
Published as a conference paper at ICLR 2024

BATCHED LOW-RANK ADAPTATION OF

FOUNDATION MODELS

Yeming Wen & Swarat Chaudhuri∗

Department of Computer Science
The University of Texas at Austin

ABSTRACT

Low-Rank Adaptation (LORA) has recently gained attention for fine-tuning foun-
dation models by incorporating trainable low-rank matrices, thereby reducing the
number of trainable parameters. While LORA offers numerous advantages, its
applicability for real-time serving to a diverse and global user base is constrained
by its incapability to handle multiple task-specific adapters efficiently. This im-
poses a performance bottleneck in scenarios requiring personalized, task-specific
adaptations for each incoming request.

To mitigate this constraint, we introduce Fast LORA (FLORA), a framework
in which each input example in a minibatch can be associated with its unique
low-rank adaptation weights, allowing for efficient batching of heterogeneous re-
quests. We empirically demonstrate that FLORA retains the performance merits of
LORA, showcasing competitive results on the MultiPL-E code generation bench-
mark spanning over 8 languages and a multilingual speech recognition task across
6 languages.

1 INTRODUCTION

Transformer-based foundation models have showcased remarkable performance across various nat-
ural language processing tasks, as evidenced by the successes of ChatGPT (OpenAI, 2023), GitHub
Copilot (Chen et al., 2021) and Speech Recognition (Radford et al., 2022) among others. The prac-
tice of fine-tuning these models for specific domains or specialized needs, such as instruction-tuning,
has become increasingly prevalent (Wang et al., 2022c; Honovich et al., 2022; Taori et al., 2023;
Chiang et al., 2023). This is driven by the requirements of real-world applications, which often de-
mand models tailored to specific domains, tasks, or even individual user preferences (Ouyang et al.,
2022). However, the extensive number of parameters in foundation models poses computational and
memory challenges for task-specific fine-tuning.

Low-Rank Adaptation (LORA) emerged as a solution to this challenge by incorporating trainable
low-rank matrices (Hu et al., 2021) which significantly reduces the number of trainable parameters
during fine-tuning. LORA’s success stems from its ability to achieve domain adaptation without
retraining the entire model (Taori et al., 2023; Dettmers et al., 2023; Lee et al., 2023). However,
a practical challenge arises in real-time serving scenarios. Batching is the practice of aggregating
multiple data points into a single computation. It is a common technique to leverage parallel process-
ing capabilities in GPUs, ensuring higher throughput and lower serving cost. It becomes especially
crucial when serving world-wide users where many requests could flood in every second. The in-
trinsic design of LORA dictates that every example within a batch shares the same adapter, which
is suboptimal for real-world serving scenarios where each request may require a unique adapter.

Consider a scenario where users from various locations and professions demand different language
and occupation adapters as illustrated in Fig. 1. With LORA, the batch processing would either
force all these diverse requests to share the same adapter or process them sequentially, both of
which are impractical. These limitations emphasize the need for a solution that can not only utilize
the advantages of LORA but also serve multiple adapters in parallel, catering to the diverse and
simultaneous requests encountered in reality.

∗ywen@utexas.edu, swarat@cs.utexas.edu

1

a
rX

iv
:2

3
1
2
.0

5
6
7
7
v
2

[c

s.
L

G
]

 2
6
 M

a
r

2
0
2
4

Published as a conference paper at ICLR 2024

Figure 1: This shows a pragmatic scenario where a foundation model in production receives four
incoming requests, each requiring distinct adapters. Omitting two adapters in step 2 & 3 for presen-
tation simplicity. FLORA facilitates batching in such serving circumstances, provided the adapters
are of low rank, thereby sustaining high throughput and low latency. Detailed discussion on vector-
ization is provided in §3.2.

We posit that it is critical to develop a more flexible adaptation mechanism that is compatible with
diverse real-world user queries. We introduce fast LORA (FLORA), a modification of LORA,
enabling individual examples in a minibatch to be associated with distinct low-rank weights without
compromising the expressive power. This modification promises the benefits of domain adaptation,
as heralded by LORA, but without the batching limitation.

Our contributions can be summarized as follows:

1. We propose FLORA, a framework that augments LORA by allowing each example in a
minibatch to have its unique low-rank adapters, facilitating efficient batching.

2. We provided an analytical analysis describing the scenarios where FLORA would be pre-
ferred over LORA in practical applications. This analysis is further substantiated by the
empirical evidence where FLORA achieves a 2X throughput improvement on the state-of-
the-art code LLM StarCoder 15B in the low-rank setting when diverse adapters are required
for incoming examples. Additionally, FLORA reduces the latency by half under the same
low-rank setting.

3. We demonstrate that FLORA does not sacrifice accuracy compared to LORA on a multi-
lingual code generation task across 8 programming languages, and maintains accuracy in
speech recognition tasks over five languages.

2 PROBLEM FORMULATION

In this section, we outline the problem tackled in this work, illustrating the constraints and objectives
that drive the development of the proposed FLORA methodology. Let M denote a foundation model
parameterized by θ, with a total number of parameters N . The common practice is to fine-tune this
foundational model for various specific tasks, ranging from multilingual code generation to speech
recognition as demonstrated in §4.2 and §4.3.

2

Published as a conference paper at ICLR 2024

2.1 LORA ADAPTERS

Fine-tuning the entire model M for a specific task is usually computationally expensive due to
the massive parameter count. LORA (Low-rank Adaptation, (Hu et al., 2021)) was introduced
to facilitate domain-specific adaptations with a significantly reduced parameter footprint, with the
hypothesis that low-rank adaptation is sufficient for fine-tuning domain specific foundation models.

