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Abstract

Purpose: To determine if saliency maps in radiology artificial intelligence (Al) are vulnerable
to subtle perturbations of the input, which could potentially lead to misleading interpretations,
using Prediction-Saliency Correlation (PSC) for evaluating the sensitivity and robustness of

saliency methods.

Materials and Methods: In this retrospective study, locally trained deep learning models and
a research prototype provided by a commercial vender were systematically evaluated on
191,229 chest radiographs from the CheXpert dataset(1,2) and 7,022 MRI images of human
brain tumor classification dataset(3). Two radiologists performed a reader study on 270 chest
radiographs pairs. A model-agnostic approach for computing the PSC coefficient was used to

evaluate the sensitivity and robustness of seven commonly used saliency methods.

Results: Leveraging locally trained model parameters, we revealed the saliency methods’ low
sensitivity (maximum PSC = 0.25, 95% CI: 0.12, 0.38) and weak robustness (maximum PSC
=0.12, 95% CI: 0.0, 0.25) on the CheXpert dataset. Without model specifics, we also showed
that the saliency maps from a commercial prototype could be irrelevant to the model output
(area under the receiver operating characteristic curve dropped by 8.6% without affecting the
saliency map). The human observer studies confirmed that is difficult for experts to identify

the perturbed images, who had less than 44.8% correctness.

Conclusion: Popular saliency methods scored low PSC values on the two datasets of perturbed
chest radiographs, indicating weak sensitivity and robustness. The proposed PSC metric
provides a valuable quantification tool for validating the trustworthiness of medical Al

explainability.

Abbreviations: Al = artificial intelligence, PSC = prediction-saliency correlation, AUC = area

under the receiver operating characteristic curve, SSIM = structural similarity index measure.



Summary: Systematic evaluation of saliency methods through subtle perturbations in chest
radiographs and brain MRI images demonstrated low sensitivity and robustness of those
methods, warranting caution when using saliency methods that may misrepresent changes in

Al model prediction.

Key Points:

e A novel evaluation metric, prediction-saliency correlation (PSC), is proposed to
systematically quantify the trustworthiness of saliency-based Al explainability.

e The results revealed that the low sensitivity (PSC < 0.25) and weak robustness (PSC <
0.12) of the commonly used saliency methods.

e The findings suggest that the popular saliency maps may misrepresent true model
prediction, and thus Al researchers and users should be aware of the vulnerabilities of

saliency maps in radiology Al.
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Introduction

Explainability is a pillar in supporting applications of artificial intelligence (Al) and machine
learning in medicine(4—7). Understanding how and why Al models make particular decisions
is critical for building trust in Al-driven applications(4,5,8—10). The predicted value of a
disease by an Al model implies the probability of disease presence. However, those values
usually do not correlate with the disease probabilities and lack confidence and prediction
intervals. Thus, a series of post-hoc explanation approaches have been proposed. Prior research
has reported on how Al models work by visualizing the relevant contribution of contribution
of each feature to the overall model prediction result(11-17). While researchers and clinicians
appreciate the development of explainable Al it is unclear if the resultant explanations can be
trusted. Overlooking the trustworthiness of Al-based saliency methods leaves potential risks to
Al-based medical applications.

Saliency maps, also commonly referred to as heat maps, are the most commonly used
method for Al explainability(12,16). They are especially important for Al algorithms that target
image segmentation, quantification tasks, lesion detection and characterization. When
reviewing the Al outputs, radiologists often review these maps to accept or reject Al output
findings. Previous empirical works(18,19) demonstrate susceptibility of neural networks to
small perturbations in normal inputs, resulting in wrong outputs. Along the same direction,
Arun et al.(20) attempted to assess the saliency maps in medical imaging by quantifying their
localization capability, variation between randomized networks, repeatability over separately
trained models, and reproducibility across different models. However, their methods only
demonstrate the generic properties of the saliency approaches but cannot evaluate either the
correlation between the saliency maps with the model predictions or the saliency visualization
quality for a given specific Al model. Theoretical works(21,22) suggest that such weakness is
related to neural networks’ lack of local Lipschitz smoothness with respect to the input image
space. As a negative result, model outcomes may vary drastically around the original data.
There is a lack of comprehensive evidence on how such vulnerabilities in each Al model can
substantially limit its practical application. The potential risk associated with those

vulnerabilities is underestimated in medical Al, since the model details, such as architecture



and parameters, are usually safeguarded. In addition, previous methods demonstrate only the
generic properties of the saliency approaches and cannot evaluate the saliency visualization

quality for a specific Al model.

