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The Southern Ocean has warmed substantially, and up to early 21st century, Antarctic stratospheric
ozone depletion and increasing atmospheric CO, have conspired to intensify Southern Ocean warming.
Despite a projected ozone recovery, fluxes to the Southern Ocean of radiative heat and freshwater from
enhanced precipitation and melting sea ice, ice shelves, and ice sheets are expected to increase, as is a
Southern Ocean westerly poleward intensification. The warming has far-reaching climatic implications
for melt of Antarctic ice shelf and ice sheet, sea level rise, and remote circulations such as the intertropical
convergence zone and tropical ocean-atmosphere circulations, which affect extreme weathers, agricul-
ture, and ecosystems. The surface warm and freshwater anomalies are advected northward by the mean
circulation and deposited into the ocean interior with a zonal-mean maximum at ~45°S. The increased
momentum and buoyancy fluxes enhance the Southern Ocean circulation and water mass transforma-
tion, further increasing the heat uptake. Complex processes that operate but poorly understood include
interactive ice shelves and ice sheets, oceanic eddies, tropical-polar interactions, and impact of the
Southern Ocean response on the climate change forcing itself; in particular, limited observations and
low resolution of climate models hinder rapid progress. Thus, projection of Southern Ocean warming will
likely remain uncertain, but recent community effort has laid a solid foundation for substantial progress.
© 2023 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The importance of the Southern Ocean (south of 30°S) in buffer-
ing greenhouse warming has been recognised upon realisation on
the role of the Southern Ocean in closing the global thermohaline
circulation. How the cold dense water that sinks from the surface
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of the North Atlantic Ocean and high-latitude Southern Ocean
(principally in the Ross and Weddell Seas) returns from the deep
and bottom ocean to the surface has been a long-standing climate
issue. For a long time, the return to the surface was hypothesised to
be through vertical mixing across density layers, whereby down-
ward turbulent heat fluxes warm the deep water, facilitating its
upward displacement [1,2], until measurements which suggested
that vertical mixing accounts for only a small percentage of the
warming required [3]. Only recently did we realise that the
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primary return pathway lies in the Southern Ocean. The prevailing
westerly winds over the mid-to-high latitude Southern Ocean, the
strongest mean sea-surface winds on Earth, drive divergent surface
flows that draw up water from below in a wide circumpolar ring.
As much as 80% of deep water resurfaces through this pathway
[3]. Most of the dense water upwells from a depth of approxi-
mately 2-3 km along steeply sloping constant density (isopycnal)
layers, with little heat input or mixing required [4,5]. This circula-
tion system exerts a huge influence on climate under greenhouse
warming, because the upwelled water was last in contact with
the atmosphere hundreds of years earlier and once brought to
the surface, absorbs a vast amount of anthropogenic heat and car-
bon from the atmosphere.

Upon surfacing the dense circumpolar deep water moves north-
ward, converges and downwells north of the wind stress maxi-
mum. Isopycnals slope upward to the south, and once the slope
is steep and becomes baroclinically unstable, eddies are formed.
Precipitation and heating by the atmosphere reduce the density
of the upwelled water as it flows northward, depositing heat along
isopycnals into the midlatitude interior oceans. Oceanic mesoscale
eddies move some of deposited water upward and southward and
partially flatten the isopycnals [6]. The net effect of the competi-
tion between Ekman transport, eddies, and the surface buoyancy
flux is an equilibrium in which the deep, dense layers of the South-
ern Ocean water slope upwards and outcrop at the surface.
Through geostrophic balance, this slope supports the fast-
eastward flowing Antarctic Circumpolar Current (ACC) [6,7].

Increased radiative trapping of greenhouse gases has disrupted
the global climate equilibrium; more energy enters the top of the
atmosphere than is emitted back to space. More than 90% of the
excess energy in the climate system since the mid-20th century
has gone into warming the world oceans [8]. Historical observa-
tions of Southern Ocean temperatures are scarce, making it diffi-
cult to estimate the distribution of anthropogenic heat the ocean
has absorbed. Observations based on Argo floats during 2006-
2013 show that the Southern Ocean dominates the change in glo-
bal upper ocean heat content [9]. Climate-model simulations con-
firm that the Southern Ocean dominates the global oceanic heat
uptake, absorbing up to three quarters of the excess heat flux
[10]. However, projected Southern Ocean warming displays strong
inter-model variations [10,11], affected by multiple factors, includ-
ing model climate sensitivity, changes in high-latitude westerlies
[12], and parametrization of fluxes of mesoscale eddies and their
response [13]. Further, the role of various processes pertinent to
Southern Ocean warming, particularly the way in which ocean
eddies and ocean-atmosphere-cryosphere interactions affect
Southern Ocean heat uptake, remains elusive. In addition, climate
impacts of the Southern Ocean warming are yet to be fully under-
stood [14]; for example, Southern Ocean warming is expected to
reduce Antarctic sea ice, but Antarctic sea ice had increased over
the satellite era until ~2015, a phenomenon referred to as the
Antarctic sea ice paradox [15,16]; by contrast, the Antarctic ice
sheet, though with regional variations, has thinned, and the
grounding lines have retreated in recent decades [17,18].

Recent modelling and observational studies have enabled sub-
stantial progress in our understanding of Southern Ocean dynam-
ics and warming, such as interactions between components of
melting ice shelves, ice sheets, and sea ice in response to Southern
Ocean warming; different timescales involved in the response to
climate change; the role of mesoscale oceanic eddies; and the
impact of inter-decadal tropical variability in the observed
changes. In this review, we synthesize recent progress in under-
standing Southern Ocean warming. We begin by describing the
key circulation features of the Southern Ocean, followed by a dis-
cussion of the observed Southern Ocean changes and associated
processes. We continue by outlining the projected Southern Ocean
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warming, sources of uncertainty, and the associated impacts based
on state-of-the-art climate models. The review ends with identify-
ing pathways for improved understanding, modelling and quantifi-
cation of Southern Ocean climate changes.

