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Abstract. Rationally designed molecular circuits describable by well-
mixed chemical reaction kinetics can realize arbitrary Boolean function
computation yet differ significantly from their electronic counterparts.
The design, preparation, and purification of new molecular components
poses significant barriers. Consequently, it is desirable to synthesize
circuits from an existing “fridge” inventory of distinguishable parts, while
satisfying constraints such as component compatibility. Heuristic synthesis
techniques intended for large electronic circuits often result in non-optimal
molecular circuits, invalid circuits that violate domain-specific constraints,
or circuits that cannot be built with the current inventory. Existing “exact”
synthesis techniques are able to find minimal feedforward Boolean circuits
with complex constraints, but do not map to distinguishable inventory
components.

We present the Fridge Compiler, an SMT-based approach to find
optimal Boolean circuits within a given molecular inventory. Empirical
results demonstrate the Fridge Compiler’s versatility in synthesizing
arbitrary Boolean functions using three different molecular architectures,
while satisfying user-specified constraints. We showcase the successful
synthesis of all 256 three-bit and 65,536 four-bit predicate functions
using a large custom inventory, with worst-case completion times of only
seconds on a modern laptop. In addition, we introduce a unique class of
cyclic molecular circuits that cover a larger number of Boolean functions
than their conventional counterparts over a common inventory, often
with significantly smaller implementations. Importantly, and absent in
previous approaches specific to molecular circuits, the Fridge Compiler is
logically sound, complete, and optimal for the user-specified cost function
and component inventory.

Keywords: Molecular Computing - Exact Logic Synthesis - Cyclic Com-
binational Circuits.

1 Introduction
Molecular circuits are being explored and developed due to their natural interface
with chemistry and biochemical systems. They can sense from their environment,
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perform computation, and actuate a physical response in situ. Diffusive molecular
circuits capable of arbitrary Boolean function computation—as described by rate-
independent, well-mixed chemical reaction networks (CRNs) and our focus here—
can be experimentally realized by DNA strand displacement (DSD) architectures.

DSD is a molecular primitive that can realize programmed behavior by the
rational design of short DNA oligonucleotide strands. Due to designed sequence
similarity ‘invader’ strands can compete to form Watson-Crick base-pairs with a
substrate strand and displace an ‘incumbent’ strand that was initially hybridized.
These reactions are often mediated and thermodynamically driven by the enthalpic
gain of additional base pairs formed by an invader in a ‘toehold’ region of
the substrate. Displaced strands can in turn act as invaders in downstream
components, creating a network of cascading displacements in the presence of
appropriate inputs strands [21]. DSD architectures, also referred to as DSD
systems, use DSD to implement modular computing components often designed
to robustly implement CRNs [21,4,2]. Figure 1 illustrates a detailed DSD pathway
for the seminal two-domain architecture [4], and Section 2.2 outlines our approach
for representing DSD architectures as Boolean Networks.

Join Gate

Fig. 1. Example strand displacement implementation of A + B — C using the two-
domain architecture [4] — interpreted in this paper as C := AND(A, B). DNA is repre-
sented with arrows indicating the 3’ end. Each step exposes a ‘toehold’ region labeled t
in the ‘incumbent’ strand where the ‘invader’ initiates binding along the dotted line. A.
Sequence domains labeled A, B, R, I, and C serve as distinct signals in our well-mixed
solution. Sequences and design insights are derived from [7]. B. The DSD pathway
shows that output C is generated only if both inputs A and B are present. This process
unfolds through a cascade of toehold-mediated reactions that deplete input, gate, and
fuel components while generating output and waste components. Given that each circuit
preparation can only process one input due to component consumption, we refer to this
as a “one-shot” computation.

Given a target function and architecture a molecular programmer must
first synthesize a compatible molecular parts list that will correctly compute
the intended logic when well-mixed and in the presence of valid input. Manual
synthesis is typical; however, automated synthesis becomes necessary to determine
minimal size molecular circuits for all but the simplest of functions. Existing
approaches have leveraged sophisticated electronic circuit synthesis tools by first
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synthesizing optimal Boolean circuits over a functionally complete basis (e.g.
using AND, OR and NOT gates) and then performing technology mapping into the
target molecular architecture, as demonstrated in Figure 2. This strategy falls
short for at least four reasons:

1. Traditional circuit synthesis tools are based on heuristic logic synthesis and
ignore paradigms like cyclic combinational circuits that can be smaller than
their acyclic counterparts.

