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A B S T R A C T

Knowledge distillation constitutes a potent methodology for condensing substantial neural networks into more
compact and efficient counterparts. Within this context, softmax regression representation learning serves as
a widely embraced approach, leveraging a pre-established teacher network to guide the learning process of a
diminutive student network. Notably, despite the extensive inquiry into the efficacy of softmax regression
representation learning, the intricate underpinnings governing the knowledge transfer mechanism remain
inadequately elucidated. This study introduces the ‘Ideal Joint Classifier Knowledge Distillation’ (IJCKD) frame-
work, an overarching paradigm that not only furnishes a lucid and exhaustive comprehension of prevailing
knowledge distillation techniques but also establishes a theoretical underpinning for prospective investigations.
Employing mathematical methodologies derived from domain adaptation theory, this investigation conducts
a comprehensive examination of the error boundary of the student network contingent upon the teacher
network. Consequently, our framework facilitates efficient knowledge transference between teacher and student
networks, thereby accommodating a diverse spectrum of applications.

1. Introduction

The advancements in deep neural networks in the field of com-
puter vision are undeniable. Deep neural networks outperform classical
machine learning algorithms in various tasks such as image recogni-
tion (He, Zhang, Ren, & Sun, 2016; Krizhevsky, Sutskever, & Hinton,
2017), semantic segmentation (Chen, Papandreou, Kokkinos, Murphy,
& Yuille, 2017; Long, Shelhamer, & Darrell, 2015; Zhao, Shi, Qi, Wang,
& Jia, 2017), and object detection (Girshick, Donahue, Darrell, & Malik,
2014; Redmon, Divvala, Girshick, & Farhadi, 2016). Unfortunately,
the network’s performance is usually determined by the number of
parameters it has. Although more parameters result in a higher network
capacity, they also lead to an increase in computational complexity and
storage costs, which limits the use of deep neural networks on resource-
limited hardware. As a result, reducing the size of a deep neural
network while retaining the high performance of the large network is
a critical to many applications.

Lightweight models, such as those discussed in Howard et al. (2017)
and Zhang, Zhou, Lin, and Sun (2018), aim to reduce computational
complexity through efficient network architecture design. Model com-
pression techniques have been developed to address the complexity
issue beyond architecture, including parameter pruning (Han, Mao, &
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Dally, 2015), low-rank factorization (Tai, Xiao, Zhang, Wang, et al.,
2015), and knowledge distillation (Buciluǎ, Caruana, & Niculescu-Mizil,
2006; Hinton, Vinyals, & Dean, 2015). The goal of knowledge distilla-
tion through model compression is to transfer the ‘‘dark’’ knowledge
from a large, highly-accurate pre-trained teacher network to a small,
high-speed student network with lower accuracy. Under knowledge dis-
tillation, the student’s network is trained using the teacher’s soft labels
for guidance (Hinton et al., 2015), or using ‘‘hints’’ from the teacher’s
hidden layers (Romero et al., 2014) to produce higher performance
from the student than training the student’s network with hard target
labels alone.

An intuitive approach to improve knowledge distillation is to have
the student model mimic the teacher model as closely as possible.
Recent works in knowledge distillation can be divided into two main
categories: representation and logits distillation. Representation-based
techniques aim to extract richer information from the intermediate lay-
ers of the teacher model (Chen, Liu, Zhao & Jia, 2021; Chen, Mei et al.,
2021; Zagoruyko & Komodakis, 2016), or to better align the teacher
and student features (Tian, Krishnan, & Isola, 2019; Tung & Mori,
2019). On the other hand, logits-based distillation techniques (Zhao,
Cui, Song, Qiu, & Liang, 2022; Zhou et al., 2021) focus more on the
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statistical significance of the output logits and probabilities between
the teacher and student networks.

Softmax Regression Representation Learning (SRRL) (Yang, Mar-
tinez, Bulat, Tzimiropoulos, et al., 2021) is a type of logits-based
distillation that matches the teacher and student logits, while using
the teacher’s classifier applied to the student’s feature (penultimate
layer output) and teacher’s feature at the same time. SRRL offers a new
perspective to improve the student’s performance by not only using the
teacher’s logits, but also teacher’s classifier. A related method, Simple
Knowledge Distillation (SimKD) (Chen et al., 2022), further improves
SRRL by allowing the student to use a frozen, pre-trained teacher
classifier for additional supervision. Despite the improvement achieved
by SRRL-based methods, the mechanism that achieves this performance
is not well understood because they are based on intuition rather than
a solid theoretical explanation.

This paper explains the reasoning for using the teacher classifier
as supervision in softmax regression-based distillation via a theory of
domain adaptation. We summarized the existing methods and provides
a theoretical analysis to understand the regularization effect of these
methods. Our work presents an error bound that limits the student
network’s error by the teacher’s error and two disagreement terms.
As the error bounds are derived, the central motivation for SRRL
and SimKD can be explained. We also introduce the concept of the
‘‘Ideal Joint Classifier assumption’’ to tighten the upper bound and
better understand how to translate the theory of the upper bound to
algorithms that improve the task of knowledge distillation. Using this
bound, we presents a unified framework called Ideal Joint Classifier
Knowledge Distillation (IJCKD), to connect SRRL and SimKD. The
error bound is derived using a proof scheme from a theory of domain
adaptation (Ben-David et al., 2010).

In conclusion, the authors’ main contributions are:

• Introducing a theoretical examination of techniques rooted in
softmax regression-based methods, providing insights into their
operation within the context of knowledge distillation.

• Establishing an error bound that establishes a connection between
teacher and student errors in the softmax regression setting,
thereby offering a holistic approach to existing methods.

• Presenting the IJCKD framework, which unifies various softmax
regression-based methods and opens avenues for future research
extensions.