2. Key features of the Southern Ocean circulation

The Southern Ocean features two global-scale counter-rotating
meridional overturning cells representing two distinct circulation
regimes (Fig. 1). The upper cell is principally fed by southward
flowing North Atlantic Deep Water, formed in the high-latitude
North Atlantic where buoyancy loss triggers oceanic convection
and sinking of surface water in the marginal seas. The convergence
of flows at intermediate depths is approximately balanced by
upwelling in the Southern Ocean induced by the prevailing west-
erly winds. Surface buoyancy fluxes associated with surface fresh-
water and heat gain by the ocean convert the upwelled water to
less dense Subantarctic Mode Water (SAMW) and Antarctic Inter-
mediate Water (AAIW) [19]. In contrast, the lower cell is mainly
fed by dense-water formation processes around Antarctica, princi-
pally in the Ross and Weddell seas. Antarctic Bottom Water
(AABW) forms as a result of a balance between buoyancy loss by
air-sea fluxes around Antarctica and buoyancy gain by abyssal
mixing. Deep water that rises along the sloping isopycnals and
reaches the surface layer thus has two distinct functions. Around
the Antarctic margins, the upwelled deep water is warmer than
the surface water and is transformed into dense AABW due to
atmospheric cooling and brine rejection associated with sea ice
formation. Upwelling of warm water melts sea ice on the shelf
and in the open ocean, and controls the northern extent of the
cryosphere. The outcrop of the 27.6 kg m > isopycnal, a core den-
sity of Antarctic deep waters, generally coincides with the winter
sea ice edge [6]. To the north, the upwelled deep water is cooler
than the surface water, and its transformation by atmosphere heat-
ing and freshening into lighter water masses is a primary process
wherein the Southern Ocean uptake of heat from the atmosphere
takes place.

The Southern Ocean is a principal region where energy is
imparted to the ocean by the winds [20], leading to the most wide-
spread mesoscale ocean eddy field. The overturning of density sur-
faces by winds is balanced through baroclinic instability of the
ACC, which generates eddy motions of <100 km. Much of the
potential energy imparted to the ocean by the mechanical tilting
of density surfaces is extracted by eddies flattening them out.
Specifically, eddies transport mass and tracers across the ACC,
facilitating a poleward spread and rise of deep water along the
sloping isopycnals towards the surface as far south as near the
Antarctic margin. As eddies carry mass poleward, facilitating
meridional mass transport across the deep unbounded channel of
the Southern Ocean, the eddy field is connected to the overturning
circulation by weakening the wind-driven component. Eddies also
transfer momentum vertically from the sea surface to the sea floor
[21], where bottom-form stress balances the wind stress [22]. The
momentum transfer is accompanied by a poleward transport of
heat, contributing to the poleward heat flux that is needed to bal-
ance the heat loss to the atmosphere around Antarctica [23].

Thus, wind and buoyancy force the Southern Ocean circulation
that features the ACC and overturning, with eddies playing a key
role. Westerly winds generate the upper overturning cell, provide
eddy kinetic energy, and set up the isopycnals over which eddy
mass and heat transports occur. North of and around the ACC, heat
and freshwater input from the atmosphere to the ocean drive
water mass transformations into young, well-ventilated SAMW
and AAIW. Around Antarctica heat loss to the atmosphere and
brine rejection from sea ice formation support the AABW produc-
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Fig. 1. Major features of Southern Ocean circulation. Upwelled deep water across the ACC (cyan arrow) splits into two pathways: water that upwells close to Antarctica flows
poleward (short grey arrows) driven by overlying easterlies (small green arrow) through Ekman transport, enroute losing heat to the atmosphere (green arrows) leading to
sea ice formation (cracked block), and is converted to denser bottom water through brine release (white dots); water that upwells further north is advected equatorward via
Ekman transport driven by overlying westerlies (larger green arrow), enroute forced by atmospheric heat (red arrows) and freshwater fluxes, and is converted to mode and
intermediate waters. Eddies mix heat poleward (thin arrows) along isopycnal surfaces, offsetting the wind driven circulation, and the net circulation is characterised by a
two-celled overturning circulation. The grounding line of Antarctic ice sheet is indicated on a slope such that a large part of the glacier with a smaller ice thickness rests over
water, providing a capacity for a rapid retreat. The schematic is in part adopted from Ref. [7].

tion, closing the lower overturning cell. The quasi-equilibrium
state of the Southern Ocean circulation is being perturbed by
greenhouse warming. Below, we describe the observed changes
over past decades.

3. Observed Southern Ocean warming and associated changes

Since 1950, approximately 90% of the increased heat from
greenhouse warming has been absorbed by the ocean [8], and var-
ious observational estimates suggest that 25%-50% of the increase
in heat content of the upper 700 m has gone into the Southern
Ocean over the 1979-2015 and the 1998-2015 [24] periods. Over
2005-2014, the Southern Ocean accounts for more than 60% of the
global ocean heat content increase [9,11,25]. The warming features
some unique characteristics, accompanied by Antarctic ice shelf
and ice sheet melt but an increase in Antarctic sea ice and in north-
ward transport of sea ice.

3.1. Structure of warming

The Southern Ocean warming features a distinct structure com-
pared to warming in other oceans. South of 55°S, surface warming
is slower than that in the subsurface and the rest of the global sur-
face ocean. For example, the surface ocean south of the ACC has
warmed at a rate of 0.02 °C 10a~! since 1950, compared to the glo-
bal mean surface temperature warming rate of 0.08 °C 10a~' [26];
net surface cooling even occurred between 1982 and 2011. By con-
trast, the mid-depth Southern Ocean (700 to 1100 m) has warmed
nearly twice as rapidly as the upper 1000 m of the World Ocean as
a whole [27] and a general warming of the deep Southern Ocean
(below 2000 m) was observed between 1992 and 2005 [28]. Argo
observations since 2004 confirm the long-term warming in the
Southern Hemisphere oceans in the upper 2000 m and poleward
of 30°S [9] showing a concentrated warming within the ACC; the
subsurface water masses in the northern flank of the ACC have
warmed at a rate of 0.1-0.2 °C 10a~"' in the upper 1000 m, more
rapid than the global ocean average [25,29].
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In fact, much of the heat absorbed from the high-latitude atmo-
sphere enters the Southern Ocean interior via subduction of SAMW
and AAIW [19,30]. As a result, SAMW (when defined as a ther-
mostat in the potential density range of 26.5-27.1 kg m~3, temper-
ature range 0-15 °C and salinity range 34.2-35.8 PSU) has
thickened, deepened, and warmed (3.9 + 0.3 W m2) between
2005 and 2015, accounting for 65% of the heat gain in the upper
2000 m [30]. However, when defined by potential vorticity, the
SAMW has become warmer, fresher, lighter, and weaker during
the Argo period [31,32], suggesting that the increased buoyancy
due to increased surface heat and freshwater fluxes partially offset
the effects of the enhanced wind-driven overturning circulation
[33].