2. Minimal circuits prior to technology mapping do not necessarily result in
minimal molecular circuits; synthesis tools intended for electronic circuit
optimization do not consider the unique properties of rate-independent DSD
circuits such as it being infeasible to compute negation unless using a dual-rail
input encoding, or the relative cost and/or limitation of fan-in and fan-out
for particular gate architectures.

3. The molecular programmer must still determine if there is mapping from
their existing inventory of molecular parts onto the synthesized circuit. If not,
the laborious process of designing and preparing new molecular components
would be necessary to realize the synthesized circuit. However, it is entirely
possible that an alternate circuit could have been realized from an inventory
of existing components.

4. Molecular circuits are often encumbered by additional constraints learned
through a series of experiments (e.g., spurious interactions between cer-
tain components). As these events are learned they must be considered as
constraints by any synthesis tool.

This work advocates for an exact synthesis approach: given a Boolean function
F and an existing “fridge of parts” inventory Z choose a set of molecular compo-
nents Z' C 7 that yields a valid and optimal implementation of 7 when mixed
together, or give a proof that no such 7’ exists. This approach not only leads to
a practical tool capable of handling arbitrary constraints and cost functions, it
also avoids whenever possible the most costly solutions: those which require the
design and/or preparation of molecular components not currently found in the
inventory.

Our major contributions in this work are organized as follows. Section 2
defines the molecular circuit synthesis from an inventory problem. Section 3
details the Fridge Compiler tool and an overview of its implementation. Section 4
introduces a new class of cyclic circuits for “one-shot” molecular computation
typical in DSD architectures, implementing Boolean functions with fewer or the
same number of components than traditional (cyclic or acyclic) circuits. Section 5
provides a number of case studies that demonstrate the compiler is flexible and
highly performant. Section 6 explores future directions necessary to meet the
current needs of practitioners of molecular programming.

1.1 Relation to Previous Work

Molecular Circuit Synthesis. Tools and compilers exist that support the
experimental implementation of arbitrary or specific DNA strand displacement
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Fig. 2. Overview of circuit synthesis of Boolean functions, contrasting different ap-
proaches including Cello for genetic circuits, Percy exact synthesis, Seesaw Compiler,
a custom strategy, and the Fridge Compiler. Given an inventory of distinguishable
molecular parts and a function specification, other synthesis strategies shown take
multiple synthesis steps to find a solution. During these steps optimality, completeness,
and/or flexibility may be lost.

architectures, but they typically assume a target chemical reaction network or
circuit [2,12,15]. As researchers develop larger and more advanced DSD circuit
inventories, an unfulfilled need has arisen for the ability to use this existing
material efficiently in a scalable manner while taking into account common
DSD constraints. Our focus is automated synthesis of molecular circuits given a
Boolean function description and an inventory of well-tested molecular parts.

The Cello tool [14,11] workflow is most comparable to our aim in this work,
as it seeks to implement a Boolean function using a set of existing genetic
circuit components. Genetic circuits use genetic regulatory networks to perform
computation and therefore rely on reaction rate differences and repression to
implement negation (e.g., to realize NOR logic). In contrast, DSD architectures
use rationally designed DNA strands to perform computation and cannot robustly
implement negation, often relying on a dual-rail representation for functional
completeness.

Both types of circuits share the common challenge of designing and testing
limited-resource components. Cello utilizes a heuristic logic synthesis step to
create an optimized intermediate circuit, making the technology mapping phase
trivial as all gates in the intermediate network can be implemented. The heuristic
fridge mapping phase in Cello is also more complex, using analog gate response
characterization instead of simple digital abstraction. Although Cello’s heuristic
logic synthesis offers advantages in genetic circuit design, it cannot implement
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optimal dual-rail circuits for DSD and lacks the completeness, and constraint-
flexibility guarantees of the Fridge Compiler. Additionally, Cello does not support
combinational cycles.

