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ABSTRACT

The problem of extracting causal relations from text remains a challenging task, even in the age of Large
Language Models (LLMs). A key factor that impedes the progress of this research is the availability of the
annotated data and the lack of common labeling methods. We investigate the applicability of transfer learning
(domain adaptation) to address these impediments in experiments with three publicly available datasets:
FinCausal, SCITE, and Organizational. We perform pairwise transfer experiments between the datasets using
DistilBERT, BERT, and SpanBERT (variants of BERT) and measure the performance of the resulting models.
To understand the relationship between datasets and performance, we measure the differences between
vocabulary distributions in the datasets using four methods: Kullback-Leibler (K-L) divergence, Wasserstein
metric, Maximum Mean Discrepancy, and Kolmogorov-Smirnov test. We also estimate the predictive capability
of each method using linear regression. We record the predictive values of each measure. Our results show that
K-L divergence between the distribution of the vocabularies in the data predicts the performance of the transfer
learning with R2 = 0.0746. Surprisingly, the Wasserstein distance predictive value is low (R2=0.52912), and
the same for the Kolmogorov-Smirnov test (R2 =0.40025979). This is confirmed in a series of experiments. For
example, with variants of BERT, we observe an almost a 29% to 32% increase in the macro-average F1-score,
when the gap between the training and test distributions is small, according to the K-L divergence — the
best-performing predictor on this task. We also discuss these results in the context of the sub-par performance
of some large language models on causality extraction tasks. Finally, we report the results of transfer learning
informed by K-L divergence; namely, we show that there is a 12 to 63% increase in the performance when
a small portion of the test data is added to the training data. This shows that corpus expansion and n-shot
learning benefit, when the process of choosing examples maximizes their information content, according to
the K-L divergence.

1. Introduction

Girju, 2003; Sobrino et al., 2014), information retrieval (Khoo et al.,
2001), and medical text mining (Ding et al.,, 2019a). Despite the

Causality extraction is one of the challenging tasks in information
extraction. It is the process of extracting cause-and-effect relationships
from the text. For example, consider the following sentence from the
2020 SEC 10-K Documents of 65 S&P 80 Financial Companies:

When a policyholder or insured gets sick or hurt, the company pays cash
benefits fairly and promptly for eligible claims.

There exists a causal relationship between the cause “policyholder or
insured gets sick or hurt” and the effect “cash benefits fairly and promptly
for eligible claims”.

The process of extracting the cause—effect relationships from the
text is called causality extraction. Such relations can be present in texts
from various domains and, if extracted, can be used for applications
including question answering (Hassanzadeh et al., 2019; Dang, 2021;
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importance of the causality extraction problem and increased attention
on this task in recent times, data insufficiency remains a challenge and
an open research problem (Yang et al., 2022).

Transfer learning, or domain adaptation, (Bommasani et al., 2021;
Pan and Yang, 2009) have been proposed as a mitigation for the
problem of scarcity of annotated data. The idea is that the performance
of a machine learning program can be enhanced by pretraining on a
related task. A survey article (Weiss et al., 2016) formally defines it as
follows:

“Given a source domain Dy with a corresponding task Ty and a
target domain Dy with corresponding task Ty, where Dg # Dy or
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Tg # Ty, transfer learning aims to improve the performance of the
model’s predictions by using the related information from Dg and
Tg.”

This definition obviously raises the question how we should measure
the difference between domains or tasks. In this article, we use the
Kullback-Leibler divergence (K-L divergence) (Manning, 2009) to mea-
sure the differences between distributions of terms in the datasets. We
also report results using the Wasserstein distance and the Kolmogorov—
Smirnov test (Gibbs and Su, 2002).

For our experiments, we use three datasets Organizational dataset
(ORG) (Gopalakrishnan et al., 2023) that is annotated on financial text,
SCITE (Li et al., 2021b), which is annotated on texts from the web, and
FinCausal (Mariko et al., 2022), which is annotated on the financial
news articles.

In the experiments, for causality extraction, we use DistilBERT
(Sanh et al., 2019), https://huggingface.co/docs/transformers/model_
doc/distilbert, a variant of BERT (Devlin et al., 2019) (still, one state-
of-the-art performing models), we also run the same set of experiments
with BERT and SpanBERT.

Our experiments show that different distributions of word frequen-
cies in the datasets lead to different success rate in transfer learning
(which we discuss in Section 5).

We show that K-L divergence can be a basis for improving transfer
learning via corpus expansion/n-shot learning. When the value of the
K-L divergence is reduced by adding a small portion of the test data to
the train data. We show that there is a performance improvement from
12% to 63% in all sets of experiments. When we add domain-specific
data, such as financial text to the dataset that is created on a data from
web search such as SCITE, the improvement is higher.

2. Preliminaries and related work

An objective of this work is to understand the potential of transfer
learning to improve the accuracy of causality extraction from text. To
be more precise, we want to understand the relationship between the
properties of datasets and the degree of success in transfer learning.
Therefore in this preliminaries we provide some pointers that help
explain our methods and put the results in context of prior work.