Changes in vertically averaged ocean temperature [24] show
that most of the additional heat entering the Southern Ocean is
stored north of the ACC (Fig. 2a) [34] with a zonal average maxi-
mum centred at 45°S (Fig. 2b) [26]. Subsurface warming is
observed north of the shelf break, likely related to reduced convec-
tive overturning associated with the observed surface freshening
and a general warming of Circumpolar Deep Water (CDW, i.e.,
water between the temperature maximum below the winter water
layer and temperatures less than 2.8 °C in areas north of bathyme-
try deeper than 1500 m) [35,36]. South of the ACC, Antarctic shelf
water has generally cooled (Fig. 2c¢) but the continental shelf
waters in the Amundsen and Bellingshausen Seas have warmed
since 1975 though the uncertainty is large [35-37].

3.2. Changing Antarctic ice shelf and ice sheet

In association with the subsurface warming on the shelf, the
Antarctic ice shelves and ice sheet have lost substantial mass
between 1992 and 2017 (Fig. 2d), strongest in West Antarctica,
particularly from the Pine Island and Thwaites Glacier catchments
of the Amundsen Sea Embayment [17,38,39], and the Antarctic
Peninsula, including the recently collapsed or rapidly thinning Lar-
sen ice shelves [40-42] (Fig. 2e). The rates of the ice-sheet mass
changes over West Antarctica and the Antarctic Peninsula over
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Fig. 2. Observed Southern Ocean warming. Trend of upper 1500 m ocean heat content (J m~2 10a~') (a) and zonal mean ocean temperatures (°C 10a~") (b) with superimposed
isopycnals for the 1940-1984 (solid) and the 1985-2021 (dotted) periods, based on the IAP/CAS ocean reanalysis. Only changes that are statistically significant above the 95%
confidence level are shown. (c) Shelf water temperature change (°C) based on the WOA18 data over 1955-2017, calculated as the difference in averages between the 1955-
1984 and 1985-2017 periods. For each longitude, latitude is shifted relative to the 1000 m isobath, and Antarctic Peninsula latitudes are not included in the zonal average (see
Ref. [37] for details). Isopycnals for 1955-1984 (solid) and 1985-2017 (dotted) period are superimposed. Potential density is plotted on 0.1 kg m~> intervals. (d-g) Evolution
of pan-Antarctic ice mass, and over the east, west Antarctic, and Peninsula, respectively, in (Gt), based on the IMBIE ice sheet mass datasets. Gray shading indicates
uncertainty range. (h) Evolution of Antarctic sea ice extent (km?) based on the NOAA/NSIDC data. See Data availability session for details of each dataset.
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2012-2017 account for 72% and 15% of the total Antarctic ice sheet
changes, respectively [43] (Fig. 2f). In contrast, the East Antarctica
ice sheet exhibited an insignificant mass loss or even a gain [43,44],
except Totten Glaciers, where a strong loss has been observed in
response to ocean warming since the early 2010s [45,46]
(Fig. 2g). Overall, there is substantial ice shelf melting and thin-
ning, indicating a loss of ice shelf buttressing [47], and an increased
flux of grounded ice upstream [48]. Concurrent with the Southern
Ocean warming and Antarctic ice shelf and ice sheet melt is a
freshening along the coast, in the open ocean and in the deep layer
[49]. AABW has freshened, warmed, and contracted over the past
30-50 years [49] until its recent rebound induced by simultaneous
2015/16 El Nifio and positive Southern Annular Mode anomalies
[50].

3.3. Antarctic sea-ice paradox

In contrast to what is expected from the general warming that
has occurred, the total Antarctic sea ice extent [51] had increased
from the late 1970s until 2015 [51-54] (Fig. 2h). The increasing
trend in sea ice in a general warming climate is referred to as a
paradox, and is jointly contributed by decadal variability and cli-
mate change, both contributing to a westerly trend conducive to
northward advection of cold water and sea ice. The paradox is
not reproduced in most low-resolution climate models [54]
although simulated in a high-resolution model [55]. Amid the
observed increasing trend in total sea ice extent, however, there
are strong regional variations, with sea ice concentration decreas-
ing in the Amundsen and Bellingshausen Seas but increasing in the
Weddell and western Ross Seas [56,57]. In early 2016, Antarctic
Sea ice experienced a sudden reduction and the sea ice extent
remained low to 2019 [56-60]. After returning to above average
values in winter 2021, sea ice again reduced drastically in the
spring of 2021 and reached record low levels in summer 2022 [61].

Thus, Southern Ocean warming and the accompanying changes
are complex in terms of its spatial structure, ocean-atmosphere-
cryosphere manifestation, and impacts. Below, we synthesize
recent advances in the associated forcing, mechanisms, and inter-
actions among them; the forcing includes a radiative heat flux
and a westerly poleward intensification due to both Antarctic
ozone loss [62] and increasing emissions of greenhouse gases
[63,64].

4. Processes of observed Southern Ocean warming

Increased emissions of CO, and ozone depleting substances
have both contributed to a radiative trapping of heat and a pole-
ward intensification of the westerly winds since the 1950s. The
increased radiative heat fluxes are principally induced by the
increase in CO,, with ozone depleting substances contributing
about ~20% of the global total radiative increase [64].

4.1. Advection by mean flow

Much of the increased atmospheric heat fluxes into the ocean
occur south of the ACC between 50°-65°S (Fig. 3a). The net long-
wave heat flux into the ocean is a key component, as increasing
greenhouse gases absorb some longwave wavelengths, leading to
a smaller amount reaching space and more heat being trapped
within the climate system. Another key component is an increase
in sensible heat fluxes into the ocean, due to a faster atmospheric
warming than surface ocean warming. Offsetting these heating
terms is reduced shortwave radiation into the ocean due to
increased cloud cover as storm tracks shift poleward [65]
(Fig. 3b). Evaporative heat fluxes out of the ocean decrease as the
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poleward-shifted westerlies result in weakened easterlies around
Antarctica [34] and the reduced shortwave radiation associated
with increased precipitation [65] weakens the evaporation. The
increased net heat flux into the ocean south of 50°S exceeds the
local increase in ocean heat content and a significant amount of
the increased heat and freshwater is advected northward via
wind-driven Ekman transport. This passive “advection of climate
anomalies by the mean flow” is the first order response to the
radiative forcing [13,26,34]. As such, even if the Southern Ocean
circulation did not change, Southern Ocean heat uptake would
increase under greenhouse warming.