The loss of optimality and difficulty of satisfying arbitrary constraints make

it challenging to use mainstream compilers for molecular computing, where small
circuits with constrained architectures are the norm.
Logic Synthesis. Logic synthesis tools take high-level hardware language like
Verilog, and map a design into technologies such as Application-Specific Inte-
grated Circuits (ASICs) or Field-Programmable Gate Arrays (FPGAs). Heuristic
synthesis approaches—including commercial tools such as Intel Quartus or Xilinix
Vivado and open source alternatives [3,25,19]—prioritize large-circuit scaling
by sacrificing flexibility and optimality. They can be modified in order to meet
some constraints, such as pushing inversions out of the main compute path to
inputs [22], although it is not always feasible to implement arbitrary constraints.
Ezact synthesis approaches prioritize flexibility and optimality with the help of
constraint solvers [18]. Tools like Percy [9] combine logic synthesis and technology
mapping into one optimal step. However, an optimal technology mapped circuit
may not be realizable from a particular molecular inventory. Furthermore, both
heuristic and exact logic synthesis tools often overlook paradigms such as cyclic
combinational circuits, which are required for achieving minimal circuit sizes [16].
Program Synthesis. Program synthesis generates an implementation from its
specifications and constraints, often employing SMT solvers such as Z3 [13] to
define and search the space of valid solutions. Satisfiability modulo theory (SMT)
problems, a superset of SAT problems, accommodate variables and constraints
from domains (or theories) beyond Boolean algrebra, such as bitvectors and
uninterpreted functions. SMT solvers have been used to synthesize and verify
code in various domains, including DNA computation and synthetic biology for
analyzing and verifying biological systems [26]. The synthesized circuits from
these tools are also often acyclic, resulting in suboptimal combinational circuits
(see Section 4).

2 Preliminaries

2.1 Molecular Circuit Synthesis from an Inventory

Molecular circuit synthesis from an inventory aims to find an optimal molecular
circuit given a target function, user-defined constraints, and a fridge inventory of
distinguishable, freely-diffusing components. Components must be distinguishable
in diffusive computing, such as those implementations describable as a well-mixed
CRN, since relationships between components must be programmed into their
designed interactions (and lack of interactions) with other species components
due to the lack of spatial organization. In contrast, two AND gates, for example,
can be indistinguishable in an electronic circuit embedded on a surface since
their connectivity to other components is entirely controlled by their spatial
organization.
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Fig. 3. (Top) Default circuit and inventory representation in this paper: CRNs with
components as either 2-input 2-output CRNs (gates) or 1-input 1-output CRNs (wires).
OR logic is commonly implemented by multiple wires converging to a common output.
(Bottom) Fridge Compiler users can choose among a variety of pre-programmed DSD
architectures including (A) two-domain [4], (B) leakless breadboard [23], (C) seesaw [15].
Alternatively, the user can create their own. The Fridge Compiler is capable of supporting
a variety of architectures by abstracting the specific implementation into a generic circuit
structure (D) while still retaining the important differences in the form of constraints.

2.2 Modelling Molecular Inventories

Rate-independent well-mixed CRNs, which compute correctly without reaction
rate assumptions, are an appealing class of reactions due to their relative ease of
engineering and ability to perform complex functions [5]. To represent arbitrary
Boolean functions using rate-independent CRNs, we utilize a dual-rail input
representation with distinct species for positive and negative literals, and consider
outputs on upon reachability of output species — thereby treating the CRN
representation like a Boolean network [5].

While our primary focus is on DSD-based CRNs our approach could be
adapted to other molecular computing frameworks, including protein and genetic
circuits, given appropriate consideration for managing complex constraints, inver-
sions/negations, and cycles. The Fridge Compiler, detailed in the next section, is
compatible with a variety of DSD architectures and abstracts specific implemen-
tation details to the rate-independent CRN level, while maintaining important
differences as constraints to the SMT solver.

Figure 3 (top) shows the convention used for different nodes within this
Boolean network interpretation of CRNs. A signal represents a single molecule; it is
represented by dark blue circle gate ports. A gate represents a reaction/component
with (multiple) inputs and (multiple) outputs. Gates in this interpretation perform
AND logic, like a transition in a Petri net. In many architectures OR logic can be
performed by mapping multiple distinct signals into a common signal. A wire
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represents a translator from one signal to another. Figure 3 (bottom) shows the
domain-level design of gate nodes in three different DSD architectures. Signals
can be tagged as possible circuit outputs or inputs that correspond to fluorescent
reporters on hand, or available DNA strands, respectively.