A trustworthy saliency approach should meet two general conditions: 1) Sensitivity. A
saliency map should change accordingly when the model’s prediction for that image
substantially alters due to the input change; 2) Robustness. A saliency map should stay
consistent when the model’s prediction remains unchanged after an input image is randomly
transformed without impacting the image content. In other words, a trustworthy saliency map
should be consistent with the model prediction, not just for a specific example at a given state,

but dynamically consistent when the model prediction changes.

In this study, we sought to determine if saliency maps in radiology Al are vulnerable to
subtle perturbations in their input that can lead to misleading results. We present a novel
systematic approach for quantifying the trustworthiness of saliency explanations of given
medical Al models. Specifically, we propose a model-agnostic and generalizable measurement
to quantitatively analyze saliency method robustness called prediction-saliency correlation
(PSC), which depicts the correlation between changes in model predictions and changes in the
corresponding saliency maps, to quantitatively analyze both the robustness and sensitivity. We
then illustrate the uses of this approach on commonly employed Al models and saliency map

methods.

Materials and Methods

Study Design

This is a retrospective study for quantifying the trustworthiness of the most popular explanation

methods in radiological Al. This study was exempt from institutional review board approval



and Health Insurance Portability and Accountability Act-compliant because fully de-identified
public datasets were used. Seven of the most commonly used saliency methods in medical Al
applications were selected for the investigation, including Vanilla Back Propagation (Vanilla
BP)(23), Vanilla BP X Image(12), Gradient-weighted Class Activation Mapping
(GradCAM)(14), Guided-GradCAM(14), Integrated Gradients (IG)(15), Smoothed Gradients
(SG)(16), and eXplanation with Ranked Area Integrals (XRAI)(17)(23). A representative list
of medical Al papers using the above saliency methods are presented in Supplementary Table
S0. We trained two widely used networks (Resnet-152 and DenseNet-121) as our baseline
models tasked to identify atelectasis, cardiomegaly, consolidation, edema, and pleural effusion
on chest radiographs. We quantitatively verified the sensitivity and robustness on the two most
commonly used convolutional neural networks (CNNs) in medical image classifications,
DenseNet-121, and ResNet-152, trained on the CheXpert dataset. In addition, we processed the
chest radiographs with and without perturbation with an Al-based chest radiograph research
prototype, where we had no access to the model architecture and parameters. This is to test
whether the proposed method can be generalized to such ‘black-box’ situations. To demonstrate
the efficacy of our proposed evaluation framework on other imaging modalities, analysis tasks
and deep learning model architectures, additional experiments were performed with a ResNet-
50 model trained on a brain tumor multi-class classification MRI dataset(3). A preliminary
version of this work was presented at MICCAI 2022(24). Compared with our previous
MICCALI presentation, this manuscript under consideration includes significant extensions,
such as additional technical innovations, numerical experiments, human observer studies, and

mathematical analysis.

Dataset Preparation

We demonstrate the discovered issues of saliency maps on a multi-label classification task
using a chest radiograph dataset, CheXpert'. The original dataset consists of 223,648 publicly
available chest radiographs (including both frontal and lateral projections) from 64,740 patients
(40.6% female, mean age 59.6% [SD] 16.8 years; 59.4% male, mean age 58.61+16.3 years).



Only 191,229 frontal chest radiographs (191,027 from the original training set and 202 from
the original validation set) were included in our study. Since the test set of the CheXpert dataset
is not publicly available, we further randomly split the original training set including 191,027
frontal images into training and validation sets with a ratio of 6:1. The 202 frontal chest
radiographs of the original validation set were used as our test set. In addition, we also include
a human brain tumor MRI classification dataset(3) which consists of 7,022 images. More
detailed information for the brain tumor MRI dataset is provided in Supplementary Sec. V-1.

Dataset and Model Preparation.

Quantitative Analysis of Trustworthiness

As shown in Fig. 1, we evaluate the dynamic consistency from two aspects, i.e., the sensitivity
and the robustness. For each image x; in a set of test images with size of N, we first obtain its
prediction p; and the saliency map m; with an AI model. We then alter each image x; to
produce a new image x;. The specific alteration depends on which property is being examined,
as detailed below in this section. The model will calculate a new prediction p; and generate a
corresponding saliency map m; for the new image.

