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Abstract 

Purpose: To determine if saliency maps in radiology artificial intelligence (AI) are vulnerable 

to subtle perturbations of the input, which could potentially lead to misleading interpretations, 

using Prediction-Saliency Correlation (PSC) for evaluating the sensitivity and robustness of 

saliency methods. 

Materials and Methods: In this retrospective study, locally trained deep learning models and 

a research prototype provided by a commercial vender were systematically evaluated on 

191,229 chest radiographs from the CheXpert dataset(1,2) and 7,022 MRI images of human 

brain tumor classification dataset(3). Two radiologists performed a reader study on 270 chest 

radiographs pairs. A model-agnostic approach for computing the PSC coefficient was used to 

evaluate the sensitivity and robustness of seven commonly used saliency methods.  

Results: Leveraging locally trained model parameters, we revealed the saliency methods’ low 

sensitivity (maximum PSC = 0.25, 95% CI: 0.12, 0.38) and weak robustness (maximum PSC 

= 0.12, 95% CI: 0.0, 0.25) on the CheXpert dataset. Without model specifics, we also showed 

that the saliency maps from a commercial prototype could be irrelevant to the model output 

(area under the receiver operating characteristic curve dropped by 8.6% without affecting the 

saliency map). The human observer studies confirmed that is difficult for experts to identify 

the perturbed images, who had less than 44.8% correctness. 

Conclusion: Popular saliency methods scored low PSC values on the two datasets of perturbed 

chest radiographs, indicating weak sensitivity and robustness. The proposed PSC metric 

provides a valuable quantification tool for validating the trustworthiness of medical AI 

explainability. 

Abbreviations: AI = artificial intelligence, PSC = prediction-saliency correlation, AUC = area 

under the receiver operating characteristic curve, SSIM = structural similarity index measure. 



 

Summary: Systematic evaluation of saliency methods through subtle perturbations in chest 

radiographs and brain MRI images demonstrated low sensitivity and robustness of those 

methods, warranting caution when using saliency methods that may misrepresent changes in 

AI model prediction. 

Key Points: 

• A novel evaluation metric, prediction-saliency correlation (PSC), is proposed to 

systematically quantify the trustworthiness of saliency-based AI explainability. 

• The results revealed that the low sensitivity (PSC ≤ 0.25) and weak robustness (PSC ≤ 

0.12) of the commonly used saliency methods. 

• The findings suggest that the popular saliency maps may misrepresent true model 

prediction, and thus AI researchers and users should be aware of the vulnerabilities of 

saliency maps in radiology AI. 

Keywords: Saliency Maps, AI Trustworthiness, Dynamic Consistency, Sensitivity, Robustness. 

 

  



 

Introduction 

Explainability is a pillar in supporting applications of artificial intelligence (AI) and machine 

learning in medicine(4–7). Understanding how and why AI models make particular decisions 

is critical for building trust in AI-driven applications(4,5,8–10). The predicted value of a 

disease by an AI model implies the probability of disease presence. However, those values 

usually do not correlate with the disease probabilities and lack confidence and prediction 

intervals. Thus, a series of post-hoc explanation approaches have been proposed. Prior research 

has reported on how AI models work by visualizing the relevant contribution of contribution 

of each feature to the overall model prediction result(11–17). While researchers and clinicians 

appreciate the development of explainable AI, it is unclear if the resultant explanations can be 

trusted. Overlooking the trustworthiness of AI-based saliency methods leaves potential risks to 

AI-based medical applications.  