Since diffusive molecular circuits cannot rely on spatial organization, each
component’s output feeds into the inputs of other predetermined components.
Therefore, all possible connections in the fridge are predetermined and an inven-
tory can itself be represented by a rate-independent CRN. A particular circuit
is a subset of this inventory. Only the components which form that circuit are
enabled, and the corresponding induced subgraph of chemical reactions represents
that circuit. Furthermore, the input nodes will be tagged with the function’s
input variables, or with True or with False. The output nodes will be tagged so
that the correct function outputs appear at the tagged output nodes.

2.3 Desired Features of a (DSD) Fridge Compiler

Along with the distinguishability of components, an arduous development cycle
is one of the major reasons for the need and development of an efficient “fridge
compiler” with the following properties. Soundness and Completeness. An input
query consists of a fridge and a Boolean function. Soundness guarantees that if
the compiler returns a circuit, it will always correctly implement the input query.
Completeness guarantees that if the compiler does not return a circuit, then
there does not exist any circuit that fulfills the input query. Most alternative
methods are sound, but not complete. Flexibility of Architecture Choice. A fridge
compiler should be able to support any DSD architecture, and in the future
any molecular architecture. Handling practical constraints. A fridge compiler
should be able to handle arbitrary constraints such as the known incompatibility
between stock components. Optimality. Optimality is important in molecular
computing because molecular components are expensive in their preparation and
the probability of spurious interactions increase with system size. Arbitrary cost
functions should be possible, since each architecture has different comparative
cost for each component. Supporting Cyclic Circuits. As shown in section 4,
optimal circuits will often contain cycles.

2.4 A Naive Solution

Figure 2 shows the levels of abstraction that traditionally take place to transform
a Boolean function description and an inventory into a final circuit. A naive
solution to molecular circuit synthesis from an inventory would be to enumerate
all possible circuits within that inventory and evaluate whether any implement the
desired function. Each enumeration choice requires picking which input node to
use for which literal, picking a subset of components to enable, and picking which
output node(s) to interpret as output. Checking if the intended function was
synthesized requires evaluating all possible input combinations in the worst case.
This naive enumeration algorithm has the properties we seek, but is infeasible.
The Fridge Compiler keeps these properties, but is efficient in practice.
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Fig. 4. Given a inventory and function specification, the Fridge Compiler can synthesize
all valid circuit solutions (#1, #2, #3, ...), (size) optimal solutions (#1, #2), and
optimal solutions that satisfy hard constraints (#1; “don’t mix gates 4 and 5, nor gates
1 and 2”). Optimality, completeness, and flexibility are maintained.

3 The “Fridge” Compiler

3.1 General Overview

The Fridge Compiler is an exact synthesis tool similar to those in Section 1.1,
providing an exact and optimal solution to a circuit description, over a given
fridge inventory, and subject to constraints. It uses an SMT solver to describe
the large set of enumerations using symbolic datatypes which replace the naive
concrete enumerations. This approach fulfills all the desired features enumerated
in Section 2.3: it is sound, complete, flexible, optimal, supports cycles, and is
tractable in practice.

While many exact synthesis tools rely on custom-encoded SAT encoding [9], we
build on program synthesis techniques that utilize more general SMT encodings
because of their expressive power and ease-of-use [10]. We see this user-first
approach as especially valuable in fields like molecular computing where the barrier
to entry is already high. Our implementation borrows techniques from program
synthesis and formal methods such as program sketches, symbolic execution,
and SMT-based variable encoding [20,24,10]. We utilize a “sketching” approach
where users with domain expertise write partial programs and leave “holes” for a
solver to complete. The following section describes the Fridge Compiler’s inputs
and implementation.

3.2 Inputs

1. A inventory specified as: (a) A chemical reaction network without rates. (b)
The subset of reactants that can be used as circuit inputs. (¢) The subset of
products that can be used as circuit outputs.
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2. A desired output function, F,(X) = [Fo(X), F1(X),...], composed from one
or more Boolean predicates.

3. A set of assumptions about the circuit including: (a) Architecture-specific
constraints. (b) User-specified constraints.

4. A cost function.

It’s worth drawing parallels to formal methods, where our input types above
create a domain-tailored abstraction similar to a Domain-Specific Language (DSL).
The inventory (1) forms our circuit (program) sketch, where symbolic variables
specified below mark holes to be filled by the Fridge Compiler — effectively
sculpting the final circuit. The desired function (2) specifies circuit behavior,
similar to DSL specifications. Constraints (3), akin to DSL’s semantic rules, limit
the search space and ensure the circuit meets conditions. The cost function (4)
ranks solutions to guide circuit selection.

