stretch ratio

prolongs the occurrence of boundary effects, leading to a wider range of crack lengths where J = J .

Results for MR1 and MR2 are shown in Figure 6a and 6b respectively. While the short crack behavior is
practically identical to those of NH and AB, the long crack behavior is different as the edge effect occurs

at shorter crack lengths for both aspect ratios. Indeed, even for w/ 4 =5, deviation of J from its steady

value J = hW, occurs at shorter crack lengths than NH or AB solids. For example, for w/ i =5, 1 =2

, J =0.90J_ atc=0.7w or 3.5h, whereas for the same stretch ratio, J = 0.95J_at ¢ =0.95w or 4.75h for

the AB model with \/; =3. For the MR1 specimen with w/A=10/3, A =2, J never reaches

J =0.95J_ at any crack length. These deviations are addressed in the discussion.
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Figure 6: Normalized energy release rate 7 versus ¢/k for two specimen geometries. Results are for four
different applied stretch ratios A . Material model is (a, left) MR1, ¢, /¢, =0.88 , (b, right) MR2:

¢ /c,=2.13.

If we disregard the situation where the crack approaches the right boundary, we can obtain a simple and
accurate expression for the energy release rate. This expression is obtained by noting that J — J_ for long
cracks, whereas J must be proportional to W_c for short cracks, as demand by Eq. (4). The question is how

to determine the proportion constant & in Eq. (4). Our numerical results show that the initial slope « is
quite insensitive to the material model, o ~ 3.7 . Note in our recent work (Wang et al., 2023), we have also

found a =1.187 =~ 3.71 fora3-term Yeoh’s solid. A function that interpolates from equation (4) to equation

(2)is

J=J/(hW,)=tanh(3.7c/h). (6)

Figures 7,8,9 compare the prediction of Eq. (6) with the FEA for stretch ratios of 1.1 and 2. For both stretch

ratios, the agreement is excellent for the /, -based models like NH and AB. The agreement is less good

for the /,,/,-based model like MR model, especially for smaller aspect ratios and large strains. The results

for a larger stretch ratio, A = 3, can be found in the SI.
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Figure 7. Comparison of Eq. (6) (dashed line) with FEA for different materials. The stretch ratio 2 =1.1.
(a, left) w/h=10/3(b, right) w/h=5
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Figure 8: Comparison of Eq. (6) (dashed line) with FEA for materials with strain energy density function
that depends only on /. The stretch ratio 1 = 2. (a, left) w/h=10/3 (b, right) w/h=5
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Figure 9: Comparison of (6) (dashed line) with FEA for two Mooney-Rivlin materials. The stretch ratio
A =2.(a, left) wh=10/3 (b, right) w/h=5.

We end this section by tackling a practical question: how to determine W_? As mentioned earlier, a

commonly employed method involves stretching an uncracked PS specimen and graphing the nominal
stress against the stretch ratio. Subsequently, the area under the curve is calculated to determine W, . Yeoh
(Yeoh, 2001) demonstrated that the use of this method for a neo-Hookean solid can lead to substantial
underestimation of the nominal stress, unless very large aspect ratio specimens are employed. This error
arises from edge effects and becomes more pronounced as the aspect ratio is decreased. Yeoh’s result
showed that, for NH solids, this discrepancy decreases as the applied stretch increases. Since neo-Hookean
solids lack strain stiffening behavior, it is important to quantify this discrepancy using different hyper-
elastic models. To achieve this, we used FEA to determine W(/I) on uncracked specimens with varying
aspect ratios. Our calculations consider the NH, AB and MR models. Figures 10a and 10b display the results
for stretch ratios from 1.05 to 5. It is seen that for the NH and AB models the deviation of W () from W,

is reduced as strain increases. However, the opposite occurs for the MR models and is more pronounced

for MR 1, the MR model with the least amount of hardening.
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w/h = 5, PS without crack

w/h = 10/3, PS without crack
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Figure 10: Plotof W (ﬁ) / W versus stretch ratio. W (/1) is the average strain energy density of uncracked
PS specimen calculated using FEM (a, left) w/A=10/3 (b, right) w/h=5.

