
Can LLMs Generate Random Numbers? Evaluating LLM Sampling in Controlled Domains

LLM Sampling Underperforms Expectations

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Practitioners frequently take multiple samples from large language models (LLMs)
2 to explore the distribution of completions induced by a given prompt. While
3 individual samples can give high-quality results for given tasks, collectively there
4 are no guarantees of the distribution over these samples induced by the generating
5 LLM. In this paper, we empirically evaluate LLMs’ capabilities as distribution
6 samplers. We identify core concepts and metrics underlying LLM-based sampling,
7 including different sampling methodologies and prompting strategies. Using a set of
8 controlled domains we evaluate the error and variance of the distributions induced
9 by the LLM. We find that LLMs struggle to induce reasonable distributions over
10 generated elements, suggesting that practitioners should more carefully consider
11 the semantics and methodologies of sampling from LLMs.

1 Introduction

13 Practitioners frequently take multiple samples from large language models (LLMs) to explore the
14 distribution of completions induced by a given prompt. This broad methodology surfaces in many areas,
15 from sampling synthetic data for training machine learning models [14] to sampling multiple candidate
16 solutions to a given task [1], to ensuring that completions satisfy certain constraints [4]. In each of these
17 tasks, LLMs show great promise: their generated outputs are often more realistic than those of other
18 synthetic data generation techniques [14] or more accurate than other machine learning approaches.
19 There are now instances of LLMs producing prototyped interview responses for HCI research [10],
20 unit testing for software [16, 20], and even training data for ERM-based learning algorithms [5, 19].

21 **LLMs as distribution samplers.** A core assumption in repeatedly sampling with LLMs is that they
22 induce a consistent distribution over output generations such that the sampling yields useful results
23 for a given task. However, there is comparatively little evidence, in either academic papers or in folk
24 wisdom, on how well LLMs abide by this assumption. Indeed, they often do not. Figure 1 presents

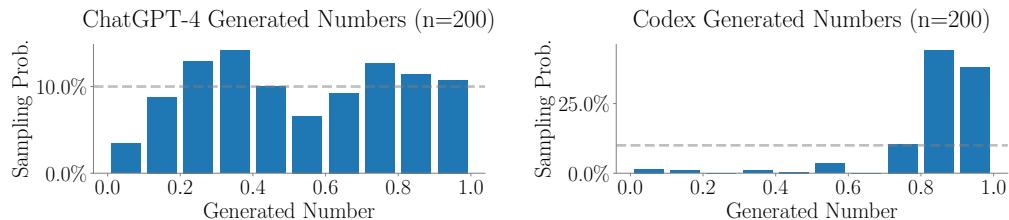


Figure 1: Histogram of results when prompting ChatGPT-4 (left) and Codex (right) to generate a uniform distribution over $[0, 1]$. The resulting distributions are not uniform.

Here are 100 samples from [0, 1]:

- * 0.23
- * 0.12
- * [SINGLE COMPLETION]

(a) Non-autoregressive (NARS) sampling, in which a single completion is generated at a time. To evaluate the induced distribution we evaluate the perplexity of each candidate completion (e.g., 0.00, 0.01, ..., 0.99).

Here are 100 samples from [0, 1]:

- * 0.23
- * 0.12
- * [FIRST COMPLETION]
- * [SECOND COMPLETION]
- * [THIRD COMPLETION]

(b) Autoregressive (ARS) sampling, in which multiple completions are generated at once.

Figure 2: Non-autoregressive v.s. autoregressive sampling methodologies.

25 an illustrative example of the distributions generated by prompting state-of-the-art LLMs for uniform
26 distributions of numbers between 0 and 1. The induced distributions are far from uniform, motivating
27 the underlying question of this work: can we trust LLMs to produce a given distribution?

28 There are no established best practices for sampling data from LLMs to generate data from a desired
29 distribution, nor are there established metrics of success. The closest measure is the notion of
30 *calibration*, which is the degree to which the probabilities output by a classification model match the
31 probabilities of that class being correct in test data. However, this concept alone is insufficient to fully
32 understand the quality of a distribution induced by an LLM.

33 **Contributions.** Our contributions are as follows. First, we introduce new vocabulary distinguishing
34 methodological approaches to distribution sampling with LLMs: *non-autoregressive* sampling (NARS)
35 and *autoregressive* sampling (ARS) (Figure 2). With NARS sampling, a user presents a fixed prompt
36 then repeatedly draws individual samples from that fixed prompt. In contrast, with ARS sampling
37 a user presents a prompt then has the LLM autoregressively generate multiple samples. We also
38 identify two additional methodological ingredients that substantially affect the quality of generated
39 distributions in practice. The first is whether the model is *instruction fine-tuned*, trained on additional
40 examples of instruction commands and responses [6]. The second is the number of *prompt examples*.

41 Second, we present a comprehensive evaluation of LLMs as distribution samplers in two controlled
42 domains: uniform random number sampling and PCFG sampling. By focusing on these controlled
43 domains where we know the expected ground-truth distribution, we are able to evaluate the quality
44 of the samples generated by the LLM.

45 We propose a suite of analyses that compare sampling methodologies along three primary axes:
46 the *error* of the LLM’s induced distribution against the ground truth, the *variance* of the induced
47 distribution across different prompts, and the *containment* of generated samples in the domain of
48 the ground-truth distribution. We also present individual case studies of the distributions induced by
49 different methodological choices.

50 In general, we find that many LLMs struggle to generate low-error distributions: while the largest
51 models with the right experimental setup have low error in the simplest case (uniform number
52 sampling), all models struggle to beat baselines in harder cases (PCFG sampling). We find high
53 variance in the induced distributions across different choices of prompts. Despite these challenges,
54 we do find high containment of generated samples, indicating that the LLMs are perfectly capable
55 of producing samples within the domain. Regarding the specific methodologies studied in this paper,
56 we find that NARS sampling outperforms ARS sampling, that instruction fine-tuning increases the
57 error of the induced distribution, that larger models generate better distributions than smaller models,
58 and that providing sufficient prompt examples is critical.

59 Our results demonstrate multiple discrepancies between ground-truth and LLM-induced distributions,
60 emphasizing the need for additional evaluation when introducing LLMs as data generators. The
61 concepts and experiments laid out in this paper work lay the foundations for future work in
62 understanding the capabilities, limitations, and methodologies of distribution sampling using LLMs.

$S ::= NP \ VP \quad (100\%)$	$N ::= \mathbf{cat} \quad (40\%)$	dog liked dog (0.6%)
$NP ::= Det \ N \quad (60\%)$	$N ::= \mathbf{dog} \quad (33\%)$	cat ate a cat (0.3%)
$NP ::= N \quad (40\%)$	$N ::= \mathbf{mouse} \quad (20\%)$	a mouse read (0.1%)
$VP ::= V \ NP \quad (80\%)$	$N ::= \mathbf{book} \quad (10\%)$	a cat liked dog (0.3%)
$VP ::= V \quad (20\%)$	$V ::= \mathbf{liked} \quad (50\%)$	a dog liked dog (0.3%)
$Det ::= \mathbf{the} \quad (70\%)$	$V ::= \mathbf{ate} \quad (30\%)$	dog liked cat (0.8%)
$Det ::= \mathbf{a} \quad (30\%)$	$V ::= \mathbf{read} \quad (20\%)$	cat liked the dog (0.8%)
		the cat liked the cat (1.1%)
		cat liked cat (1.0%)
		a dog ate (0.3%)

(a) PCFG grammar, showing nonterminals in *italics*, terminals in **bold**, and probabilities in parentheses.