Given the pre-trained weight matrix W0 ∈ R
d×k, LoRA posits that the weight matrix of the adapted

foundation model can be expressed as W0+∆W = W0+BA, where ∆W has a low-rank structure.
This matrix ∆W is factorized into two smaller, trainable matrices: B ∈ R

d×r and A ∈ R
r×k, such

that ∆W = BA where r stands for the rank. For a given input xi, the output yi is given by:

yi = M(xi|∆W,W0, θ) (1)

2.2 BATCHING & THROUGHPUT

Batching is a common practice where multiple data points (x1,x2, . . . ,xm) are aggregated into a
single batch B. Consequently, the forward passes of these data points are processed concurrently
rather than individually. This practice leverages the parallel processing capability of a modern GPU,
thereby significantly improving the throughput T , i.e., the number of data points processed per unit
of time. In the context of foundation models, throughput of a batch B can be defined as T =
∑

m

i=1
|yi|/∆t, where |yi| is the number of tokens generated for each example xi in the batch, ∆t

is the total time taken to process the batch, and m is the number of examples in the batch. Note that
batching incurs minimal latency penalties. However, given its substantial increase in throughput,
batching and its variants are widely used in the state-of-the-art foundation models serving framework
such as vLLM (Kwon et al., 2023) to achieve the best balance between throughput and latency.

2.3 OBJECTIVE

Batching typically assumes the same model parameters are utilized for every input example within
a minibatch. Hence, a straightforward application of batching in LORA requires that the adapter
matrix ∆W be shared across all inputs in the batch B. The challenge arises when considering
a scenario where each input example in the batch might originate from a different task. Sharing
the same ∆W for all xi in B becomes suboptimal where each input potentially demands a unique
adapter. The limitation is particularly acute when the model is expected to serve a world-wide user
base with diverse incoming requests.

Given the limitations of LORA in batching, our objective is to maximize the throughput T in global
user serving scenarios by maintaining the batching mechanism. Formally, for each xi ∈ B, we aim
to compute yi = M(xi|∆Wi,W0, θ), where ∆Wi is the adapter matrix corresponding to the input
example xi. Therefore, ∆Wi can be unique across B and specific to a domain or user preference.

3 FLORA: FAST LOW RANK ADAPTATION

As shown in §2.3, adapter sharing is often impractical in real-world serving scenarios. The in-
novation of FLORA is the introduction of example-specific adapter ∆Wi for each xi in a mini-
batch. In FLORA, the weight matrix Wi for each example xi in the minibatch is calculated as
Wi = ∆Wi ◦W0, where ◦ denotes element-wise multiplication, W0 is the pre-trained weight matrix
and ∆Wi is a low-rank adaptation specifically designed for xi. Similar to Hu et al. (2021), ∆Wi is
decomposed into two trainable matrices: Bi ∈ R

d×r and Ai ∈ R
r×k, such that ∆Wi = BiAi, as

shown in Fig. 1. Note that FLORA has the same expressive power as LORA by its construction.

3.1 FORWARD PASS

The advantage of FLORA is that computations on a minibatch can be written in terms of matrix
multiplications. This enables efficient batched implementations on modern accelerators such as
GPUs. Let xi denote the activations in one layer of a neural net, which is a vertical vector of length
d. The next layer’s activations are given by

3

Published as a conference paper at ICLR 2024

yi = φ(WT

i
xi) (2)

= φ
(

(WT

0
◦∆WT

i
)xi

)

(3)

= φ
(

(WT

0
◦ (BiAi)

T)xi

)

(4)

= φ
(

Ai ◦
(

WT

0
(Bi ◦ xi)

)

)

(5)

When the rank is greater than one, we extend the use of the symbol “◦” to denote potential broad-
casting. Additionally, a dimension reduction operation such as torch.mean is required prior to
applying the activation function φ.

The key to FLORA’s flexibility lies in the low rank decomposition enables the incorporation of
example-specific adapters directly into the forward pass, as demonstrated in the equations above.
Crucially, each of these operations—the element-wise multiplication between Ai and xi, and be-
tween Bi and yi — is inherently batch-friendly. Consequently, FLORA allows for simultaneous
processing of multiple requests, each requiring its own adapter, within a single minibatch. To vec-
torize all adapters in the minibatch, we define matrices A and B whose rows correspond to the
adapters Ai and Bi for all examples in the minibatch. The above equation is vectorized as:

Y = φ
(

A ◦
(

(B ◦X)W0

)

)

(6)

3.2 COMPUTATIONAL EFFICIENCY

The computational analysis primarily concentrates on the examination of fully connected layers
within a transformer architecture, given that LORA is specifically applied to these layers, such as
query and key projections. To begin, we analyze a baseline that leverages batch matrix multipli-
cation to facilitate the serving of LORA with multiple adapters. This operation is possible under
the assumption that every adapter required by the input examples in the minibatch shares the same
shape, specifically, the same rank. The batch matrix multiplication (BMM) can be implemented
using the torch.bmm operator in deep learning frameworks such as PyTorch (Paszke et al., 2019).
Note that the BMM operator is typically unfavorable in practical settings due to the significant over-
head it introduces (Abdelfattah et al., 2016). This overhead diminishes the throughput and increases
latency, which is detrimental in serving scenarios where response times are crucial for maintaining
a good user experience.

Let b and l denote the batch size and the maximum sequence length in the input batch B. Revisiting
the notation introduced in §3, where W0 ∈ R

d×k, Bi ∈ R
d×r and Ai ∈ R

r×k, the operations
required to compute the pre-activation for an input batch B with dimensions [b, l, d] consist of one
matrix multiplication and two BMMs. The matrix multiplication occurs between the input batch X
and the pre-trained weight W0. The two BMM operations are conducted firstly between the input
batch X and B, and secondly between the result of the prior computation and A, where A and B are
matrices whose rows correspond to the adapters Ai and Bi for all examples in the minibatch respec-
tively. Assuming for simplicity that the layer neither upscales nor downscales the hidden dimension
(i.e. d = k), the upper bound complexity of this layer is discerned as 2c1(dblr) + c2(bld

2), with c1
and c2 representing the computational coefficients of BMM and matrix multiplication respectively.
Note that c1 >> c2 because the BMM operator is more expensive than matrix multiplication.