2. Related works

The history of compressing machine models via training smaller
models under the supervision of large models can be traced back
to Buciluǎ et al. (2006). In Buciluǎ et al. (2006), MUNGE presented
a method train a compact neural network to mimic the large and
complex ensembles of classifiers. Taking advantage of the universal
approximation property of neural networks (Hornik, Stinchcombe, &
White, 1989; Scarselli & Tsoi, 1998), MUNGE ‘‘compresses’’ the ensem-
ble into smaller size networks. The concept of knowledge distillation
was formally defined in Hinton et al. (2015), which defined the softmax
output of the teacher network as the ‘‘knowledge’’. The student is su-
pervised by hard labels from the oracle, and the soft labels from teacher
outputs to achieve higher accuracy than a network trained without
distillation. The knowledge distillation objective can be formulated as:
lall = lce + � � lkd , where lce is the cross entropy between student output
probabilities and the hard label, and the lkd is the Kullback–Leibler
(KL) divergence between the student and teacher output probabilities
weighted by a factor �. Typically, the lkd term has a temperature
factor ⌧ that softens the output probabilities. The following distillation
works focus on better use of the teacher’s logits. The work proposed
in Kim, Oh, Kim, Cho, and Yun (2021) comprehensively compared
the difference and association between KL divergence between the
softened output probabilities and mean square error (MSE) between the

output logits prior to the softmax activation. Based upon their findings,
Kim et al. proposed replacing the original KL divergence term with
the MSE between the student and teacher logits (Kim et al., 2021).
Their experimental results showed that the logits loss provided better
distillation and performance. Further, decoupled knowledge distillation
(DKD) (Zhao et al., 2022) divides the KL divergence into the target
and non-target loss according to the ground truth label. Weighted soft
label distillation (WSLD) (Zhou et al., 2021) analyzed the regularization
effect of knowledge distillation through a bias–variance decomposition
and proposed to rescale the knowledge distillation loss with respect to
the regularization samples. Gou et al. (2023) proposed MTKD-SSR to
use multi-stage learning and self-reflection in knowledge distillation.
Their results showed significant improvements over existing methods
in various computer vision tasks.

Feature matching (e.g., feature based distillation or representation
distillation) aims to have the student network approximate interme-
diate features of the teacher’s network. FitNet (Romero et al., 2014)
directly uses the teacher’s features as hints to supervise the student’s
feature representations. A generic feature distillation optimization task
can be defined as: lall = lce + � � lfm, where lfm is typically the distance
between the intermediate features from teachers and students. Several
representative feature based distillation methodologies were proposed
after FitNet. Overhaul of Feature Distillation (OFD) (Heo et al., 2019)
investigated the effect of the distillation feature position and distance
function. Relational Knowledge Distillation (RKD) (Park, Kim, Lu, &
Cho, 2019) designed a new loss from distance- and angle-wise per-
spectives to extract relations between the feature representations. Con-
trastive Representation Distillation (CRD) (Tian et al., 2019) deployed
contrastive learning to maximize the mutual information between the
student and teacher representations.

The focus of this paper is on a specific type of knowledge dis-
tillation, which we refer to as Softmax Regression-based Distillation.
SRRL (Yang et al., 2021) uses the teacher’s classifier as additional
supervision to regularize the student’s features. This approach ensures
that the student features produce the same outputs as the teacher
features when scored by the teacher classifier. By being supervised
by the teacher classifier, SRRL achieves outstanding performance with
simply two MSE loss terms between the student and teacher penulti-
mate layer features, and the logits produced by the student and teacher
features when passed through the teacher classifier. Following this,
SimKD (Chen et al., 2022) adopts a more aggressive approach known as
the reused teacher classifier. SimKD abandons the student classifier and
lets the student use the frozen pre-trained teacher classifier as its own
classifier. The student’s network is trained with the feature matching
loss to learn the same features as the teacher, and the teacher’s network
is frozen. SimKD also proposes a multi-layer convolutional module with
little computational overhead to better align the teacher and student
features.

3. Knowledge distillation under ideal joint classifier assumption

Given two deep neural networks ft and fs as the teacher and student
networks, respectively. The knowledge distillation task aims to train a
student network, fs, from the output of a significantly larger teacher
network ft. More generally, we wish the student network to mimic
the teacher. Therefore, upper-bounding the student network’s error
with the teacher’s error is essential to study the learning framework of
knowledge distillation. Let the dataset D = {X ,Y} contain n data pairs
of inputs X =

�
xi
�n
i=1 and the ground truth labels Y =

�
yi
�n
i=1. A deep

neural network f typically consists of a feature extractor � : X ô Z

to map the inputs x to the latent representations z and a linear layer
(a classifier) g : Z ô O to classify the latent representations z into
their output logits o. We also denote p as the output probability of the
classifier after softmax activation, where pk = exp(ok)≥

j exp(oj )
.
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The error (also called risk) of a neural network f is measured by
the disagreement between its predictions and the ground truth labels.
Let us define an error ✏(f ):

✏(f ) = ED[f (x) * y] = ED[g ˝�(x) * y] = ✏(g ˝�). (1)

To guarantee student performance under the supervision of both the
ground truth labels and the teacher, we seek to limit student error in
terms of teacher error. For a student network fs and teacher ft, we
have a basic assumption that the teacher network has a larger capacity
than the student, e.g., the teacher has a more significant number of
parameters which let the teacher performs better than the student on
dataset D. Thus, we could bound the student error in terms of the
teacher error.

Theorem 1. For a teacher network ft = gt ˝�t, a student network
fs = gs ˝�s, the student error can be bounded as:

✏(fs) f ✏(ft) + ED[gs ˝�s(x) * gt ˝�s(x)]≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈
�1

+ED[gt ˝�s(x) * gt ˝�t(x)]≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈
�2

(2)

Proof.
✏(fs) = ✏(fs) + (✏(ft) * ✏(ft)) + (✏(gt ˝�s) * ✏(gt ˝�s))

f ✏(ft) + ✏(gs ˝�s) * ✏(gt ˝�s) + ✏(gt ˝�s) * ✏(gt ˝�t)
f ✏(ft) + ED[gs ˝�s(x) * gt ˝�s(x)]≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

�1

+ ED[gt ˝�s(x) * gt ˝�t(x)]≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈
�2

∏

This error bound consists of three distinct components: (a) the first
term represents the teacher’s risk on the dataset D, (b) the second
term, �1, captures the difference between the teacher and student
classifiers, and (c) the third term, �2, measures the discrepancy between
the teacher and student models when scoring the same inputs. This
bound reveals the requirement for training a good student network
under knowledge distillation frameworks. First, the �1 term tells us
the learned student’s classifier should to be similar to the teacher’s
classifier, which means that the student’s and teacher’s classifiers are
supposed to have close outputs with respect to the same input features.
The �2 term represents that a suitable student feature is expected to
lead to similar predictions under the teacher’s classifier as the teacher
representation. Further, this bound limits the error, but more impor-
tantly, it shows us three individual terms that we can seek to minimize
to improve the task of knowledge distillation.

