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Abstract—Federated learning is an emerging paradigm
allowing large-scale decentralized learning without sharing
data across different data owners, which helps address the
concern of data privacy in medical image analysis. However,
the requirement for label consistency across clients by
the existing methods largely narrows its application scope.
In practice, each clinical site may only annotate certain
organs of interest with partial or no overlap with other
sites. Incorporating such partially labeled data into a
unified federation is an unexplored problem with clinical
significance and urgency. This work tackles the challenge by
using a novel federated multi-encoding U-Net (Fed-MENU)
method for multi-organ segmentation. In our method,
a multi-encoding U-Net (MENU-Net) is proposed to extract
organ-specific features through different encoding sub-
networks. Each sub-network can be seen as an expert
of a specific organ and trained for that client. Moreover,
to encourage the organ-specific features extracted by
different sub-networks to be informative and distinctive,
we redularize the training of the MENU-Net by designing
an auxiliary generic decoder (AGD). Extensive experiments
on six public abdominal CT datasets show that our Fed-
MENU method can effectively obtain a federated learning
model using the partially labeled datasets with superior
performance to other models trained by either localized
or centralized learning methods. Source code is publicly
available at https://github.com/DIAL-RPI/Fed-MENU.

Index Terms— Federated learning, deep learning, medical
image segmentation, inconsistent labels.

[. INTRODUCTION

ONVOLUTIONAL neural network (CNN) based deep
learning (DL) as a data-driven methodology has demon-
strated unparalleled performance in various segmentation
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tasks, providing that the model can train on large-scale data
with sufficient diversity. To suffice the large appetite of CNNss,
researchers often collect data from multiple sources to jointly
train a model for improved performance. However, in the
healthcare domain, such centralized learning paradigm is
often impractical because the clinical data cannot be easily
shared across different institutions due to the regulations,
such as Health Insurance Portability and Accountability Act
(HIPAA). To overcome the barrier of data privacy and realize
large-scale DL on isolated data, federated learning (FL) [1],
an emerging decentralized learning paradigm, has been
adopted in the medical image analysis, solving various clinical
problems such as prostate segmentation [2], [3] and COVID-19
diagnosis [4], [5].

FL allows different data-owners to collaboratively train one
global DL model without sharing the data. The model training
is completed by iterating over a server node and several
client nodes. Each client individually trains a copy of the
global model using their local data after the server updates
the global model by aggregating the locally trained models.
By repeating this process, the global model can effectively
absorb the knowledge contained in the client datasets without
data sharing. As data privacy has become a critical issue
concerned by healthcare stakeholders, FL attracts a growing
attention from both the research and clinical communities in
recent years.

Although the capability of FL for medical image analysis
has been demonstrated by the prior studies, it comes with
limitations. A critical issue is about the strict requirement for
the label consistency. Specifically, in an FL system, all the
participating sites need to have identical regions-of-interest
(ROIs) annotated on their local data, so the FL model can be
optimized following the same objective across different clients.
However, in practical scenarios, different clinical sites often
have different expertise and thus follow different protocols
for data annotation. This leads to inconsistent ROI labels
across different sites. The requirement for labeling consistency
hinders the FL methods from large-scale deployment in
practice. Therefore, a more flexible FL. framework supporting
the training with inconsistently labeled client data is highly
desired. From a technical point of view, this is an FL problem
with partial labels since each client merely has a partially
labeled dataset with respect to the whole set of ROIs in the
federation. To the best of our knowledge, this is a new problem
that has not yet been explored before, but at the same time is
of great clinical significance and technical urgency to tackle.
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In this paper, we propose a novel method, called
federated multi-encoding U-Net (Fed-MENU), to address
the above challenge. We then demonstrate its performance
on a representative task, ie., multiple abdominal organ
segmentation from computed tomography (CT) images. The
underlying assumption of our design is that, although the data
from different clients show disparities in terms of the labeled
ROIs, they share the same or similar image contents and
thus can provide complementary information to facilitate the
learning of robust features in a unified FL system. Since the
client datasets are partially labeled with different ROIs, they
can be seen as a set of experts with different expertise. Each
expert focuses on learning the features within its expertise
(labeled ROIs) while avoiding introducing the unreliable or
noisy information from the non-expertise (unlabeled ROIs).
To achieve this goal, we design a multi-encoding U-Net
(MENU-Net) to decompose the multi-organ feature learning
task into a series of individual sub-tasks of organ-specific
feature learning. Each of them is bound with a sub-network
in the MENU-Net. During the local training stage of FL,
the client node can only tune the sub-network associated
with the organ on which they have labels (expertise) while
keeping the other parts of the network unchanged. Due to
this decomposed feature learning strategy, the MENU-Net is
encouraged to learn organ-specific features via different sub-
networks without interference from other label-absent organs.
Moreover, to further encourage the extracted organ-specific
features to be informative and distinctive from other organs,
we design an auxiliary generic decoder (AGD) to regularize
the training of the MENU-Net. As a result, the MENU-Net
can extract discriminative features during its encoding stage
and thus facilitate the segmentation in the following decoding
stage.

To demonstrate the performance of our Fed-MENU method,
we conducted extensive experiments using four public
abdominal CT datasets, each of which is annotated with a
different set of abdominal organs. Our results show that,
without sharing the raw data, the proposed Fed-MENU method
can effectively utilize the isolated datasets with different partial
labels to train a global model for multi-organ segmentation.
The performance of the trained model is superior to the
localized learning model trained by any single dataset and
also the centralized learning model trained by combining all
the datasets. The main contributions of this paper are three-
fold.

e We addressed a new problem in FL to enable
collaboratively training of a global model using isolated
datasets with inconsistent labels.

« We proposed a novel Fed-MENU method to deal with
this challenging problem. In our method, organ-specific
features are individually extracted by different sub-
networks of the MENU-Net and further enhanced by the
accompanied AGD.

« We evaluated the performance of our Fed-MENU method
for multi-organ segmentation using six public abdominal
CT datasets. Our experimental results on both in-
federation and out-of-federation testing sets demonstrated
the effectiveness and superior performance of our design.

The rest of this paper is organized as follows. Section II
gives a brief review of the previous literature related to this
work. Section III illustrates the details of the proposed method.
Section IV presents the experiments and results on four public
datasets. Finally, we discuss the limitation of this work and
conclude it in Section V.

Il. RELATED WORKS

Since our study involves both FL-based medical image
analysis and DL-based image segmentation with partially
labeled data, we review the related works in these two areas
before presenting our proposed method.