4.2. Circulation changes

However, the increased heat and freshwater fluxes are accom-
panied by a substantial poleward intensification of the prevailing
westerlies (Fig. 3c), changing the circulation. The westerly pole-
ward intensification manifests as a positive trend of the Southern
Annular Mode [66,67]. Unlike the atmospheric heat flux into the
ocean, which is predominantly due to increasing CO,, more than
50% of the westerly wind intensification over the late 20th century
is due to stratospheric ozone depletion [67-69]. In response, the
entire southern hemisphere circulation has shifted poleward,
including storm tracks [65] and the supergyre circulation that links
subtropical gyres of the three oceans [70]. The poleward intensify-
ing westerly winds also drive more-upward-inclined density sur-
faces and, despite being partially offset by increased oceanic
eddies (discussed in the next paragraph), contributing to a stronger
upwelling and northward Ekman transport of surface waters. The
increased heat and freshwater fluxes into the ocean drive a stron-
ger water mass transformation of the upwelled water by the
strengthening upper overturning circulation.

The changed circulation contributes to Southern Ocean warm-
ing in the same manner as the passive advection of anomalies by
the mean circulation with two consequences both intensifying
the Southern Ocean heat uptake in the northern flank of the ACC.
Firstly, more subsurface cold water is upwelled and exposed to
the increasing atmosphere heat and freshwater flux. Secondly, sur-
face warming is delayed as more cold water south of the ACC is
advected northwards; the associated increase in Southern Ocean
upwelling brings more of the warm CDW at depths to the subsur-
face layers, increasing the rapid subsurface warming in the South-
ern Ocean [35]. The impact from the “changed circulation” due to
changed wind stress is difficult to quantify, but some studies sug-
gest that it contributes to about one-fifth of the total Southern
Ocean heat storage in an abrupt quadrupling CO, experiment
[71]. Warming induced by wind change is more deep-reaching
compared to the warming driven by the surface buoyancy flux
change [72].

4.3. Oceanic eddies

The poleward intensified westerlies drive increased mesoscale
oceanic eddy activity, exerting unique impacts on Southern Ocean
warming and circulation changes. The increased eddy-driven over-
turning only partially compensates the increase in wind-driven
overturning [73]. The net increase in the overturning transports
buoyancy to balance the increase in heat flux and freshwater input.
The increased ocean eddies flatten the density surfaces, offsetting
the increasing upward-inclined isopycnals leading to only minor
changes in the slope of the density surfaces and the ACC [29,74].
Eddy-resolving models suggest that the ACC is close to an “eddy
saturation” regime, that is, the strengthened wind stress mostly
goes to drive increased eddy kinetic energy [73]. The eddy-
induced oceanic heat transport transfers heat from the midlati-
tudes poleward across the ACC [6,75]; although the intensified
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westerlies lead to an initial surface cooling south of the ACC asso-
ciated with the northward Ekman advection of surface cold polar
water, the enhanced poleward eddy heat flux ultimately generates
a long-term subsurface warming [74]. Eddy kinetic energy in the
ACC has increased since the 1990s [76], as has the southward eddy
heat transport over the same period [77]. However, an alternative
view suggests that, because the Southern Ocean warming is most
pronounced on the northern flank of the ACC (Fig. 2b), the geos-
trophic current associated with the differential ocean warming
represents an ACC speedup, a change observed by nearly three dec-
ades of satellite altimeter data [72]. While eddy compensation
occurs in response to the intensified westerly winds [73], model
experiments show that the wind change is secondary to the surface
warming effect on the ACC change and the observed intensification
of eddy activity [76] could be part of the adjustments to the ocean
warming-induced ACC acceleration [78].

In addition to mesoscale eddies, there are abundant submeso-
scale eddies in the Southern Ocean active at the periphery of
mesoscale eddies that are found to induce vertical heat fluxes com-
parable to air-sea fluxes in amplitude [79]. As such, a change in
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submeso-scale eddies can substantially influence Southern Ocean
warming and poleward heat transport [80], but little is known
about their role in circulation changes.

4.4. Meltwater from ice shelf, ice sheet and transport of sea ice

Southern Ocean warming affects the Antarctic ice sheet and ice
shelf [39] but the associated meltwater flux into the ocean in turn
influences Southern Ocean buoyancy, circulation and warming
itself [81,82] (Fig. 4). Meltwater input stabilises the water column,
isolating the cold surface water from the warm subsurface water
below, thus facilitating an increase in sea-ice extent [81-83]. The
surface freshening flattens isopycnals towards the Antarctic conti-
nent, such that upward mixing of heat along isopycnals, which
otherwise would be steeper toward the surface, increases coastal
subsurface warming and weakens warming at the surface. Through
this mechanism, the meltwater released into the Southern Ocean
delays some of the 20th century Southern Ocean surface warming
[81,82], which may have contributed to the observed sea ice
increase [81]. The surface freshening from melt of ice sheet and
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Fig. 4. Schematic showing influence of melting ice sheet on sea ice. Radiative
forcing and westerly poleward intensification combined lead to increased poleward
eddy heat transport and enhanced wind-driven Ekman pumping, facilitating warm
CDW (red water) intrusions onto continental shelves and into ice-shelf cavities (red
arrow), triggering melting of ice shelves and the Antarctic ice sheet. Fast melting of
an ice sheet, or marine ice sheet instability, may occur for ice sheets on a reverse
slope gradient such that the glacier becomes grounded in increasingly deeper
water, as shown. Freshwater input from the melting ice shelf and ice sheet freshens
the surface (dark blue), depressing isopycnals (from solid to dashed white lines)
Southern Ocean that isopycnal mixing transports more heat towards the continent,
intensifying the shelf warming at depth and cooling (or reducing the warming) at
the surface that is conducive to a sea ice increase (or a slower reduction).

ice shelf also causes an intensified subsurface ocean warming
around the Antarctic margin [84]. In a positive feedback, elevated
subsurface ocean temperatures offshore propagate into ice-shelf
cavities, in turn increasing basal melt of ice shelves and the ice
sheet [85,86]. In a similar manner, the westerly poleward intensi-
fication increases northward transport of sea ice, which, when
melts in the warm season, is a source of freshwater input to regions
where the increased transport occurs, contributing to the
enhanced subsurface warming [87].