In practice, a pairwise loss function l is used for capturing the
disagreements, including the MSE loss and the softmax cross-entropy
loss, which are defined as:

lmse(yi, f (xi)) = ÙÙyi * f (xi)ÙÙ22 , lce(yi, f (xi)) = *log p(Y = yixi)
With a minor deviation from the original notation, the RHS of the
inequality of Theorem 1 can be (approximately) rewritten as:

✏(ft) + ED

⌅
l(gs ˝�s(x), gt ˝�s(x))

⇧
≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

�1

+ED

⌅
l(gt ˝�s(x), gt ˝�t(x))

⇧
≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

�2

. (3)

Note that we are not claiming a strict inequality here as we did in
Theorem 1, and we have substituted the absolute loss in Eq. (1) with a
generic loss l(�). At this point, we can make two observations regarding
how SRRL and SimKD address the error bound. SRRL addresses the �2
term by using a softmax regression loss, lsr(gt ˝�s(x), gt ˝�t(x)). On the
other hand, SimKD mitigates the �1 term by allowing the student to
share the teacher’s pre-trained classifier, then minimizes the feature
matching loss lfm(�s(x),�t(x)). Based on these observations, we first
address the �1 term as our core assumption. The disparity between the

teacher and student classifiers should be small. Hence, we can assume
that there exists an ideal joint classifier that achieves the lowest risk
for both the student and teacher representations.

Definition 1. The ideal joint classifier of the student and teacher
representations on a dataset D is

Çg = argmin
g

ED[l(y, g ˝�t(x)) + l(y, g ˝�s(x))] (4)

We assume that there exists an ideal joint classifier that could reach
a low risk with both the teacher’s and student’s representations. The
ideal joint classifier assumption provides insight into analyzing the
student’s performance. The student will be unlikely to learn effectively
under the teacher’s guidance when there is a large discrepancy between
the student’s and the teacher’s classifiers. Under the ideal joint classifier
assumption, the student’s risk can be bounded by the teacher’s risk
and the discrepancy between the outputs of the ideal joint classifier
over the student and teacher representations. SimKD provides a natural
choice for reusing the teacher’s classifier as the ideal joint classifier,
which we use in our approach. Then, the bound is re-expressed with
the ideal joint classifier. This highlights the significance of the ideal
joint classifier assumption in understanding the student’s performance
and serves as a foundation for further analysis.

Now that we can substitute the ideal joint classifier into the RHS
of the modified inequality of Theorem 1 described in Eq. (3) and
demonstrate how it allows us to bound the student’s error. Given a
teacher and a student feature extractor �s and �t, respectively, and
an ideal joint classifier Çg, the RHS of the inequality of Theorem 1 can
be further rewritten as:

✏( Çg ˝�t) + ED

⌅
l( Çg ˝�s(x), Çg ˝�t(x))

⇧
. (5)

We can look at the SRRL learning objective. Recall that SRRL defines
its learning objective as follows:

fs = gs ˝�s = argmin
g,�

ED[lce(y, g ˝�(x)) + ↵lsr(gt ˝�t(x), gt ˝�(x))]. (6)

The softmax regression loss, denoted as lsr, is the key component of
the SRRL’s objective, and ↵ controls the trade-off between the losses.
We rewrite the SRRL objective function with the ideal joint classifier
setting the softmax regression loss to cross-entropy loss:

�s = argmin
�

ED[lce(y, Çg ˝�(x)) + ↵lce( Çg ˝�t(x), Çg ˝�(x))], (7)

The objective function can be seen as training the student’s feature
extractor �t with the smoothed labels based on the teacher’s prior over
each class. If we followed the original implementations of SRRL (Yang
et al., 2021), and set the lsr be mean square error loss lmse, the objective
function is defined as:

�s = argmin
�

ED[lce(y, Çg ˝�(x)) + ↵lmse(os, ot)], (8)

where os and ot denote the logits produced by the teacher and student
models, respectively. Recent work has observed that using MSE loss
between the logits is more effective than cross-entropy loss (Kim et al.,
2021; Yang et al., 2021). Then SRRL, which is closely related to SimKD
through the incorporation of the ideal joint classifier assumption, can
be formalized into the IJCKD framework. However, there is a key
difference in the learning objective of IJCKD compared to SimKD, as
Eq. (5) and the ideal joint classifier assumption suggest the minimiza-
tion of both cross-entropy loss between the student outputs and the
hard label, as well as the feature/logits matching loss simultaneously.
Algorithms 1, 2, and 3 show the implementations of SRRL, SimKD, and
IJCKD, respectively. Further, Fig. 1 provides an intuitive illustration of
distinctions between SRRL, SimKD, and IJCKD.
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Fig. 1. An illustration to show the differences between the SRRL, SimKD, and IJCKD frameworks..

4. Experiments

This section presents experiments that demonstrate the effective-
ness of our proposed IJCKD approach. We first present the results on
standard benchmark datasets and compare them with several repre-
sentative state-of-the-art approaches (CIFAR-100 (Krizhevsky, Hinton,
et al., 2009), and ImageNet (Deng et al., 2009)). We compare IJCKD
with SimKD in a separate subsection since the connector’s design is
a key factor in SimKD’s performance. Additionally, we conduct ex-
periments where a student network with only a pre-trained teacher
classifier to verify whether the pre-trained teacher classifier can be
the optimal classifier for the student network. We implemented the
IJCKD in Python and the Pytorch framework (Paszke et al., 2019). The
experiments were conducted on a workstation with an Intel i9-12900
processor, and two Nvidia RTX 3090 graphics cards with 24 GB RAM.

