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Abstract

Practitioners frequently take multiple samples from large language models (LLMs)1

to explore the distribution of completions induced by a given prompt. While2

individual samples can give high-quality results for given tasks, collectively there3

are no guarantees of the distribution over these samples induced by the generating4

LLM. In this paper, we empirically evaluate LLMs’ capabilities as distribution5

samplers. We identify core concepts and metrics underlying LLM-based sampling,6

including different sampling methodologies and prompting strategies. Using a set of7

controlled domains we evaluate the error and variance of the distributions induced8

by the LLM. We find that LLMs struggle to induce reasonable distributions over9

generated elements, suggesting that practitioners should more carefully consider10

the semantics and methodologies of sampling from LLMs.11

1 Introduction12

Practitioners frequently take multiple samples from large language models (LLMs) to explore the13

distribution of completions induced by a given prompt. This broad methodology surfaces in many areas,14

from sampling synthetic data for training machine learning models [14] to sampling multiple candidate15

solutions to a given task [1], to ensuring that completions satisfy certain constraints [4]. In each of these16

tasks, LLMs show great promise: their generated outputs are often more realistic than those of other17

synthetic data generation techniques [14] or more accurate than other machine learning approaches.18

There are now instances of LLMs producing prototyped interview responses for HCI research [10],19

unit testing for software [16, 20], and even training data for ERM-based learning algorithms [5, 19].20

LLMs as distribution samplers. A core assumption in repeatedly sampling with LLMs is that they21

induce a consistent distribution over output generations such that the sampling yields useful results22

for a given task. However, there is comparatively little evidence, in either academic papers or in folk23

wisdom, on how well LLMs abide by this assumption. Indeed, they often do not: Figure 1 presents24
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Figure 1: Histogram of results when prompting ChatGPT-4 (left) and Codex (right) to generate a
uniform distribution over [0, 1). The resulting distributions are not uniform.



Here are 100 samples from [0, 1):
* 0.23
* 0.12
* [SINGLE COMPLETION]

(a) Non-autoregressive (NARS) sampling, in which
a single completion is generated at a time. To
evaluate the induced distribution we evaluate the
perplexity of each candidate completion (e.g., 0.00,
0.01, . . . 0.99).

Here are 100 samples from [0, 1):
* 0.23
* 0.12
* [FIRST COMPLETION]
* [SECOND COMPLETION]
* [THIRD COMPLETION]

(b) Autoregressive (ARS) sampling, in which
multiple completions are generated at once.

Figure 2: Non-autoregressive v.s. autoregressive sampling methodologies.

an illustrative example of the distributions generated by prompting state-of-the-art LLMs for uniform25

distributions of numbers between 0 and 1. The induced distributions are far from uniform, motivating26

the underlying question of this work: can we trust LLMs to produce a given distribution?27

There are no established best practices for sampling data from LLMs to generate data from a desired28

distribution, nor are there established metrics of success. The closest measure is the notion of29

calibration, which is the degree to which the probabilities output by a classification model match the30

probabilities of that class being correct in test data. However, this concept alone is insufficient to fully31

understand the quality of a distribution induced by an LLM.32

Contributions. Our contributions are as follows. First, we introduce new vocabulary distinguishing33

methodological approaches to distribution sampling with LLMs: non-autoregressive sampling (NARS)34

and autoregressive sampling (ARS) (Figure 2). With NARS sampling, a user presents a fixed prompt35

then repeatedly draws individual samples from that fixed prompt. In contrast, with ARS sampling36

a user presents a prompt then has the LLM autoregressively generate multiple samples. We also37

identify two additional methodological ingredients that substantially affect the quality of generated38

distributions in practice. The first is whether the model is instruction fine-tuned, trained on additional39

examples of instruction commands and responses [6]. The second is the number of prompt examples.40