Saliency maps, also commonly referred to as heat maps, are the most commonly used 

method for AI explainability(12,16). They are especially important for AI algorithms that target 

image segmentation, quantification tasks, lesion detection and characterization. When 

reviewing the AI outputs, radiologists often review these maps to accept or reject AI output 

findings. Previous empirical works(18,19) demonstrate susceptibility of neural networks to 

small perturbations in normal inputs, resulting in wrong outputs. Along the same direction, 

Arun et al.(20) attempted to assess the saliency maps in medical imaging by quantifying their 

localization capability, variation between randomized networks, repeatability over separately 

trained models, and reproducibility across different models. However, their methods only 

demonstrate the generic properties of the saliency approaches but cannot evaluate either the 

correlation between the saliency maps with the model predictions or the saliency visualization 

quality for a given specific AI model. Theoretical works(21,22) suggest that such weakness is 

related to neural networks’ lack of local Lipschitz smoothness with respect to the input image 

space. As a negative result, model outcomes may vary drastically around the original data. 

There is a lack of comprehensive evidence on how such vulnerabilities in each AI model can 

substantially limit its practical application. The potential risk associated with those 

vulnerabilities is underestimated in medical AI, since the model details, such as architecture 



 

and parameters, are usually safeguarded. In addition, previous methods demonstrate only the 

generic properties of the saliency approaches and cannot evaluate the saliency visualization 

quality for a specific AI model.  

A trustworthy saliency approach should meet two general conditions: 1) Sensitivity. A 

saliency map should change accordingly when the model’s prediction for that image 

substantially alters due to the input change; 2) Robustness. A saliency map should stay 

consistent when the model’s prediction remains unchanged after an input image is randomly 

transformed without impacting the image content. In other words, a trustworthy saliency map 

should be consistent with the model prediction, not just for a specific example at a given state, 

but dynamically consistent when the model prediction changes. 

In this study, we sought to determine if saliency maps in radiology AI are vulnerable to 

subtle perturbations in their input that can lead to misleading results. We present a novel 

systematic approach for quantifying the trustworthiness of saliency explanations of given 

medical AI models. Specifically, we propose a model-agnostic and generalizable measurement 

to quantitatively analyze saliency method robustness called prediction-saliency correlation 

(PSC), which depicts the correlation between changes in model predictions and changes in the 

corresponding saliency maps, to quantitatively analyze both the robustness and sensitivity. We 

then illustrate the uses of this approach on commonly employed AI models and saliency map 

methods.   

 

 

Materials and Methods  

Study Design 

This is a retrospective study for quantifying the trustworthiness of the most popular explanation 

methods in radiological AI. This study was exempt from institutional review board approval 



 

and Health Insurance Portability and Accountability Act-compliant because fully de-identified 

public datasets were used. Seven of the most commonly used saliency methods in medical AI 

applications were selected for the investigation, including Vanilla Back Propagation (Vanilla 

BP)(23), Vanilla BP × Image(12), Gradient-weighted Class Activation Mapping 

(GradCAM)(14), Guided-GradCAM(14), Integrated Gradients (IG)(15), Smoothed Gradients 

(SG)(16), and eXplanation with Ranked Area Integrals (XRAI)(17)(23). A representative list 

of medical AI papers using the above saliency methods are presented in Supplementary Table 

S0. We trained two widely used networks (Resnet-152 and DenseNet-121) as our baseline 

models tasked to identify atelectasis, cardiomegaly, consolidation, edema, and pleural effusion 

on chest radiographs. We quantitatively verified the sensitivity and robustness on the two most 

commonly used convolutional neural networks (CNNs) in medical image classifications, 

DenseNet-121, and ResNet-152, trained on the CheXpert dataset. In addition, we processed the 

chest radiographs with and without perturbation with an AI-based chest radiograph research 

prototype, where we had no access to the model architecture and parameters. This is to test 

whether the proposed method can be generalized to such ‘black-box’ situations. To demonstrate 

the efficacy of our proposed evaluation framework on other imaging modalities, analysis tasks 

and deep learning model architectures, additional experiments were performed with a ResNet-

50 model trained on a brain tumor multi-class classification MRI dataset(3). A preliminary 

version of this work was presented at MICCAI 2022(24). Compared with our previous 

MICCAI presentation, this manuscript under consideration includes significant extensions, 

such as additional technical innovations, numerical experiments, human observer studies, and 

mathematical analysis. 