For FLORA, the cost is one matrix multiplication which is c2(rbld
2) where r denotes the rank of

the adapters. We omit the cost of element-wise multiplication in this analysis because it is negligible
to the matrix multiplication cost. Comparing the computational cost of FLORA and LORA boils
down to the following inequality

2c1
dc2

+
1

r
g 1 (7)

FLORA exhibits a lower computational cost than bmm LORA whenever the above inequality holds
true. The benefit of FLORA over LORA is notably pronounced when r = 1. As the rank increases,

4

Published as a conference paper at ICLR 2024

LORA gradually becomes less costly. From the established inequality, a variety of scenarios can be
inferred where FLORA has an advantage over LORA. Firstly, the advantage of FLORA is signifi-
cantly apparent when the rank of adapters is small. Secondly, in configurations where the model has
fewer hidden units but an increased number of layers, FLORA tends to outperform LORA due to
the smaller value of d in the denominator of Eq. (7).

Another advantage of FLORA is the cost remains invariant to the number of adapters required by the
input batch. While the preceding analysis assumes that every token in an example xi shares the same
adapter, it is possible to apply multiple adapters to a single example by dividing the example into
chunks, and then applying different adapters to each chunk. This approach is commonly observed in
the Mixture of Experts framework (Fedus et al., 2021; Lepikhin et al., 2020; Puigcerver et al., 2023).
Incorporating several adapters in an input example notably amplifies the ratio c1/c2 in Eq. (7)1,
thereby significantly increasing LORA’s cost.

The ratio c1/c2 might not be the same across different transformer architectures. §4.1 is designed
to provide a deeper insight into how comparative serving efficiency of FLORA and LORA changes
under various architectures. Additionally, it’s worth noting that LORA does not apply to the self-
attention layers, which constitute a non-trivial portion of the computational cost, thereby overshad-
owing the advantage of FLORA. However, as efficient self-attention mechanisms such as flash at-
tention (Dao et al., 2022) get adopted, the advantage of FLORA over LORA is likely to get larger.

Connection to IA3. IA3 was proposed in Liu et al. (2022a) featuring fast adaptation of LLM. It
introduces a learned vector l which re-scales the activation by yi = l ◦φ(WT

0
xi) = φ

(

l ◦ (WT
0
xi)

)

.
This can be viewed as a special case of FLORA – a rank 0.5 variant — which only re-scales the
columns instead of the entire pre-trained weights. It has a limited expressive power compared to
FLORA and LORA.

4 EXPERIMENTS

In this section, we compare FLORA to LORA and other notable baselines across various metrics and
tasks. To begin with, we delve into a computational analysis to substantiate the enhanced throughput
and the reduced latency achieved by FLORA in the case of low rank Subsequently, we pivot towards
analyzing the accuracy of FLORA in multilingual code generation tasks spanning across different
languages. The goal is to discern the proficiency of FLORA in maintaining, if not enhancing, the
model’s accuracy as compared to LORA. Progressing further, we replicate a similar analysis but in
the domain of multilingual speech recognition.

4.1 SERVING ANALYSIS

The primary objective of this serving analysis is to measure the maximum throughput both FLORA
and LORA can attain under varied rank configurations. We carried out this exploration on the state-
of-the-art code Large Language Model (LLM) StarCoder (Li et al., 2023), evaluating models of
different number of parameters namely 1B, 3B, and 15B. The dataset facilitating this analysis has
been sourced from the vLLM throughput benchmark. Noteworthily, this dataset was previously
used to fine-tune the English Vicuna model, a state-of-the-art chat LLMs (Chiang et al., 2023). To
expedite the benchmarking process, we extracted a subset of 1,000 samples from the original dataset,
ensuring a diverse range of sample lengths varying from 50 to 2,000 tokens.

In setting up the computational analysis, our primary intent is to compare FLORA and LORA in
the real-world serving scenario. See Appendix B.1 on how bmm LORA is implemented. The vLLM
framework (Kwon et al., 2023)2, with its implementation of continuous batching, presents an ideal
setup for this analysis. The continuous batching mechanism in vLLM, as inspired by the principles
delineated in Orca (Yu & Jeong, 2022), facilitates a more efficient utilization of GPU resource by
allowing new sequence to be inserted immediately once any sequence in the current batch is com-
pleted. This continuous flow significantly enhances GPU utilization as compared to static batching,
where the GPU awaits the completion of all sequences in a batch before initiating a new batch pro-
cessing. The comparison of FLORA and LORA within this setup offers a compelling evidence of

1The batch size in BMM operator increases from b to b×m where m is the number of adapters per example.
2The version is 0.1.3.

5

Published as a conference paper at ICLR 2024

2 4 6 8 10 12 14 16
Rank

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Throughput (StarCoder 1B, 3B, 15B)
FLoRA
LoRA (bmm)
15B
3B
1B

0 2 4 6 8 10 12

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
ec

on
ds

 p
er

 O
ut

pu
t T

ok
en

Latency (StarCoder 15B)

FLoRA
LoRA (bmm)

Figure 2: Left: Generation throughput vs. rank for FLORA and torch.bmm implementation of
LORA, measured in tokens per second (token/s). The experiments were conducted on three star-
coder models: StarCoder 15B, StarCoderbase 3B and StarCoderbase 1B. FLORA has great through-
put advantage over LORA when the rank is small. As the rank increases, the torch.bmm imple-
mentation of LORA finally has a better throughput. Right: Latency vs. rank on StarCoder-15B.
Requests are coming at the speed of 8 requests per second.

their respective throughput and latency in the real-world serving scenario. It is worth noting that the
experiments were conducted without Flash-attention (Dao et al., 2022).