To evaluate sensitivity of each saliency method, we observed whether changes in model
predictions due to alteration of input images resulted in corresponding changes to the saliency
maps. Specifically, as shown in the left of Fig. 1, by adopting the optimization techniques from
adversarial attacks(18,25-29), we identified the slightly perturbed radiographs that caused the
Al model to predict a different result but had saliency maps close to those of the original input.
The word “perturb” means making very small changes to the pixel values of an image, i.e., an
original radiograph in our study. Such small changes are usually imperceptible to human but
can lead to output change of an AI model. For each of the five observations, every radiograph
is perturbed such that the model prediction will be flipped, i.e., from ‘observation exists’ to ‘no
observation’ and vice versa. In the meanwhile, the optimization algorithm keeps the saliency
map unchanged. The technical details of the image perturbation algorithm are presented in

Supplementary Sec. II. Sensitivity Examination.



The robustness of dynamic consistency demands the saliency maps to remain consistent
when the predictions do not change. Robustness evaluates if a saliency map can stay consistent
with the model’s prediction output when randomly perturbing an image without impacting the
model prediction. As shown in the right part of Fig. 1, we use similar optimization techniques
as in the above sensitivity experiments to investigate if it is possible to pull a saliency map
towards an arbitrary pattern while keeping the model predictions unaffected. The target pattern
was designed as a square at the top right corner of the saliency map. More specifically, for each
of the five observations, we perturbed the input radiograph to distract the saliency map from
the pre-defined target square pattern. Meanwhile, the model prediction of the radiograph
remains unchanged by optimizing the perturbation. To quantify the findings, we evaluated
changes in model performance and the similarities of the saliency maps generated on the
perturbed images to the original saliency maps and the target saliency map, respectively. More
detailed mathematical derivations are presented in Supplementary Sec. II. Robustness

Examination.

Statistical Analysis

The sensitivity and robustness of saliency methods are uniformly quantified by the prediction-
saliency correlation (PSC) coefficient proposed in this study. This coefficient is defined by the
Pearson correlation between variations in model predictions and changes in their corresponding
saliency maps, both of which are gauged using the Jensen—Shannon divergence. The PSC
coefficient ranges from -1 to +1: a -1 value signifies a perfectly negative correlation, 0 suggests
no correlation, and +1 denotes a perfectly positive correlation. A PSC value above 0.5 is
considered of having a high degree of correlation. We used the changes of the area under the
receiver operating characteristic curve (AUC) to evaluate the changes of the model predictions.
The structural similarity index measure (SSIM) was used to quantify the changes of saliency
maps. The average PSC of the five findings was used to quantify the overall performance of
each saliency method. Mathematical derivations of PSC are presented in Supplementary Sec.
II. Prediction-Saliency Correlation. The significance tests for AUC comparison were

performed using the z-test as detailed by Zhou et al(30). while the confidence intervals for the



AUC values were computed based on the methodology proposed by Hanley(31). The
significance of each individual finding is evaluated, and the p values (p < 0.05 indicated a
statistically significant difference) are reported in the Supplementary Section II1. We reported

the averaged performance over all findings in the main paper, which has no associated p values.

Human Observer Study

Two radiologists (M.K.K. with 15 years of experience in thoracic imaging and G.D. with 2
years of post-doctoral experience in thoracic imaging) were presented with 270 pairs of
perturbed and original chest radiographs from the CheXpert dataset. These pairs consisted of
120 pairs from the sensitivity experiments in Table 1 and 150 pairs from the robustness
experiments in Table 2. Neither abnormality nor pathology was inserted or overlaid on the
altered radiographs. The order of altered and original radiographs was randomly assigned for
each pair. The radiologists were asked to identify the perturbated image from the pair. The two
radiologists were first provided another 150 pairs of images for training, where the images were

clearly labelled. Both radiologists separately and independently assessed the radiographs.