 

Dataset Preparation 

We demonstrate the discovered issues of saliency maps on a multi-label classification task 

using a chest radiograph dataset, CheXpert1. The original dataset consists of 223,648 publicly 

available chest radiographs (including both frontal and lateral projections) from 64,740 patients 

(40.6% female, mean age 59.6± [SD] 16.8 years; 59.4% male, mean age 58.6±16.3 years). 



 

Only 191,229 frontal chest radiographs (191,027 from the original training set and 202 from 

the original validation set) were included in our study. Since the test set of the CheXpert dataset 

is not publicly available, we further randomly split the original training set including 191,027 

frontal images into training and validation sets with a ratio of 6:1. The 202 frontal chest 

radiographs of the original validation set were used as our test set. In addition, we also include 

a human brain tumor MRI classification dataset(3) which consists of 7,022 images. More 

detailed information for the brain tumor MRI dataset is provided in Supplementary Sec. V–1. 

Dataset and Model Preparation.  

 

Quantitative Analysis of Trustworthiness 

As shown in Fig. 1, we evaluate the dynamic consistency from two aspects, i.e., the sensitivity 

and the robustness. For each image 𝒙𝒙𝑖𝑖 in a set of test images with size of N, we first obtain its 

prediction 𝒑𝒑𝑖𝑖  and the saliency map 𝐦𝐦𝑖𝑖  with an AI model. We then alter each image 𝒙𝒙𝑖𝑖  to 

produce a new image 𝒙𝒙𝑖𝑖′. The specific alteration depends on which property is being examined, 

as detailed below in this section. The model will calculate a new prediction 𝒑𝒑𝑖𝑖′ and generate a 

corresponding saliency map 𝐦𝐦𝑖𝑖
′ for the new image. 

To evaluate sensitivity of each saliency method, we observed whether changes in model 

predictions due to alteration of input images resulted in corresponding changes to the saliency 

maps. Specifically, as shown in the left of Fig. 1, by adopting the optimization techniques from 

adversarial attacks(18,25–29), we  identified the slightly perturbed radiographs that caused the 

AI model to predict a different result but had saliency maps close to those of the original input. 

The word “perturb” means making very small changes to the pixel values of an image, i.e., an 

original radiograph in our study. Such small changes are usually imperceptible to human but 

can lead to output change of an AI model. For each of the five observations, every radiograph 

is perturbed such that the model prediction will be flipped, i.e., from ‘observation exists’ to ‘no 

observation’ and vice versa. In the meanwhile, the optimization algorithm keeps the saliency 

map unchanged. The technical details of the image perturbation algorithm are presented in 

Supplementary Sec. II. Sensitivity Examination. 



 

The robustness of dynamic consistency demands the saliency maps to remain consistent 

when the predictions do not change. Robustness evaluates if a saliency map can stay consistent 

with the model’s prediction output when randomly perturbing an image without impacting the 

model prediction. As shown in the right part of Fig. 1, we use similar optimization techniques 

as in the above sensitivity experiments to investigate if it is possible to pull a saliency map 

towards an arbitrary pattern while keeping the model predictions unaffected. The target pattern 

was designed as a square at the top right corner of the saliency map. More specifically, for each 

of the five observations, we perturbed the input radiograph to distract the saliency map from 

the pre-defined target square pattern. Meanwhile, the model prediction of the radiograph 

remains unchanged by optimizing the perturbation. To quantify the findings, we evaluated 

changes in model performance and the similarities of the saliency maps generated on the 

perturbed images to the original saliency maps and the target saliency map, respectively. More 

detailed mathematical derivations are presented in Supplementary Sec. II. Robustness 

Examination.  