Second, we present a comprehensive evaluation of LLMs as distribution samplers in two controlled41

domains: uniform random number sampling and PCFG sampling. By focusing on these controlled42

domains where we know the expected ground-truth distribution, we are able to evaluate the quality43

of the samples generated by the LLM.44

We propose a suite of analyses that compare sampling methodologies along three primary axes:45

the error of the LLM’s induced distribution against the ground truth, the variance of the induced46

distribution across different prompts, and the containment of generated samples in the domain of47

the ground-truth distribution. We also present individual case studies of the distributions induced by48

different methodological choices.49

In general, we find that many LLMs struggle to generate low-error distributions: while the largest50

models with the right experimental setup have low error in the simplest case (uniform number51

sampling), all models struggle to beat baselines in harder cases (PCFG sampling). We find high52

variance in the induced distributions across different choices of prompts. Despite these challenges,53

we do find high containment of generated samples, indicating that the LLMs are perfectly capable54

of producing samples within the domain. Regarding the specific methodologies studied in this paper,55

we find that NARS sampling outperforms ARS sampling, that instruction fine-tuning increases the56

error of the induced distribution, that larger models generate better distributions than smaller models,57

and that providing sufficient prompt examples is critical.58

Our results demonstrate multiple discrepancies between ground-truth and LLM-induced distributions,59

emphasizing the need for additional evaluation when introducing LLMs as data generators. The60

concepts and experiments laid out in this paper work lay the foundations for future work in61

understanding the capabilities, limitations, and methodologies of distribution sampling using LLMs.62
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S ::=NP VP (100%)

NP ::=Det N (60%)

NP ::=N (40%)

VP ::=V NP (80%)

VP ::=V (20%)

Det ::= the (70%)

Det ::= a (30%)

N ::= cat (40%)

N ::= dog (33%)

N ::=mouse (20%)

N ::= book (10%)

V ::= liked (50%)

V ::= ate (30%)

V ::= read (20%)

(a) PCFG grammar, showing nonterminals in italics, terminals in
bold, and probabilities in parentheses.

dog liked dog (0.6%)
cat ate a cat (0.3%)

a mouse read (0.1%)
a cat liked dog (0.3%)
a dog liked dog (0.3%)
dog liked cat (0.8%)

cat liked the dog (0.8%)
the cat liked the cat (1.1%)

cat liked cat (1.0%)
a dog ate (0.3%)

(b) PCFG samples (and their associ-
ated probabilities of being sampled).

Figure 3: PCFG grammar and samples. Note that not all samples are grammatical English.

2 Experimental Methodology63

We evaluate two domains, the uniform number domain and the PCFG domain. In each domain, we64

evaluate two sampling methodologies, non-autoregressive (NARS) and autoregressive (ARS). We65

evaluate each across a range of models and prompting prompt contexts.66

Domains. We evaluate two domains, the uniform number domain and the PCFG domain. In the67

uniform number domain, we generate samples uniformly from the interval [0, 1) (with two digits; e.g.,68

0.42 or 0.10). In the PCFG domain, the task is to generate samples from a probabilistic context-free69

grammar (PCFG), a grammar with associated for each production rule which induces a distribution70

over sentences in the language. Figure 3 presents the definition of the PCFG, along with some samples71

and their associated probabilities. This PCFG was generated by querying a language model (ChatGPT)72

for a simple example of a PCFG.173

Sampling methodologies. We evaluate two sampling methodologies in each domain, non-74

autoregressive (NARS) and autoregressive (ARS). In the NARS methodology, we evaluate the75

perplexity of each possible sample; assuming a sampling temperature of 0 (and no other changes to the76

sampling methodology such as nucleus sampling [11] or a frequency penalty), this gives the probability77

of generating this sample as the first completion after the prompt text (conditioned on generating a78

sample in the domain).79

In the ARS methodology, we allow the model to generate multiple samples autoregressively from80

a single prompt. We use the model’s default temperature settings as a representative example of how81

the model would be deployed in practice. To ensure that generated samples stay within the expected82

format, we generate one sample at a time, and manually insert newlines and separators to indicate83

the next sample as appropriate. In this setting, we run 10 rollouts of 10 generated samples each for84

each trial; we found that longer rollouts caused significant mode collapse in the smaller models.85

Prompting methodologies. In each experiment, we provide a description of the task and a set of86

examples sampled from the ground-truth distribution. We sweep over the number of ground-truth ex-87

amples provided, ranging from 0 to 10. See Appendix A for the exact prompts used in each experiment.88

Models and hyperparameters. We evaluate the LLaMa model [18] and its derivatives (several89

of our experiments required fine-grained knowledge of the output logits, which closed-source models90

like GPT-4 [15] do not provide). Specifically, we evaluate LLaMa-7B, LLaMa-13B, and LLaMa-30B91

to investigate the effects of model scaling; and Alpaca-7B [17] to investigate the effects of instruction92

fine-tuning. We evaluate the models using the llama.cpp software project [8] at commit 2e6cd4b using93

the llama-cpp-python Python bindings [3] at version 0.1.55. We quantize each model to 8 bits. This94

software stack includes default sampling parameters (for the ARS experiments) of a temperature of95

(⋆) 0.8, a top-p sampling rate of 0.95, a top-k sampling rate of 40, and a repetition penalty of 1.1.96

1https://chat.openai.com/share/d1562920-f38e-48ba-a031-fe2685bbb359. We use “liked”
rather than “chased” in the PCFG to enforce that all words are a single token in our evaluated models.
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Figure 4: Results for the numbers domain.