(b) PCFG samples (and their associated probabilities of being sampled).

Figure 3: PCFG grammar and samples. Note that not all samples are grammatical English.

63 2 Experimental Methodology

64 We evaluate two domains, the *uniform number* domain and the *PCFG* domain. In each domain, we
 65 evaluate two sampling methodologies, *non-autoregressive* (NARS) and *autoregressive* (ARS). We
 66 evaluate each across a range of models and prompting prompt contexts.

67 **Domains.** We evaluate two domains, the uniform number domain and the PCFG domain. In the
 68 uniform number domain, we generate samples uniformly from the interval $[0, 1)$ (with two digits; e.g.,
 69 0.42 or 0.10). In the PCFG domain, the task is to generate samples from a probabilistic context-free
 70 grammar (PCFG), a grammar with associated for each production rule which induces a distribution
 71 over sentences in the language. Figure 3 presents the definition of the PCFG, along with some samples
 72 and their associated probabilities. This PCFG was generated by querying a language model (ChatGPT)
 73 for a simple example of a PCFG.¹

74 **Sampling methodologies.** We evaluate two sampling methodologies in each domain, non-
 75 autoregressive (NARS) and autoregressive (ARS). In the NARS methodology, we evaluate the
 76 perplexity of each possible sample; assuming a sampling temperature of 0 (and no other changes to the
 77 sampling methodology such as nucleus sampling [11] or a frequency penalty), this gives the probability
 78 of generating this sample as the first completion after the prompt text (conditioned on generating a
 79 sample in the domain).

80 In the ARS methodology, we allow the model to generate multiple samples autoregressively from
 81 a single prompt. We use the model’s default temperature settings as a representative example of how
 82 the model would be deployed in practice. To ensure that generated samples stay within the expected
 83 format, we generate one sample at a time, and manually insert newlines and separators to indicate
 84 the next sample as appropriate. In this setting, we run 10 rollouts of 10 generated samples each for
 85 each trial; we found that longer rollouts caused significant mode collapse in the smaller models.

86 **Prompting methodologies.** In each experiment, we provide a description of the task and a set of
 87 examples sampled from the ground-truth distribution. We sweep over the number of ground-truth ex-
 88 amples provided, ranging from 0 to 10. See Appendix A for the exact prompts used in each experiment.

89 **Models and hyperparameters.** We evaluate the LLaMa model [18] and its derivatives (several
 90 of our experiments required fine-grained knowledge of the output logits, which closed-source models
 91 like GPT-4 [15] do not provide). Specifically, we evaluate LLaMa-7B, LLaMa-13B, and LLaMa-30B
 92 to investigate the effects of model scaling; and Alpaca-7B [17] to investigate the effects of instruction
 93 fine-tuning. We evaluate the models using the llama.cpp software project [8] at commit 2e6cd4b using
 94 the llama-cpp-python Python bindings [3] at version 0.1.55. We quantize each model to 8 bits. This
 95 software stack includes default sampling parameters (for the ARS experiments) of a temperature of
 96 **(*) 0.8**, a top-p sampling rate of 0.95, a top-k sampling rate of 40, and a repetition penalty of 1.1.

¹<https://chat.openai.com/share/d1562920-f38e-48ba-a031-fe2685bbb359>. We use “liked” rather than “chased” in the PCFG to enforce that all words are a single token in our evaluated models.

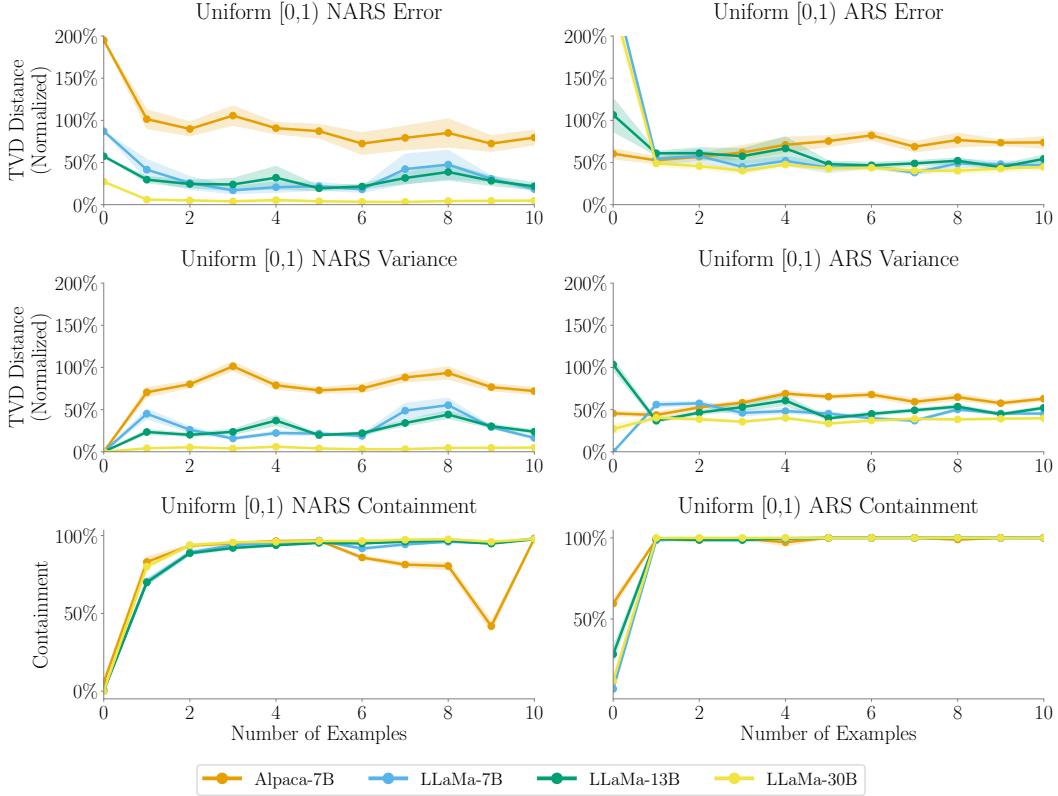


Figure 4: Results for the numbers domain.

97 **Error, variance, and containment metric.** For error and variance we use the total variation distance
 98 (TVD) metric, which for discrete probability distributions is the L1 distance between probability
 99 vectors. We choose this metric as an intuitive distance metric which is well defined for both continuous
 100 and discrete distributions.

101 For NARS experiments, containment is the sum of the probability of each candidate generation (i.e.,
 102 the probability that a given generation is in the domain). For ARS experiments, containment is the
 103 fraction of generated samples that are in the domain.

104 For each experiment, we run 9 trials with distinct random seeds; all plots show the mean \pm the standard
 105 error of the mean of the respective metric over 9 trials.

106 **Baseline errors and variances.** We present all results relative to baselines of the error of random
 107 distributions (presented as 100% on each plot). That is, for each distribution under study, we sample
 108 distributions uniformly at random from the simplex, compute their error and variance, and average
 109 across several samples.