4. Discussion and Summary

Our analyses show that for typical PS fracture specimens satisfying 10/3<w/h <5, J can be well
approximated using Eq. (6) for a broad class of hyper-elastic models where the strain energy density

depends only on /,, provided that ¢ /4 < 2. Furthermore, the validity of Eq. (6) extends over a wider

range of crack length as the aspect ratio increases. Conversely, smaller aspect ratio specimens exhibit a

narrower range of crack lengths where J = J_, especially for hyper-elastic models like the MR model
where energy density depends on both /, and 7,. It is worth noting that J is the same for NH and MR
materials. This is because /, = I, for an uncracked ideal(w/h — ) PS specimen subjected to uniaxial
stretch. For finite-size specimens, ¢, / ¢, is an additional factor which affects the convergence of JtoJ ,
the larger ¢, / ¢, corresponds to more strain stiffening. Our numerical result suggests that hyper-elastic
models with an energy density that depends on both 7, and 7, delays the convergence of JtoJ,. As the
aspect ratio increases, /, and 7, will become closer to each other at ;. Hence there is less reliance on
¢, / ¢, in determining the convergence of J to J_ for samples with larger aspect ratios w/ 4. Our FEM

findings support this hypothesis.

Our numerical results suggest that Eq. (4) can be used for short cracks and is largely unaffected by the strain
energy density function. However, we do observe slight variations in the initial slope, &, at large strains.

Finally, the largest value of the applied stretch ratio we used in our simulations is 3. Our FEA reveals that,
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within the range of our study, increasing the stretch ratio expands the range of crack lengths for which

J = J_, except for the MR materials.

When utilizing the PS specimen for assessing toughness or crack initiation, our results suggest using a pre-
crack with a length between .75k to h. This ensuresJ = J_, even when dealing with specimens of small
aspect ratios. This is consistent with a finding of Kahle et al., (Kahle et al., 2023), where they stated that
the deviation of J fromJ_ is within 10% error for specimens with aspect ratio greater than 2. Here it is
important that the crack length of their sample is 20 mm, while the width is w = 60 mm. An aspect ratio
of 2 corresponds to # = 30mm, which falls in the regime where J ~ J_. However, the discrepancy can be
quite large if shorter or much longer cracks were used. Therefore, it is important to choose the crack length
judiciously for specimens with small aspect ratios. For studying crack growth, it is advisable to opt for the

largest possible aspect ratio. This selection helps to maintain a constant value of J in most of the specimens,

facilitating the attainment of steady state crack growth.

Based on our numerical results, we observed a decrease in J as the crack approaches the right edge of the
specimen. However, we have not specifically investigated the behavior of J as the length of the uncracked

ligament approaches zero.
The main results can be summarized as follows:

e For all the hyper-elastic models studied, the energy release rate J for short cracks, i.e., c < 4/ 41is
well approximated by J = 3.7cW_ .
e For most of the hyper-elastic models studied, J can be well approximated by Eq. (6) for ¢ <24.

Also, since the NH and AB model represent two extremes of strain stiffening behavior, we expect

Eq. (6) to be valid for hyper-clastic models with energy density that depends only on the strain

invariant /;. One may need to be more careful to use Eq.(6) if the material model is MR and the

strain energy density function is highly dependent on the second invariant /,, especially if the

aspect ratio is small and the stretch ratio is high. In this case, the relative error of Eq.(6) can exceed
10%.

e The accuracy and range of validity of Eq. (6) can be improved by increasing the aspect ratio of the
PS sample.

e As Figure 10 shows, stretching an uncracked PS sample with an aspect ratio under 5 can

underestimate Wby around 10%. The error lessens with higher stretch ratios and for density

functions with sufficient strain stiffening. For MR solids, the trend reverses, notably when ¢, > ¢,
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with higher stretch ratios. Interestingly, this underestimation can be beneficial. For example, in

Figure 9(a) with long cracks, the energy release rate J from FEA is below the ideal J_=hW .
Using Eqn.(2) or Eqn.(6) with the underestimated /¥, might yield more accurate results than the

ideal W .
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