4.1. Results on CIFAR-100

We followed the standard training procedure adopted by previous
works (Tian et al., 2019; Zhao et al., 2022; Zhou et al., 2021). Specif-
ically, we train the networks for 240 epochs, and the learning rate
is decayed multiplying 0.1 at the 150th, 180th, and 210th epochs,
respectively. The initial learning rate is set to 0.01 when ShuffleNet
is the backbone (Ma, Zhang, Zheng, & Sun, 2018; Zhang et al., 2018),
and an initial learning rate to 0.05 for all other backbones. We used
SGD with Nesterov’s momentum of 0.9, a mini-batch size of 64, and
a weight decay of 5 ù 10*4. To align the teacher and student feature
channels, we applied a 1 ù 1 convolutional layer followed by batch
normalization (Ioffe & Szegedy, 2015), and ReLU activations (Nair &
Hinton, 2010) to the student’s features. We report the top-1 classi-
fication accuracy in Table 1, and each result is reported over five
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Algorithm 1 PyTorch Code for SRRL

1 #input: x, hard label: y
2 #student network: net_s, teacher network:

net_t
3 #connector for align teacher and student

channels
4 logits_s , feat_s = net_s(x)
5 feat_s = connector(feat_s)
6 logits_t , feat_t = net_t(x)
7 logits_aux = net_t.fc(avg_pool(feat_s))
8
9 loss_fm = F.mse_loss(feat_s, feat_t)
10 loss_lm = F.mse_loss(logits_aux , logits_t)
11 loss_ce = F.cross_entropy(logits_s,y)
12
13 #alpha, beta are used to scale the losses
14
15 loss_srrl = loss_ce + alpha*loss_lm + beta*

loss_fm

Algorithm 2 PyTorch Code for SimKD

1 #input: x
2 #student network: net_s, teacher network:

net_t
3 #connector for align teacher and student

channels
4 _, feat_s = net_s(x)
5 feat_s = connector(feat_s)
6 _, feat_t = net_t(x)
7
8 loss_fm = F.mse_loss(feat_s, feat_t)
9
10 loss_simkd = loss_fm

Algorithm 3 PyTorch Code for IJCKD

1 #input: x, hard label: y
2 #student network: net_s, teacher network:

net_t
3 #connector for align teacher and student

channels
4 _, feat_s = net_s(x)
5 feat_s = connector(feat_s)
6 logits_t , feat_t = net_t(x)
7 logits_s = net_t.fc(avg_pool(feat_s))
8
9 loss_lm = F.mse_loss(logits_s, logits_t)
10 loss_ce = F.cross_entropy(logits_s,y)
11
12 #alpha is used to scale the losses
13
14 loss_ijckd = loss_ce + alpha*loss_lm

run average. Our study primarily focuses on IJCKD and SRRL, with
additional evaluations of several other recent state-of-the-art methods
including FitNet (Romero et al., 2014), KD (Hinton et al., 2015),
VID (Ahn, Hu, Damianou, Lawrence, & Dai, 2019), RKD (Park et al.,
2019), PKT (Passalis & Tefas, 2018), OFD (Heo et al., 2019), CRD (Tian
et al., 2019), WSLL (Zhou et al., 2021), and DKD (Zhao et al., 2022).
We also present the reproduced results of SimKD with 1 ù 1 connector.
We compare distillation approaches across models with both the same
and different architectures. To ensure a fair comparison and showcase
the versatility of IJCKD, we set ↵ = 1 without an exhaustive search

as the scaling factor for the logits matching loss in all teacher-student
pairs.

Our experimental results offer valuable insights into the effective-
ness of IJCKD compared to the SRRL method. Focusing on the differ-
ences between these two approaches, it becomes evident that IJCKD
consistently outperforms SRRL across various teacher–student pairs
evaluated in our study, as detailed in Table 1. For instance, let us con-
sider the ResNet32x4ôResNet8x4 teacher–student pair, a particularly
challenging scenario. Here, IJCKD achieves an impressive top-1 accu-
racy of 76.52%, surpassing SRRL by a substantial margin of 0.6%. These
results underscore the remarkable efficacy of IJCKD in knowledge
transfer and student network improvement. A key element contribut-
ing to IJCKD’s superior performance lies in the combination of logits
matching and cross-entropy losses under the Ideal Joint Classifier As-
sumption. By aligning the output logits of the student with those of
the teacher, IJCKD enhances the student’s ability to capture intricate
details and fine-grained information from the teacher model. This
effectively reduces the information gap between the teacher and stu-
dent, resulting in more accurate predictions and higher classification
accuracy. It is noteworthy that these improvements are not limited to
specific teacher–student pairs; rather, IJCKD consistently demonstrates
its superiority across the range of teacher architectures tested in this
work.

This consistency highlights the robustness and general applicability
of IJCKD as a knowledge distillation technique. Furthermore, when
comparing IJCKD to other knowledge distillation methods in Table 1,
we can see that IJCKD often achieves top-1 accuracy that surpasses or
closely rivals the best-performing alternatives. This suggests that IJCKD
holds great promise for enhancing the performance of student networks
across a wide array of architectures and domains. In summary, our
experimental findings strongly support the notion that IJCKD, by lever-
aging the Ideal Joint Classifier Assumption, consistently outperforms
SRRL and other knowledge distillation techniques in improving student
network accuracy.

4.2. Compare with SimKD

In this section, we conduct an in-depth analysis comparing the
performance of IJCKD and SimKD across various connector archi-
tectures. Our primary goal is to assess the adaptability and effec-
tiveness of these methods concerning different connector designs. To
this end, we consider three distinct connector architectures: 1ù1Conv,
1ù1Conv-1ù1Conv, and 1ù1Conv-3ù3Conv-1ù1Conv, where the no-
tation denotes the presence and size of convolutional layers in the
connector. The results presented in Table 2 offer valuable insights
into the comparative performance of IJCKD and SimKD with varying
connector architectures. Notably, these findings highlight the versatil-
ity and adaptability of IJCKD, emphasizing its ability to excel across
different connector designs.