4.5. Tropical teleconnections

Over the past decades, the Southern Ocean warming in the
upper 2000 m is in part driven by atmospheric tropical teleconnec-
tions from the post-2000 negative phase of the Interdecadal Pacific
Oscillation [14,60], which is remotely reinforced by a positive
phase of the Atlantic Multidecadal Oscillation [14]. These remote
forcings combined with increasing CO, and ozone depletion pro-
duced the westerly poleward intensification over the Southern
Ocean, increasing the equatorward Ekman transport of cool waters
and contributing to the observed sea ice increase until 2015 [52-
54]. Simultaneously, the associated increase in Ekman upwelling
around Antarctica moved warm subsurface water higher in the col-
umn, leading to conditions unfavourable to sea ice in the long term
[60]. These two processes constitute the fast and slow adjustments
of high-latitude Southern Ocean surface temperatures and Antarc-
tic Sea ice [88,89], as a way to understand the complexity of strato-
spheric ozone depletion, increasing CO,, wind change, and
Southern Ocean surface warming [90] in the presence of natural
variability [91]. Around 2014-2015, the Interdecadal Pacific Oscil-
lation shifted to its positive phase and in 2016 the Southern Annu-
lar Mode was strongly negative. These effects combined weakened
the surface westerlies over the Southern Ocean, and along with a
warm air advection toward Antarctica, triggered the sudden reduc-
tion in seaice in 2016 [14,55,58-60]. The anomalous warming over
the entire water column in the decades prior to 2016 might have
contributed to the sustained Antarctic sea ice reduction over the
2016-2019 period [60].

In summary, radiative forcing due to increasing greenhouse
gases and ozone depleting substances, the associated westerly
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poleward intensification associated with both a warming atmo-
sphere and stratospheric ozone depletion, and tropical decadal
variability are jointly responsible for the observed long-term
Southern Ocean changes. Anomalous atmosphere heat and fresh-
water fluxes into the Southern Ocean are centralised in the high
latitudes south of 50°S. The heat is distributed by the overturning,
which strengthens despite an offset from the increased eddy-
driven circulation, into the upper 2000 m centred at 45°S. North
of the ACC, warming of the CDW increases the reservoir of ocean
heat available for transport onto the shelf. Eddy flattening of the
isopycnals leads to an increased poleward eddy heat transport,
which, together with large-scale processes such as wind-driven
Ekman pumping, facilitates warm CDW intrusions onto the contin-
tental shelf and into ice-shelf cavities, leading to melting of Antarc-
tic ice shelves and ice sheets, particularly in the Amundsen and
Bellingshausen regions. Freshwater input and increased northward
Ekman advection of cold waters in an instantaneous response to
the increased winds contribute to the modest increase in Antarctic
sea ice over the satellite era until 2015. Most of these processes are
expected to continue into the 21st century, although slow adjust-
ment processes will take on a greater importance over centennial
timescales. In the next section, we summarise likely changes pro-
jected for the end of the 21st century and the associated
uncertainty.

5. Projected Southern Ocean warming and uncertainties

Under further greenhouse warming, as in the Intergovernmen-
tal Panel on Climate Change Shared Socioeconomic Pathway 8.5
(SSP585) “high emissions” scenario, climate models project
increased atmosphere heat and freshwater fluxes into the ocean
and continued poleward intensification of the atmosphere and
ocean circulation. Further Southern Ocean warming is projected
with zonal mean characteristics similar to those observed over
the past 50 years, but substantial uncertainties exist [64].

5.1. Future warming

Net heat flux into the ocean (positive downward) over the 50°-
65°S band continues to be the heat source for the Southern Ocean
warming and increases with increasing model climate sensitivity
(Fig. 5a). Reduced outgoing longwave radiation and increasing sen-
sible heat flux associated with a warmed atmosphere in particular
contribute to the net heat flux increase [34,71]. Farther south,
around the Antarctic margin, sea ice reduction is associated with
an increased shortwave radiation flux into the ocean; however, this
is offset by increased evaporative and sensible heat losses from the
ice-free ocean surface. The surface freshwater flux substantially
increases over the 21st century as a result of increased precipita-
tion over the Southern Ocean (Fig. 5b); ice shelf and ice sheet melt-
water are not represented in the current generation of climate
models. The projected changes in westerly poleward intensifica-
tion and temperatures over the 21st century (2050-2099) relative
to the 20th century (1950-1999) are similar to those observed in
the historical period, with Southern Ocean warming centered near
45°S (Fig. 5¢, d). In the warming pattern, the extra heat is concen-
trated in the mixed layer of this latitude rather than further north
into the subtropics [13], leading to a warming minimum in the
north, because of a decreased wind stress curl in the subtropics
and fresher isopycnals linked to surface freshening to the south
[92]. Based on the potential vorticity definition, the SAMW contin-
ues to get lighter in density, with a reduced volume and a south-
ward shift in the subduction region [93].

Transport of warm CDW onto the continental shelf by large-
scale processes such as wind-driven Ekman upwelling and eddy
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transport [37,94] is projected to further warm Antarctic shelf
waters (Fig. 5e). Although tidal mixing and mesoscale eddies are
missing or not fully included in low-resolution climate models,
warm CDW intrusions onto the shelves by large-scale processes,
such as wind-driven Ekman pumping, are present [37]. These
wind-driven changes include increased upward Ekman pumping
over the shelf break region, reducing coastal downwelling, the
Antarctic Slope Current and the associated meridional pressure
gradient over the shelf [95], thereby increasing CDW access to
the shelf. Under SSP585, warming is projected throughout the
water column and across all shelf regions, with an average warm-
ing of 0.62 °C, with an inter-decile range of 0.16-0.95 °C, by 2100
[37].

5.2. Uncertainties

There are multiple sources of uncertainties. These range from
strong inter-model differences in climate sensitivities, ocean-
atmosphere-cryosphere interactions, Antarctic ozone recovery,
representation of oceanic eddies and interactions with remote
responses.