Throughput experiment. In Fig. 2, the throughput results for both FLORA and bmm LORA are
illustrated across different rank configurations on three StarCoder models with different number of
parameters, namely 1B, 3B and 15B. All experiments were conducted on an NVIDIA H100 GPU
with a float16 precision3. The maximum number of batched tokens is 8,192, which is the same as
the model context length. Evidently, FLORA shows a superior throughput over LORA in the lower
rank configurations. At rank 1, the throughput of FLORA is more than threefold higher than that
of LORA, thereby highlighting the considerable serving performance boost FLORA provides. The
advantage of FLORA continues as the rank increases, albeit with a diminishing rate. For instance, at
rank 2, FLORA’s throughput is around 2.5 times higher, and this multiplicative advantage decreases
as the rank increases further. This performance advantage continues up until the rank of 8 in the
StarCoder 15B model, where LORA starts to outperform FLORA. This inflection point suggests
that the advantages of FLORA in terms of throughput are more pronounced in lower rank.

Notice that the inflection points occurred at a higher rank when serving a smaller LLM as illustrated
in (Fig. 2, left). This demonstrates a significant potential of FLORA, especially when considering
future applications of quantization techniques to serving LLMs. By applying quantization, such as
8-bit or 4-bit inference, the effective size of the model is reduced, akin to serving a smaller LLM
thus potentially extending the rank at which FLORA maintains a throughput advantage over LORA.

Latency experiment. We assessed the latency-versus-rank performance on the Starcoder 15B
model, using the same dataset as the throughput experiment. This evaluation was conducted un-
der the conditions where requests arrive at a rate of 8 per second. The default maximum number of
batched tokens in vLLM serving launcher is 2,560. The results, as shown in (Fig. 2, right), measure
latency in terms of seconds per output token. Remarkably, in the lower rank regime (ranging from
rank 1 to rank 4), FLORA exhibited a 2-5X reduction in latency compared to LORA. Notably, the
latency for LORA stood at approximately 2.3 seconds per output token, is impractical for serving
due to the poor user experience it would cause. This experiment further highlights the superior
capabilities of FLORA in efficiently catering to diverse incoming user requests.

These findings validate the theoretical analysis in §4.1, confirming that FLORA provides significant
throughput advantages, particularly in settings with lower to moderate ranks. This positions FLORA

3The quantization in vLLM is still under development.

6

Published as a conference paper at ICLR 2024

Language
pass@1 (Relative Improvement)

Base Model FLORA IA3 LORA

StarCoder 15B

Dlang 14.13 17.26 (22.14%) 15.26 (7.99%) 17.15 (21.37%)

Perl 17.05 21.44 (25.76%) 17.71 (3.90%) 21.46 (25.76%)

Ruby 1.39 24.94 (1692.86%) 20.80 (1394.64%) 23.76 (1608.04%)

Rust 22.40 26.24 (17.14%) 23.53 (5.04%) 26.87 (19.95%)

Racket 10.20 12.41 (21.61%) 11.53 (12.96%) 12.51 (22.58%)

Swift 16.91 20.38 (20.51%) 18.13 (7.19%) 20.35 (20.36%)

StarCoderBase 3B

Dlang 5.65 5.72 (1.20%) 5.72 (1.20%) 6.97 (23.34%)

Perl 10.73 13.01 (21.25%) 11.46 (6.83%) 13.31 (27.51%)

Ruby 5.33 14.48 (171.68%) 7.88 (47.90%) 13.89 (160.68%)

Rust 17.18 21.00 (22.24%) 17.28 (0.60%) 20.67 (20.31%)

Racket 8.04 9.16 (13.99%) 8.40 (4.48%) 8.80 (9.48%)

Swift 10.04 15.69 (56.21%) 12.54 (24.83%) 15.04 (49.76%)

Table 1: Comparison of three fine-tuning methods FLORA, IA3, and LORA on StarCoder 15B and
StarCoderBase 3B across various low-resource programming languages in the MultiPL-E bench-
mark. The table presents Pass@1 accuracy of each method alongside the relative improvement over
the baseline. The standard errors are less than 0.3% in all cells in the table, therefore we exclude
that for clear presentation.

as a compelling alternative for efficiently serving adapted foundation models, especially in scenarios
where lower ranks suffice the desired model accuracy, as further demonstrated in the subsequent
accuracy analysis sections. Moreoever, if an enterprise chooses to serve foundation models with a
substantial number of diverse adapters, for instance, a personalized LLM, then a low rank or even a
rank one is imperative to avoid excessive storage costs.

4.2 MULTILINGUAL CODE GENERATION

A key aspect to examine before applying FLORA in real-world LLM serving is to scrutinize any po-
tential degradation in performance. In this section, we consider multilingual code generation as the
testbed for comparing FLORA and LORA due to its alignment with real-world applications, where
the necessity to cater to diverse programming languages is paramount. Low-resource languages, as
referred to in this context, are languages that appear much less frequently than other languages in
the pre-training data. Orlanski et al. (2023) showed that the performance of code LLMs can be
notably enhanced on low-resource programming languages such as PERL by recalibrating the lan-
guage distribution in the pre-training data. This suggests that fine-tuning a trained LLM on such
low-resource languages could potentially boost its performance on the same language. Hence, by
employing multilingual code generation as a benchmark, we can make an informed evaluation of
adaptability and performance enhancements that FLORA and LORA can achieve.

Additionally, a comparison is made against a third baseline, IA3, which can be considered as a
special case of FLORA. Essentially, IA3 can be seen as a rank 0.5 variant of FLORA, thereby facing
a constrained expressive power in comparison to both FLORA and LORA. For FLORA and LORA,
we conducted fine-tuning across a range of rank choices, spanning from 1 to 8. It emerges that
within the scope of this multilingual code generation task, a rank of one typically suffices to achieve
optimal results, with the exception of Racket and Lua. Consequently, the results shown in §4.2 are
predominantly at rank 1, barring Racket and Lua, which are presented at rank 4.