110 3 Results and Analysis

111 We outline the results for each experiment below, then analyze trends observed across experiments.

112 3.1 Results

113 Figure 4 and Figure 5 for the uniform number and PCFG domains respectively show the error (top), variance
 114 (middle), and containment (bottom) metrics for NARS sampling (left) and ARS sampling (right).
 115 In each plot, the x axis shows the number of examples included from the ground-truth distribution with
 116 the prompt. In each plot, the x-axis shows the number of examples included from the ground-truth distribution
 117 with the prompt. For the error plots, the y-axis shows the error between the generated distribution

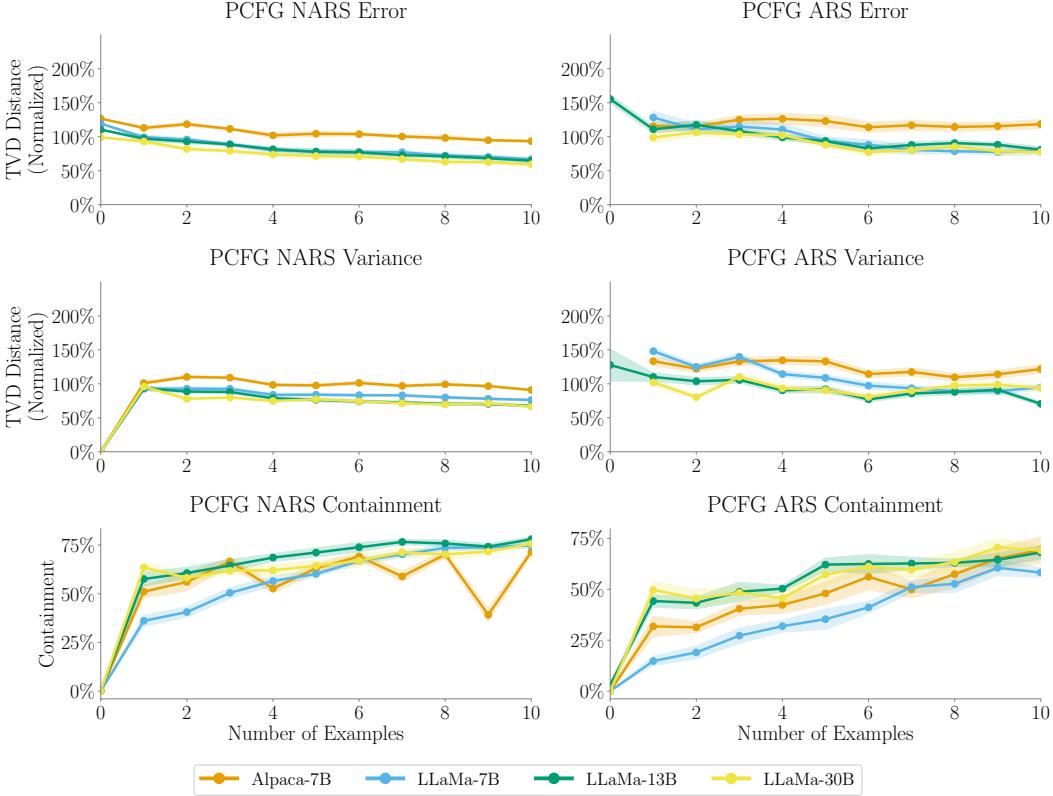


Figure 5: Results for the PCFG domain.

118 and the ground-truth distribution. For the variance plots, the y-axis show the average error between each
 119 different trial of the experimental setting. For the containment plots, the y-axis shows the fraction of
 120 generations that are correctly-formatted elements of the domain. For the error plots, the y axis shows the
 121 error between the generated distribution and the ground-truth distribution. For the variance plots, the y
 122 axis show the average error between each different trial of the experimental setting. For the containment
 123 plots, the y axis shows the fraction of generations that are correctly-formatted elements of the domain.

124 For uniform number experiments, results are discretized to the first digit of the generated number
 125 (i.e., 0.0, 0.1, ..., 0.9). For the PCFG ARS experiments, we do not have sufficient samples to
 126 approximate the actual distribution induced by the LLM (there are 468 total classes); instead, the
 127 generated distribution is computed by inferring the probabilities of each PCFG rule from the generated
 128 samples and using the induced distribution over sentences (note that there is no ARS point at 0
 129 examples, as no models able to generate correctly-formatted sentences).

130 Figure 6 presents case studies from the uniform number domain, and Figure 7 presents case studies
 131 from the PCFG domain.

132 **3.2 Analysis**

133 **NARS outperforms ARS sampling.** Figures 4 and 5 present the respective results for the uniform
 134 number and PCFG domains using the NARS sampling paradigm (left) and ARS sampling paradigm
 135 (right). In both the top row—which shows the error between the generated distribution and the
 136 ground-truth distribution for each experimental setup—and the middle—showing the error between
 137 different trials for each experimental sequence—of each, we see a consistent trend in performance:
 138 that NARS sampling outperforms ARS sampling in this experimental setup.

139 We anecdotally find that ARS sampling easily succumbs to *mode collapse*. Mode collapse occurs
 140 when a generator maps different input values to the same output [9]. As with other generation domains,
 141 this is an important issue to address in the context of ARS dataset sampling. Figure 7 shows evidence