(i) Climate sensitivities. There is a large inter-model difference in
climate sensitivity leading to a large inter-model difference in the
net heat flux changes over the major latitude band of 50°-65°S, and
in an index of Southern Ocean warming defined as the changes
between the 20th (1950-1999) and 21st (2050-2099) centuries
in spatial averages of ocean temperature over the upper 1000 m
of the ocean from 40°-50°S (Fig. 6a, b). The large inter-model dif-
ferences in climate sensitivity account for ~60% of the inter-
model variations in the heat fluxes and Southern Ocean warming,
with a strong inter-model correlation of 0.77. Further, inter-
model differences in the heat flux changes account for about 50%
of the inter-model differences in the Southern Ocean warming
(Fig. 6¢), leaving ample room for large inter-model differences in
Southern Ocean warming to be due to differences in changed circu-
lation; across the climate model spread, a further poleward wind
intensification is conducive to greater Southern Ocean warming.
This pattern of wind change promotes high-latitude equatorward
Ekman transports of heated water towards the subduction zone
and represents a source of inter-model differences in Southern
Ocean warming. These results suggest that the relative importance
of the component of Southern Ocean warming due to “advection of
climate anomalies by the mean flow” and the component due to
“changed circulation” varies substantially across models.

(ii) Ocean-atmosphere-cryosphere interactions. The large model
spread in the Southern Ocean warming is accompanied by a large
spread in sea ice reduction around the Antarctic continent, with
models that simulate a larger sea ice decline producing a larger
Southern Ocean warming (Fig. 6d), potentially due to a stronger
sea ice-albedo feedback [96]. The spread in sea ice reduction is sug-
gested to be related to the climatological sea ice coverage in the
historical/preindustrial periods, which varies vastly across models;
models simulating more climatological sea ice produce a greater
sea ice reduction, a stronger albedo decrease, and a greater South-
ern Ocean warming [96]. On the other hand, considering that
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simulated sea ice decreases in tandem with simulated surface
warming [97], there is an alternative argument that on centennial
time scales Southern Ocean surface warming determines the pace
of sea ice reduction.

The inter-model spread could be even greater if the impact of
the Antarctic ice sheet meltwater was included: freshwater hosing
in a coupled climate model mimicking the input of ice sheet melt-
water shows that under a high emissions scenario, reduced warm-
ing resulting from the freshwater input of meltwater causes a large
(~30%) increase in Antarctic sea-ice formation in the mid-21st cen-
tury, and an increase in subsurface ocean warming around the
Antarctic coast by the end of the 21st century [82].

(iii) Ozone recovery. Antarctic stratospheric ozone is projected to
recover to 1980 levels by the mid-21st century, and evidence of
ozone recovery since ~2000 has emerged [98]. The influence of
Antarctic ozone recovery on Southern Hemisphere circulation
opposes that of the continuing increase in CO, [99], but its repre-
sentation could vary substantially among models. The recovery
induces several effects. The recovery offsets CO,-induced westerly
poleward intensification; and the associated reduction in emis-
sions of ozone depleting substances that underpin the recovery
itself decreases the radiative forcing, because ozone depleting sub-
stances are themselves potent greenhouse gases. The reduced radi-
ation mitigates global warming in the order of 25% by 2050 under
the high emissions scenario [100], reducing Southern Ocean warm-
ing. In addition, both the reduced ultraviolet radiation reaching the
southern high-latitude surface as stratospheric ozone recovers and
increasing CO, have co-benefits for plants and their capacity to
store carbon through photosynthesis [101]. The co-benefits can
result in a projected reduction of 115-235 ppm (1 ppm = 10° L/L)
of atmospheric carbon dioxide that could have otherwise led to
an additional warming of global-mean surface temperature by
0.50-1.0 °C by the end of the 21st century under an intermediate
emission scenario [101].

(iv) Remote processes. Given the role played by westerly pole-
ward intensification, a projected change in any process, remote
or local, that affects Southern Ocean westerlies, such as the impact
from the Interdecadal Pacific Oscillation since 2000s [60], will
influence Southern Ocean warming. During El Nifio, the entire
Southern Hemisphere zonal circulation including the Hadley, Fer-
rel and polar cells tend to shift equatorward [102], strengthening
polar easterlies, and vice-versa during La Nifia. Given that El Nifio
anomalies are larger than La Nifia, and that their anomaly locations
are not symmetric [103], changes in El Nifio-Southern Oscillation
(ENSO) under greenhouse warming [104] influence Southern
Ocean and Antarctic shelf ocean warming [105,106], with a strong
increase in ENSO variability slowing Southern Ocean mid-latitude
warming, slowing sea ice melt but hastening the shelf ocean
warming. How changes in the tropical mean climate influence
Southern Ocean warming, including changing the transport of
warm CDW onto the Antarctic continental shelf, contribute to ice
shelf and sheet melt, remains an area of considerable uncertainty.

(v) Oceanic eddies. Another process not fully incorporated in
most global coupled climate models is oceanic eddies. A high-
resolution model simulation shows that there is a geographical

<

Fig. 5. Projected Southern Ocean warming. Output from 22 Coupled Model Intercomparison Model Phase 6 (CMIP6) models in which climate variables shown are all available
and are calculated as the difference in 50-year averages between the 20th (1950-1999) and the 21st (2050-2099) centuries under historical and Shared Socioeconomic
Pathway 8.5 forcings. (a-c) Changes averaged over multi-model ensemble (MME) in net heat flux into ocean (NHF, W m~2), precipitation (mm d '), and zonal winds (N m~2).
Dotted areas indicate changes are statistically significant. In each panel, the side plot indicates zonal mean changes, with different heat flux component showing in (a).
Stippling indictaes changes that are above the 95% confidence level. (d) Zonal mean ocean temperature changes superimposed by isopycnals for the 1950-1999 (solid) and
the 2050-2099 (dotted) periods. Only changes that are statistically significant are shown. (e) As for (d) but for Antarctic shelf water warming. For each longitude, latitude is
shifted relative to the 1000 m isobath, and Antarctic Peninsula latitudes are not included in the zonal average (see Ref. [37] for details). Potential density is plotted on

0.1 kg m~3 intervals.
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Fig. 6. Uncertainty in projected Southern Ocean warming. Output from available Coupled Model Intercomparison Model Phase 6 (CMIP6) models in which climate variables
shown are all available and are calculated as the difference in 50-year averages between the 20th (1950-1999) and the 21st (2050-2099) centuries under historical and
Shared Socioeconomic Pathway 8.5 forcings. Net heat flux (NHF) changes are averaged over the major latitude band of 50°-65°S, the index of Southern Ocean warming is
defined as the changes in spatial averages of ocean temperature over the upper 1000 m of the ocean from 40°-50°S, and sea ice concentration (SIC) changes are averaged over
the latitude band of 60°-70¢S. (a, b) Inter-model relationship of equilibrium climate sensitivity (ECS) with net heat flux and Southern Ocean warming, respectively. (c, d)
Inter-model relationship of Southern Ocean warming with net heat flux and sea ice reduction. In each panel the correlation coefficient and P value are provided.