A. Background of Federated Learning

FL, first emerged in 2017 [1], is a decentralized learning
paradigm designed to address data privacy issue in deep
learning. Unlike the conventional centralized deep learning
that requires all training data gathered on a server node,
FL allows distributed data owners to collaboratively train
a model without sharing their data. Federated averaging
(FedAvg) [1] was acknowledged as the benchmarking
algorithm in FL, which defined the framework for the
following studies in this field. In FedAvg, the model is
simultaneously trained on several client devices and the
clients transmit the trained model (parameters) to the server
to update/maintain the global model (parameters). A major
challenge in FL is how to deal with the client data that
is not independently and identically distributed (non-iid) or
heterogeneous [6], [7], [8], [9], [10], [11], [12]. For example,
Li et al. [7] derived FedProx from FedAvg by regularizing the
local models to be closer to the global model, in which way the
method showed more stable and accurate performance when
learning over the heterogeneous data. Acar et al. [8] proposed
FedDyn by introducing a dynamic regularization term to
the local training objective of FedAvg. The resulting model
achieved not only better robustness against data heterogeneity
but also higher communication efficiency. Li et al. [9]
proposed a simple yet effective scheme, FedBN, to address
the heterogeneity issue in feature space by keeping the batch
normalization layers locally updated. Except for the above FL
algorithms, data harmonization [13] can also be considered as
a way to address the heterogeneities of multi-center data in
FL.

B. Federated Learning for Medical Image Analysis

In recent years, FL has been widely applied in various
medical image analysis tasks to address the conflict between
large-scale DL model training and healthcare data privacy. For
example, Dayan et al. [5] trained an FL. model for COVID-19
clinical outcome prediction using chest X-ray images collected
from 20 institutes across the globe. The experimental results
showed that, by utilizing multi-site data, the trained FL. model
achieved an average area under the curve (AUC) around
0.920 for predicting the patients oxygen therapy categories
after 24- and 72-hour periods from initial admission to the
emergency department. This AUC value of the FL. model is
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16% higher than the average AUC (0.795) of the 20 locally
trained models with single-site data. Xia et al. [14] derived an
auto-FedAvg method from FedAvg algorithm [1] for medical
image segmentation using data that are not independently and
identically distributed (non-iid). Their method automatically
learns the aggregation weights of each client based on
the client data distribution. Roth et al. [2] combined FL
with neural architecture search strategy to develop a super-
network with a self-learned structure for whole prostate
segmentation from multi-institute magnetic resonance imaging
(MRI) data. Recently, Yang et al. [4] extended FL to semi-
supervised learning paradigm and applied it to COVID region
segmentation using chest CT data from three nations. Another
work by Park et al. [15] employed the Vision Transformer
(ViT) architecture [16] in an FL framework to diagnose the
COVID-positive cases from chest X-ray images.

The prior studies [2], [4], [5], [12], [14], [17], [18],
[19], [20] have demonstrated the feasibility and effectiveness
of FL in solving the problem of large-scale DL model training
without data sharing in the healthcare community. However,
these successes are built upon a prerequisite that the partic-
ipating sites have consistently labeled data so that they can
contribute to the same training objective of one global model.
However, such a strong requirement may not be met in the real
scenarios, where different clinical sites often follow different
protocols to annotate their local data. Although some prior
efforts like FedMix proposed by Wicaksana et al. [21] allowed
mixed supervised FL with different levels of label (e.g., pixel-
level mask, bounding-box-level annotation, and image-level
labels), the gap caused by the label inconsistency (in terms of
the target classes) remained unresolved, which largely narrows
the application scope of the FL-based methods for medical
image analysis and thus motivates our study in this work.

It is worth noting that Dong et al. [22], [23] worked on
a similar problem of federated learning-based X-ray image
classification with partially labeled data, which is related
to our work and thus provided positive implications for us
during the revision of this paper. However, there are significant
differences between these two works. First of all, Dong et al.s
work is targeting at the image classification task while our
work focused on the image segmentation task, which is
more general and common in terms of the scope of clinical
application. As a consequence, the methods proposed in these
two works are fundamentally different and thus cannot be
directly compared. Moreover, the method by Dong et al. was
only evaluated in an in-federation setting, i.e., the testing data
follows the distribution of the training data from one of the
clients, while our study also includes an out-of-federation
evaluation, i.e., the testing data comes from an unseen domain
out of any one of the client datasets, which is more exhaustive
and challenging.

C. Medical Image Segmentation With Partial Labels

Due to the high cost of data annotation, medical images
are often partially labeled with different ROIs or labels,
even though they may share the same imaging field. This
created a barrier for the DL-based medical image segmentation

methods [24], [25] when the model is trained on the
partially labeled data. To solve this problem, Yan et al. [26]
developed a universal lesion detection algorithm trained by CT
images labeled with different lesion types. In their method,
the missing labels were mined by exploiting clinical prior
knowledge and cross-dataset knowledge transfer. Recently,
Petit et al. [27] proposed to conduct partially labeled DL
training through an iterative confidence relabeling method,
in which a self-supervised scheme was employed to iteratively
relabel the missing organs by introducing pseudo labels
into the training set. For the partial label problem in
segmentation tasks, Fang and Yan [28] proposed a pyramid-
input-pyramid-output feature abstraction network (PIPO-FAN)
for multi-organ segmentation, in which a target adaptive
loss is integrated with a unified training strategy to enable
image segmentation over multiple partially labeled datasets
with a single model. Shi et al. [29] designed two types
of loss functions, namely marginal loss and exclusion loss,
to train a multi-organ segmentation network using a set of
partially labeled datasets. Furthermore, Zhang et al. [30]
proposed an ingenious approach, namely dynamic on-demand
network (DoDNet), to achieve multi-organ segmentation with
partially labeled data. Unlike the conventional deep neural
networks with fixed parameters after training, the DoDNet can
dynamically generate model parameters to adapt to different
organ segmentation tasks. This innovative design largely
improved the model efficiency and flexibility.

Although the problem of training DL models using partially
labeled data [26], [27], [28], [29], [30], [31] had been studied
in the context of centralized learning, it is still an unexplored
area for the field of FL. In this paper, we present the Fed-
MENU method, which can learn from partially labeled data
distributed on different sites.

[1l. METHOD

Fig. 1 gives an overview of the proposed Fed-MENU
method. For a better understanding, it is presented in a specific
scenario where the federation contains three client nodes
and each node possesses a CT dataset partially labeled with
one of the abdominal organs (liver, kidney, and pancreas).
We then describe the FL framework adopted by our method
in Section III-A. The technical innovation of this work
resides in the MENU-Net designed for organ-specific feature
extraction (Section III-B) and the AGD designed for organ-
specific feature enhancement (Section III-C). The training
configurations and other technical details of the proposed
method are provided in Section III-D.