Data availability

The chest radiograph datasets used in this study are available in the Stanford CheXpert database

under accession code https://stanfordmleroup.github.io/competitions/chexpert. All data needed

to evaluate the findings in the paper are presented in the paper and/or the supplementary
material. Additional data related to this paper, such as the detailed reader test data, may be

requested from the authors.


https://stanfordmlgroup.github.io/competitions/chexpert

Results

Sensitivity Examination

Fig. 2 shows a chest radiograph with atelectasis as an example to demonstrate how the
predictions and the saliency maps may diverge from each other. Although the perturbed images
look identical to the original image, the probabilities of atelectasis predicted by the model
(DenseNet-121) dropped from 67.1% to 2%. The highlighted regions of saliency maps for the
perturbed images were similar to those for the original images (SSIM > 0.76), suggesting that
the saliency maps failed to reflect the changes of the model predictions, i.e., the sensitivity

may be low. More results of each individual class are included in Supplementary III. 1.

Table 1 shows the quantification results. All the reported numbers are the averages over
the five classes. The overall averaged PSC was no greater than 0.26. Given that the value of
PSC was in the range of [-1,1], this is considered as a weak association. We further examined
the details. On the perturbed images, the AUCs of both models degraded drastically from 0.88
to 0.01. However, the corresponding saliency maps for the perturbed images were similar to
the saliency maps for the original images, with a mean SSIM > 0.76. Such inconsistency
between the prediction variation and the saliency preservation is reflected by the small PSC <
0.25. We also performed similar sensitivity evaluation on the MRI classification dataset and
reached similar conclusions. These experimental results are reported in Supplementary Sec.
V — Sensitivity Examination.

Further, we examined the sensitivity of a research prototype model provided by a
commercial vendor, henceforth referred to as the "commercial prototype" for brevity. Since we
do not have access to the architecture and parameters of the model, we generate altered images
based on three in-house models that we trained and fed these images to the model. The saliency

maps were generated by the commercial prototype itself. To avoid conflict of interest, we



visualized the saliency maps using our colormap. The corresponding results are presented in
Fig. 3. Four cases of the four shared classes (atelectasis, cardiomegaly, consolidation, and
pleural effusion) between our pretrained local proxy model trained on CheXpert and the
commercial prototype are shown. The results indicate that the generated perturbed images do
not substantially change the model saliency maps. The quantitative results also support this
observation, as the similarities (SSIM) between the saliency maps on the perturbed images and
the original ones are greater than 0.88 on all four classes. However, the perturbed images

caused the average AUC to drop by 8.6% (p<0.01) on the four classes.

Robustness Examination

An example case is presented in Fig. 4 (Results of each individual class are included in
Supplementary IIl. 3). The DenseNet-121 predictions for probability of atelectasis, using
perturbed images were consistent with the original prediction (58.1%). However, the perturbed
images successfully misled the saliency maps. For all the saliency methods, the perturbed

images shifted the saliency areas toward the targeted top right corner of the image.

Table 2 indicates that the deep neural networks performed consistently on the original and
perturbed images, with the AUC remaining the same at 0.88. However, the saliency maps on
the perturbed images were dramatically different from the original saliency maps (mean
SSIMorg < 0.51). Such inconsistency between the prediction variation and the saliency
preservation is reflected by the small PSC < 0.12. At the same time, the saliency maps from
the perturbed images share strong similarities with the target saliency map, with mean SSIMigt
= 0.65 on GradCAM and mean SSIMi > 0.82 on all other saliency methods. We also
performed similar robustness evaluation on the MRI classification dataset and reached similar
conclusions. These experimental results are reported in Supplementary Sec. V Robustness

Examination.

Human Observer Study

At the time of testing, the two physicians correctly pointed out 63/270 (23.3% for GD [2 years



of experience]) and 121/270 (44.8% for MKK [15 years of experience]) altered radiographs,
respectively, indicating that the alterations of the image alterations are difficult to spot by

human experts, even for a thoracic radiologist with 15 years of subspecialty experience.