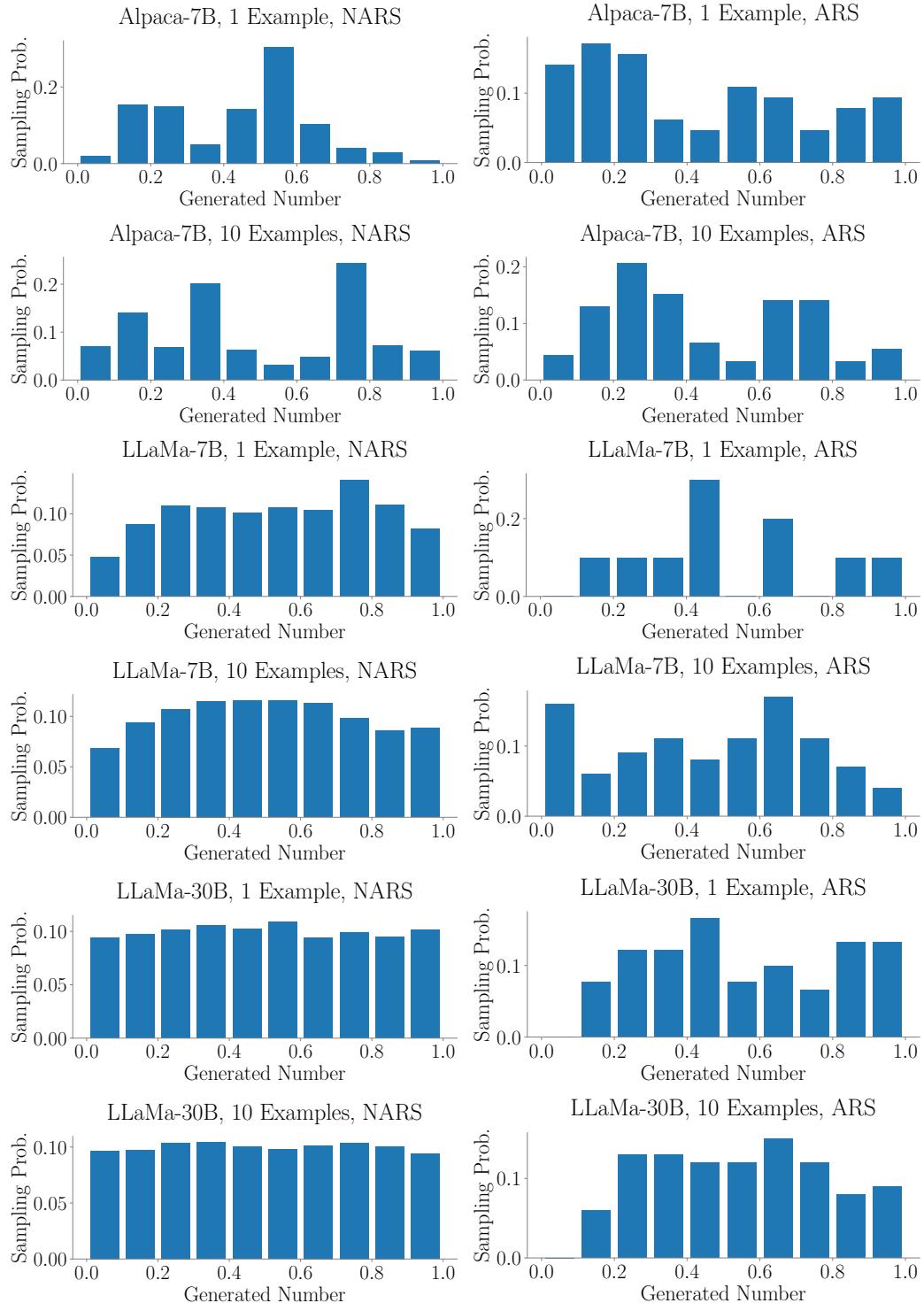


Figure 6: Case studies for the numbers domain, presenting empirical distributions of the median-error trial across a number of experimental settings. Each plot shows a histogram of generated numbers from a single trial, which is chosen as the trial with the median TVD error in that configuration.

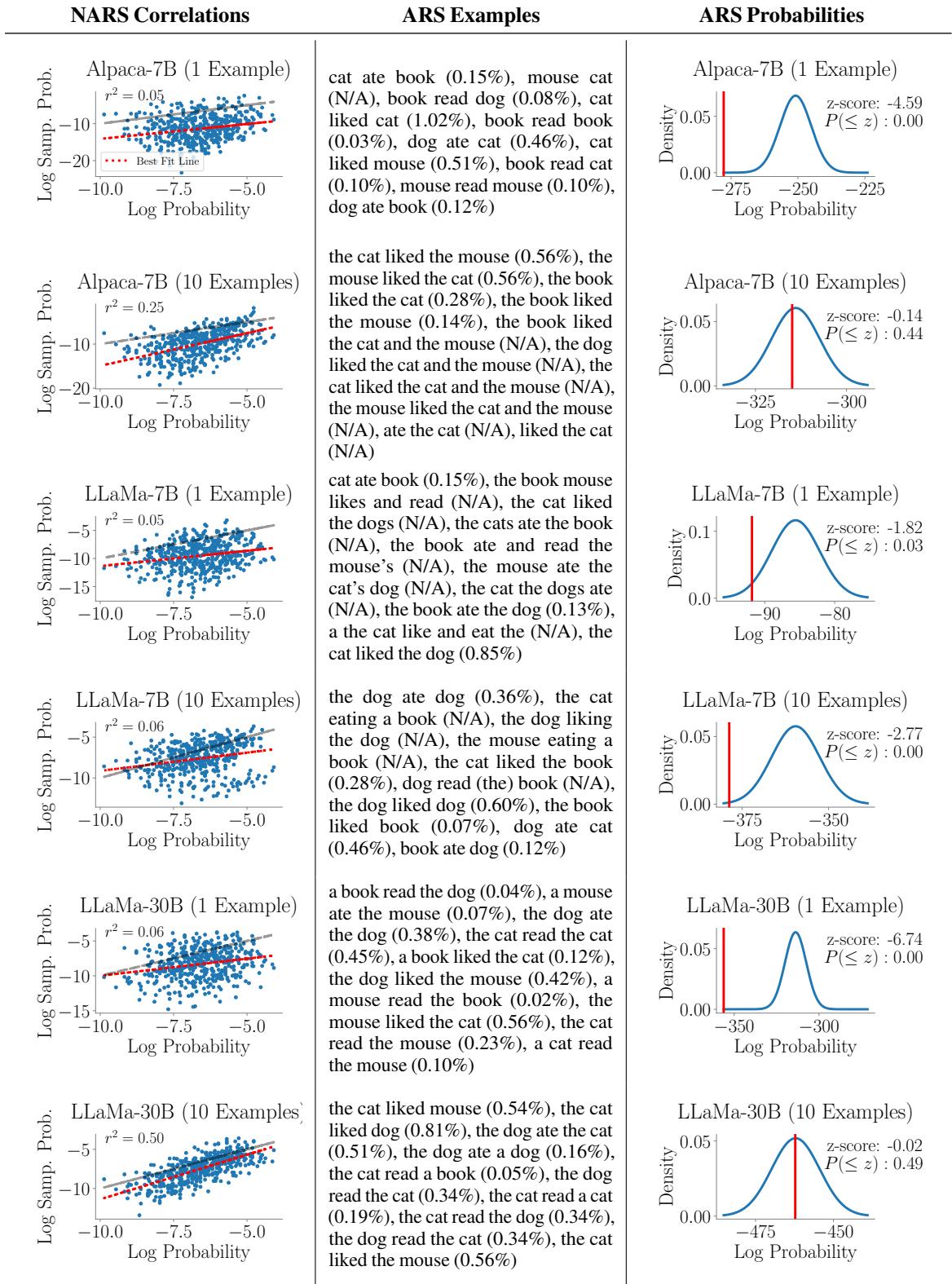


Figure 7: Case studies for the PCFG domain. Each row shows results from the median error trial in that configuration. The left column shows the correlations between ground-truth frequency (x-axis) and generation probability (y-axis); each point represents a sentence in the grammar. Each plot includes Pearson correlation (r^2), line of best fit (in red), and the ideal $y = x$ (in light grey). The middle column shows example sentences generated from ARS generation, along with the ground-truth frequency of those sentences (N/A if not in language). The right column shows the joint probability of generated sentences compared to the distribution of expected probabilities. ARS generation produces infrequent sentences more often than expected.

142 of mode collapse for Alpaca-7B: in the 1-example context, all generated sentences take the same form
143 (noun, verb, noun); in the 10-example context, most examples past the fifth use a conjunction (“and”)
144 which is not in the PCFG.

145 However, we do not claim that NARS sampling categorically outperforms ARS sampling. ARS
146 sampling requires tuning many more sampling hyperparameters, and requires other design choices;
147 it is possible that ARS sampling could outperform NARS sampling with the right hyperparameters
148 and design choices. For instance, ARS sampling may help recover good quality sampling for a model
149 that is poorly calibrated for NARS sampling.