A. Federated Learning Framework

Our method inherits the framework of the FedAvg [1]
algorithm, which is a commonly adopted benchmark in FL.
It consists of one server node and K client nodes. The server
takes the responsibility of coordinating the communication
and computation across different clients, while the clients
focus on model training using their local data and devices.
Given the universal label set of M organs, each of the client
nodes has a local dataset Dy partially labeled with a subset of
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Fig. 1.

Scheme of the proposed Fed-MENU method. For better understanding, the method is presented using an example scenario where three

clinical sites with partially labeled abdominal CT images collaboratively train an FL model for multi-organ segmentation of the liver, kidney, and
pancreas. The left panel of the figure shows the federation structure. The right panel details the local training procedure on Client node 3, where
the pancreas is the only labeled organ in this client dataset. For brevity, we present only the connections between the third sub-encoder (colored in
blue) and the shared decoder, as well as the AGDs. In the final implementation, all sub-encoders are connected to the shared decoder and AGDs

at equivalent positions.

Ni(£M) organs. Our goal is to train a M-organ segmentation
network F(-, 6) using the partially labeled datasets {Dk},le,
which reside in different client nodes and cannot be shared or
gathered for centralized training.

The training process of the FL framework consists of T
rounds of communication between the server and the client
nodes. Specifically, in the #-th communication round, each
client node k will first download the parameters of the current
segmentation network F(-,6") on server (denoted as global
model), resulting in a local copy of F(-,0") (denoted as local
model). The client node then trains the local model using its
local dataset Dy and device for E epochs. After the local
training, the server collects the trained local models F(-, 0,@)
from all the K client nodes and aggregates them into a new
global model through a parameter-wise averaging:

K
| Dil
g+l — B et T
; >Kip; "
where | Dy | indicates the sample size of dataset Di. The whole
FL procedure is accomplished by repeating the above process
until the global model F(-,8") converges.

Because the local models are individually trained on the
client nodes, the server node only needs to transfer the model
parameters instead of the raw data from the clients. That helps
the FL model obtain knowledge contained in the isolated client
datasets without violating the data privacy. However, since
the original FedAvg framework is designed for FL with fully
labeled data, there is a technical gap to bridge before we
can deploy it to the case of partially labeled data. Therefore,
we propose the following MENU-Net with AGD to meet the
need.

(D

B. MENU-NEet for Organ-Specific Feature Extraction

A straightforward way to train a multi-organ segmentation
network using the partial labels is to calculate the training

loss merely using the labeled organs while ignoring the
unlabeled ones. However, in the case of FL with partial labels,
different organs are labeled in the client datasets, focusing on
different expertise for image segmentation. As a consequence,
the segmentation performance of the trained local models
would be biased to the labeled organs. Intuitively, a uniform
aggregation of all local models (see Eq. 1) may weaken
the expert client models. A more reasonable way may be
to promote the strength of the local models on segmenting
the labeled organs and avoid the interference from their
weaknesses with the unlabeled organs.

To achieve the above goal, we designed the MENU-
Net to explicitly decompose multi-organ feature extraction
into several individual processes of organ-specific feature
extraction. As illustrated in the right panel of Fig. 1, the
MENU-Net consists of M sub-encoders {gm(-|9gm)}n]‘;":1
followed by a shared decoder f(-|6f) as well as the skip
connections between them. Fig. 1 shows an example with
M=3. Each sub-encoder g, (- | fg,,) serves as an organ-specific
feature extractor for the m-th organ. An input image x is
fed to all the sub-encoders to get the features of all the
organs in parallel. The extracted features are then concatenated
into one stream and fed to the shared decoder f(-|6y),
which is used to interpret the organ-specific features into
the multi-organ segmentation masks. This process is formally
defined as

Fx)=f(g1(x) ® g2(x)...® gm(x))

= 7 (@hi8n (). @)

where @ denotes channel-wise concatenation.

Given a client node with partial labels on the m-th organ,
the local model training only tunes the parameters in the sub-
encoder g, (-|6,,) and the shared decoder f(-|6y), which
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can be expressed as:

argmin Ly, [Fm (x16), }A’m] ) €)]
0./’08m co

where F, (x) and y, are the predicted and ground-truth
segmentation of the m-th organ, respectively. Lg,, denotes
the supervised loss measuring the similarity between the
prediction and ground truth, which can be in any form of
pixel-wise loss functions (e.g., Cross-entropy loss and Dice
loss [32]) or their combinations.

C. AGD for Organ-Specific Feature Enhancement

Benefitting from the decomposed feature extraction in
MENU-Net, organ-specific knowledge from the labeled clients
(experts) can be individually learned by different sub-encoders
with less interference from other unlabeled clients (non-
experts). However, since each local model can only see the
images from one client dataset, the organ-specific features
learned by the sub-encoders may also include some domain-
specific information. This is unfavorable for the subsequent
shared decoder. Ideally, the sub-encoder should focus on the
structural information of the corresponding organ, which is
invariant across domains. In addition, the extracted organ-
specific features should be distinctive enough from that of
other organs, making the subsequent shared decoder easier to
interpret them into different organs’ segmentation.

Motivated by the above idea, we design the AGD shared
across different sub-encoders to help regularize the training
of our MENU-Net, aiming to enhance the extracted organ-
specific features. Specifically, as illustrated in the mid-bottom
of Fig. 1, given the organ-specific features g,, (x) extracted by
an arbitrary sub-encoder g, (- |0g,,), we feed them to a set of
AGDs to perform an organ-agnostic (binary) segmentation of
the m-th organ:

G (x) = h(gm(x)). “4)

Here, we denote the collection of all AGDs as h(-|6y)
parameterized by 6. The AGD has a lite structure consisting
of three convolutional layers. The first two convolutional layers
contain 3x3x3 kernels followed by instance normalization
[34] and LeakyReLU activation [35]. The last convolutional
layer has I1x1x1 kernels with two output channels followed
by a softmax activation. Due to the shallow structure of AGD,
it has limited representation ability and thus enforces the
preceding sub-encoder layers to extract more discriminative
features to approach the organ segmentation. On the other
hand, since the AGD is working as a generic decoder for
different organs when combined with different sub-encoders,
the sub-encoders are encouraged to extract features distinctive
enough from each other so that the following AGD can
interpret them into the corresponding organ’s segmentation
without extra information.