Discussion

In this study, we introduce a novel assessment metric, namely the PSC coefficient, to provide
an intuitive and quantitative evaluation of the trustworthiness of widely used saliency maps.
The PSC coefficient can serve as an evaluator to quantify the sensitivity and robustness of
explanation methods. The quantitative and qualitative results in the Results section show that
commonly adopted saliency methods in medical Al applications can produce misleading
interpretations. The saliency methods demonstrated low sensitivity (PSC<0.25) and robustness
(PSC<0.12) on multiple radiographs. All the findings suggest that either the predictions or the
saliency maps of the models have undergone tremendous changes. In addition, the saliency
maps generated by the commercial Al software may be neither relevant nor robust to
perturbation added to the images without knowing the model specifics. The human observer
studies verified that the perturbed images are difficult to identify even by one human expert
with extensive experience in chest radiography. These results indicate that for deep learning
models, the sensitivity and robustness of all the seven saliency methods was weak, i.e., the
generated saliency maps may not be relevant to the model predictions. Notably, the radiologist
with 15 years of clinical experience demonstrated a substantially stronger ability to correctly
identify altered radiographs compared to the other physician with only 2 years of experience.
This observation suggests a potential correlation between the clinical expertise and the capacity
to discern subtle perturbations.

To this end, we proposed a model-agnostic method for saliency map trustworthiness
evaluation, which is generalizable to the commonly available saliency methods. Our method
of induced perturbation can help establish the trustworthiness of the explainability of Al
outputs and assess individual or multiple AI models for susceptibility to similar or different
types of perturbation. This is a major clinical implication of our work. Our findings in

Supplementary III. 2 and III. 4 indicate that even if multiple saliency methods were applied



and we obtained consistent results, it is still possible that none of the saliency maps is faithful
to the model predictions. These evaluation results on the commercial prototype suggest that the
concerns about the trustworthiness are valid even for commercial Al systems trained with
tremendous data. Our future work will also focus on refining the extent, distribution, and
patterns of perturbations to simulate variations in patients, diseases, and imaging parameters.
Such work can help reduce the cost and time needed for thorough validation of AI models and
uncover the implications of deploying non-generalizable or non-explainable Al models.

Many clinical end-users of Al might not be aware of the explainability aspects of Al
therefore, these aspects are often not realized and/or applied in clinical practices. Few Al
models have safety valves where certain Al outputs are not generated in the presence of issues
related to Al explainability. For example, Al models should exercise caution or not describe
cardiothoracic ratio or presence of enlarged cardiac silhouette on portable, supine radiographs
as opposed to an upright posterior-anterior radiographs. On CT, variations in reconstructed
section thickness can profoundly influence Al-based estimation of nodule size, growth, and
attenuation characteristics over serial CT examinations. A lack of explanation on if and how
the Al model accounts for such variations in acquisition technique and measured findings can
mislead the clinical end-users or cause them to discard all Al outputs. The addition and
awareness of explainability aspects to the models can thus help improve adoption and proper
use of Al algorithm outputs. Such explainability would be especially helpful given the
profound variations in patient factors (supine versus upright radiographs or radiographs with
low lung volumes), acquisition factors (radiation dose and image quality, including artifacts)
as well as image reconstruction techniques (differences in section thickness and kernels).

Our work has limitations. The evaluation presented in this work mainly focused on the
most popular attribution-based Al explanation methods(32,33). However, there exist other
explanation techniques, such as counterfactual explanations(33,34). Our future work will
extend the gradient-based evaluation to the counterfactual-based explanation methods.

In conclusion, we proposed a model-agnostic method to dynamically evaluate the
trustworthiness of saliency maps used for explaining the results of AI models. Our findings
suggest that the commonly used saliency methods in medical Al can produce interpretations

inconsistent with the model predictions. Thus, it is important to establish the trustworthiness



of the saliency methods in clinical adoption of Al models. Furthermore, our future work will
extend the evaluation from gradient-based methods to the counterfactual explanation methods

to determine their trustworthiness.
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Tables and Figures

Table 1. Quantification Results of Saliency Sensitivity on ResNet-152 and DenseNet-121

Model Evaluation metrics | Vanilla BP Vinll:rllz;l) GradCAM Gg::llg;dM IG | SG | XRAI
AUC on the
perturbed 0.03 0.05 0.05 0.05 [0.02]0.02] 0.02
radiographs
ResNet-152 (AUCorigin = 088)
Saliency map
similarity (SSIM) 0.78 0.79 0.86 0.88 0.84|0.87| 0.87
PSC 0.21 0.22 0.25 0.23 0.04]0.13] 0.12
AUC on the
perturbed 0.02 0.04 0.04 0.04 |0.04]0.01| 0.04
radiographs
DenseNet-121 (AUCorigin= 0.88)
Saliency map
similarity (SSIM) 0.77 0.78 0.76 0.78 0.88]0.83| 0.78
PSC 0.25 0.26 0.25 0.21 0.25]10.02| 0.26

Note.—All values in the table are averages over the five classes, including atelectasis,
cardiomegaly, consolidation, edema, and pleural effusion. AUC = area under the receiver
operating characteristic curve, PSC = prediction-saliency correlation, SSIM = structural
similarity index measure, Vanilla BP = vanilla back propagation, Vanilla BP x Image = vanilla
back propagation times image, GradCAM = gradient-weighted class activation mapping, IG =
integrated gradients, SG = smoothed gradients, XRAI = eXplanation with Ranked Area
Integrals.