Error, variance, and containment metric. For error and variance we use the total variation distance97

(TVD) metric, which for discrete probability distributions is the L1 distance between probability98

vectors. We choose this metric as an intuitive distance metric which is well defined for both continuous99

and discrete distributions.100

For NARS experiments, containment is the sum of the probability of each candidate generation (i.e.,101

the probability that a given generation is in the domain). For ARS experiments, containment is the102

fraction of generated samples that are in the domain.103

For each experiment, we run 9 trials with distinct random seeds; all plots show the mean ± the standard104

error of the mean of the respective metric over 9 trials.105

Baseline errors and variances. We present all results relative to baselines of the error of random106

distributions (presented as 100% on each plot). That is, for each distribution under study, we sample107

distributions uniformly at random from the simplex, compute their error and variance, and average108

across several samples.109

3 Results and Analysis110

We outline the results for each experiment below, then analyze trends observed across experiments.111

3.1 Results112

Figure 4 and Figure 5 for the uniform number and PCFG domains respectively show the error (top), vari-113

ance (middle), and containment (bottom) metrics for NARS sampling (left) and ARS sampling (right).114

In each plot, the x axis shows the number of examples included from the ground-truth distribution with115

the prompt. In each plot, the x-axis shows the number of examples included from the ground-truth distri-116

bution with the prompt. For the error plots, the y-axis shows the error between the generated distribution117

4



0 2 4 6 8 10
0%

50%

100%

150%

200%

T
V
D

D
is
ta
n
ce

(N
or
m
al
iz
ed
)

PCFG NARS Error

0 2 4 6 8 10
0%

50%

100%

150%

200%

PCFG ARS Error

0 2 4 6 8 10
0%

50%

100%

150%

200%

T
V
D

D
is
ta
n
ce

(N
or
m
al
iz
ed
)

PCFG NARS Variance

0 2 4 6 8 10
0%

50%

100%

150%

200%

PCFG ARS Variance

0 2 4 6 8 10
Number of Examples

0%

25%

50%

75%

C
on
ta
in
m
en
t

PCFG NARS Containment

0 2 4 6 8 10
Number of Examples

0%

25%

50%

75%

PCFG ARS Containment

Alpaca-7B LLaMa-7B LLaMa-13B LLaMa-30B

Figure 5: Results for the PCFG domain.

and the ground-truth distribution. For the variance plots, the y-axis show the average error between each118

different trial of the experimental setting. For the containment plots, the y-axis shows the fraction of119

generations that are correctly-formatted elements of the domain. For the error plots, the y axis shows the120

error between the generated distribution and the ground-truth distribution. For the variance plots, the y121

axis show the average error between each different trial of the experimental setting. For the containment122

plots, the y axis shows the fraction of generations that are correctly-formatted elements of the domain.123

For uniform number experiments, results are discretized to the first digit of the generated number124

(i.e., 0.0, 0.1, . . . , 0.9). For the PCFG ARS experiments, we do not have sufficient samples to125

approximate the actual distribution induced by the LLM (there are 468 total classes); instead, the126

generated distribution is computed by inferring the probabilities of each PCFG rule from the generated127

samples and using the induced distribution over sentences (note that there is no ARS point at 0128

examples, as no models able to generate correctly-formatted sentences).129

Figure 6 presents case studies from the uniform number domain, and Figure 7 presents case studies130

from the PCFG domain.131

3.2 Analysis132

NARS outperforms ARS sampling. Figures 4 and 5 present the respective results for the uniform133

number and PCFG domains using the NARS sampling paradigm (left) and ARS sampling paradigm134