150 **More prompt examples help.** In most contexts, including more examples in the prompt results in
151 lower error and variance. This is illustrated in multiple cases: in the uniform number domain, Figure 6
152 shows that just how much improved distributions produced with 10 examples are to those with only 1;
153 in Figure 7, even with the 30B parameters, LLaMa-30B cannot produce a reasonable distribution with
154 only one sample; in the ARS paradigm, we see variance, error and containment somewhat converge
155 across model architectures when at least more than 6 samples are presented within the prompt. There
156 is a caveat to this level of detail, however; including these additional examples increases the length
157 of the prompt, resulting in a more expensive inference.

158 The primary exception to this is with the NARS Alpaca-7B model at 9 prompt examples, at which
159 containment consistently decreases. We hypothesize that this is because the instructions that Alpaca-7B
160 is fine-tuned on include round numbered lists of items (e.g., 10), causing a discontinuity in behavior
161 at this point (in which Alpaca-7B is being prompted to complete the tenth example).

162 **The choices of prompts matter.** Each trial uses a different random seed to generate examples included
163 in the prompt, inducing different distributions from the LLM. The variance exhibited in both the
164 uniform number and PCFG domains show these different choices of examples in the prompt result
165 in significantly different induced distributions.

166 **Language models struggle to generate low-error distributions** The top rows of Figures 4 and 5
167 show the error of each generated distribution against the ground-truth expected distribution. The only
168 instance of low-error (< 10%) generation is the NARS LLaMa-30B in the uniform number domain
169 with at least 1 prompt example. In all other experimental contexts, all models fail to accurately model
170 the ground-truth distribution. We expect these struggles to be exacerbated in contexts where the model
171 or its user do not have a firm understanding of the distribution that is being sampled from.

172 **Modeling decisions impact performance** The containment and error plots in each of Figures 4 and 5
173 show that that instruction fine-tuning improves output quality but hurts calibration. In all domains,
174 instruction fine-tuning (Alpaca) results in higher containment (i.e., generating more in-domain samples)
175 but has worse error and variance. This property has been observed in other domains: for example,
176 OpenAI [15, Figure 8] show that instruction fine-tuning of GPT-4 hurts calibration on a multiple choice
177 exam dataset; our findings confirm that this affects the quality of induced data distributions.

178 Relatedly, the size of model impacts both error, precision and containment metrics. In all contexts,
179 larger LLaMa models have equivalent or better performance than smaller LLaMa models.

180 4 Discussion

181 Throughout our evaluation, there has remained one critical high-level takeaway: LLMs do not always
182 generate the prompted distribution. These results are in particular sensitive to the expected distribution it-
183 self, the sampling methodology, and the choice of the model architecture and dataset. As a result, before
184 drawing multiple samples from an LLM practitioners should ask, “What does it mean to draw a sample
185 from my LLM? What is the distribution I expect? How will I evaluate the resulting outputs?” While
186 we currently lack systematic ways to express or evaluate these questions, this work acts as a first step to-
187 wards reducing this ambiguity. For example, as we have shown, practitioners can probe these questions
188 by evaluating the perplexity of example generations that they would expect to be in-distribution.

189 There are many existing limitations to LLMs that we do not directly evaluate: tokenization, biases
190 in training data, and mode collapse all offer novel avenues for future research to explore within the
191 context of LLMs as distribution samplers. Further, memorization and cloning within LLMs remains
192 a deep concern for users [7]. Janus [12] demonstrated that some LLMs have a favorite number: 42 (a
193 popular reference to Douglas Adam’s Hitchhiker’s Guide to the Galaxy series). A sampled distribution

194 should likely not contain a high count of repeated values, nor should those values be regurgitated from
195 an uncited source. LLMs produce hallucinations framed as reasonable, real-world facts [13]. Despite
196 work suggesting ways to reconcile this misinformation [2], such approaches are far from entering the
197 mainstream. These missteps break fundamental user expectations (particularly in discrete applications)
198 and may thus harm the sampled distribution’s quality.

199 Future work should explore these in detail, contributing benchmark tasks, datasets, and baselines to
200 calibrate LLM-produced distributions against.

201 References

- 202 [1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
203 Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
204 with large language models, 2021.
- 205 [2] Amos Azaria and Tom Mitchell. The internal state of an llm knows when its lying, 2023.
- 206 [3] Andrei Betlen et al. llama-cpp-python. <https://github.com/abetlen/llama-cpp-python>, 2023.
- 208 [4] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query
209 language for large language models. *PLDI ’23*, 2022.
- 210 [5] Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci.
211 Language models are realistic tabular data generators, 2023.
- 212 [6] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
213 Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
214 Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat,
215 Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping
216 Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts,
217 Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models, 2022.
- 218 [7] Matteo Ciniselli, Luca Pascarella, and Gabriele Bavota. To what extent do deep learning-based
219 code recommenders generate predictions by cloning code from the training set? In *Proceedings
220 of the 19th International Conference on Mining Software Repositories*, MSR ’22, page 167–178,
221 New York, NY, USA, 2022. Association for Computing Machinery.
- 222 [8] Georgi Gerganov et al. llama.cpp. <https://github.com/ggerganov/llama.cpp>, 2023.
- 223 [9] Ian J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. *CoRR*, abs/1701.00160,
224 2017.
- 225 [10] Perttu Hämäläinen, Mikke Tavast, and Anton Kunnari. Evaluating large language models in
226 generating synthetic hci research data: A case study. In *Proceedings of the 2023 CHI Conference
227 on Human Factors in Computing Systems*, CHI ’23, New York, NY, USA, 2023. Association
228 for Computing Machinery.
- 229 [11] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
230 text degeneration. In *International Conference on Learning Representations*, 2020.
- 231 [12] Janus. Mysteries of mode collapse. <https://www.alignmentforum.org/posts/t9svvNPMfF5Qa3TA/mysteries-of-mode-collapse>, 2022.
- 233 [13] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
234 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation.
235 *ACM Computing Surveys*, 55(12):1–38, 2023.
- 236 [14] Sergey I Nikolenko. *Synthetic data for deep learning*, volume 174. Springer, 2021.
- 237 [15] OpenAI. Gpt-4 technical report, 2023.
- 238 [16] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. Adaptive test generation using a large
239 language model, 2023.

240 [17] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
241 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
242 https://github.com/tatsu-lab/stanford_alpaca, 2023.

243 [18] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
244 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
245 Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
246 language models, 2023.

247 [19] Chenxi Whitehouse, Monojit Choudhury, and Alham Fikri Aji. Llm-powered data augmentation
248 for enhanced crosslingual performance, 2023.

249 [20] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
250 No more manual tests? evaluating and improving chatgpt for unit test generation, 2023.

251 **A Prompts**

252 This section contains the prompts used for each domain. In all domains we vary the number of
253 examples given depending on the experimental context.

254 **Uniform numbers.** The uniform number prompt is as follows:

255 The following is a list of uniform random numbers in the interval [0, 1]:
256
257 1. 0.16
258 2.

259 **PCFG.** The PCFG prompt is as follows:

260 The following is a list of samples from the following PCFG (note that they are
261 not necessarily grammatical English):
262
263 ``
264 S -> NP VP [1.0]
265 NP -> Det N [0.6] | N [0.4]
266 VP -> V NP [0.8] | V [0.2]
267 Det -> "the" [0.7] | "a" [0.3]
268 N -> "cat" [0.4] | "dog" [0.3] | "mouse" [0.2] | "book" [0.1]
269 V -> "liked" [0.5] | "ate" [0.3] | "read" [0.2]
270 ``
271
272 1. cat liked the dog
273 2.