Fine-tuning. In our effort to evaluate the performance of FLORA, LORA, and IA3 on the multilin-
gual code generation task, we fine-tuned these models on state-of-the-art multilingual code LLMs,
StarCoder 15B and StarCoderBase 3B as introduced in (Li et al., 2023). A pivotal aspect of our
fine-tuning process was the utilization of existing data, negating the need for creating new data for

7

Published as a conference paper at ICLR 2024

Model Arabic Czech Lithuanian Marathi Mongolian Hindi

Whisper 46.03 23.19 46.09 84.84 115.20 43.41

FLORA 30.21 ± 0.25 10.76 ± 0.22 20.39 ± 0.32 33.17 ± 0.17 42.12 ± 0.63 23.58 ± 0.65

IA3 30.48 ± 0.22 11.61 ± 0.33 21.41 ± 0.20 35.03 ± 0.61 46.47 ± 0.53 25.64 ± 0.78

LORA 30.18 ± 0.21 10.77 ± 0.38 20.50 ± 0.21 31.94 ± 0.33 41.57 ± 0.69 23.82 ± 0.74

Table 2: Mean WER with standard deviation for different models and languages. The WER is
calculated with respect to the unnormalized tokenizer. The base model here is Whisper-1.5B.

low-resource programming languages. We leveraged the same pre-training data that was used for
pre-training StarCoder, specifically, the Stack dataset, which contains over 6TB of permissively-
licensed source code files covering 358 programming languages. For each low-resource language in
our experiment, we fine-tuned on its corresponding split from the Stack dataset for a total of 1,500
steps, along with batch size 8. More fine-tuning details are given in Appendix A.

Evaluation. The evaluation of FLORA, LORA, and IA3 was conducted on the MultiPL-E bench-
mark (Cassano et al., 2023), which contains the translation of two unit-test driven Python bench-
marks (HumanEval and MBPP) to 18 other programming languages. We used the HumanEval split
of the benchmark to evaluate the fine-tuned models. As for the metrics, We adopted the pass@k
metrics from Chen et al. (2021); Austin et al. (2021), which is calculated as the fraction of prob-
lems with at least one correct sample given k samples. Similar to Chen et al. (2021), we drew 100
samples for computing pass@1, with a sampling temperature set at 0.1.

Main results. The result in §4.2 exhibits the performance of three methods across various pro-
gramming languages on both StarCoder 15B and StarCoderBase 3B models. The average relative
improvement achieved by FLORA and LORA is roughly 20% in the selected low-resource program-
ming languages. FLORA consistently outperforms IA3 on all languages, especially on StarCoder
15B, denoting its efficiency in leveraging the model expressive power to improve multilingual code
generation. It is notable that StarCoder 15B has an unforeseen issue regarding Ruby generation,
where it yields lower accuracy compared to the 3B model. However, all methods are able to fix its
abnormal performance.

On StarCoderBase 3B, a smaller model, it is evident that the baseline performance drops, yet
FLORA and LORA still manage to exhibit substantial relative improvement over the baseline, es-
pecially in languages like Swift and Ruby. This suggests that both methods benefit from continuous
training on the low-resource language split of the pre-training data, although the advantages may
diminish with a reduction in model size. While the absolute performance (pass@1 accuracy) varies
among languages, the relative improvements highlight the effectiveness of the tested methods in
enhancing multilingual code generation.

4.3 MULTILINGUAL SPEECH RECOGNITION

Following our analysis in multilingual code generation, we shift our focus to another substantial
application of large language models — multilingual speech recognition (MSR). This domain has
seen increasing demand due to the necessity of serving various linguistic interfaces. The capabilities
of FLORA and LORA to adapt to multiple languages in code generation presents a tempting premise
to investigate their effectiveness in the MSR domain.

Fine-tuning. A crucial aspect of our analysis involves fine-tuning the foundation model on a mul-
tilingual speech recognition dataset. We selected the Whisper large 1.5B (Radford et al., 2022) as
our base model to conduct the subsequent analysis. Whisper is an encoder-decoder transformer
model trained on 680k hours of labeled speech data through large-scale weak supervision. De-
spite being pre-trained on a multilingual speech corpus, the model’s predictive capabilities can be
improved further for certain languages and tasks through fine-tuning. We use the Common Voice
benchmark (Ardila et al., 2020) — containing a total of 38 languages and 2,500 hours of collected
audio — for the fine-tuning process, with a particular focus on low-resource languages.4 For each
low-resource language enumerated in §4.2, we fine-tuned on its training split within the Common

4Dataset statistics can be found here https://commonvoice.mozilla.org/en/datasets.

8

Published as a conference paper at ICLR 2024

Voice dataset for approximately 5,000 steps, with a batch size of 6. More fine-tuning details are
given in Appendix A. Similar to §4.2, we found that rank one is sufficient to achieve the best result
in most cases, with the exception of Marathi, which requires a rank of 4.

Main results. We present the main results on the MSR task in §4.2. Notice that the evaluation
is conducted with the unnormalized tokenizer.5 The Whisper model exhibited a relatively higher
Word Error Rate (WER) across all low-resource languages when compared to FLORA, LORA and
IA3 models, reflecting a significant room for enhancement in its multilingual speech recognition
capabilities. Particularly, its performance was found to be subpar for the Marathi and Mongolian
languages, with WERs of 84.84 and 115.20 respectively. All examined models significantly out-
perform the base Whisper model by a wide margin across all languages, highlighting the effective
fine-tuning of FLORA, LORA and IA3 models. For instance, in Arabic, FLORA reduces the WER
to 30.21 from Whisper’s 46.03, showcasing a significant enhancement in speech recognition accu-
racy. Particularly, FLORA and LORA consistently outperform IA3, indicating a better expressive
power for multilingual speech recognition tasks. For example, in Czech, FLORA has a mean WER
of 10.76, which is slightly better compared to IA3’s 11.61 and LORA’s 11.47. A similar trend is ob-
served in Lithuanian and Hindi. In summary, this table shows the superior performance of FLORA
and LORA over IA3 in the speech recognition task across diverse languages. The consistent low
WERs attained by FLORA demonstrates its potential as a viable model for MSR tasks.