separation in terms of the impacts from eddies on the Southern
Ocean warming [13]. South of the warming centre, a large increase
in the mean northward advective heat transport in the surface
Ekman layer moves the heat content anomaly away from the heat
uptake region. The intense warming by downward heat advection,
though offset by the increased eddy advection and diffusion, is
principally driven by increases in the time mean heat advection
[13,34]. By contrast, north of the maximum warming centre, the
southward and upward isopycnal tilt reduces, resulting in a
reduced southward transport (i.e., a positive northward anomaly)
by both the eddy advective and diffusive heat transports, responsi-
ble for ~80% of the average northward heat transport anomaly at
these latitudes [13]. Further, in non-eddy-permitting models,
increased Ekman transport produces an increased mean overturn-
ing, much of which involves transformation of deep waters; in
eddy-permitting simulations, a significant portion of the increased
Ekman transport is compensated by the eddy-induced transport,
which draws from lighter waters than does the mean overturning
[74]. In low-resolution climate models, the impacts of eddies and
its change are parameterised and the impact of ocean eddies is
not realistically simulated or fully represented [73].
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6. Impacts of projected Southern Ocean warming

Despite the uncertainties, Southern Ocean warming has a series
of climatic impacts. Below we highlight the impacts on Antarctic
polar amplification of warming, global sea level rise, and remote
atmosphere and ocean circulation.

6.1. Antarctic polar amplification

An impact of the slower Southern Ocean surface warming rela-
tive to that observed in the Arctic is a slower Antarctic polar warm-
ing amplification, which, unlike the Arctic, is yet to emerge. When
Antarctic polar warming amplification will become detectable is
uncertain because of timescales associated with Southern Ocean
warming, which is in turn linked to the responses to surface wind
and freshwater forcing from melting rate of the Antarctic ice shelf,
ice sheet, and sea ice [81,83]. Models suggest that a slower reduc-
tion of Antarctic sea ice because of freshwater input due to melting
ice shelves and the ice sheet could reduce Southern Ocean surface
warming by up to several tenths of a degree over the 21st century
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by increasing stratification of the upper Southern Ocean around
Antarctica [82], affecting climate sensitivity. Earlier studies found
that inter-model difference in time-dependence of climate sensi-
tivity is associated with inter-model difference in a cloud feedback
arising from the inter-hemispheric surface temperature differences
influenced by the slower rate of Southern Ocean surface warming
[107]. More recent studies have revealed that the extratropical
low cloud feedback, itself affected by the slower Southern Ocean
warming, contributes to climate sensitivity [108].

6.2. Global sea level

Despite the slower warming of the Antarctic surface ocean com-
pared to the Arctic, Antarctic ice shelves and the ice sheet are nev-
ertheless vulnerable to warming shelf waters [86]. The associated
meltwater not only slows AABW formation [109] affecting the glo-
bal thermohaline circulation, but also drives global sea level rise, in
addition to sea level rise from thermal expansion. Melting of
Antarctic ice shelves and the ice sheet is the largest source of
uncertainty of projected global sea level rise. Because extensive
regions of the Antarctic ice sheet are grounded below sea level,
the ice sheet is susceptible to marine ice sheet instability capable
of producing rapid retreat. Although interactions of the ice sheet
with ocean warming are not resolved in state-of-the-art coupled
global climate models, off-line Antarctic ice sheet models have
indicated a substantial impact on sea level rise [110], including
the potential of more than a metre of sea level rise by 2100 and
more than 15 m by 2500, if emissions continue unabated [110],
although debate continues on the extent of the impact [111]. Glo-
bal warming limited to the Paris Agreement warming target of
lower than 2 °C likely sees Antarctic ice loss and its contribution
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to sea level proceed at a rate similar to that of today throughout
the 21st century, but scenarios more consistent with current poli-
cies allowing warming of 3 °C could produce an abrupt jump in the
rate of Antarctic ice loss after around 2060, contributing to about
0.5 cm/a in global sea level rise by 2100 [110], which is an order
of magnitude faster than that of today [43]. Ice-sheet retreat initi-
ated by the thinning and loss of buttressing ice shelves is projected
to continue for centuries, regardless of bedrock uplift [112] or a
sea-level feedback mechanism [113], the latter refers to a process
whereby sea level fall near the grounding line of a retreating mar-
ine ice sheet helps stabilise the ice sheet.

6.3. Remote circulations

Slower surface Southern Ocean warming relative to Northern
Hemisphere oceans induces a hemispheric-scale energy imbalance.
In response, a cross-hemisphere atmosphere heat transport and a
south-to-north cross-equatorial Hadley circulation ensues, and
the intertropical convergence zone shifts northward [114]
(Fig. 7). Conversely, anthropogenic aerosol cooling, which is stron-
ger in the Northern Hemisphere and has so far contributed to the
dominance of heat uptake by the Southern Ocean, leads to a south-
ward displacement of the intertropical convergence zone. As our
society acts to curb aerosol emissions, a northward shift could
become more conspicuous.