 

Statistical Analysis 

The sensitivity and robustness of saliency methods are uniformly quantified by the prediction-

saliency correlation (PSC) coefficient proposed in this study. This coefficient is defined by the 

Pearson correlation between variations in model predictions and changes in their corresponding 

saliency maps, both of which are gauged using the Jensen–Shannon divergence. The PSC 

coefficient ranges from -1 to +1: a -1 value signifies a perfectly negative correlation, 0 suggests 

no correlation, and +1 denotes a perfectly positive correlation. A PSC value above 0.5 is 

considered of having a high degree of correlation. We used the changes of the area under the 

receiver operating characteristic curve (AUC) to evaluate the changes of the model predictions. 

The structural similarity index measure (SSIM) was used to quantify the changes of saliency 

maps. The average PSC of the five findings was used to quantify the overall performance of 

each saliency method. Mathematical derivations of PSC are presented in Supplementary Sec. 

II. Prediction-Saliency Correlation. The significance tests for AUC comparison were 

performed using the z-test as detailed by Zhou et al(30). while the confidence intervals for the 



 

AUC values were computed based on the methodology proposed by Hanley(31). The 

significance of each individual finding is evaluated, and the p values (p < 0.05 indicated a 

statistically significant difference) are reported in the Supplementary Section III. We reported 

the averaged performance over all findings in the main paper, which has no associated p values. 

 

Human Observer Study 

Two radiologists (M.K.K. with 15 years of experience in thoracic imaging and G.D. with 2 

years of post-doctoral experience in thoracic imaging) were presented with 270 pairs of 

perturbed and original chest radiographs from the CheXpert dataset. These pairs consisted of 

120 pairs from the sensitivity experiments in Table 1 and 150 pairs from the robustness 

experiments in Table 2. Neither abnormality nor pathology was inserted or overlaid on the 

altered radiographs. The order of altered and original radiographs was randomly assigned for 

each pair. The radiologists were asked to identify the perturbated image from the pair. The two 

radiologists were first provided another 150 pairs of images for training, where the images were 

clearly labelled. Both radiologists separately and independently assessed the radiographs. 

 

Data availability  

The chest radiograph datasets used in this study are available in the Stanford CheXpert database 

under accession code https://stanfordmlgroup.github.io/competitions/chexpert. All data needed 

to evaluate the findings in the paper are presented in the paper and/or the supplementary 

material. Additional data related to this paper, such as the detailed reader test data, may be 

requested from the authors. 
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Results  

 
Sensitivity Examination 

Fig. 2 shows a chest radiograph with atelectasis as an example to demonstrate how the 

predictions and the saliency maps may diverge from each other. Although the perturbed images 

look identical to the original image, the probabilities of atelectasis predicted by the model 

(DenseNet-121) dropped from 67.1% to 2%. The highlighted regions of saliency maps for the 

perturbed images were similar to those for the original images (SSIM > 0.76), suggesting that 

the saliency maps failed to reflect the changes of the model predictions, i.e., the sensitivity 

may be low. More results of each individual class are included in Supplementary III. 1.   

Table 1 shows the quantification results. All the reported numbers are the averages over 

the five classes. The overall averaged PSC was no greater than 0.26. Given that the value of 

PSC was in the range of [-1,1], this is considered as a weak association. We further examined 

the details. On the perturbed images, the AUCs of both models degraded drastically from 0.88 

to 0.01. However, the corresponding saliency maps for the perturbed images were similar to 

the saliency maps for the original images, with a mean SSIM ≥  0.76. Such inconsistency 

between the prediction variation and the saliency preservation is reflected by the small PSC ≤ 

0.25. We also performed similar sensitivity evaluation on the MRI classification dataset and 

reached similar conclusions. These experimental results are reported in Supplementary Sec. 

V – Sensitivity Examination. 

Further, we examined the sensitivity of a research prototype model provided by a 

commercial vendor, henceforth referred to as the "commercial prototype" for brevity. Since we 

do not have access to the architecture and parameters of the model, we generate altered images 

based on three in-house models that we trained and fed these images to the model. The saliency 

maps were generated by the commercial prototype itself. To avoid conflict of interest, we 



 

visualized the saliency maps using our colormap. The corresponding results are presented in 

Fig. 3. Four cases of the four shared classes (atelectasis, cardiomegaly, consolidation, and 

pleural effusion) between our pretrained local proxy model trained on CheXpert and the 

commercial prototype are shown. The results indicate that the generated perturbed images do 

not substantially change the model saliency maps. The quantitative results also support this 

observation, as the similarities (SSIM) between the saliency maps on the perturbed images and 

the original ones are greater than 0.88 on all four classes. However, the perturbed images 

caused the average AUC to drop by 8.6% (p<0.01) on the four classes.  