5 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT) methods are broadly partitioned into two categories:
weight-based and non-weight-based approaches. MC-dropout (Lakshminarayanan et al., 2016)
stands as an early example for the non-weight-based approach, where distinct dropout masks are
allocated to various tasks. Recently, prompt tuning techniques have emerged as a prevalent stream
within this category (Li & Liang, 2021; Lester et al., 2021), facilitating efficient adaptation with
minimal modifications to models. Successive endeavors aimed to enhance this class of methods,
delving into aspects such as optimization (Mao et al., 2021; Diao et al., 2022), transferability (Wang
et al., 2021; Vu et al., 2021; He et al., 2022b), and the usage of discrete prompts (Schick & Schütze,
2020a;b; Gao et al., 2021; Malkin et al., 2021), among others (Liu et al., 2022b; 2021).

We focus on weight-based approaches in this work, which has a weight interpretation as exemplified
by LORA (Hu et al., 2021). This line of research can be traced back to Progressive Network (Rusu
et al., 2016), which inserts a sub-network when a new task arrives. This principle was later adapted
widely in foundation models as represented by adapter based methods (Houlsby et al., 2019; Ma-
habadi et al., 2021; Davison, 2021; Ding et al., 2022; Wang et al., 2022b). In particular, BitFit (Ben-
Zaken et al., 2021) was introduced to solely update the bias parameters, while IA3 (Liu et al., 2022a)
was proposed to rescale the activations. Additionally, approaches such Fish (Sung et al., 2021) and
Diff-pruning (Guo et al., 2020) leverage sparsity to facilitate efficient adaptation of foundation mod-
els. A separate vein of research aims to improve LORA by reducing its computational and memory
costs (Zhang et al., 2023b;a; Malladi et al., 2023). He et al. (2022a) explored how to unify different
PEFT methods. Dettmers et al. (2023) quantized LORA to reduce memory footprint. Chavan et al.
(2023) generalized LORA by learning individual adapters in each layer. Several other works focus
on building mixture of adapters (Wang et al., 2022a; Diao et al., 2023).

6 CONCLUSION

We introduced FLORA, an extension of LORA, facilitating efficient batching. Empirical evaluations
demonstrated that FLORA enhances throughput and latency in practical serving scenarios, all while
preserving the accuracy of LORA. Through FLORA, we aim to facilitate a more efficient adaptation
of large language models to diverse and real-world user requests.

Limitations. Despite its parameter efficiency, FLORA still requires fine-tuning. A promising future
work could be to derive FLORA weights from a trained LORA model, given that LORA remains

5This is because the normalized tokenizer has a bug in the official leaderboard implementation at the time
of submission.

9

Published as a conference paper at ICLR 2024

the most prevalent type of adapter as per (Huang et al., 2023). This adaptation could potentially
obviate the requirement for fine-tuning, thereby accelerating the process of model adaptation.

REFERENCES

Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra. Performance, design,
and autotuning of batched gemm for gpus. In Information Security Conference, 2016. URL
https://api.semanticscholar.org/CorpusID:2559252.

R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer, R. Morais, L. Saunders, F. M.
Tyers, and G. Weber. Common voice: A massively-multilingual speech corpus. In Proceedings
of the 12th Conference on Language Resources and Evaluation (LREC 2020), pp. 4211–4215,
2020.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. ArXiv, abs/2106.10199, 2021. URL https:

//api.semanticscholar.org/CorpusID:231672601.

Federico Cassano, John Gouwar, Daniel Nguyen, Sy Duy Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and polyglot approach to bench-
marking neural code generation. IEEE Transactions on Software Engineering, 49:3675–3691,
2023. URL https://api.semanticscholar.org/CorpusID:258205341.

Arnav Chavan, Zhuang Liu, Deepak K. Gupta, Eric P. Xing, and Zhiqiang Shen. One-for-
all: Generalized lora for parameter-efficient fine-tuning. ArXiv, abs/2306.07967, 2023. URL
https://api.semanticscholar.org/CorpusID:259144860.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harrison
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, S. Arun
Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluat-
ing large language models trained on code. ArXiv, abs/2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:

//lmsys.org/blog/2023-03-30-vicuna/.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher R’e. Flashattention: Fast and
memory-efficient exact attention with io-awareness. ArXiv, abs/2205.14135, 2022. URL https:

//api.semanticscholar.org/CorpusID:249151871.

Joe Davison. Compacter: Efficient low-rank hypercomplex adapter layers. In Neural Information
Processing Systems, 2021. URL https://api.semanticscholar.org/CorpusID:

235356070.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. ArXiv, abs/2305.14314, 2023. URL https://api.semanticscholar.

org/CorpusID:258841328.

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang, Xiao Zhou, and Tong Zhang. Black-box
prompt learning for pre-trained language models. ArXiv, abs/2201.08531, 2022. URL https:

//api.semanticscholar.org/CorpusID:246210164.

10

Published as a conference paper at ICLR 2024

Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and T. Zhang. Mixture-of-domain-adapters:
Decoupling and injecting domain knowledge to pre-trained language models’ memories. In An-
nual Meeting of the Association for Computational Linguistics, 2023. URL https://api.

semanticscholar.org/CorpusID:259108831.

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Xiaozhi Wang, Zhiyuan Liu,
Haitao Zheng, Jianfei Chen, Yang Liu, Jie Tang, Juan Li, and Maosong Sun. Delta tun-
ing: A comprehensive study of parameter efficient methods for pre-trained language mod-
els. ArXiv, abs/2203.06904, 2022. URL https://api.semanticscholar.org/

CorpusID:247446969.

William Fedus, Barret Zoph, and Noam M. Shazeer. Switch transformers: Scaling to trillion pa-
rameter models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2021.
URL https://api.semanticscholar.org/CorpusID:231573431.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. ArXiv, abs/2012.15723, 2021. URL https://api.semanticscholar.org/

CorpusID:229923710.

Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. In Annual Meeting of the Association for Computational Linguistics, 2020. URL
https://api.semanticscholar.org/CorpusID:229152766.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=0RDcd5Axok.

Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, V. Aribandi, Zhe Zhao, Yaguang
Li, Zhaoji Chen, Donald Metzler, Heng-Tze Cheng, and Ed H. Chi. Hyperprompt: Prompt-
based task-conditioning of transformers. ArXiv, abs/2203.00759, 2022b. URL https://api.

semanticscholar.org/CorpusID:247218062.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor. ArXiv, abs/2212.09689, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International Conference on Machine Learning, 2019. URL https://api.

semanticscholar.org/CorpusID:59599816.