Table 2. Quantification Results of Saliency Robustness on ResNet-152 and DenseNet-121.

. Vanilla BP Guided
Models Vanilla BP % Image GradCAM GradCAM 1G SG XRAI
AUC on the
perturbed 0.88 0.88 0.88 0.88 0.88 | 0.88 | 0.88
radiographs

ResNet- (AUCorigin = 088)

152 Saliency | SSIMur 0.46 0.54 0.32 0.38 047 | 051 | 047
AP SSIMig 0.94 0.93 0.65 0.74 093 | 0.82 | 085
similarity

PSC 0.01 0.01 0.04 0.06 0.03 | 0.06 | 0.04
AUC on the
perturbed 0.88 0.88 0.88 0.88 0.88 | 0.88 | 0.88
radiographs

DenseN (AUCorigin= 0.88)

et-121 | Saliency | SSIMug 0.47 0.53 0.32 0.40 047 | 051 | 048
AP SSIMy 0.88 0.93 0.65 0.89 093 | 0.88 | 0.83
similarity

PSC 0.01 0.01 0.13 0.12 0.07 | 0.12 | 0.09

Note.—All values in the table are averages over the five classes: atelectasis, cardiomegaly,
consolidation, edema, and pleural effusion. SSIMorg and SSIMigt denote the SSIM between the
new and the original saliency maps and the SSIM between the new and the target saliency maps,
respectively. AUC = area under the receiver operating characteristic curve, PSC = prediction-
saliency correlation, SSIM = structural similarity index measure, Vanilla BP = vanilla back
propagation, Vanilla BP x Image = vanilla back propagation times image, GradCAM =
gradient-weighted class activation mapping, IG = integrated gradients, SG = smoothed
gradients, XRAI = eXplanation with Ranked Area Integrals.



Fig. 1 Overview of the proposed methods. The trustworthiness of saliency maps can be
examined from two aspects: sensitivity and robustness. An adversarial image x’lf’ generated by

prediction attack examines the sensitivity between saliency map and model output. Another
adversarial image x; generated by saliency attack evaluates if saliency maps are resistant to
the model output change. In both cases, the adversarial images look no different from the

original image. Al = artificial intelligence.

Fig. 2. Saliency maps lacking sensitivity to predictions of DenseNet-121. The color bar
indicates the intensity of the saliency maps. Probabilities of atelectasis are shown at the bottom
of saliency maps for original and perturbed images. The images show that highly similar
saliency maps of frontal chest radiographs may be associated with very different model
predictions. Vanilla BP = vanilla back propagation, Vanilla BP x Image = vanilla back
propagation times image, GradCAM = gradient-weighted class activation mapping, IG =
integrated gradients, SG = smoothed gradients, XRAI = eXplanation with Ranked Area

Integrals.

Fig. 3. Saliency sensitivity evaluation of a commercially available artificial intelligence (Al)
software. The color bar indicates the intensity of the saliency maps. By perturbating the original
chest radiographs (top row), perturbed images (bottom row) are generated via attacking a proxy
model. The perturbed images were then fed to a commercially available medical ATl model.
Note the large variations of the predicted probabilities (at the bottom of each image) from the
original to the perturbed images on different findings, despite only minor changes to the

saliency maps.



Fig. 4. Example saliency maps lacking robustness to saliency tampering of ResNet-152. The
color bar indicates the intensity of the saliency maps. The target region of saliency maps on
chest radiographs have been manipulated (third row), but the predicted probability (at the
bottom of each image) of atelectasis remains similar to the original prediction. Vanilla BP =
vanilla back propagation, Vanilla BP x Image = vanilla back propagation times image,
GradCAM = gradient-weighted class activation mapping, IG = integrated gradients, SG =

smoothed gradients, XRAI = eXplanation with Ranked Area Integrals.
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