Coupling between the Hadley cells, surface wind stress, and the
tropical-subtropical ocean circulation ensures that ocean circula-
tion acts to transport energy across the equator from the same
direction as the atmosphere, weakening the atmosphere adjust-
ment [115]. As such, when ocean adjustment is allowed, as in a
coupled framework, the atmosphere adjustment in terms of the
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Fig. 7. Impact of delayed Southern Ocean warming on tropical climate. Delayed Southern Ocean surface warming leads to weaker heat release from the ocean to the
atmosphere in the Southern Hemisphere, inducing a northward shift of the tropical rain-belt with southward cross-equatorial atmospheric energy transport (Fa). The
associated northward shift of the Hadley cell in turn generates ocean responses, including shallower wind-driven subtropical cells (pink). The delayed Southern Ocean surface
warming also affects the deep meridional overturning circulation (green). These dynamic ocean responses drive a southward oceanic energy transport (Fo), damping the
atmospheric response, i.e., moderating the northward tropical rain-belt shift. Warming in the surface, east-west section, and north-south section is calculated as the ocean
temperature difference in 50-year averages between the 20th (1950-1999) and the 21st (2050-2099) centuries under historical and Shared Socioeconomic Pathway 8.5
forcings. The warming in the cross and side sections is averaged over the 40°-80°S latitude band and the 0°-360° longitude band, respectively.
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northward shift of the intertropical convergence zone may not be
unidirectional [116] and is 10%-25% [115] of that in models in
which ocean adjustment is not allowed. There is also evidence that
the slower Southern Ocean surface warming will induce a response
in the global Meridional Overturning Circulation [117] (Fig. 7) with
a similar effect of moderating the atmosphere response. On the
other hand, the Antarctic sea ice reduction, in part a consequence
of Southern Ocean warming, induces a decrease in the poleward
oceanic heat transport, causing an enhanced warming in the east-
ern equatorial Pacific and an equatorward intensification of the
convergence zone [118], reminiscent of the effect of Arctic sea
ice loss [119]. However, there is an ongoing debate on the relative
importance of several mechanisms of the ocean heat transport
response, which, in addition to the Pacific subtropical cells [115],
include the thermohaline adjustment in the Indo-Pacific basin
and the global Meridional Overturning Circulation [115,117].
Regardless of which processes ultimately dominate, these findings
demonstrate the impact on remote ocean and atmosphere circula-
tion that result from Southern Ocean warming, a point highlighted
by an impact on tropical sea surface temperatures, in turn affecting
net radiative feedback of global climate [120].

7. Conclusions and pathways forward

The Southern Ocean has warmed substantially and is projected
to warm further throughout the 21st century and beyond, with far-
reaching implications. Up to now, Antarctic stratospheric ozone
depletion and increasing atmospheric CO, have conspired to inten-
sify Southern Ocean warming. Despite the projected recovery of
ozone, further Southern Ocean warming is expected from the con-
tinued increase in emissions of greenhouse gases, accompanied by
an increased freshwater input to the ocean from enhanced precip-
itation, northward sea ice transport, and melting sea ice, ice
shelves and ice sheet, and an ensuing westerly poleward intensifi-
cation. The surface ocean warm and freshwater anomalies are
advected northward by the mean upper cell of the overturning cir-
culation and are deposited into the interior ocean with a zonal-
mean maximum at ~45°S. A fast response to the strengthened
winds enhances northward advection of cold water, contributing
to a delay in Southern Ocean surface warming and in a reduction
of Antarctic sea ice. The stronger winds and greater flux of heat
and freshwater also change the circulation: stronger winds drive
a stronger wind-driven overturning and a stronger eddy-induced
circulation; although the latter partially offsets the former, a net
spin-up of the upper-cell overturning circulation is generated.
The associated increase in upwelling of deep water is transformed
into lighter water masses by the increased flux of heat and fresh-
water, further increasing heat and freshwater inventories. Warm-
ing of CDW increases the pool of heat to be upwelled and
transported poleward by more energetic eddies onto the Antarctic
continental shelf, increasing the melt of Antarctic ice shelves and
the ice sheet.

In state-of-the-art global coupled climate models, many pro-
cesses that influence the projected Southern Ocean warming await
substantial improvement. Firstly, owing to the relatively low reso-
lution of these models, the full impact of eddies is yet to be incor-
porated, as is the interaction between open water and shelf water
that affects the melting of ice shelves and the ice sheet. Most cou-
pled models do not incorporate interactive ice shelves and ice
sheets, therefore, their interaction with other components is lack-
ing. Further, the Southern Ocean is a source of natural carbon and a
primary sequester of atmospheric CO, [10]. As such, the Southern
Ocean circulation response affects the every forcing of the South-
ern Ocean warming. In this context, the issue of whether and when
Southern Ocean carbon uptake will slow because of an intensified
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upwelling of deep ocean natural carbon is not clear [64]. In a sim-
ilar context, while projected ozone recovery will act to slow South-
ern Ocean warming through changes to the surface winds, through
its impact on surface radiation, ozone recovery will also affect the
terrestrial CO, balance [100,101], allowing a greater uptake by
plants. In addition, the rate of Southern Ocean warming is influ-
enced by two-way interactions between local and remote
responses [14]; the latter includes the response of ENSO and/or
the tropical mean climate, for example. The response of ENSO per
se varies vastly across models and experiments [104] and a larger
increase in ENSO variability leads to a slower Southern Ocean
warming beyond what is accounted for by inter-model differences
in climate sensitivity [105]; melt of Antarctic sea ice in turn leads
to a heat convergence in the tropical Pacific, contributing to a faster
warming in the tropical eastern Pacific [118] and potentially mod-
ulating the ENSO response. Thus, uncertainty will continue in the
projected Southern Ocean warming and in the associated down-
stream impacts in the foreseeable future, as our understanding of
these processes remains limited for realistic model
parameterizations.

Several pathways to progress are on the horizon. From an obser-
vational perspective, comprehensive high-resolution observations
of the Southern Ocean, the atmosphere and ice sheet/shelf offer
prospects for an improved understanding of the processes. From
a modelling perspective, as computational power increases, high-
resolution models that resolve oceanic meso-scale and submeso-
scale eddies and Antarctic shelf processes are increasingly feasible.
Such models, matched by spatiotemporal eddy-resolving observa-
tions, will facilitate progress in our understanding of the role of
eddies in transporting warm CDW to the Antarctic shelf, in water
mass transformation, and in overturning circulation changes. Fur-
ther, many fully interactive processes such as interactive carbon
cycles, ozone chemistry, and ocean-atmosphere-cryosphere cou-
pling with ice shelves and ice sheets are being developed and
incorporated into models such that the rate of Southern Ocean
warming will be able to be assessed in Earth system models. In
such Earth systems, interactions between the Southern Ocean
and remote processes will operate in a more realistic dynamical
environment. While uncertainty in projected Southern Ocean
warming will persist, projection from such systems is dynamically
consistent, including allowing interactions between forcing and
response. With such comprehensive Earth systems, there lie pro-
spects for improved assessment of Southern Ocean warming and
its impacts, including on the tipping point associated with a col-
lapse of ice sheet.

To conclude, the complexity of Southern Ocean warming,
involving coupling of the ocean, atmosphere, and cryosphere,
interactions between responses and the forcing itself, and interac-
tions between local and remote processes, means that the projec-
tion of Southern Ocean warming and its impacts will remain one
of the most challenging issues of climate change science. Sustained
community efforts in high-resolution Earth system modelling,
high-resolution observations, and process understanding are
essential for further progress.
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