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685,
2021. URL https://api.semanticscholar.org/CorpusID:235458009.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. ArXiv, abs/2307.13269, 2023.
URL https://api.semanticscholar.org/CorpusID:260155012.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In NIPS, 2016. URL https://api.

semanticscholar.org/CorpusID:6294674.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement
of llms. ArXiv, abs/2308.07317, 2023. URL https://api.semanticscholar.org/

CorpusID:260886870.

11

Published as a conference paper at ICLR 2024

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam M. Shazeer, and Z. Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. ArXiv, abs/2006.16668, 2020. URL https://api.

semanticscholar.org/CorpusID:220265858.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Natural Language Processing, 2021. URL
https://api.semanticscholar.org/CorpusID:233296808.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho
Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,
Manan Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhattacharyya, W. Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jana Ebert, Tri Dao,
Mayank Mishra, Alexander Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car-
los Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and
Harm de Vries. Starcoder: may the source be with you! ArXiv, abs/2305.06161, 2023. URL
https://api.semanticscholar.org/CorpusID:258588247.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers), abs/2101.00190, 2021. URL https://api.semanticscholar.org/CorpusID:

230433941.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. ArXiv, abs/2205.05638, 2022a. URL https://api.semanticscholar.org/

CorpusID:248693283.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2:
Prompt tuning can be comparable to fine-tuning universally across scales and tasks. ArXiv,
abs/2110.07602, 2021. URL https://api.semanticscholar.org/CorpusID:

238857040.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In An-
nual Meeting of the Association for Computational Linguistics, 2022b. URL https://api.

semanticscholar.org/CorpusID:248780177.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. ArXiv,
abs/2106.04489, 2021. URL https://api.semanticscholar.org/CorpusID:

235309789.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. Coherence boosting: When your pretrained lan-
guage model is not paying enough attention. In Annual Meeting of the Association for Com-
putational Linguistics, 2021. URL https://api.semanticscholar.org/CorpusID:

247476407.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alexandru Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. ArXiv, abs/2305.17333,
2023. URL https://api.semanticscholar.org/CorpusID:258959274.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning. In
Annual Meeting of the Association for Computational Linguistics, 2021. URL https://api.

semanticscholar.org/CorpusID:238857301.

12

Published as a conference paper at ICLR 2024

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.

semanticscholar.org/CorpusID:257532815.

Gabriel Orlanski, Kefan Xiao, Xavier Garcı́a, Jeffrey Hui, Joshua Howland, Jonathan Malmaud,
Jacob Austin, Rishah Singh, and Michele Catasta. Measuring the impact of programming lan-
guage distribution. In International Conference on Machine Learning, 2023. URL https:

//api.semanticscholar.org/CorpusID:256615914.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv, abs/2203.02155, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures
of experts. ArXiv, abs/2308.00951, 2023. URL https://api.semanticscholar.org/

CorpusID:260378993.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision, 2022. URL https://arxiv.

org/abs/2212.04356.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-
patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural net-
works. ArXiv, abs/1606.04671, 2016. URL https://api.semanticscholar.org/

CorpusID:15350923.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Conference of the European Chapter of the Association for Compu-
tational Linguistics, 2020a. URL https://api.semanticscholar.org/CorpusID:

210838924.

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also few-
shot learners. ArXiv, abs/2009.07118, 2020b. URL https://api.semanticscholar.

org/CorpusID:221703107.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse
masks. ArXiv, abs/2111.09839, 2021. URL https://api.semanticscholar.org/

CorpusID:244345839.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Ma-
dian Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia

13

Published as a conference paper at ICLR 2024

Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models. ArXiv, abs/2307.09288, 2023. URL https://api.semanticscholar.org/
CorpusID:259950998.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Matthew Cer. Spot: Better frozen
model adaptation through soft prompt transfer. ArXiv, abs/2110.07904, 2021. URL https:

//api.semanticscholar.org/CorpusID:239009558.

Chengyu Wang, J. Wang, Minghui Qiu, Jun Huang, and Ming Gao. Transprompt: Towards
an automatic transferable prompting framework for few-shot text classification. In Confer-
ence on Empirical Methods in Natural Language Processing, 2021. URL https://api.

semanticscholar.org/CorpusID:243865402.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and
Jianfeng Gao. Adamix: Mixture-of-adapter for parameter-efficient tuning of large language
models. ArXiv, abs/2205.12410, 2022a. URL https://api.semanticscholar.org/

CorpusID:249063002.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and
Jianfeng Gao. Parameter-efficient tuning of large language models. 2022b. URL https://

api.semanticscholar.org/CorpusID:249536106.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
ArXiv, abs/2212.10560, 2022c.

Gyeong-In Yu and Joo Seong Jeong. Orca: A distributed serving system for transformer-based
generative models. In USENIX Symposium on Operating Systems Design and Implementation,
2022. URL https://api.semanticscholar.org/CorpusID:251734964.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. ArXiv, abs/2308.03303, 2023a. URL
https://api.semanticscholar.org/CorpusID:260683267.

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin, Pengcheng He, Yu Cheng, Weizhu
Chen, and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. ArXiv,
abs/2303.10512, 2023b. URL https://api.semanticscholar.org/CorpusID:

257631760.

A ADDITIONAL TRAINING DETAILS

We delve into additional details regarding the models used in §4.2. We conducted fine-tuning on
two StarCoder models (Li et al., 2023), specifically the 15B and 3B models. For both models, we
employed LORA (Hu et al., 2021) on the default layers within the Parameter Efficient Fine-Tuning
(PEFT) library6, targeting only the key and query projections in the self-attention layers. This incurs
roughly 0.03% number of training parameters in the rank 1 setting. For a fair comparison, we applied
FLORA to the same layers where LORA was applied. Regarding the other baseline IA3 (Liu et al.,
2022a), we executed the fine-tuning in two distinct settings: one with the default configuration in
PEFT, applying IA3 to the key projection layers and the first fully-connected layer in the feed-
forward layers; and another aligning with the LORA setting, restricting application to the key and
query projection layers. The latter setup proved to be less effective than the default setting, thus the
results presented in §4.2 adhere to the default configuration.