(right). In both the top row–which shows the error between the generated distribution and the135

ground-truth distribution for each experimental setup–and the middle–showing the error between136

different trials for each experimental sequence–of each, we see a consistent trend in performance:137

that NARS sampling outperforms ARS sampling in this experimental setup.138

We anecdotally find that ARS sampling easily succumbs to mode collapse. Mode collapse occurs139

when a generator maps different input values to the same output [9]. As with other generation domains,140

this is an important issue to address in the context of ARS dataset sampling. Figure 7 shows evidence141
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Figure 6: Case studies for the numbers domain, presenting empirical distributions of the median-error
trial across a number of experimental settings. Each plot shows a histogram of generated numbers
from a single trial, which is chosen as the trial with the median TVD error in that configuration.
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Figure 7: Case studies for the PCFG domain. Each row shows results from the median error trial in that
configuration. The left column shows the correlations between ground-truth frequency (x-axis) and
generation probability (y-axis); each point represents a sentence in the grammar. Each plot includes
Pearson correlation (r2), line of best fit (in red), and the ideal y = x (in light grey). The middle column
shows example sentences generated from ARS generation, along with the ground-truth frequency
of those sentences (N/A if not in language). The right column shows the joint probability of generated
sentences compared to the distribution of expected probabilities. ARS generation produces infrequent
sentences more often than expected.
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of mode collapse for Alpaca-7B: in the 1-example context, all generated sentences take the same form142

(noun, verb, noun); in the 10-example context, most examples past the fifth use a conjunction (“and”)143

which is not in the PCFG.144

However, we do not claim that NARS sampling categorically outperforms ARS sampling. ARS145

sampling requires tuning many more sampling hyperparameters, and requires other design choices;146

it is possible that ARS sampling could outperform NARS sampling with the right hyperparameters147

and design choices. For instance, ARS sampling may help recover good quality sampling for a model148

that is poorly calibrated for NARS sampling.149

More prompt examples help. In most contexts, including more examples in the prompt results in150

lower error and variance. This is illustrated in multiple cases: in the uniform number domain, Figure 6151

shows that just how much improved distributions produced with 10 examples are to those with only 1;152

in Figure 7, even with the 30B parameters, LLaMa-30B cannot produce a reasonable distribution with153

only one sample; in the ARS paradigm, we see variance, error and containment somewhat converge154

across model architectures when at least more than 6 samples are presented within the prompt. There155

is a caveat to this level of detail, however; including these additional examples increases the length156

of the prompt, resulting in a more expensive inference.157

The primary exception to this is with the NARS Alpaca-7B model at 9 prompt examples, at which158

containment consistently decreases. We hypothesize that this is because the instructions that Alpaca-7B159

is fine-tuned on include round numbered lists of items (e.g., 10), causing a discontinuity in behavior160

at this point (in which Alpaca-7B is being prompted to complete the tenth example).161

The choices of prompts matter. Each trial uses a different random seed to generate examples included162

in the prompt, inducing different distributions from the LLM. The variance exhibited in both the163

uniform number and PCFG domains show these different choices of examples in the prompt result164

in significantly different induced distributions.165

Language models struggle to generate low-error distributions The top rows of Figures 4 and 5166

show the error of each generated distribution against the ground-truth expected distribution. The only167

instance of low-error (< 10%) generation is the NARS LLaMa-30B in the uniform number domain168

with at least 1 prompt example. In all other experimental contexts, all models fail to accurately model169

the ground-truth distribution. We expect these struggles to be exacerbated in contexts where the model170

or its user do not have a firm understanding of the distribution that is being sampled from.171

Modeling decisions impact performance The containment and error plots in each of Figures 4 and 5172

show that that instruction fine-tuning improves output quality but hurts calibration. In all domains,173

instruction fine-tuning (Alpaca) results in higher containment (i.e., generating more in-domain samples)174

but has worse error and variance. This property has been observed in other domains: for example,175

OpenAI [15, Figure 8] show that instruction fine-tuning of GPT-4 hurts calibration on a multiple choice176

exam dataset; our findings confirm that this affects the quality of induced data distributions.177

Relatedly, the size of model impacts both error, precision and containment metrics. In all contexts,178

larger LLaMa models have equivalent or better performance than smaller LLaMa models.179

4 Discussion180

Throughout our evaluation, there has remained one critical high-level takeaway: LLMs do not always181

generate the prompted distribution. These results are in particular sensitive to the expected distribution it-182

self, the sampling methodology, and the choice of the model architecture and dataset. As a result, before183

drawing multiple samples from an LLM practitioners should ask, “What does it mean to draw a sample184

from my LLM? What is the distribution I expect? How will I evaluate the resulting outputs?” While185

we currently lack systematic ways to express or evaluate these questions, this work acts as a first step to-186

wards reducing this ambiguity. For example, as we have shown, practitioners can probe these questions187

by evaluating the perplexity of example generations that they would expect to be in-distribution.188