During the local training stage, the AGDs are tuned
together with different sub-encoders over all client nodes by
minimizing the segmentation error between the output G, (x)
and the corresponding ground truth y,,. This process can be

expressed as:

argmin Laux [Gm (X |04, 0g,,), Im] . ©)

On-Ogm
where L, denotes the auxiliary loss quantifying the binary
segmentation error between the AGDs’ output and the
corresponding ground truth. We calculate L, as a sum of
the Cross-entropy loss and Dice loss [32]. Note that, since
the AGDs are connected to the multi-scale levels of the sub-
encoder, they have multiple outputs in different scales. All
these outputs will be resampled to the original size of the
ground-truth segmentation y,, and counted in the auxiliary
loss in Eq. 5. After the local training, the tuned parameters
of AGDs from all clients are aggregated through the FedAvg
algorithm as shown in Eq. 1, which is the same as that of
the shared decoder f(-|6y). The AGDs are used to regularize
the training of the proposed MENU-Net. During the inference
stage, we only utilize the trained MENU-Net to infer the multi-
organ segmentation masks.

D. Implementation Details

The proposed method is implemented for 3D segmentation
using PyTorch. Model parameters in the segmentation network
are initialized using the Xavier algorithm [36] and optimized
by an SGD optimizer. The learning rate is initialized to be
0.01 and decayed throughout the training following a poly
learning rate policy [37] with a momentum factor of 0.99.
We train the model for 7=400 rounds of communication
(E=1 epoch of local training per round) and evaluate
its performance on the validation set every epoch using
Dice similarity coefficient (DSC) as the metric. The model
achieving the highest DSC on the validation set is selected
as the final model to be evaluated on the testing set. The
training batch size is set to 4 on four NVIDIA A100 GPUs.
The CT images are resampled to a uniform resolution of
1.0 x1.0x1.5mm> (pixel spacing of 1.0 x 1.0mm? and slice
thickness of 1.5mm) before training. Image patches with a
fixed pixel size of 256 x256x32 are randomly cropped from
the resampled CT images as the input of the segmentation
network. The image intensities are normalized from [-200.0,
400.0] Hounsfield units (HU) to [0.0, 1.0] for a good soft-
tissue contrast. Random translation ([-20,20]mm) and rotation
([-0.1,0.1]rad) are used to augment the training samples.
In the inference time, an unseen CT image is first resampled
to the resolution of 1.0 x 1.0x1.5mm> and divided into
a series of patches, which are then fed to the trained
segmentation network. The predicted patch-wise segmentation
will be assembled to get the final segmentation mask, which
is then resampled back to their original CT resolution
for quantitative evaluation. Unless otherwise noted, all the
competing methods and ablation models in our experiments
are trained and evaluated using the same configuration as our
method. For better reproducibility, the source code is released
at https://github.com/DIAL-RPI/Fed-MENU.

IV. EXPERIMENTS
A. Datasets

We conducted experiments using six public abdominal
CT image datasets, including 1) liver tumor segmentation
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TABLE |
DETAILED INFORMATION OF CLIENT DATASETS INVOLVED IN THIS STUDY. (L: LIVER, K: KIDNEY, P: PANCREAS,
S: SPLEEN, G: GALLBLADDER, v': LABELED ORGAN, x: UNLABELED ORGAN, OOF: OUT-OF-FEDERATION)

Image information Labeled organ

Datasets Imaging phase

# of CT images  Slice size # of slice Spacing Thickness | L K P S G

(train/val./test) [in pixel] [per image] [mm] [mm)]
Client #1: Liver 131 (79/13/39) 512 T4~987 0.56~1.00 0.70~5.00| v X X x x| Portal-venous phase
Client #2: Kidney 210 (126/21/63) {512,796}  29~1059 0.44~1.04 0.50~5.00| x v X x x| Late arterial contrast phase
Client #3: Pancreas | 281 (169/28/84) 512 37~751 0.61~0.98 0.70~7.50| x X v x x| Portal-venous phase
Client #4: Spleen 41 (24/5/12) 512 31~168 0.61~098 1.50~8.00| x X x v x| Portal-venous phase
Client #5: AMOS 200 (120/20/60) 60~768 64~512 0.45~3.00 0.82~5.00| v v v Vv v | See Appendix B.1 in [33]
OoF client: BTCV 30 (0/0/30) 512 85~198 0.59~098 2.50~5.00| v v v Vv V| Portal-venous phase
Total \ 893(518/87/288) 60~796 29~1059 0.44~3.00 0.50~8.00 \ N \ -

challenge (LiTS) dataset [38],! 2) kidney tumor segmentation
challenge (KiTS) dataset [39], [401,2 3) pancreas and 4) spleen
segmentation datasets in medical segmentation decathlon
challenge [41], [42]® (Task #7 and #9, respectively), 5)
multi-modality abdominal multi-organ segmentation challenge
(AMOS) dataset [33],* and 6) multi-atlas labeling beyond
the cranial vault challenge (BTCV) dataset [43].5 For brevity,
we denote the six datasets as the liver, kidney, pancreas, spleen,
AMOS, and BTCYV, respectively, in the rest of the paper.
Table I shows the detailed information of these datasets.

Liver dataset contains 131 images, whose sizes range
between [74~987]x[512]x[512] (in Dx H xW pixels). The
in-plane spacing of these CT slices varies from 0.56mm
to 1.00mm and the slice thickness varies from 0.70mm to
5.00mm. Each CT image has a pixel-wise annotation of
liver and tumor segmentation stored in the same size as the
corresponding image. We treat the liver tumor regions as part
of the liver in our experiments.

Kidney dataset contains 210 images, whose sizes range
between [29~1059]x[512]x {512,796} (in Dx H x W pixels).
The in-plane spacing of CT slices varies from 0.44mm to
1.04mm and the slice thickness varies from 0.50mm to
5.00mm. Each CT image has a pixel-wise annotation of
kidney and tumor segmentation stored in the same size as
the corresponding image. We treat the kidney tumor regions
as part of the kidney in our experiments.

Pancreas dataset contains 281 images, whose sizes range
between [37~751]1x[512]x[512] (in Dx H xW pixels). The
in-plane spacing of these CT slices varies from 0.61mm
to 0.98mm and the slice thickness varies from 0.70mm to
7.50mm. BEach CT image has a pixel-wise annotation of
pancreas and tumor segmentation stored in the same size as
the corresponding image. We treat the pancreas tumor regions
as part of the pancreas in our experiments.