Despite StarCoder’s pre-training on the Stack dataset, which contains over 6TB of source code files
covering 358 programming languages, we still fine-tuned all methods on this dataset for the low-
resource programming languages. This eliminates the time-consuming process to create new data.
Our observations revealed that both IA3 and FLORA require a higher learning rate compared to

6https://github.com/huggingface/peft/tree/main

14

Published as a conference paper at ICLR 2024

Language
pass@1 (Relative Improvement)

Base Model FLORA IA3 LORA

StarCoder 15B

Julia 23.31 26.56 (13.92%) 23.90 (2.51%) 25.62 (10.45%)

Lua 26.60 30.20 (13.57%) 28.40 (6.77%) 29.04 (9.18%)

R 16.07 17.55 (9.24%) 16.65 (3.59%) 18.60 (15.8%)

StarCoderBase 3B

Julia 15.62 19.11 (22.39%) 16.72 (7.05%) 19.77 (26.59%)

Lua 17.63 19.46 (10.39%) 18.04 (2.33%) 20.23 (14.75%)

R 10.00 10.70 (7.02%) 9.98 (-0.25%) 10.06 (0.62%)

Table 3: Comparison of three fine-tuning methods FLORA, IA3, and LORA on StarCoder 15B
and StarCoderBase 3B across additional low-resource programming languages in the MultiPL-E
benchmark.

LORA. For LORA, a learning rate of 1e−4 sufficed, whereas IA3 required 5e−3, and FLORA
demanded an even higher rate of 8e−3. We conjecture that this stems from FLORA and IA3 in-
corporating multiplicative weight perturbation, which typically requires a larger learning rate. All
models were fine-tuned using 8 bit quantization featuring lower training memory cost.

We present results for additional low-resource languages in Appendix A. The improvements pro-
vided by PEFT methods are less pronounced in these languages compared to those documented in
§4.2. Nevertheless, it can be observed that LORA and FLORA still outperform IA3, despite the
limited room for enhancement in these languages.

Next, we discuss further details concerning the models used in §4.3. We performed fine-tuning on
the Whisper large model (Radford et al., 2022), which consists of 1.5 billion parameters. Unlike the
code generation task, we discovered that using the default modules in the PEFT library does not yield
the best performance. Instead, we applied FLORA, LORA, and IA3 to every fully-connected layer in
the Whisper transformer. We fine-tuned all methods on the Common Voice benchmark (Ardila et al.,
2020) for each low-resource language showcased in §4.2. We continued to employ larger learning
rates for FLORA and IA3. Specifically, we maintained a learning rate of 2e−4 for LORA, while
using 4e−3 and 6e−3 for IA3 and FLORA respectively. Additionally, we utilized 8-bit quantization
during training to minimize the GPU memory requirement.

B ADDITIONAL SERVING RESULTS

B.1 BMM IMPLEMENTATION

We provide further details concerning the experiments in §4.1. To begin, we illustrate the imple-
mentation of “torch.bmm” as follows. Upon computing the adaptersout, it can be added to
the output of the standard LLM layer. This method facilitates the computation of diverse adapters’
outputs within a batch.

inputs = torch.randn(batch, seq_length, d_model)

adapter_b # shape of (batch, d_model, rank)

adapter_a # shape of (batch, rank, d_model)

hidden = torch.bmm(inputs, adapter_b)

adaptersout = torch.bmm(hidden, adapter_a)

B.2 ADDITIONAL RESULTS

We further conducted a throughput experiment, employing a setup similar to the one described in
§4.1, on the newly proposed Llama-2 foundation models (Touvron et al., 2023). The results for
both the 13B and 7B models are illustrated in Fig. 3 (left). When compared against the plot in

15

Published as a conference paper at ICLR 2024

Fig. 2 (left), it is evident that the inflection rank at which LORA begins to outperform FLORA is
lower for the Llama-2 models than for the StarCoder 15B. This shows that the ratio c1/c2 from
Eq. (7) varies across different architectures. One plausible explanation could be that, being a recent
architecture, the Llama-2 model has not yet been fully optimized within the vLLM framework,
potentially impacting throughput performance.

The right panel of Fig. 3 presents the serving results concerning StarCoder-3B. Notably, the in-
flection rank at which LORA begins to outperform FLORA is lower here as compared to the one
observed in StarCoder 15B, as seen in Fig. 2 (right). This is attributed to the relatively low la-
tency on StarCoder-3B, which implies that a request rate of 8 requests per second fails to saturate
the LLM server, thereby diminishing the advantage of FLORA. Upon escalating the request rate to
15 requests per second, the inflection rank correspondingly increases to around 12. This illustrates
that the latency improvement exhibited in Fig. 2 (left) represents a theoretical enhancement. The
actual improvement in serving depends on model architectures, request rates, and other practical
considerations.

2 4 6 8 10 12 14 16
Rank

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Throughput (Llama2 13B, 7B)
FLoRA
LoRA (bmm)
13b
7b

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Rank

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Se
c

pe
r O

ut
pu

t T
ok

en

Latency (StarCoder 3B)
Model

FLoRA
LoRA (bmm)

request-rate
8.0
15.0

Figure 3: Left: Generation throughput vs. rank for FLORA and torch.bmm implementation of
LORA, measured in tokens per second (token/s). The experiments were conducted on two Llama-2
models: 13B and 7B (Touvron et al., 2023). FLORA has great throughput advantage over LORA
when the rank is small. As the rank increases, the torch.bmm implementation of LORA finally
has a better throughput. Right: Latency vs. rank on StarCoder-3B. Requests are coming at the speed
of 8 requests per second and 15 requests per second.

16