 

Robustness Examination 

An example case is presented in Fig. 4 (Results of each individual class are included in 

Supplementary III. 3). The DenseNet-121 predictions for probability of atelectasis, using 

perturbed images were consistent with the original prediction (58.1%). However, the perturbed 

images successfully misled the saliency maps. For all the saliency methods, the perturbed 

images shifted the saliency areas toward the targeted top right corner of the image. 

Table 2 indicates that the deep neural networks performed consistently on the original and 

perturbed images, with the AUC remaining the same at 0.88. However, the saliency maps on 

the perturbed images were dramatically different from the original saliency maps (mean 

SSIMorg ≤  0.51). Such inconsistency between the prediction variation and the saliency 

preservation is reflected by the small PSC ≤ 0.12. At the same time, the saliency maps from 

the perturbed images share strong similarities with the target saliency map, with mean SSIMtgt 

= 0.65 on GradCAM and mean SSIMtgt ≥ 0.82 on all other saliency methods. We also 

performed similar robustness evaluation on the MRI classification dataset and reached similar 

conclusions. These experimental results are reported in Supplementary Sec. V Robustness 

Examination. 

 

Human Observer Study 

At the time of testing, the two physicians correctly pointed out 63/270 (23.3% for GD [2 years 



 

of experience]) and 121/270 (44.8% for MKK [15 years of experience]) altered radiographs, 

respectively, indicating that the alterations of the image alterations are difficult to spot by 

human experts, even for a thoracic radiologist with 15 years of subspecialty experience.  

Discussion 

In this study, we introduce a novel assessment metric, namely the PSC coefficient, to provide 

an intuitive and quantitative evaluation of the trustworthiness of widely used saliency maps. 

The PSC coefficient can serve as an evaluator to quantify the sensitivity and robustness of 

explanation methods.  The quantitative and qualitative results in the Results section show that 

commonly adopted saliency methods in medical AI applications can produce misleading 

interpretations. The saliency methods demonstrated low sensitivity (PSC<0.25) and robustness 

(PSC<0.12) on multiple radiographs. All the findings suggest that either the predictions or the 

saliency maps of the models have undergone tremendous changes. In addition, the saliency 

maps generated by the commercial AI software may be neither relevant nor robust to 

perturbation added to the images without knowing the model specifics. The human observer 

studies verified that the perturbed images are difficult to identify even by one human expert 

with extensive experience in chest radiography. These results indicate that for deep learning 

models, the sensitivity and robustness of all the seven saliency methods was weak, i.e., the 

generated saliency maps may not be relevant to the model predictions. Notably, the radiologist 

with 15 years of clinical experience demonstrated a substantially stronger ability to correctly 

identify altered radiographs compared to the other physician with only 2 years of experience. 

This observation suggests a potential correlation between the clinical expertise and the capacity 

to discern subtle perturbations. 

To this end, we proposed a model-agnostic method for saliency map trustworthiness 

evaluation, which is generalizable to the commonly available saliency methods.  Our method 

of induced perturbation can help establish the trustworthiness of the explainability of AI 

outputs and assess individual or multiple AI models for susceptibility to similar or different 

types of perturbation. This is a major clinical implication of our work. Our findings in 

Supplementary III. 2 and III. 4 indicate that even if multiple saliency methods were applied 



 

and we obtained consistent results, it is still possible that none of the saliency maps is faithful 

to the model predictions. These evaluation results on the commercial prototype suggest that the 

concerns about the trustworthiness are valid even for commercial AI systems trained with 

tremendous data. Our future work will also focus on refining the extent, distribution, and 

patterns of perturbations to simulate variations in patients, diseases, and imaging parameters. 