Spleen dataset contains 41 images, whose sizes range
between [31~168]x[512]x[512] (in Dx HxW pixels). The
in-plane spacing of these CT slices varies from 0.61mm

1 https://competitions.codalab.org/competitions/17094
2https://kits 19.grand-challenge.org/home

3 http://medicaldecathlon.com

4https:// amos22.grand-challenge.org

5 https://www.synapse.org/#!Synapse:syn3193805/wiki/89480

to 0.98mm and the slice thickness varies from 1.50mm to
8.00mm. Each CT image has a pixel-wise annotation of spleen
segmentation stored in the same size as the corresponding
image.

AMOS dataset contains 200 images, whose sizes range
between [64~512]x[60~768]x[192~768] (in DxHxW
pixels). The in-plane spacing of these CT slices varies
from 0.45mm to 3.00mm and the slice thickness varies
from 0.82mm to 5.00mm. Each CT image has a pixel-wise
annotation of liver, kidney, pancreas, spleen, and gallbladder
segmentation stored in the same size as the corresponding
image.

BTCV dataset contains 30 images, whose sizes range
between [85~198]x[512]x[512] (in Dx HxW pixels). The
in-plane spacing of these CT slices varies from 0.59mm
to 0.98mm and the slice thickness varies from 2.50mm to
5.00mm. Each CT image has a pixel-wise annotation of liver,
kidney, pancreas, spleen, and gallbladder segmentation stored
in the same size as the corresponding image.

For the liver, kidney, pancreas, spleen, and AMOS datasets,
we randomly split each of them into training/validation/testing
sets with a fixed ratio of 60%:10%:30%, respectively. The
experimental results on the five testing sets are used for in-
federation evaluation, which indicates the model performance
when the testing data follows the same distribution as the
training and validation data. For the BTCV dataset, we reserve
it as an out-of-federation testing set, which is completely
unseen to the model during training and validation. The
performance on the BTCV dataset gives a good indication of
the model’s generalization ability.

B. Metrics

We calculated the mean and standard deviation (SD) of Dice
similarity coefficient (DSC) and average symmetric surface
distance (ASD) for each organ to quantitatively evaluate the
segmentation results yielded by different methods. For each
labeled organ in a certain client dataset, we first calculate the
mean value Q¥ over all cases to get the result for organ c in
this client k. Then, the mean value of the Cj labeled organs
0F =1/Cy chi 1 QF is calculated as the performance index
of client k. Finally, the mean value of the K clients Q =
1/K z,le Q is considered as the global index indicating the
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model accuracy. Instead of performing an overall case-wise
averaging, this strategy was to avoid the bias from unbalanced
sample numbers among the datasets, ensuring the global DSC
and ASD calculated from each dataset with different sizes play
an equal role. We also conducted paired z-tests on the above
metrics to check the statistical significance between different
groups of results.

C. Comparison With Benchmarks

1) Benchmarks: We compared our method with three
benchmarks to demonstrate its effectiveness. The benchmarks
include:

a) Localized learning mode: Four single-organ segmenta-
tion networks and a five-organ segmentation network were
individually trained using the liver, kidney, pancreas, spleen,
and AMOS datasets, respectively. This benchmark simulated
the scenario where the clinical sites cannot share their data
with each other and no techniques are adopted to deal with
the data privacy issue during the model training.

b) Centralized learning mode: A five-organ segmentation
network was trained using the combination of the liver,
kidney, pancreas, spleen, and AMOS datasets. This benchmark
simulated an ideal scenario where the clinical sites can freely
share their data without any concern on the data privacy during
the model training.

¢) Federated learning mode: A five-organ segmentation
network was trained using the FedAvg [1] algorithm with the
liver, kidney, pancreas, spleen, and AMOS datasets distributed
on five client nodes. This benchmark simulated a practical
scenario where the clinical sites cannot share their data with
each other and a naive FL solution is adopted to deal with the
data privacy issue during the model training.

We adopted U-Net [44] as the segmentation network for
the above models. To ensure the performance gain comes
from the design choice rather than the additional network
parameters, we extended the base channel number of the U-
Net from 32 to 96 to make it have a slightly larger number
of parameters than our method. In the leftmost column of
Table II and Table III, we specified the trainable parameters
in each model. The training configuration of all the methods
followed the recommended settings by nnU-Net [37]. For the
U-Net in federated learning mode, we employed the marginal
loss and exclusion loss [29] as the training objective to adapt
it to the partially labeled client data. The core idea of the
marginal/exclusion loss is to combine the unlabeled organs
with the background category and try to maximize/minimize
the overlap with the merged background/foreground ground
truth, respectively, which can be formulated as follows:

= Lce(p/» 1 - )A/) + Ldice(p/v 1- )A/) (6)
Lexclusion = _Lce(p/a )A’,) — Lgice (P/, 5’/) @)

Lmargin

where p’ and j’ denote the predicted segmentation of the
merged background category and ground-truth segmentation of
the merged foreground category, respectively. We utilized the
sum of the Cross-entropy loss and Dice loss [32] to quantify
the overlapping regions, which is consistent with the original
nnU-Net [37] training settings. For the sake of fairness, the

same objective was also used as the supervised loss Ly, in
our method.

2) In-Federation Performance: Table II shows the quantita-
tive results of the in-federation evaluation. It can be observed
that, among the three learning modes, the centralized learning
models generally exhibited the upper-bound performance. The
FL models significantly outperformed the localized learning
models, which justified the feasibility of using different
partially labeled datasets to collaboratively train a multi-organ
segmentation model through FL. When compared with the
baseline U-Net model, our method achieved higher global
accuracy in both centralized learning mode and FL mode,
which demonstrated the superiority of our designs. Although
not all the improvement margins are statistically significant,
the standard deviation of our results is much lower than those
of the U-Net baseline model, which indicated our method had
a more stable performance on the multi-center data. We also
observed that, while the region-based DSC metric showed
relatively small differences, our model performed much better
than the U-Net in terms of the distance-based ASD metric.
This phenomenon suggested that there are fewer false positives
in our results. It is worth noting that the trainable parameter
number of our method is ~78 million, which is 24% fewer
than that of the U-Net (~97 million parameters). This result
suggests that the performance gain of our method was coming
from the design choice rather than the additional parameters.
More importantly, the smaller model size can also benefit the
FL due to the lower communication and computation costs.