3.3 Implementation

SMT Variable Encoding. Our approach to variable encoding in SMT is inspired
by previous works [10]. Logical input variables, denoted as X = [Xg, X1, ...], serve
as the Boolean inputs for the specification function (2). Circuit selection variables
are Boolean values that dictate whether each component or reaction in the
inventory is included in the circuit. Given that all components are distinguishable
with pre-determined connections, selection variables define a complete circuit
without I/O assignments. We also employ I/O location variables, which use
integer values to map the input and output to the circuit [10]. Input location
variables map our allowed circuit inputs (1b) above to a dual-rail version of our
logical input variables. Qutput location variables map our function outputs (2)
to our allowed circuit outputs (1b).

While a universal quantifier is performed over the logical input variables to
ensure the equivalence of the circuit and function across all inputs, the remaining
variables act as hole variables in the circuit sketch of the inventory. The solver
fills these holes by assigning suitable values, defining a complete circuit including
its I/O assignments.

Symbolic Interpreter for the Inventory. Interpreting a molecular circuit
begins by assigning Boolean values to circuit inputs and triggering reactions until
a steady state is reached, as exemplified in Figure 5.

To encode this into the solver, we apply symbolic execution [24] that transforms
our concrete interpreter into a symbolic expression encapsulating all potential
circuits. The interpreter starts from circuit inputs, integrates the SMT variables,
and continuously simplifies the expression using Z3’s simplify command.

In acyclic circuits, the interpreter accumulates logic from input to output,
resulting in an expression proportional to the number of reactions in the CRN
(1a). For cyclic circuits, which take more steps to reach the steady state depending
on the number of cycles, we employ SMT verification to check the expression’s
equivalence after each gate, compressing the final expression — this step occurs
only once per inventory and is typically not costly. Note that even for cyclic
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circuits a steady state is always reached because once an output is produced it
cannot be removed, by the monotonicity property of rate-independent CRNs [5].

This procedure yields SMT expressions for circuit outputs, depending on logi-
cal inputs X, circuit selection, and I/O location, designated as CircuitF, (X) =
[Circuit Fy(X), CircuitFy (X)), ...].

Additional Constraints. Additional constraints further guide the solver, focus-
ing the search and limiting the circuit space. These constraints are translated
into SMT format and include architecture-specific constraints and user-defined
requirements. Examples of architecture-specific constraints include uniqueness of
location variables or forcing all outputs to be used by at most one enabled compo-
nent. Examples of user-specified constraints include component incompatibility,
restrictions on fan-in and fan-out, limitations on circuit depth, concentration
splitting, or stock depletion. This flexibility in constraint definition allows for
more customized and application-specific circuit designs.

Program Synthesis. The program synthesis task is to find an assignment of hole
variables — circuit selection, input location, output location such that, assuming
the constraints hold true, the function F,(X) matches CircuitFn(X) for all
possible X — assuming constraints, forall X: assert F,,(X) == CircuitFn(X).
Existence vs Optimality. The system functions in two modes: existence mode,
which finds the first circuit satisfying the query, and optimize mode, which seeks
the most optimal circuit. Both modes are sound and complete. The cost function
can be any function that can be evaluated for a specific circuit, allowing for
extensive flexibility. For example, if a gate costs twice as much as a wire the cost
function could be 2¥*W+1*G. However, performance is typically best with simple
lexicographical cost functions rather than pareto tradeoff cost functions.
Implementation Details. For handling the universal (forall) quantifier in our
implementation, we provide two options. By default, we use a brute-force mode
where the expression F,,(X) == CircuitFn(X) is resolved for each X value (
2Nbits times), and each result is added as an assertion. This technique is effective
for case studies in this paper with fewer input variables. However, when the
number of logical inputs is large, we resort to CEGIS [20], a well-established
synthesis technique for handling larger search spaces.

We use bitvector variables over integers for the circuit selection, input location,
and output location variables, due to their superior performance especially given
the relatively small range of these variables.

For optimization, we by default use the built-in SMT optimizer to minimize
a set of cost functions. For larger problems where this method may time out, we
provide an alternative implementation which uses a cycle of synthesize calls with
a decreasing cost constraint.