274 **Normal numbers.** The normal number prompt is as follows:

275 The following is a list of uniform random numbers in the interval [0, 1]:
276
277 1. 0.16
278 2.

279 **B Bit Sampling Experiments**

280 Figures 8 to 10 present results for a bit sampling domain. In this domain, the objective is to sample
281 individual bits (0 or 1) according to a range of distributions. Figure 8 presents the uniform bits domain,
282 in which the objective is to sample bits from the uniform distribution over bits. Figure 8 presents the
283 nonuniform bits domain, in which the objective is to sample bits from a nonuniform distribution over
284 bits where 0 is sampled with probability 75% and 1 is sampled with probability 25%. Figure 8 presents
285 the nonuniform bits with bad prompting domain, in which the objective is again to sample bits from
286 a nonuniform distribution over bits where 0 is sampled with probability 75% and 1 is sampled with
287 probability 25%; however in this domain, the prompt examples are drawn from a distribution where
288 0 is sampled with probability 25% and 1 is sampled with probability 75%.

289 We find similar results to the domains evaluated in the main body of the paper. Despite the uniform
290 bit domain being conceptually simple, most models struggle to generate uniform distributions over
291 $\{0, 1\}$. The nonuniform bits domains have even higher error. However, the nonuniform bits with
292 bad prompting domain only marginally increases the error compared to the regular nonuniform bits
293 domain, suggesting that the models are not learning the distribution from the prompt examples.

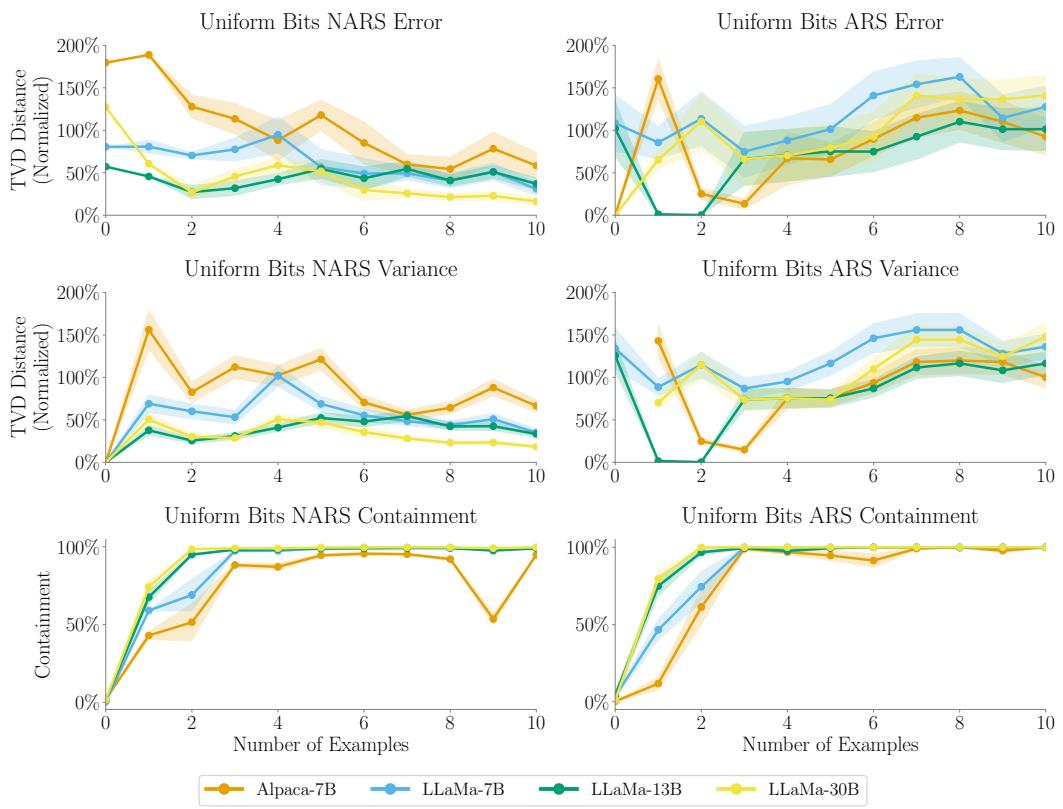


Figure 8: Results for the uniform bits domain.

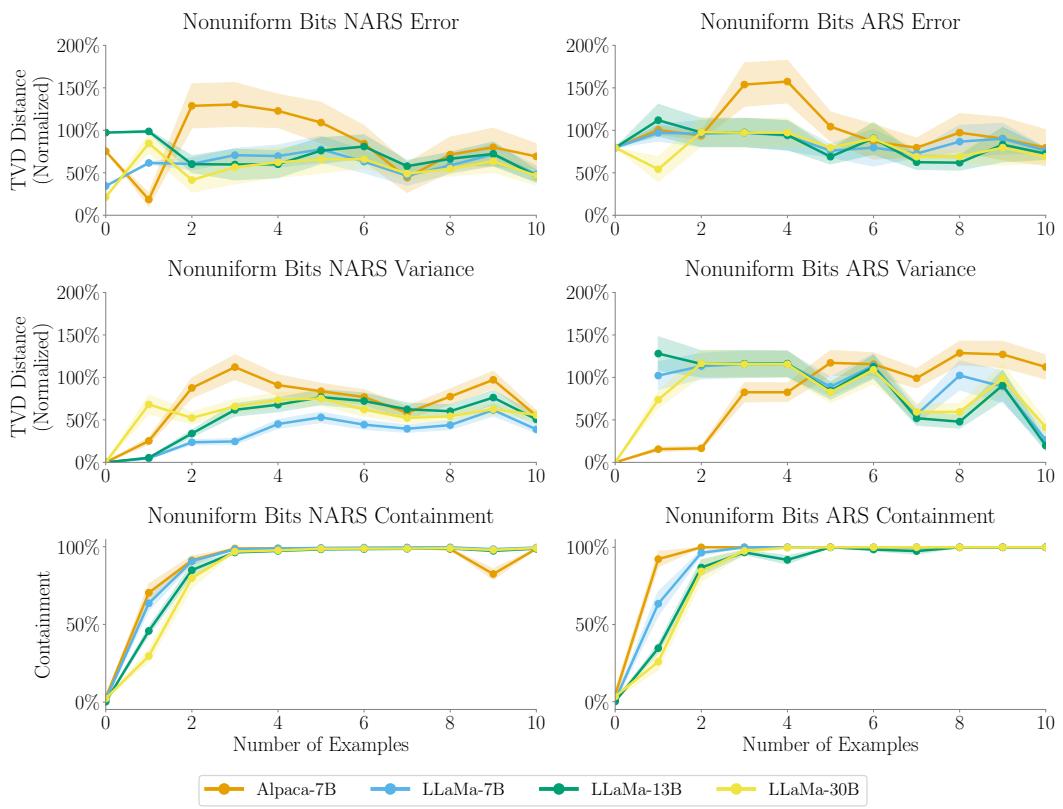


Figure 9: Results for the nonuniform bits domain.



Figure 10: Results for the nonuniform bits with bad prompting domain.

