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stream network flowing through dominantly wet acidic tundra vegetation cover, including tussock (46%), shrubby 
birches and willows (25%), and sedges (14%) (Shogren et  al.,  2022). Its underlying geology is composed of 
glacial alluvial and outwash deposits from the Sagavanirktok glaciation in the late Pleistocene (Hamilton, 2003; 
Walker & Raynolds, 2017). The watershed is underlain by continuous permafrost, with soils made of colluvial 
deposits and organic matter (Walker & Maier, 2008). Though annual discharge is dominated by the spring freshet 
(Finlay et  al.,  2006; Townsend-Small et  al.,  2011), flow generation in this watershed is highly responsive to 
precipitation events (McNamara et al., 1998).

The Oksrukuyik Creek watershed (68°41′12″, −149°05′50″, Figure 1b) is both an Arctic LTER watershed and 
an established National Ecological Observatory Network monitoring site. Oksrukuyik Creek is considered a 
clear-water, low-gradient stream meandering through primarily tundra landscape, with a series of lake chains in 
the headwaters (Shogren et al., 2019, 2022). Vegetation cover in Oksrukuyik Creek watershed is dominated by 
tussock tundra (58%), sedge (24%), birch/willow shrub tundra (11%), and open water (4%) (Shogren et al., 2022). 
The watershed sits on glacial and alluvial deposits from the Itkillik (phase I) glaciation (Hamilton, 2003; Walker 
& Raynolds, 2017). The entire watershed is underlain by continuous permafrost, though taliks can form under 
lakes and stream channels. The Oksrukuyik Creek watershed drains a cluster of lakes at its headwaters and flows 
into the Sagavanirktok River.

2.2. High-Frequency Sensor Deployment and Data Collection

We collected high-frequency data of stream flow and solute concentrations from the study watersheds during 
most of the thaw season, from early June through early September, for five consecutive years (2017–2021; exact 
dates noted in Table 1 and Figure 2). In each watershed, we estimated discharge using co-located, atmospherically 
compensated pressure transducers (Onset HOBO, Bourne Massachusetts, USA) that recorded water depth (stage, 
m) at 10-min intervals. We converted these stage data to continuous discharge using regular velocity-area calcula-
tions from weekly field measurements (Perumal et al., 2007; Turnipseed & Sauer, 2010) (Figure 2). Concurrently, 
we measured water chemistry in 15-min intervals using submersible UV-visible spectrophotometers (s::scan 
Messtechnik GmbH, Vienna, Austria), which were co-located with the pressure transducers. The spectrophotom-
eters measure light absorbance at wavelengths from 200 through 750 nm normalized spectra through a 35-mm 

Site Kuparuk River Oksrukuyik Creek

Total Drainage Area (km 2) 92.5 72.6

Mean Slope (°) 3.1 3.2

Mean Elevation (m) 988 862

Geologic Setting Sagavanirktok Old Glaciated Uplands Sagavanirktok Young Glaciated Valleys

Hydrologic Setting Continuous permafrost Continuous permafrost

Primary landscape classification Wet acidic tundra Wet acidic tundra

Surface Area of Lakes (km 2) 0.59 3.3

% Area Covered by Lake 0.65% 4.50%

Stream Strahler Order 4th 3rd

Mean Normalized Difference Vegetation  
Index (NDVI) in June and August

4324 ± 522 (June) 4789 ± 1106 (June)

4535 ± 1022 (August) 4535 ± 1022 (August)

Monitoring Dates

 2017 6/2–9/23 6/2–8/14

 2018 7/3–9/3 7/4–9/3

 2019 6/16–8/10 6/16–9/10

 2020 6/27–9/17 7/1–9/17

 2021 6/9–9/1 5/25–9/1

Table 1 

Arctic Watershed Characteristics and Monitoring Dates for the 2017–2021 Sensor Deployments in the Kuparuk River and 

Oksrukuyik Creek
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used to predict a validation set using the remaining 15% of spectral data. We fit linear correlations between the 
predicted training and validation sets and the lab-measured values to establish the calibration model's goodness 
of fit (as in Vaughan et al., 2018). Once each PLSR model was validated, we generated the predicted continuous 
time-series record of concentration. We used the packages pls (Mevik & Wehrens, 2007; R Core Team, 2014) and 
tools from plantspec (Griffith & Anderson, 2019) to fit season and watershed-specific PLSR calibration models 
in R 4.0.3 (R Core Team, 2014).

2.3. Analysis of Concentration-Discharge Relationships and Recession Constants

To assess C-Q responses in our watersheds, we used an event-based approach. We used the hydrostats R package 
(Bond, 2019) to first identify putative flow events in the continuous discharge data and then differentiate base-
flow and stormflow using a Lyne-Hollick filter (Ladson et al., 2013) (Figure 3a). Using this filter on the discharge 
record, we considered a storm to be an “event” when discharge increased at least 10% above baseflow conditions. 
After delineating each storm event based on this procedure, we further classified prolonged events that had multi-
ple peaks as embedded, separate events using each peak minimum to separate events into individual events for 
further analysis. In the Kuparuk and Oksrukuyik, respectively, we captured 13 and 8 (2017); 9 and 8 (2018); 9 
and 6 (2019), 6 and 6 (2020), and 6 and 4 (2021) events.

We first determined the event-scale C-Q relationship using a power law function (C = αQ β), where α is a scaling 
factor and β is the exponent representing the slope of the log-transformed C-Q response (Godsey et al., 2009) 
(Figures  3b and  3c). The C-Q slope (β) leverages data from the entire event hydrograph, thus capturing the 
direction and pattern of water chemistry across the rising and falling limb of the storm. To describe variations 

Figure 3. (a) A typical storm event monitoring pre-event (black point), peak flow (gray point), and post-event river 
concentrations of an enriching (solid gray line) or diluting (dashed gray line) solute as discharge (Q, solid black line) 
changes over time. (b) The biplot of log-log concentration-discharge (C-Q) relationship (gray line) shows the direction 
of the entire storm event relationship. (c) The slope of the power-law C-Q slope (β) denotes the relationship between the 
entire chemograph as enriching (β > 0), chemostatic (β ∼ 0), or diluting (β < 0). (d) Event recession constant, k, over the 
recession period. A positive k indicates an increase in concentration since peak flow, while a negative k indicates a decrease 
in concentration post-peak.
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sensors have provided a useful tool to help quantify additional solutes of interest (Burns et al., 2019; Crawford 
et al., 2015; Pellerin et al., 2016; Rode et al., 2016). We encourage exploration and expansion of high-frequency 
monitoring in an effort to expand our understanding of biogeochemical conditions in a changing Arctic, but wish 
to provide a word of caution. While it can be tempting to rely on the sensor-derived parameters or established 
calibration relationships, concentration estimates from sensors must be bolstered with effort to validate these rela-
tionships across space and over time. We emphasize the importance of generating unique solute-, watershed-, and 
year-specific calibration models (Figures S1–S5 in Supporting Information S1) to adequately predict time-series 
of concentrations or the user risks significant over-interpretation of the high-frequency records. Despite these 
modest challenges, the application of high-frequency water quality sensors in Arctic regions still provides an 
exciting solution for capturing the varying influence of landscape on hydrochemical attributes that drive longitu-
dinal and lateral solute fluxes (Shogren et al., 2021; Zarnetske et al., 2020a , 2020b, 2020c). The lateral flux of 
C and N to Arctic river networks thus remains a significant source of uncertainty in constraining biogeochem-
ical budgets in high-latitude ecosystems as the Arctic hydrologic cycle shifts toward more intense precipitation 
(McCrystall et al., 2021).
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