3) Out-of-Federation Performance: Table III presents the
quantitative results of the out-of-federation evaluation. Similar
to the in-federation scenario, the centralized learning models
showed superior accuracy over the FL and localized learning
models. However, there was a global performance degradation
from the in-federation results to the out-of-federation results
due to the data distribution shift from the training domain
(the liver, kidney, pancreas, spleen, and AMOS datasets) to
an unseen testing domain (the BTCV dataset). Furthermore,
we observed that the performance gap between the centralized
learning models and the FL. models decreased for the out-of-
federation results, as compared to the in-federation results.
These results suggest that out-of-federation segmentation is
a more challenging task than in-federation segmentation, and
our method can effectively handle it with better performance
over the baseline U-Net model.

4) Result Visualization: Figs. 2 and 3 visualize the
segmentation results yielded by different methods in 2D (axial)
and 3D views, respectively. Each column shows a case from
one client dataset. In the 2D views, the ground-truth contours
are superimposed on the segmentation results as yellow dashed
lines for better comparison. In the 3D views, the segmentation
results of the unlabeled organs are represented by transparent
meshes. It can be observed that our proposed method produced
fewer false positive results in either in-federation or out-of-
federation results.

D. Ablation Study

In this section, we conducted ablation studies on the
proposed method to evaluate the effectiveness of the two
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TABLE Il
QUANTITATIVE PERFORMANCE EVALUATION OF DIFFERENT METHODS WHEN TESTED ON THE IN-FEDERATION DATA. THE BEST RESULTS ARE
MARKED IN BOLD. THE UNDERLINED RESULTS INDICATE A STATISTICALLY SIGNIFICANT DIFFERENCE FROM OUR RESULT (p<0.05)

DSC [Mean(SD) %]

Models | Client #1 | Client #2 | Client #3 | Client #4 | Client #5 \
(# of param.) Global
| Liver | Kidney | Pancreas | Spleen | Liver Kidney Pancreas Spleen Gallbladder |
Localized
- Client #1 93.46(3.20) - - - - - - - -
- Client #2 - 91.17(7.60) - - - - - - -
- Client #3 - - 76.82(13.01) - - - - - - 88.50
- Client #4 - - - 91.98(3.75) - - - - -
- Client #5 - - - - 95.93(2.00) 94.80(2.81) 78.91(11.06) 95.47(2.78)  80.29(19.40)
Centralized
- U-Net (97M) 95.22(2.68) | 95.52(3.30) | 80.50(11.82) | 95.52(1.82) | 96.69(1.28) 93.27(4.48) 82.25(9.37) 96.17(2.95) 84.76(17.77) 91.48
- MENU-Net (78M) 95.27(2.81) | 95.52(6.28) | 81.48(9.09) 96.32(1.58) | 96.99(1.00) 95.00(2.33) 83.88(8.67) 96.56(2.35) 85.20(17.98) 92.02
Federated
- U-Net (97M) 94.48(2.28) | 94.54(6.18) | 79.38(12.69) | 93.754.71) | 96.76(1.55) 92.40(4.56) 80.79(11.89) 95.72(2.97) 83.38(15.62) 90.39
- MENU-Net (78M) | 94.07(3.09) | 95.94(3.75) | 80.05(12.02) | 94.65(2.98) | 96.70(1.15) 93.74(2.23) 82.14(9.45) 96.34(2.09) 86.08(14.48) 91.14
| ASD [Mean(SD) mm]
Models | Client#1 | Client#2 | Client#3 | Client #4 | Client #5 \
(# of param.) Global
| Liver | Kidney | Pancreas | Spleen | Liver Kidney Pancreas Spleen Gallbladder |
Localized
- Client #1 4.00(2.88) ; ; ; . ; ; ; ;
- Client #2 - 2.40(4.26) - - - - - -
- Client #3 - - 3.01(3.82) - - - - - - 2.34
- Client #4 - - - 1.11(0.62) - - - - -
- Client #5 - - - - 0.95(1.08) 0.87(3.31) 1.48(1.03) 0.67(1.01) 1.99(3.33)
Centralized
- U-Net (97M) 1.95(1.63) | 3.26631) | 2.04280) | 1.17(1.62) | 1.02(1.82) 4.870.15) 130(1.26) 0.64(1.93)  1.52(3.26) 2.06
- MENU-Net (78M) | 1.86(2.07) | 0.88(1.98) | 1.85(1.49) | 0.300.13) | 0.610.47) 0.72(1.40) 1.19(1.28) 0.36(0.62)  1.24(2.22) 114
Federated
- U-Net (97M) 3.75(4.08) 3.11(6.11) 2.36(4.01) 1.54(2.72) 1.40(1.86) 2.82(6.02) 1.93(3.87) 0.45(0.60) 1.56(2.89) 2.48
- MENU-Net (78M) 2.56(2.47) 0.79(1.03) 2.10(2.45) 0.54(0.42) 0.94(1.59) 0.80(0.89) 1.53(1.54) 0.41(0.52) 1.34(2.70) 1.40
TABLE Il

QUANTITATIVE PERFORMANCE EVALUATION OF DIFFERENT METHODS WHEN TESTED ON THE OUT-OF-FEDERATION DATA. THE BEST RESULTS
ARE MARKED IN BOLD. THE UNDERLINED RESULTS INDICATE A STATISTICALLY SIGNIFICANT DIFFERENCE FROM OUR RESULT (p<0.05)

| DSC [Mean(SD) %]

| ASD [Mean(SD) mm]

Models

(# of param.) | Liver Kidney Pancreas Spleen Gallbladder | Global |  Liver Kidney Pancreas Spleen Gallbladder | Global
Localized
- Client #1 92.63(3.46) - - - - 3.70(4.93) - - - -
- Client #2 - 85.07(16.53) - - - - 5.28(17.98) - - -
- Client #3 - - 73.78(11.47) - - 76.13 - - 6.02(7.19) - - 4.57
- Client #4 - - - 85.01(15.57) - - - - 3.64(9.40) -
- Client #5 92.78(4.97)  89.14(16.38) 57.13(26.67) 88.18(15.80) 53.45(33.93) 3.15(5.41) 4.19(11.60)  6.73(7.94) 3.49(5.60) 5.2909.17)
Centralized
- U-Net (97M) 95.35(4.07)  85.50(16.97) 77.44(11.05) 91.46(10.59) 68.02(32.17)| 83.55 2.06(4.68)  9.09(15.33) 2.91(3.97) 2.49(5.23) 2.08(3.43) 3.73
- MENU-Net (78M) | 95.84(335) 88.70(1530) 78.65(9.98) 92.57(8.89) 67.86(31.26)| 84.72 | 1.854.57) 4.26(1435) 2.48(4.15) 1.58(3.38) 3.79(13.25) | 2.79
Federated
- U-Net (97M) 95.005.41)  88.03(15.76) 76.53(10.52) 92.37(12.44) 64.3530.94)| 8326 | 2.76(6.66) 5.97(1598) 2.59271) 1.13239)  1.70(1.87) 2.83
- MENU-Net (78M) 95.21(4.11)  88.12(16.88) 77.92(10.91) 90.97(13.29) 69.45331.61)| 84.33 2.39(5.74) 4.56(14.78)  3.44(9.85) 1.38(2.64) 1.79(3.28) 2.71