Such work can help reduce the cost and time needed for thorough validation of AI models and 

uncover the implications of deploying non-generalizable or non-explainable AI models.  

Many clinical end-users of AI might not be aware of the explainability aspects of AI; 

therefore, these aspects are often not realized and/or applied in clinical practices. Few AI 

models have safety valves where certain AI outputs are not generated in the presence of issues 

related to AI explainability. For example, AI models should exercise caution or not describe 

cardiothoracic ratio or presence of enlarged cardiac silhouette on portable, supine radiographs 

as opposed to an upright posterior-anterior radiographs. On CT, variations in reconstructed 

section thickness can profoundly influence AI-based estimation of nodule size, growth, and 

attenuation characteristics over serial CT examinations. A lack of explanation on if and how 

the AI model accounts for such variations in acquisition technique and measured findings can 

mislead the clinical end-users or cause them to discard all AI outputs. The addition and 

awareness of explainability aspects to the models can thus help improve adoption and proper 

use of AI algorithm outputs. Such explainability would be especially helpful given the 

profound variations in patient factors (supine versus upright radiographs or radiographs with 

low lung volumes), acquisition factors (radiation dose and image quality, including artifacts) 

as well as image reconstruction techniques (differences in section thickness and kernels).   

Our work has limitations. The evaluation presented in this work mainly focused on the 

most popular attribution-based AI explanation methods(32,33). However, there exist other 

explanation techniques, such as counterfactual explanations(33,34). Our future work will 

extend the gradient-based evaluation to the counterfactual-based explanation methods. 

In conclusion, we proposed a model-agnostic method to dynamically evaluate the 

trustworthiness of saliency maps used for explaining the results of AI models. Our findings 

suggest that the commonly used saliency methods in medical AI can produce interpretations 

inconsistent with the model predictions. Thus, it is important to establish the trustworthiness 



 

of the saliency methods in clinical adoption of AI models. Furthermore, our future work will 

extend the evaluation from gradient-based methods to the counterfactual explanation methods 

to determine their trustworthiness.  
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Tables and Figures 

Table 1. Quantification Results of Saliency Sensitivity on ResNet-152 and DenseNet-121 

Model Evaluation metrics Vanilla BP Vanilla BP 
× Image GradCAM Guided 

GradCAM IG SG XRAI 

ResNet-152 

AUC on the 
perturbed 

radiographs 
 (AUCorigin = 0.88) 

0.03 0.05 0.05 0.05 0.02 0.02 0.02 

Saliency map 
similarity (SSIM) 0.78 0.79 0.86 0.88 0.84 0.87 0.87 

PSC 0.21 0.22 0.25 0.23 0.04 0.13 0.12 

DenseNet-121 

AUC on the 
perturbed 

radiographs 
 (AUCorigin = 0.88) 

0.02 0.04 0.04 0.04 0.04 0.01 0.04 

Saliency map 
similarity (SSIM) 0.77 0.78 0.76 0.78 0.88 0.83 0.78 

PSC 0.25 0.26 0.25 0.21 0.25 0.02 0.26 

 

Note.—All values in the table are averages over the five classes, including atelectasis, 
cardiomegaly, consolidation, edema, and pleural effusion. AUC = area under the receiver 
operating characteristic curve, PSC = prediction-saliency correlation, SSIM = structural 
similarity index measure, Vanilla BP = vanilla back propagation, Vanilla BP × Image = vanilla 
back propagation times image, GradCAM = gradient-weighted class activation mapping, IG = 
integrated gradients, SG = smoothed gradients, XRAI = eXplanation with Ranked Area 
Integrals. 

 

 

 



 

 

 

 
Table 2. Quantification Results of Saliency Robustness on ResNet-152 and DenseNet-121. 