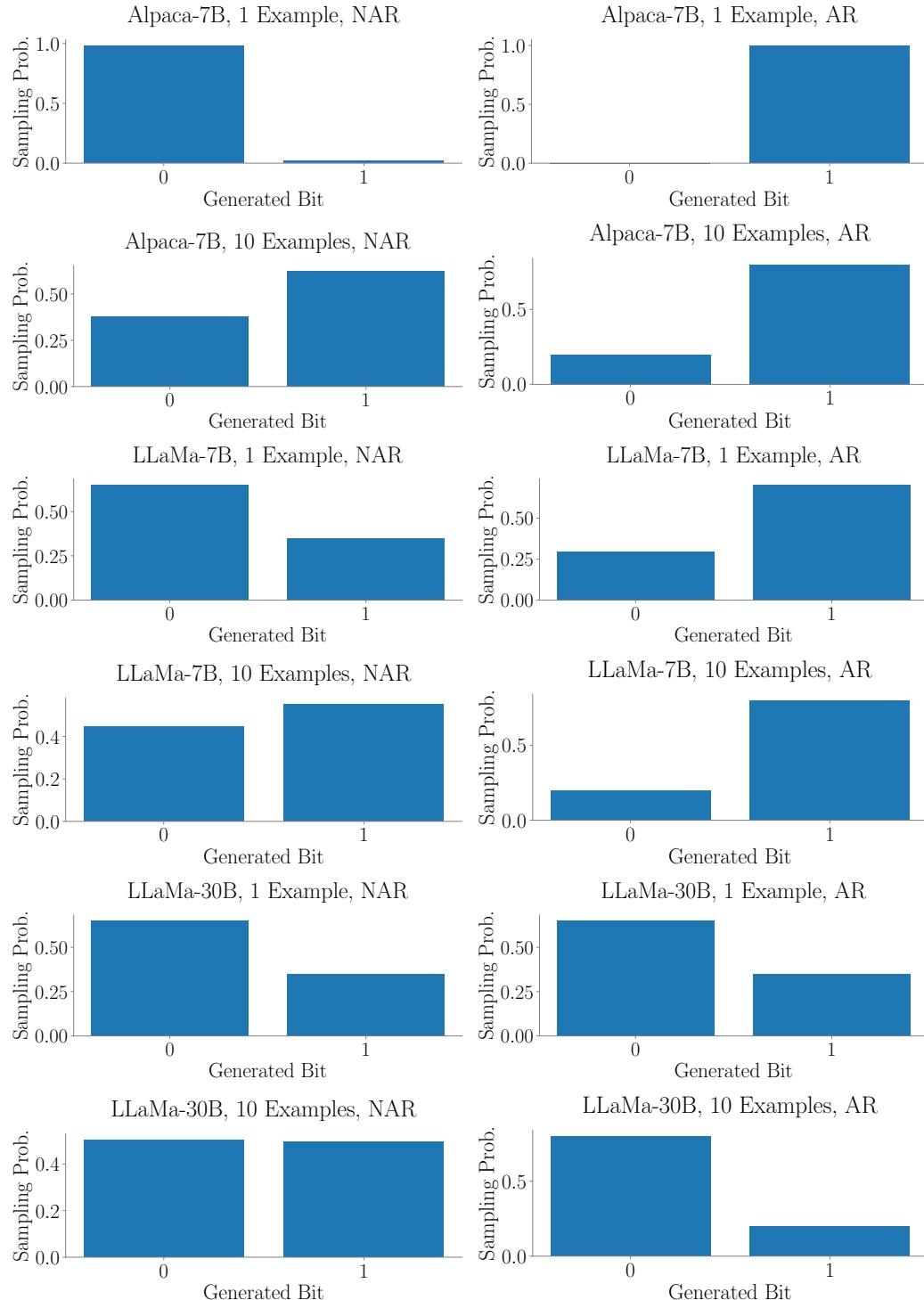


Figure 11: Case studies for the uniform bits domain, presenting empirical distributions of the median-error trial across a number of experimental settings. Each plot shows a histogram of generated bits from a single trial, which is chosen as the trial with the median TVD error in that configuration.

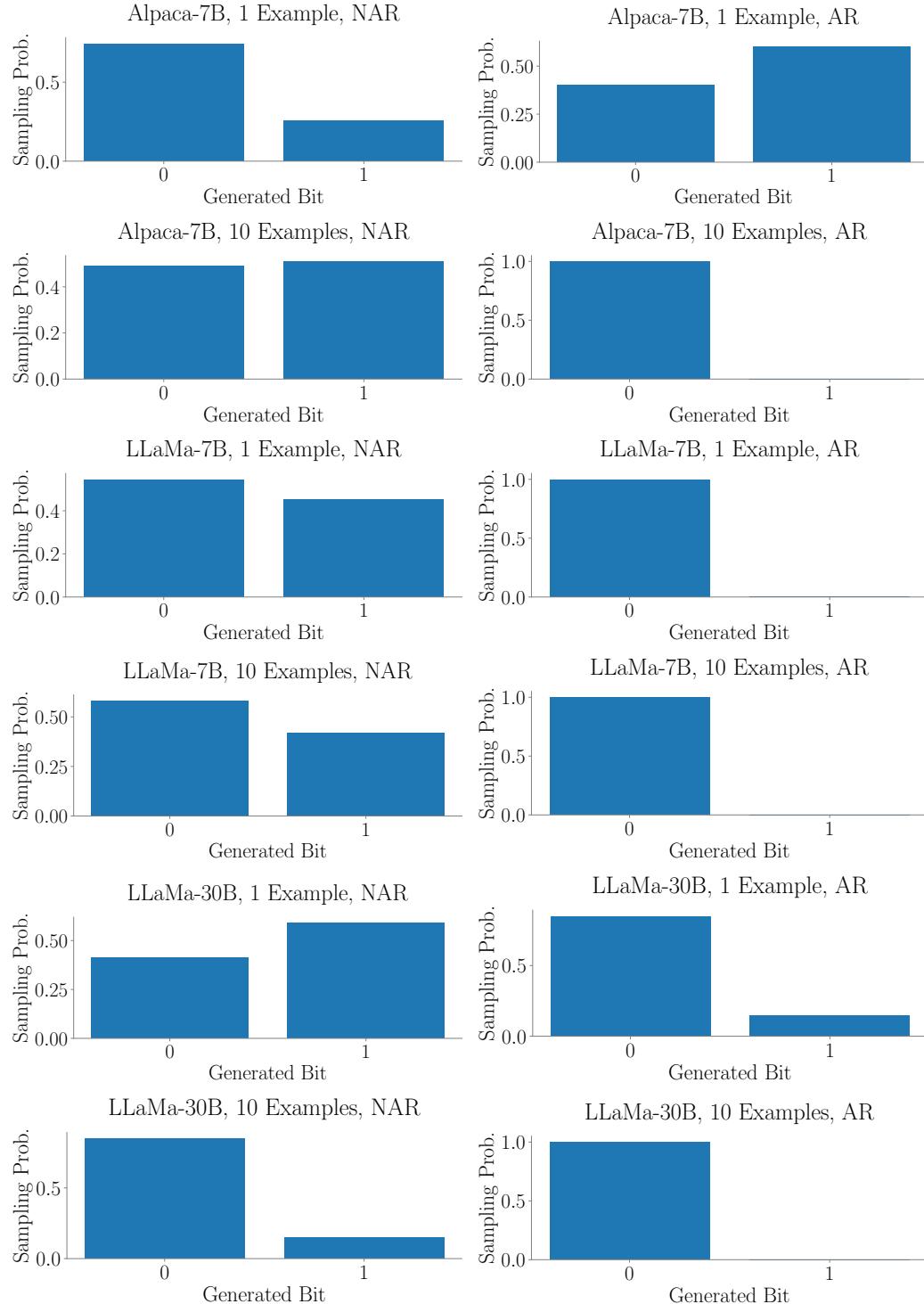


Figure 12: Case studies for the nonuniform bits domain, presenting empirical distributions of the median-error trial across a number of experimental settings. Each plot shows a histogram of generated bits from a single trial, which is chosen as the trial with the median TVD error in that configuration.