key designs, including 1) the MENU-Net for organ-specific
feature extraction and 2) the AGD for organ-specific feature
enhancement. A U-Net [44] trained using the FedAvg
algorithm [1] was used as the baseline method, on which the
MENU-Net and AGD components are sequentially imposed.
In addition, we also tried to replace the AGD with a non-
generic version, ie., the auxiliary decoders are locally trained
on the client nodes without parameter fusion (see Eq. 1)

through the server node. We denote it as auxiliary localized
decoder (ALD) in the following contents. This ablation model
is used to justify the necessity of parameter sharing in learning
organ-specific features.

The quantitative results of the ablation studies are
listed in Table IV. The observations are three-fold. 1)
Compared with the baseline, the design of the MENU-Net
(Table IV, “+MENU-Net”) can effectively improve the global
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Fig. 2.

2D Visualization of segmentation results yielded by the competing methods. Each column shows a case from one client. For better

comparison, the ground-truth contours are also superimposed on the segmentation results as yellow dashed lines.

TABLE IV
EXPERIMENTAL RESULTS OF ABLATION STUDIES ON THE PROPOSED
METHOD. THE BEST RESULTS ARE MARKED IN BOLD

| In-federation |  Out-of-federation

Ablation models

DSC [%] ASD [mm]| DSC [%] ASD [mm]

baseline 90.39 2.48 83.26 2.83
+MENU-Net 90.95 1.76 83.86 3.39
+NEMU-Net+ALD 90.78 1.62 83.36 3.65
+NEMU-Net+AGD 91.14 1.40 84.33 2.71

segmentation indices except for the ASD metric in out-of-
federation evaluation. This result indicated a positive effect
of the task decomposition design (i.e., the multi-encoder
network architecture) in learning domain-invariant features. 2)
Based on the MENU-Net, the AGD (Table IV, “+MENU-

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute.

Net+AGD”) can further boost the segmentation accuracy for
both in-federation and out-of-federation evaluation. This result
suggested that the auxiliary supervisions on the intermediate
layers can facilitate the learning of more discriminative
features, and thus, benefit the subsequent shared decoder for
accurate segmentation. 3) By replacing the AGD with the
ALD, the accuracy of our method (Table IV, “+MENU-
Net+ALD”) dropped in both the in-federation setting
and the out-of-federation setting. This result demonstrated
the importance of parameter sharing in our AGD since
the auxiliary decoder shared across the clients enforced the
preceding sub-encoders to extract discriminative features for
different organs.

Fig. 4 visualized the gradient-weighted class activation maps
(Grad-CAMs) [45] produced by our MENU-Net (extracted
from the third convolutional block in the sub-encoders) when
it is trained without AGD, with ALD, and with AGD,
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Fig. 3. 3D Visualization of segmentation results by the competing methods. Each column shows a case from one client. The segmentation of the

unlabeled organs is represented by transparent meshes.

TABLE V
QUANTITATIVE PERFORMANCE EVALUATION OF THE PROPOSED
METHOD TRAINED WITH DIFFERENT COMMUNICATION FREQUENCIES
TxE. TIs THE NUMBER OF COMMUNICATION ROUNDS AND E IS THE
NUMBER OF LOCAL TRAINING EPOCHS. THE BEST RESULTS
ARE MARKED IN BoLD

| In-federation | Out-of-federation

Communication
frTequency DSC [%] ASD [mm]| DSC [%] ASD [mm]
X E
25%x16 90.63 1.78 83.10 3.47
50x8 90.64 1.92 83.45 2.95
100x 4 90.72 1.89 83.58 2.98
200%x2 90.95 1.57 83.81 3.27
400x 1 91.14 1.40 84.33 2.71

respectively. The model trained with AGD generated activation
maps with more accurate shapes and fewer false positive

regions than the other two models, which indicated that
the AGD can effectively enhance the organ-specific features
extracted by the sub-encoders with better explainability [46].

E. Effects of Communication Frequency

Communication frequency is a key factor affecting the
performance of the FL methods in practice. In the proposed
method, the communication frequency is jointly controlled by
the number of communication rounds 7 and the number of
local training epochs E. We successively trained our method
with different combinations of 7 x E to investigate the effects
of communication frequency. For the sake of fairness, the
product of these two parameters are fixed to 400, which means
all models are optimized with the same number of training
batches (iterations).

The experimental results are shown in Table V and Fig. 5.
It can be seen that higher communication frequency generally
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wlo AGD withALD |  withaGD |

Fig. 4.  Gradient-weighted class activation maps (Grad-CAMs) [45]
generated by the MENU-Net trained without AGD (left), with ALD
(middle), and with AGD (right). Yellow dashed lines indicate ground-truth
contours. We use the activation (output) of the third convolutional block
in the sub-encoders to calculate the Grad-CAMs.
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Fig. 5. Average DSC of FL models trained with different communication
frequencies. The red dashed line indicates the average DSC achieved
by centralized learning model.

brought better performance to the trained model, which is in
line with observations in other FL-based methods [1], [4], [9],
[14], and our method consistently outperformed the baseline
FL U-Net model. Considering our method is designed for the
cross-silo FL [47] scenario, where the clients (clinical sites)
have stable internet connections with sufficient bandwidth,
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TABLE VI
QUANTITATIVE PERFORMANCE EVALUATION OF THE PROPOSED
METHOD WHEN COMBINED WITH DIFFERENT FEDERATED LEARNING
STRATEGIES. THE BEST RESULTS ARE MARKED IN BOLD

|  In-federation | Out-of-federation

Models DSC ASD DSC ASD

[%] [mm] [%] [mm]
FedAvg [1] 91.14 1.40 84.33 2.71
FedAvgM [6] 90.28 1.98 82.32 3.29
FedProx [7] 90.95 1.62 83.73 2.97
FedDyn [8] 91.33 1.56 84.60 3.23
FedSM [11] 91.15 1.41 84.38 2.70
FedNorm [10] 90.92 1.75 84.21 3.12
Fed-DoDNet [30] 91.09 1.75 83.82 2.74

TABLE VII

QUANTITATIVE PERFORMANCE EVALUATION OF THE PROPOSED
METHOD WHEN THE LESION REGIONS WERE TREATED AS
BACKGROUND/A PART OF THE TARGET ORGANS. THE BEST RESULTS
ARE MARKED IN BoOLD

|  In-federation | Out-of-federation

Models DSC ASD DSC ASD

[%] (mm] [%] [mm]
Lesion as background 89.76 1.65 84.00 2.81
Lesion as part of organ 91.14 1.40 84.33 2.71

we finally choose 7=400 and E=1 in our method to achieve
higher accuracy.