The Fridge Compiler is currently implemented in Python 3, utilizing Z3 [13]
as the SMT solver. An earlier version was implemented in Rosette [24].

3.4 Flexibility of Architecture Choice

The Fridge Compiler can in theory accommodate a variety of architectures, with
three common preprogrammed examples serving as guiding templates (see Figure
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3). These built-in architectures showcase the Fridge Compiler’s ability to handle
diverse DSD architectures and provide a blueprint for users to specify custom
ones or support alternate molecular architectures.

4 One-shot Cyclic Circuit Synthesis

One-shot, or single-use, computation refers to computation where circuit com-
ponents are consumed during evaluation of each specific input. While there is
ongoing work towards implementing reusable DSD circuits, large-scale DSD
systems have implemented one-shot computation in practice [8]. As depicted in
Figure 1, input strands cause a sequence of cascading reactions leading to the
depletion of circuit components along with an output readout. Consequently, the
circuit must be newly prepared for each desired input.

Cyclic circuits, while usually associated with memory circuits like latches
and flip-flops, can also be found in combinational circuits that only depend on
current inputs. As early as 1953, Claude Shannon found that allowing cycles in
circuits is necessary for obtaining optimal combinational circuits [17]. Significant
advancements in the understanding of cyclic combinational circuits have been
made by formalizing the terminology, providing comprehensive analysis strategies,
proving optimality for some classes of circuits, and developing synthesis techniques
to incorporate cycles into smaller combinational circuits [16,1,6]. Despite the
potential of cyclic combinational circuits to optimize circuit size, they are not
widely supported by mainstream compilers.

v Optimal acyclic v Optimal combinational
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Fig.5. A. Cyclic combinational circuits. (Left) Function definition for F*; (Middle)
its optimal acyclic implementation; (Right) its optimal cyclic combinational. B. (Left)
Function definition for FZ; (Middle) its optimal acyclic implementation; (Right) its
optimal one-shot cyclic implementation.

To analyze cyclic circuits we can assign an initial value C; to a wire along
each cycle i, and check if the circuit retains any values C; once the circuit is



12 L. Wathieu et al.

evaluated on an input. In conventional cyclic combinational circuits, every wire
and output is assigned a specific value after circuit evaluation for all input values,
ensuring no C; values are left [16]. Figure 5A shows function F'4 implemented
through the smallest possible acyclic circuit (left) and through an even smaller
combinational cyclic circuit (right). Going through the input combinations we
can verify that the outputs are always forced to True or False — there is no
input which leaves the cycle value unresolved, so this circuit is combinational.

We introduce one-shot cyclic circuits, which are cyclic circuits that leverage
properties of one-shot circuits to create smaller combinational circuits not possible
in traditional settings. These circuits are smaller than both conventional acyclic
and cyclic combinational circuits.

CRN-based circuits, characterized by their one-shot assumption (that no
previous input exists) have the unique property of initializing all cycle values C;
to False, as the component gates start un-reacted without an input. Therefore,
any C; values remaining on the output or along cycles in one-shot CRN-based
circuits will actually result in a concrete output of False. Figure 5(B) shows
function F'Z implemented through the smallest possible acyclic circuit (left) and
through an even smaller one-shot cyclic circuit (right). Going through the input
combinations we find that both outputs F¥ and F{? are dependent on the cycle
value for the input XY Z = 001. Without the one-shot assumption, this circuit
would not be combinational since a previous cycle value would influence the
current output. However assuming a one-shot setting, the circuit in this case
outputs the initial C; value of False. The resulting truth table and functions are
shown. Unlike for F4, FB does not have a cyclic combinational circuit smaller
than the acyclic implementation, but does in fact have a smaller one-shot cyclic
circuit.

This example shows that the one-shot assumption may allow for dual-rail
circuits that are smaller than any traditional combinational circuit (acyclic or
cyclic). As shown in Section 5.3, this property could be verified for any arbitrary
inventory using the Fridge Compiler due to its completeness guarantee Any valid
combinational circuit (acyclic or cyclic) is also a valid one-shot circuit, since it
has outputs that are uninfluenced by their (possible) cycle values, meaning that
initializing the cycle values to False in a one-shot setting will not impact the
circuit’s behavior. In contrast, one-shot cyclic circuits are distinct from cyclic
combinational circuits as they rely on a previous circuit state, where all gates are
initially False. Therefore the one-shot assumption creates a larger set of possible
solutions, while encompassing both acyclic or cyclic combinational circuits. The
Fridge compiler assumes the presence of cycles in its inventory and generates
cycles in the resulting circuits when necessary to ensure optimality.