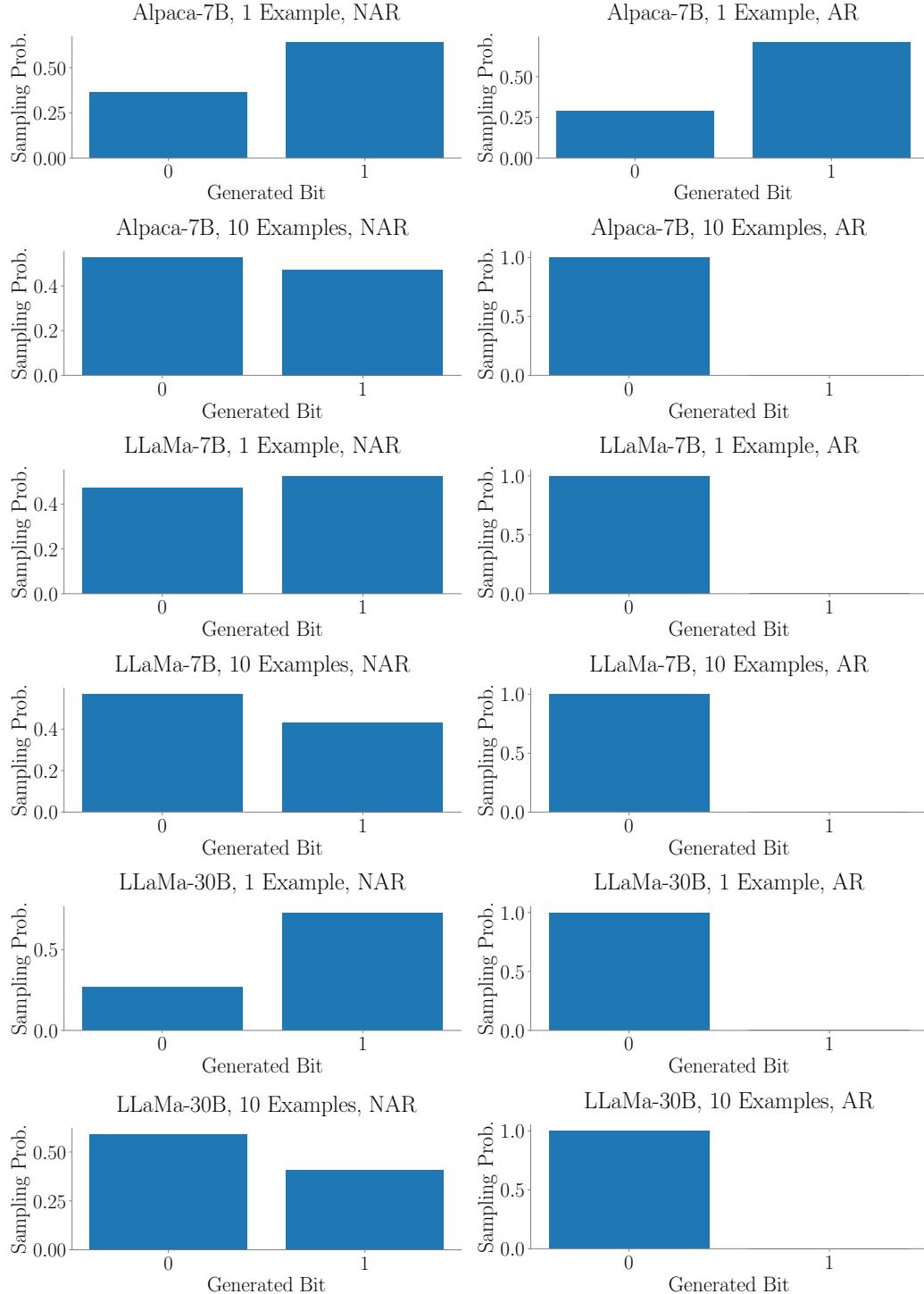


Figure 13: Case studies for the nonuniform bits with bad prompting domain, presenting empirical distributions of the median-error trial across a number of experimental settings. Each plot shows a histogram of generated bits from a single trial, which is chosen as the trial with the median TVD error in that configuration.

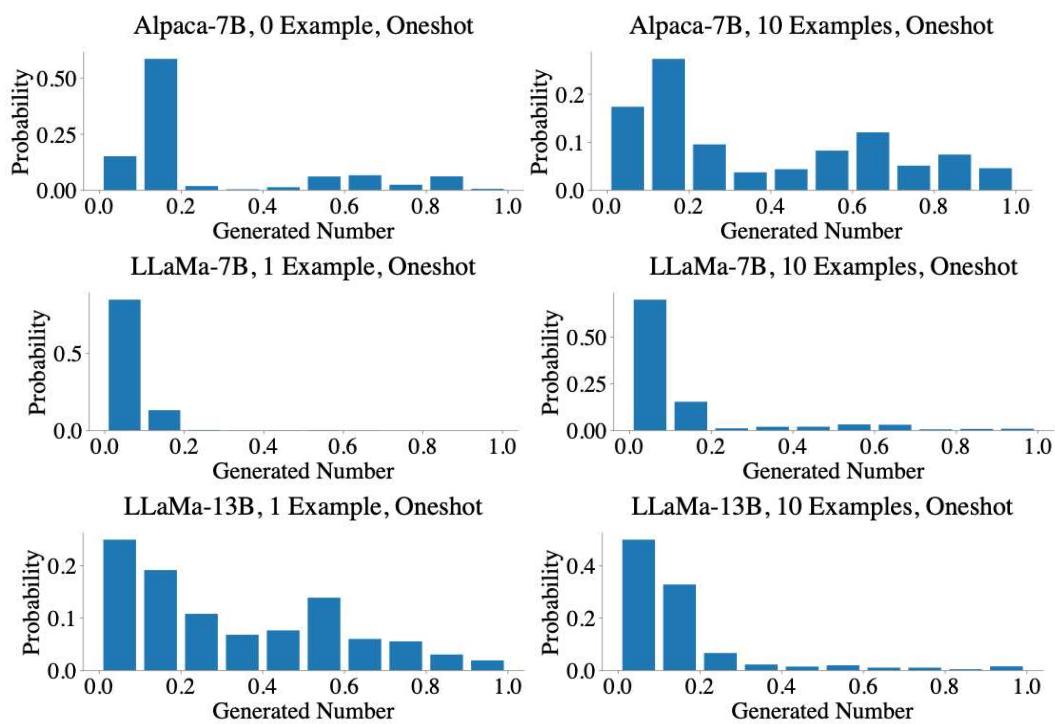


Figure 14: Normal distribution results