F. Comparison With Different FL Strategies

Another important factor relating to the FL systems
performance is the choice of the learning strategy, which
determines how the locally trained models are optimized
and aggregated to update the server model. In the prior
experiments, to focus on our own designs, we consistently
used the most basic FL strategy, i.e., the FedAvg algorithm [1],
for this choice. Our method is also flexible to be combined
with other FL strategies. To demonstrate this property, we tried
to deploy our method with six different FL strategies,
including FedAvg [1], FedAvgM [6], FedProx [7], FedDyn [8],
FedSM [11], and FedNorm [10]. The experimental results of
these hybrid models are shown in Table VI. It can be observed
that, by combining with more advanced FL strategies, the
segmentation accuracy of our method can be further improved.
The highest DSC was achieved when our method was
combined with the FedDyn [8] algorithm. This experiment
demonstrates the flexibility of our proposed method. While the
existing FL strategies mainly focus on resolving the problem
of image heterogeneities, our method is designed to deal
with label heterogeneities. Thus, the proposed method and
FL strategies can complement each other. We also compared
our method with another multi-organ segmentation method for
partially labeled data, i.e., DoDNet [30], which was originally
designed for centralized learning scenario and extended in
this experiment by combining with the FedAvg [1] algorithm
(denoted as “Fed-DoDNet” in Table VI). The segmentation
accuracy of this competing model is slightly lower than our
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model, which demonstrated the superiority of our method
designs.

V. DISCUSSION AND CONCLUSION

In our experiments, the FL. model was trained with five
client datasets, each containing varying numbers of images
that were labeled with different organs. This setup was
designed to simulate real scenarios in clinical settings. Our
experimental results revealed that our proposed method is
flexible and capable of handling such complex scenarios.
However, it is important to note that our approach has a
minimum criterion for the number of labeled organs required.
Specifically, each client dataset must be labeled with at least
one of the target organs. For more complicated scenarios
involving unlabeled images, it would require some additional
semi-supervised or unsupervised learning techniques, such as
the teacher-student consistency learning strategy [48], [49],
to deal with. Fortunately, our Fed-MENU framework is
highly adaptable and can seamlessly integrate these methods,
making it possible to extend the framework to these
situations.

Most of the CT images used in this study contained
tumors, and we treated the lesion regions as a part of the
surrounding organ in the experiments. There could be a
potential influence of these abnormities on the performance of
the proposed method. To investigate this impact, we compared
the performance of our method when the lesion regions in the
CT images were treated 1) as background and 2) as part of
the foreground organs, respectively. The quantitative results
yielded from these two settings are reported in Table VII.
It can be seen that, when the lesion regions were treated
as the background category, the resulting performance of the
proposed method degraded. The reason can be attributed to
the fact that, although the lesion regions exhibited different
textures or intensities than the healthy tissues, they may not
substantially change the contour shape of the target organs.
Thus, it would be relatively easy to segment these regions as a
part of the foreground. Otherwise, if the lesions were treated as
the background, it may significantly change the structure of the
target organs, which would eventually affect the segmentation
accuracy. Since the proposed method is designed to deal with
the inconsistently labeled data for FL, we can also consider
the tumor labels as a new class inconsistently distributed in
different client nodes and train our method to segment the
tumors. This could lead us to a potential application of disease
diagnosis. Naturally, to be adaptive to the task of diagnosis
(classification), the output branch of the proposed MENU-
Net may be replaced with a global pooling layer followed by
fully-connected layers. As this study mainly focused on the
application of multi-organ segmentation, this direction will be
explored in our future research.

The experiments conducted in this study are done in a
virtual environment, in which we focus on the training problem
of inconsistently labeled data. In practical scenarios, there are
some security issues that should be considered. For example,
encryptions are required to secure the communications
between server and client nodes. Unencrypted communication
would raise a risk of information leakage and interference

from malicious attacks [50]. In addition, challenges of data
memorization [51] as well as adversarial inference [52]
also raise privacy concerns to the FL methods. It has
been demonstrated that an FL model can be maliciously
manipulated to reconstruct the private training data if no
protective measures are taken [53]. To address this issue,
differential privacy (DP) [54] techniques can be used to
enhance the FL. methods by introducing noise to their input
data, computation results, or optimization process [55]. Since
the goal of this study is to develop an FL framework
to enable collaborative learning on inconsistently labeled
data, we did not draw extra efforts to the security issue.
Fortunately, our method is compatible to the above-mentioned
techniques and thus can be combined with them to achieve
secure FL.

One potential limitation of the proposed method could be
its scalability. In this study, we designed our method for a
five-organ segmentation task. However, when more organs are
desired in the segmentation task, more encoders are required
in the MENU-Net. As a consequence, the concatenation
of the output feature maps from the multi-encoders would
increase model complexity and GPU memory consumption.
One solution to this issue could be using one single shared
encoder combined with conditional input to replace the multi-
encoder design. This would result in a variant of our method
sharing the DoDNet structure [30]. In TableVI, we reported the
experimental results of this variant model (denoted as “Fed-
DoDNet”), which demonstrated the feasibility of this shared-
encoder+conditional input design.

In this paper, we revealed and defined a new problem
of FL with partially labeled data in the context of medical
image segmentation, which is of great clinical significance and
technical urgency to solve. Subsequently, a novel Fed-MENU
method was proposed to tackle this challenging problem.
Compared with the conventional FL. framework that worked
on the fully-labeled data, our Fed-MENU method had two
key designs to adapt to the partially labeled client datasets,
1) the MENU-Net for organ-specific feature extraction and 2)
the AGD for organ-specific feature enhancement. Extensive
experiments were conducted using six public abdominal CT
image datasets. The experimental results comprehensively
demonstrated the feasibility and effectiveness of our method
in solving the partial label problem in the context of FL.
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