IJCKD consistently outperforms SimKD, achieving superior perfor-
mance even with a simpler 1ù1Conv connector. This result under-
scores the robustness of the IJCKD approach, as it demonstrates its
effectiveness in distillation across various architectures, even when
minimal convolutional layers are involved. Conversely, SimKD strug-
gles to match the adaptability of IJCKD. Specifically, SimKD fails
to achieve competitive results when confronted with 1ù1Conv and
1ù1Conv-1ù1Conv connectors. This limitation is indicative of SimKD’s
primary approach, which focuses on training the student to mimic the
teacher’s representation through a regression-like process. When paired
with connectors that differ significantly from the teacher’s architec-
ture, SimKD faces challenges in achieving satisfactory performance. In
contrast, IJCKD showcases itself as a robust and reliable knowledge
distillation method capable of effectively handling varying connector
architectures. The improved performance consistently observed across
different connector designs reaffirms IJCKD’s adaptability and high-
lights its potential as a versatile tool for knowledge transfer in diverse
scenarios.
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Table 1
Top-1 accuracy (%) on CIFAR-100.

Same architecture style Different architecture style

Teacher WRN-40-2 ResNet56 ResNet110 ResNet110 ResNet32x4 ResNet32x4 ResNet32x4 WRN-40-2
75.61 72.34 74.31 74.31 79.42 79.42 79.42 75.61

Student WRN-40-1 ResNet20 ResNet20 ResNet32 ResNet8x4 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
71.98 69.06 69.06 71.14 72.50 70.50 71.82 70.50

FitNet 72.24 69.21 68.99 71.06 73.50 73.59 73.54 73.73
KD 73.54 70.66 70.67 73.08 73.33 74.07 74.45 74.83
VID 73.30 70.38 70.16 72.61 73.09 73.38 73.40 73.61
RKD 72.22 69.61 69.25 71.82 71.9 72.28 73.21 72.21
PKT 73.45 70.34 70.25 72.61 73.64 74.10 74.69 73.89
OFD 72.38 69.47 69.53 70.98 73.17 73.55 74.31 73.34
CRD 74.14 71.16 71.46 73.48 75.51 75.11 75.65 76.05
WSLL 74.48 72.15 72.19 74.12 76.05 75.46 75.93 76.21
DKD 74.81 71.97 72.31 74.11 76.32 76.45 77.07 76.70

SRRL 74.75 71.44 71.51 73.80 75.92 75.66 76.40 76.61
SimKD 71.76 68.86 69.98 72.85 75.91 76.48 76.55 75.65
IJCKD 75.14 71.73 71.76 73.98 76.52 76.51 76.56 76.84

Table 2
Comparison with SimKD with different connector architecture.
Teacher/Student WRN-40-2

WRN-40-1
resnet32x4
resnet8x4

Methods IJCKD SimKD IJCKD SimKD

1ù1Conv 75.14 71.76 76.52 75.91
1ù1Conv-1ù1Conv 75.33 72.23 77.10 76.21
1ù1Conv-3ù3Conv-1ù1Conv 75.57 75.48 77.76 77.46

In summary, our comprehensive evaluation of IJCKD and SimKD
across different connector architectures underscores IJCKD’s superior
adaptability and performance. These findings indicate that IJCKD is
well-suited for scenarios involving a wide range of connector designs,
making it a valuable choice for knowledge distillation tasks with vary-
ing model architectures and complexities.

4.3. Ablation study

In this ablation study, the weight assigned to the cross-entropy
loss and logits matching loss was assessed. Initially, we set the logits
matching loss (↵lm) weight to 1 and then we adjust the cross-entropy
loss (↵ce) weight from 0 to 1. When ↵ce = 0, the student network is
trained exclusively under the teacher’s logits supervision, a scenario
labeled as ‘‘SR only’’. With increasing ↵ce, the influence of the hard
ground truth label becomes more pronounced in the learning process.
This approach aligns with the ideal joint classifier assumption, which
posits that the student network should be trained under both teacher
and ground truth supervision. Additionally, the study explored the
scenario of learning without the teacher’s logits, termed ‘CE only’,
where ↵lm is set to 0. The results, specifically the top-1 accuracy for the
ResNet32x4-ResNet8x4 teacher–student pair on the CIFAR-100 dataset,
are presented in Table 3. Fig. 2 illustrates the corresponding training
and validation top-1 accuracy curves. Notably, both ’SR only’ and
’CE only’ conditions were less effective than a linear combination of
both losses, corroborating the proposed assumption and error bound.
Optimal results were achieved with ↵ce = 0.2 and ↵ce = 1.0 for the best
validation and training accuracy, respectively. However, it is crucial to
acknowledge that the ideal balance of these losses varies depending on
the teacher–student pair and dataset. Thus, future research should focus
on hyperparameter tuning to identify the most effective loss scales for
specific contexts, aiming to enhance distillation performance.

Further, in addition to exploring the impact of ↵, we delved into the
influence of different combinations of feature and logits matching losses
in our study. Our default choice, the naive softmax regression loss lsr
(MSE loss between teacher and student logits), was compared against
the feature matching loss lfm (MSE loss between teacher and student

Table 3
Top-1 accuracy for different loss scale and combination.
↵ce
top-1

SR only 0.1 0.2 0.5 1.0 CE only
75.91 76.36 76.61 76.09 76.52 74.46

Loss comb
top-1

lce + lsr lce + lfm lce + lsr + lfm
76.52 76.47 76.86

Table 4
Top-1 accuracy for different logits matching loss.
Teacher Student Logits matching loss

MSE Cos Sim CE

ResNet32x4 ResNet8x4 76.52 76.86 75.24
WRN-40-2 WRN-40-1 75.14 75.51 74.27

features). Additionally, we examined the combination of both losses.
These experiments were conducted with the ResNet32x4-ResNet8x4
pair on CIFAR-100, and the resulting top-1 accuracy outcomes are
presented in Table 3, while corresponding training and validation
curves can be found in Fig. 3. Our results illuminate the significant
impact of the chosen matching loss on IJCKD’s performance. Intrigu-
ingly, the combination of feature and logits matching losses consistently
outperformed the individual losses, highlighting the benefits of jointly
optimizing both loss components in practical scenarios. This finding
underscores the importance of considering and carefully selecting the
matching losses when employing IJCKD, as this choice can significantly
affect the distillation process’s overall effectiveness.