There are many existing limitations to LLMs that we do not directly evaluate: tokenization, biases189

in training data, and mode collapse all offer novel avenues for future research to explore within the190

context of LLMs as distribution samplers. Further, memorization and cloning within LLMs remains191

a deep concern for users [7]. Janus [12] demonstrated that some LLMs have a favorite number: 42 (a192

popular reference to Douglas Adam’s Hitchhiker’s Guide to the Galaxy series). A sampled distribution193

8



should likely not contain a high count of repeated values, nor should those values be regurgitated from194

an uncited source. LLMs produce hallucinations framed as reasonable, real-world facts [13]. Despite195

work suggesting ways to reconcile this misinformation [2], such approaches are far from entering the196

mainstream. These missteps break fundamental user expectations (particularly in discrete applications)197

and may thus harm the sampled distribution’s quality.198

Future work should explore these in detail, contributing benchmark tasks, datasets, and baselines to199

calibrate LLM-produced distributions against.200
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A Prompts251

This section contains the prompts used for each domain. In all domains we vary the number of252

examples given depending on the experimental context.253

Uniform numbers. The uniform number prompt is as follows:254

The following is a list of uniform random numbers in the interval [0, 1]:255

256

1. 0.16257

2.258

PCFG. The PCFG prompt is as follows:259

The following is a list of samples from the following PCFG (note that they are260

not necessarily grammatical English):261

262

‘‘‘263

S -> NP VP [1.0]264

NP -> Det N [0.6] | N [0.4]265

VP -> V NP [0.8] | V [0.2]266

Det -> "the" [0.7] | "a" [0.3]267

N -> "cat" [0.4] | "dog" [0.3] | "mouse" [0.2] | "book" [0.1]268

V -> "liked" [0.5] | "ate" [0.3] | "read" [0.2]269

‘‘‘270

271

1. cat liked the dog272

2.273

Normal numbers. The normal number prompt is as follows:274

The following is a list of uniform random numbers in the interval [0, 1]:275

276

1. 0.16277

2.278

B Bit Sampling Experiments279

Figures 8 to 10 present results for a bit sampling domain. In this domain, the objective is to sample280

individual bits (0 or 1) according to a range of distributions. Figure 8 presents the uniform bits domain,281

in which the objective is to sample bits from the uniform distribution over bits. Figure 8 presents the282

nonuniform bits domain, in which the objective is to sample bits from a nonuniform distribution over283

bits where 0 is sampled with probability 75% and 1 is sampled with probability 25%. Figure 8 presents284

the nonuniform bits with bad prompting domain, in which the objective is again to sample bits from285

a nonuniform distribution over bits where 0 is sampled with probability 75% and 1 is sampled with286

probability 25%; however in this domain, the prompt examples are drawn from a distribution where287

0 is sampled with probability 25% and 1 is sampled with probability 75%.288

We find similar results to the domains evaluated in the main body of the paper. Despite the uniform289

bit domain being conceptually simple, most models struggle to generate uniform distributions over290

{0, 1}. The nonuniform bits domains have even higher error. However, the nonuniform bits with291

bad prompting domain only marginally increases the error compared to the regular nonuniform bits292

domain, suggesting that the models are not learning the distribution from the prompt examples.293
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Figure 8: Results for the uniform bits domain.
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Figure 9: Results for the nonuniform bits domain.
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Figure 10: Results for the nonuniform bits with bad prompting domain.
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Figure 11: Case studies for the uniform bits domain, presenting empirical distributions of the
median-error trial across a number of experimental settings. Each plot shows a histogram of generated
bits from a single trial, which is chosen as the trial with the median TVD error in that configuration.
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Figure 12: Case studies for the nonuniform bits domain, presenting empirical distributions of the
median-error trial across a number of experimental settings. Each plot shows a histogram of generated
bits from a single trial, which is chosen as the trial with the median TVD error in that configuration.
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Figure 13: Case studies for the nonuniform bits with bad prompting domain, presenting empirical
distributions of the median-error trial across a number of experimental settings. Each plot shows a
histogram of generated bits from a single trial, which is chosen as the trial with the median TVD error
in that configuration.

17



Figure 14: Normal distribution results
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