5 Case Studies & Empirical Evaluation

A natural question is: what functions can inventories cover? We chose three
sets of Boolean function classes to test: all 256 3-bit predicates, all 65,536 4-bit
predicates, and all 32,640 3-bit 2-predicate functions. The 3-bit predicate set was
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Test Inventory Gates | Wires | Function Set |# Functions| # SAT MIN (sec) | 50" % (sec) | 99" % (sec) | MAX (sec)
Version | SAT UNSAT| SAT UNSAT| SAT UNSAT| SAT _UNSAT|
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! 1 ® 3-bit 1-pred 56 6 Optimal | 001 002 | 002 003 [ 011 0.5 | 020 0.5
56 12W [Thachuk] R 12 | abitipred 65536 2304 | Eistence [ 002 005005 023]029 064075 169
Optimal | 002003 | 007 0.07 [ 056 019 | 149 o0.64
. existence | 0.04 N/A [ 005 nN/a o013 NA o052 N/A
19G 27W (Large Custom) | 19 27 | 4-bit 1-pred 65536 65536
(Lare; ) it L-pre optimal | 004 N/A | 039 N/A [2160 N/ | 181 /A
Existence | 0.02 002 [ 0.02 002 | 002 003 | 008 009
3-Gate Acyclic Complete | 3 15 | 3-bit2-pred 32640 3936
Ve P 't 2-pre optimal | 001 001 | 001 001 ] 003 002|005 01
Existence | 0.02 002 [ 0.02 002 | 003 003 | 004 011
3-Gate Cyclic Complet
ate Cyclic Complete | 3 26 | 3-bit2-pred 32640 4824 | optimal_| 001 0.01 | 002 001 | 003 002 | 016 0.7
Existence | 0.02 003 [ 003 0.0 | 009 025 | 022 o051
4-Gate Acyclic Complet
ate Acyclic Complete | 4 28 | 3-bit2-pred 32640 11388 | optimal_| 002 0.02 | 042 007 | 050 016 | 413 o051
Existence | 0.03 0.05 [ 0.04 017 | 0.18 088 | 046 6.66
4-Gate Cyclic Complet
ate Cyclic Complete | 4 S0 | 3-bit2-pred 32640 13608 | optimal | 002 0.03 | 014 009 | 202 053 | 4657 3.45

Fig. 6. Runtimes and coverage results for case studies of various inventories and
functions. For instance, the last row tells us that for the complete inventory of 4
gates and all possible wires (including feedback wires), the Fridge Compiler was run (in
existence and optimality mode) with all functions of 3 input bits and 2 output predicates.
Of those 32,640 target functions, 13,604 were implementable with the inventory. Of the
13,604 optimal circuits found, 99% of them were found in 2 seconds or less.

chosen in order to demonstrate a qualitative comparison to the results from the
original Cello work [14] that attempted to synthesize (and experimentally realize)
all 3-bit predicate functions. The 4-bit predicate set was chosen as a natural
extension and in order to support known designs[15], and the 3-bit 2-predicate
set was chosen to highlight the resource-sharing benefits of cyclic circuits. The
primary goal of these case studies is to demonstrate a possible use-case of the
Fridge Compiler. The current approach addresses problem instance sizes that
are currently feasible to build experimentally. Although there is no present need
for the Fridge Compiler to handle significantly larger problem instances, many
techniques such as those discussed in Section 3.3 have shown to improve program
synthesis runtime substantially without changing the underlying setup. Future
work would include systematically characterizing larger inventories with a larger
number of logical inputs.

5.1 Case Study: Synthesizing all k-bit Predicates

After running the Fridge Compiler on all 256 3-bit predicates, it turns out
the breadboard inventory of Figure 4 covers 246/256 3-bit predicates. One of
the functions this inventory cannot cover is odd parity. The Fridge Compiler
guarantees that given the architecture, the inventory, the function, and the
constraints, no circuit can represent this function. We designed a sum-of-product
circuit that covers 3-bit odd parity as a new inventory; that inventory covers all
256 3-bit predicates. This makes intuitive sense: odd parity is one of the most
complex functions in terms of circuit complexity.