Our study further explored various logits matching losses, with
results presented in Table 4. This comparison encompassed MSE, neg-
ative cosine similarity, and cross-entropy as logits matching losses.
The scale for both MSE and cross-entropy was set to 1, whereas for
negative cosine similarity, we assigned an ↵lm value of 10. Our findings
indicated that negative cosine similarity, with its adjusted scale factor,
consistently surpassed MSE and cross-entropy in achieving higher top-1
accuracy for both teacher-student pairings. Notably, the cross-entropy
loss underperformed compared to the other two methods, aligning
with observations reported in the SRRL paper (Yang et al., 2021).
In summary, this ablation study underscores the significance of the
appropriate combination of logits matching loss and cross-entropy loss.
It also highlights the effectiveness of varying logits matching losses in
different distillation contexts.

4.4. Results on ImageNet

In this section, we present the results on the ImageNet (Deng et al.,
2009) dataset. We used the SGD optimizer with the same momentum
parameter as we did for the CIFAR-100 dataset, and applied a weight
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Fig. 2. Top-1 accuracy curves for different ↵ce.

Fig. 3. Top-1 accuracy curves for different loss combination.

decay factor of 1 ù 10*4. For the training process, we utilized a batch
size of 512 and commenced with a learning rate of 0.2. Our learning
rate schedule involved reducing the learning rate by a factor of 10 at
predefined epochs: 30th, 60th, and 90th, completing the training at the
120th epoch. we employed a linear combination of the cross-entropy
loss (lce) and the softmax regression loss (lsr) as we did for CIFAR-100
training.

The chosen architecture for the connector layers was a 1ù1Conv-
3ù3Conv-1ù1Conv configuration. The selection of distinct settings for
the CIFAR-100 and ImageNet experiments was informed by insights
from the SimKD settings (Chen et al., 2022). A single-layer transforma-
tion may be insufficient for precise alignment due to the significant ca-
pability disparity between the teacher and student models. Considering
the intricacy and size of the ImageNet dataset, the 1ù1Conv-3ù3Conv-
1ù1Conv connector was selected for its ability to achieve accurate
alignment between the teacher and student models, thereby enhancing
performance. Additionally, as indicated in Chen et al. (2022), this
configuration does not impose considerable computational overhead.

The experimental results for IJCKD, SRRL, and other comparative
methods are detailed in Table 5, which illustrates performance met-
rics such as top-1 and top-5 accuracy. Notably, IJCKD consistently

outperformed SRRL, demonstrating its superior efficacy in enhancing
model performance on large-scale datasets, including ImageNet. For
the ResNet-18 model, IJCKD achieved significant improvements, with
increases of 0.51% in top-1 accuracy and 0.46% in top-5 accuracy. In
the context of the MobileNet model, the improvements were even more
pronounced, with IJCKD leading to a 2.18% enhancement in top-1
accuracy and a 1.46% rise in top-5 accuracy. These results emphatically
affirm the effectiveness of the IJCKD approach, especially in the realm
of complex, high-dimensional datasets.

4.5. Validation of the ideal joint classifier assumption

4.5.1. Can teacher classifier be the ideal joint classifier?
To evaluate the ideal joint classifier assumption that states the

joint classifier should achieve lower risks on both teacher and student
representations, we compared the performance of a student trained
with the teacher’s classifier to a student trained with its own classifier.
Specifically, we evaluated four teacher-student pairs on CIFAR-100 and
reported the top-1 accuracy in Table 6. The student networks were only
trained with hard labels but using the pre-trained teacher classifier.
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Table 5
Top-1 and top-5 accuracy (%) on ImageNet.

T: ResNet-34
S: ResNet-18

T: ResNet-50
S: MobileNet-v1

Top-1 Top-5 Top-1 Top-5

Teacher 73.31 91.42 76.16 92.87
Student 69.75 89.07 68.87 88.76

KD 70.67 90.04 70.49 89.92
AT 71.03 90.04 70.18 89.68
CRD 71.17 90.13 69.07 88.94
WSLL 72.04 90.70 71.52 90.34
DKD 71.70 90.41 72.05 91.05

SRRL 71.73 90.60 72.49 90.92
IJCKD 72.24 91.06 74.67 92.38

Table 6
Top-1 accuracy for the student backbone with teacher and its own classifier.
Teacher Student Teacher’s classifer Student’s classifer

WRN-40-2 WRN-40-1 72.32 71.98
ResNet56 ResNet20 68.91 69.06
ResNet110 ResNet32 70.98 71.14
ResNet32x4 ResNet8x4 74.46 72.50

The results show that training the student with the teacher and its own
classifier achieved close results across all four teacher-student pairs.

This supports our assumption of the existence of the ideal joint
classifier. However, we also observed that in some cases, the student
trained with a teacher classifier obtained significantly higher accu-
racy. For example, the ResNet8x4 trained with ResNet32x4’s classifier
achieved 1.96% higher accuracy. This suggests that other factors may
be at play and there are still unexplored mechanisms behind reusing
the pre-trained teacher classifier. Overall, our experiments on CIFAR-
100 provide evidence that the ideal joint classifier is a valuable concept
in knowledge distillation. Further research is needed to explore its
properties and potential applications.