Models  Vanilla BP Vanilla BP 
× Image GradCAM Guided 

GradCAM IG SG XRAI 

ResNet-
152 

AUC on the 
perturbed 

radiographs 
 (AUCorigin = 0.88) 

0.88 0.88 0.88 0.88 0.88 0.88 0.88 

Saliency 
map 

similarity 

SSIMorg 0.46 0.54 0.32 0.38 0.47 0.51 0.47 

SSIMtgt 0.94 0.93 0.65 0.74 0.93 0.82 0.85 

PSC 0.01 0.01 0.04 0.06 0.03 0.06 0.04 

DenseN
et-121 

AUC on the 
perturbed 

radiographs 
 (AUCorigin = 0.88) 

0.88 0.88 0.88 0.88 0.88 0.88 0.88 

Saliency 
map 

similarity 

SSIMorg 0.47 0.53 0.32 0.40 0.47 0.51 0.48 

SSIMtgt 0.88 0.93 0.65 0.89 0.93 0.88 0.83 

PSC 0.01 0.01 0.13 0.12 0.07 0.12 0.09 

 
Note.—All values in the table are averages over the five classes: atelectasis, cardiomegaly, 
consolidation, edema, and pleural effusion. SSIMorg and SSIMtgt denote the SSIM between the 
new and the original saliency maps and the SSIM between the new and the target saliency maps, 
respectively. AUC = area under the receiver operating characteristic curve, PSC = prediction-
saliency correlation, SSIM = structural similarity index measure, Vanilla BP = vanilla back 
propagation, Vanilla BP × Image = vanilla back propagation times image, GradCAM = 
gradient-weighted class activation mapping, IG = integrated gradients, SG = smoothed 
gradients, XRAI = eXplanation with Ranked Area Integrals.



 

 

 

Fig. 1 Overview of the proposed methods. The trustworthiness of saliency maps can be 

examined from two aspects: sensitivity and robustness. An adversarial image 𝒙𝒙𝒊𝒊
𝒑𝒑 generated by 

prediction attack examines the sensitivity between saliency map and model output. Another 

adversarial image 𝒙𝒙𝒊𝒊𝒔𝒔 generated by saliency attack evaluates if saliency maps are resistant to 

the model output change. In both cases, the adversarial images look no different from the 

original image. AI = artificial intelligence. 

 

Fig. 2. Saliency maps lacking sensitivity to predictions of DenseNet-121. The color bar 

indicates the intensity of the saliency maps. Probabilities of atelectasis are shown at the bottom 

of saliency maps for original and perturbed images. The images show that highly similar 

saliency maps of frontal chest radiographs may be associated with very different model 

predictions. Vanilla BP = vanilla back propagation, Vanilla BP × Image = vanilla back 

propagation times image, GradCAM = gradient-weighted class activation mapping, IG = 

integrated gradients, SG = smoothed gradients, XRAI = eXplanation with Ranked Area 

Integrals. 

 

 

Fig. 3. Saliency sensitivity evaluation of a commercially available artificial intelligence (AI) 

software. The color bar indicates the intensity of the saliency maps. By perturbating the original 

chest radiographs (top row), perturbed images (bottom row) are generated via attacking a proxy 

model. The perturbed images were then fed to a commercially available medical AI model. 

Note the large variations of the predicted probabilities (at the bottom of each image) from the 

original to the perturbed images on different findings, despite only minor changes to the 

saliency maps. 

 



 

 

Fig. 4. Example saliency maps lacking robustness to saliency tampering of ResNet-152. The 

color bar indicates the intensity of the saliency maps. The target region of saliency maps on 

chest radiographs have been manipulated (third row), but the predicted probability (at the 

bottom of each image) of atelectasis remains similar to the original prediction. Vanilla BP = 

vanilla back propagation, Vanilla BP × Image = vanilla back propagation times image, 

GradCAM = gradient-weighted class activation mapping, IG = integrated gradients, SG = 

smoothed gradients, XRAI = eXplanation with Ranked Area Integrals. 
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