5.2 Case Study: Inventory for all 4-bit Predicates

The 5-gate 12-wire inventory from the previous case study covers 22,394/65,536
4-bit predicates. A larger inventory was custom designed to cover all 65,536 4-bit
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predicates: It contains 19 gates and 27 wires, and contains the odd parity circuit
with a few extra gates. In order to test constraints, we allow this inventory to
map input variable literals such as X; or X; to be mapped to more than one
gate input. This constraint is valid in some architectures, and can often leads to
more function coverage (see Figures 6, 7).

Runtime: 199g 27w, All 4-bit Predicates
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Fig. 7. A cumulative distribution function (CDF) curve illustrating runtime distribution
for the test suite from Figure 6’s third row. The X and Y axes represent runtime and
proportion of tests completed in that time, respectively. This large custom inventory is
able to synthesize all 65,536 4-bit functions. Existence finds any circuit that implements
the function, and is typically solved faster than finding the optimal circuit.

5.3 Case study: Cyclic vs Acyclic

Cyclic circuits excel at optimizing resource-sharing between different parts of
the circuit. To demonstrate this, we ask the Fridge Compiler to synthesize all
2-predicate functions with 3-bit inputs using a fridge of 3 Gates and any arbitrary
wire connections. Figure 5 (Left) show 2 examples of functions in this set, and 2
implementations for each function. The Fridge Compiler finds 3,936 / 32,640 of
the functions are implementable using 3 gates with acyclic circuits. By enabling
permitting combinational cycles, an additional 72 functions can be realized, and 72
existing functions have smaller circuit implementations. For instance, Figure 5A
shows a function that has a smaller circuit when cominational cycles are enabled.
One-shot cycles can support even smaller circuits than combinational cyclic
circuits. By enabling the Fridge Compiler to find one-shot cycles, we first observe
that all 144 functions that were additionally found or improved with combinational
cycles are still found, since combinational circuits are a subset of one-shot
circuits. An additional 816 functions have circuit implementations, and 48 existing
functions have smaller circuit implementations. Figure 5B shows a function where
one-shot cycles enabled a smaller implementation while combinational cycles did
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not. Synthesis over a a complete 4-gate inventory shows even better improvement.
While 11,384 / 32640 functions are implementable using acyclic circuits, enabling
one-shot cycles increases that amount to 13,604 / 32,640 functions synthesized.

5.4 Runtime Performance

Even while guaranteeing soundness, completeness, and optimality, Fridge Com-
piler runtimes are on the order of seconds on a personal laptop. Figure 6 shows
the function coverage and runtimes for all case studies listed. In addition, the
cumulative distribution function (CDF) in Figure 7 visually compares the run-
times of the 19G-27W inventory. All of the existence queries were completed
within seconds, and the large majority of optimal solutions were found in less
than a second. As expected with constraint solvers, there are a few combinations
of inventories and circuits that take longer to optimize, as seen by the long tail in
Figure 7. When comparing to the timeline of molecular programming, a matter
of seconds to find an optimal solution is sufficiently fast.

6 Conclusion

We have proposed a new approach for molecular circuit synthesis that considers
the available components “in the fridge”, the Boolean function to be computed,
and support for arbitrary constraints and user-defined cost functions. Our ap-
proach fills a need not met by the current menagerie of tools that support the
development of molecular circuits, nor is the need met by existing circuit synthe-
sis tools that were designed for electronic circuits; the latter misses important
distinctions between electrical and molecular circuit properties. Importantly, our
approach is sound, complete, and optimal. Empirical evaluations demonstrate
that this approach is also efficient in practice with worst-case solutions found on
the order of seconds. We have also introduced and supported synthesis of a new
class of one-shot cyclic combinational circuits that can cover more functions and
can yield smaller circuits for a given inventory.

In future work we intend to demonstrate the one-shot cyclic circuit in Figure
5B using a DSD circuit. We also plan to explore how to identify the minimum
additional components to an existing inventory needed to support a set of
functions, identify the smallest necessary inventory for a set of functions, and add
a feature to balance stock depletion of fridge components. Furthermore, we plan
to extend our work to include other molecular computing architectures such as
genetic and protein circuits. We will also try adapting this methodology towards
synthesizing analog, probabilistic, and/or continuous piecewise linear functions.
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