4.5.2. Evolution of classifier alignment during SRRL training
In order to provide additional compelling evidence in support of the

Ideal Joint Classifier Assumption, we conducted a series of experimen-
tal investigations aimed at observing the evolution of the relationship
between the teacher’s classifier and the student’s classifier, particularly
when the student network was trained under the SRRL framework.
The objective was to elucidate whether the alignment between these
classifiers dynamically evolves during the course of training, thereby
further substantiating the Ideal Joint Classifier Assumption.

Fig. 4, illustrates the Frobenius Norm of the difference in weights
between the teacher’s classifier and the student’s classifier over the
course of SRRL training. The observed trends unveil a noteworthy
pattern: as the performance of the student network progressively im-
proves, there is a discernible trend towards a reduction in the distance
between the teacher’s classifier and the student’s classifier. This em-
pirical observation suggests that, indeed, as the student becomes more
proficient, there is a growing convergence towards a shared classifier,
corroborating the Ideal Joint Classifier Assumption.

These findings, in conjunction with our previous comparative anal-
ysis of student performance when trained with teacher classifiers ver-
sus their own classifiers, collectively underscore the validity of the
Ideal Joint Classifier Assumption. It is apparent that the alignment
of classifiers between the teacher and student networks benefits the
performance of knowledge distillation algorithms, further reinforcing
the central concept underlying our framework.

4.5.3. Alternative implementations of IJCKD
To further assess the versatility of the IJCKD framework, two al-

ternative implementations are presented, extending beyond the mere

reuse of the teacher’s classifier. Each variant possesses unique char-
acteristics and specific implementation details. The first alternative
involves the online training of a joint classifier, as detailed in Algo-
rithm 4. This method emphasizes the use of a jointly trained classifier
to align teacher and student network representations. The procedure
encompasses several critical steps: extracting features from both the
student and teacher networks, generating logits using the joint classifier
for both networks, and computing logits matching loss between the
student’s and teacher’s logits. Additionally, the cross-entropy losses for
both sets of logits are calculated and scaled by the factor ↵. In this
implementation, ↵ is set to 0.2, and � for scaling the logits matching
loss is set to 1.0. This value was chosen based on the premise that the
teacher’s representations are already well-trained, and a higher scale of
the teacher’s cross-entropy loss would better balance the overall scale.

The second variant, as illustrated in Algorithm 5, incorporates a
distance penalty to bridge the gap between the teacher and student
classifiers in the distillation process. This implementation consists of
several key components: extracting logits and features directly from
both the student and teacher networks, computing logits matching loss
between the two, and calculating the cross-entropy loss based on the
student’s logits and the provided hard label. A distinctive element of
this approach is the introduction of a distance penalty, determined by
the norm of the discrepancy in weights of the final fully connected
layers of both networks. We simply set both the two scaling factors ↵
and � to 1. This method focuses on reducing the differences between the
teacher and student classifiers, guiding the student classifier towards an
approximation of the ideal joint classifier.

Table 7 presents a comparative analysis of three different implemen-
tations of IJCKD across two network pairs, ResNet32x4-ResNet8x4 and
WRN-40-2-WRN-40-1, on the CIFAR-100 dataset. For the ResNet32x4-
ResNet8x4 pairing, the method utilizing the teacher’s classifier reached
a top-1 accuracy of 76.52%, with the joint training approach marginally
surpassing it at 76.65%. The distance penalty variant was also effective,
achieving a top-1 accuracy of 76.55%. In the case of the WRN-40-
2-WRN-40-1 pair, the teacher’s classifier strategy led with a top-1
accuracy of 75.14%, followed by the joint training method at 75.02%
and the distance penalty method at 74.69%. These results indicate
that IJCKD, as a comprehensive framework, is adaptable to various
implementations, each showing promising results.

Algorithm 4 PyTorch Code for IJCKD with joint training.

1 #input: x, hard label: y
2 #student network: net_s, teacher network:

net_t
3 #connector for align teacher and student

channels
4 #joint_classifier get by online joint

training
5 _, feat_s = net_s(x)
6 feat_s = connector(feat_s)
7 _, feat_t = net_t(x)
8
9 logits_t = joint_classifier(avg_pool(feat_t))
10 logits_s = joint_classifier(avg_pool(feat_s))
11
12 loss_lm = F.mse_loss(logits_s, logits_t)
13
14 #alpha is used to scale the teacher and

student cross entropy losses
15
16 loss_ce = alpha*F.cross_entropy(logits_s,y) +

(1-alpha)*F.cross_entropy(logits_t ,y)
17
18 #beta is used to scale the losses
19 loss_ijckd = loss_ce + beta*loss_lm
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Fig. 4. Frobenius Norm of the difference of the weight of teacher’s classifier (W tc ) and student’s classifier (W sc ) during SRRL training.

Algorithm 5 PyTorch Code for IJCKD with distance penalty.

1 #input: x, hard label: y
2 #student network: net_s, teacher network:

net_t
3
4 logits_s , feat_s = net_s(x)
5 logits_t , feat_t = net_t(x)
6
7 loss_lm = F.mse_loss(logits_s, logits_t)
8 loss_ce = F.cross_entropy(logits_s,y)
9 dist_penalty = torch.norm(net_t.fc.weight-

net_s.fc.weight) # Default: Frobenius
norm

10
11 #alpha and beta are used to scale the losses
12
13 loss_ijckd = loss_ce + alpha*loss_lm + beta*

dist_penalty

Table 7
Comparison of three different implementations of IJCKD.
Teacher Student Teacher’s

classifier
Joint
training

Distance
penalty

ResNet32x4 ResNet8x4 76.52 76.65 76.55
WRN-40-2 WRN-40-1 75.14 75.02 74.69

5. Discussion

5.1. Scope

This paper presents the development and examination of the pro-
posed IJCKD framework, which is built on the observation of previ-
ous works, SRRL and SimKD. Its main contribution is the ideal joint
classifier assumption, which refines error bounds into optimization
objectives and underscores the effectiveness of using the teacher’s
classifier in knowledge distillation. The IJCKD’s adaptability is illus-
trated through three different implementations based on the ideal joint
classifier assumption, showcasing its potential as a broad framework for
new distillation algorithms. The IJCKD framework offers a novel per-
spective in knowledge distillation research but also encourages a more
systematic, theory-based approach to developing distillation methods.
Acknowledging the foundational nature of this assumption, the paper
highlights the IJCKD framework’s potential for further exploration and
diverse applications, emphasizing its strength in integrating new ideas
and deepening the understanding of knowledge distillation.

5.2. Understanding the ‘Ideal Joint Classifier Assumption’

The ‘Ideal Joint Classifier Assumption’ refers to a classifier that
achieves the lowest risk for the student and teacher representations,
as described in Eq. (4) of our paper. In our work, we first adopt the
setting of SimKD, where the teacher’s classifier is reused as the ideal
joint classifier. Note that the classifier in this context refers to an output
layer of the neural network (e.g., the layer before the softmax). This
choice using the SimKD setting is rooted in the teacher’s classifier has
already minimized the risk on their own representations; however, we
extend this concept by recognizing that the ideal joint classifier should
also jointly minimize the risk on the student representations. To achieve
this, we include the cross-entropy loss (the first term in Eq. (8)) to
minimize the risk of the teacher’s classifier over the student representa-
tion with respect to the corresponding hard labels. Since the teacher’s
classifier is fixed in this context, we adapt the student representation
with respect to the teacher’s classifier to ensure that the teacher’s
classifier achieve the lowest risk on the student representations.

5.3. IJCKD as a corrective step

The IJCKD framework can be viewed as a corrective step in com-
parison to SimKD and SRRL. Where IJCKD distinguishes itself is by
acknowledging that the ideal joint classifier should not solely minimize
the risk of the teacher’s classifier over the teacher representation but
should also jointly minimize the risk of the student representation.
To achieve this, we introduce the cross-entropy loss (the first term in
Eq. (8)) to minimize the risk of the teacher’s classifier concerning the
student representation using corresponding hard labels. In this context,
the teacher’s classifier remains fixed, and the student representation
adapts to ensure that the teacher’s classifier achieves the lowest risk
concerning the student representations. It enforces the reused teacher
classifier to become the ideal joint classifier by introducing the cross-
entropy loss term. This distinction becomes particularly significant
when dealing with scenarios where the reused teacher is not inherently
the ideal joint classifier, necessitating a more potent connector to
effectively align the teacher and student representations.

5.4. Limitations and future research

Although the experimental results validate the IJCKD framework,
there are concerns to consider. While IJCKD shares basic principles
with SRRL and SimKD, its distinct approach, centered on the ideal joint
classifier assumption, leads to unique challenges. A key success factor
for these methods is the shared classifier between teacher and student
networks. However, merely reusing the teacher’s classifier might re-
strict IJCKD’s applicability in certain contexts. The proposed alternative
implementations partially mitigate this, yet the intricate balance be-
tween classifier discrepancy and adaptability remains less explored. It
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is essential to delve deeper into this aspect and examine the nuances of
classifier sharing and its impact on the versatility and effectiveness of
the IJCKD framework. Thus, further investigations could focus on opti-
mizing the balance between maintaining model accuracy and ensuring
sufficient flexibility for diverse applications, potentially broadening the
scope and utility of IJCKD in various knowledge distillation scenarios.

Also, there is a perception that the framework might be overly ide-
alized, with concerns about the potential looseness of the error bound it
proposes. However, it is important to emphasize that the significance
of this error bound transcends its immediate numerical implications.
The value of this error bound lies in its role as a fundamental con-
cept, aiding in the comprehension of the complex interactions between
teacher and student networks in the knowledge distillation process.
It provides a theoretical lens through which the effectiveness and
efficiency of knowledge transfer can be analyzed, offering insights into
how different network architectures and training strategies might influ-
ence the distillation outcome. This understanding is crucial for refining
the distillation techniques and advancing the field, pushing beyond
mere empirical results to a more nuanced, theory-driven approach.
However, future work should aim to refine and tighten this error bound,
particularly in scenarios where there is a large discrepancy between the
teacher and student representations. This would enhance the precision
and applicability of the IJCKD framework, enabling more effective
knowledge transfer in diverse and challenging distillation contexts.

The potential of the IJCKD framework extends beyond its current
applications, heralding a new era of research that could revolution-
ize knowledge distillation across diverse sectors, including industrial
inspection and beyond, as referenced in Hu, Dong, Shao, Zhang, and
Wang (2023), Hu and Wang (2020) and Zhao, Hu, Shao, Wang, and
Wang (2023). Its inherent flexibility showcases its applicability across
a myriad of learning environments, fostering a fertile ground for in-
novative research. This adaptability not only opens new vistas for the
development of more advanced and effective distillation methodologies
but also invites the exploration of IJCKD’s applicability in more specific
and targeted areas. Future research should focus on tailoring the IJCKD
framework to specific domains, thereby unlocking its full potential in
specialized applications. This could involve adapting the framework to
unique challenges and data characteristics of different fields, ranging
from healthcare and finance to autonomous systems and beyond. Such
targeted exploration could lead to highly specialized distillation tech-
niques that are more efficient and effective in their respective areas.
The adaptability and versatility of the IJCKD framework make it an
ideal candidate for this kind of focused research, promising to yield
significant advancements in both the theory and practice of knowledge
distillation.

6. Conclusion

In summary, this paper theoretically analyzed the softmax
regression-based representation learning, including two representative
methods, SRRL and SimKD. We established an error bound which
upper bounded the student’s error by the teacher’s error with the
disagreement term between student and teacher output logits under
the proposed ideal joint classifier assumption. Further, IJCKD, a novel
knowledge distillation framework was proposed that unifies the previ-
ous works based on the idea of softmax regression. Our experiments
demonstrate the effectiveness of IJCKD, which consistently outper-
formed state-of-the-art methods on a variety of benchmarks. Our results
suggest that IJCKD is a versatile and effective method for knowledge
distillation, which can be adapted to various architectures and datasets.
Overall, we believe that our work provides a valuable contribution to
the field of knowledge distillation and can be applied to a wide range
of practical applications.
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