We first discuss measures of difference between datasets, then pro-
vide a few references to transfer learning (sometimes called ‘domain
adaptation’), and finally to selected prior work on causality extraction.

2.1. Measures of divergence and their uses

There are infinitely many ways we can talk about differences be-
tween text data. However, the simplest measures of difference count-
based, i.e. statistical. We use three popular tests for differences between
the distributions: Kullback-Leibler divergence, Wasserstein distance,
and Kolmogorov-Smirnov test. The mathematical relations between
them are described in Gibbs and Su (2002). However, in this article
we care about their potential predictive powers with respect to the
accuracy of transfer learning for causality extraction (see Section 5).
All three tests have been used in NLP, and K-L divergence is perhaps
the most popular.

K-L divergence is a statistical distance that measures how different
is a probability distribution compared to another. It is denoted by
Dy (P || Q) where P and Q are the probability distributions (Manning,
2009). Notably, it is not symmetric Dg; (P || Q) # D, (O || P).

An example recent use is shown in Li et al. (2021a) to disentangle
the syntax and semantics in a deep decomposable model. For semantic
similarity tasks and syntactic similarity tasks, their model improves
their disentanglement quality.

In this article, using K-L divergence we show that the distributions
of the three datasets are different and predict quite well transfer results.

K-L Divergence measures the difference between two probability
distributions based on information theory, that is how much we can
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learn from one distribution about another, and therefore is not sym-
metric. The other two measures are symmetric. Wasserstein distance
measures the distance between two probability distributions by consid-
ering the ‘cost’ of transforming one into the other and is symmetric.
That is why it is sometimes called “the earth mover distance”. Finally,
the Kolmogorov-Smirnov test is a statistical test used to compare
empirical distributions and is often employed to determine if a sample
comes from a specific distribution and is not symmetric.

In this article we are applying these concepts without any modifica-
tions. The reader can find an introduction, formulas and comparisons
of mathematical properties in Gibbs and Su (2002). Examples of their
uses in NLP appear e.g. in Manning (2009), Martin (2009), Chen et al.
(2018) and Al Kuwatly et al. (2020). For our practical objectives, we
care about the existence of (Python) packages that we can easily apply
to compute the required measures. We will provide references to them
in Section 4.

2.2. Transfer learning

Many machine-learning models perform well under the assumption
that the train and the test data have the same distribution and feature
space (Pan and Yang, 2010). If the distribution differs, the model has
to be built from scratch by annotating a new dataset for that particular
domain. This process of annotating a new dataset for every domain will
be a challenging process and expensive one. Transfer learning between
the task domains should be helpful in such scenarios. However, as
shown in Zoph et al. (2020), transfer does not always produce positive
results.

In NLP, transfer has been used in the Natural Language Infer-
ence (NLI) task (e.g. Conneau et al. (2017)), and for various other
tasks like causal sentence detection (Kyriakakis et al., 2019); find-
ing condition-action sentences in medical guidelines (Hematialam and
Zadrozny, 2021) and understanding of biomedical texts (Peng et al.,
2019). In another example, extracting drug timelines from the elec-
tronic health record was done by Miller et al. (2021) by training the
model on THYME colon cancer corpus and testing on THYME brain
cancer corpus.

We need to note that the term transfer learning is often used inter-
changeably the term domain adaptation, especially in natural language
processing, as observed by Pan and Yang (2009). In Sun et al. (2015)
we see the following definition “domain adaptation is a subcategory of
transfer learning. In domain adaptation, the source and target domains
all have the same feature space (but different distributions); in contrast,
transfer learning includes cases where the target domain’s feature space
is different from the source feature space or spaces.”

In our case, the feature spaces (the inputs to the variants of BERT)
are different because of the differences in the vocabularies, and also we
have the differences in feature distributions (Section 3). We felt that
perhaps ‘transfer learning’ is a better fitting term, but we also added
‘domain adaptation’ parenthetically in the introduction.

In general, transfer learning and domain adaptation are very active
areas of research in machine learning, necessitating dozens of survey
articles every year.

2.3. Causality extraction

BERT (Devlin et al., 2018) has been used both to test transfer learn-
ing and domain adaptability for data extraction from text. As a result
many variants of BERT have been created, including DistilBERT (Sanh
et al., 2019), SpanBERT (Joshi et al., 2020) used in this article.

Even with the appearance of larger language models, it can give
a state-of-the-art performance for causality extraction tasks (Khetan
et al., 2020; Lyu et al., 2022; Gopalakrishnan et al., 2023; Peng et al.,
2019). Similarly, it performs well on other tasks involving domain
adaptability such as sentiment classification (Rietzler et al., 2019),
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hate speech detection (Mozafari et al., 2020), Biomedical Named Entity
Recognition (Sun and Yang, 2019).

A recent survey on causality extraction (Yang et al., 2022) classifies
the existing methods for causality extraction into knowledge-based,
statistical-machine-learning-based, and deep-learning-based method-
ologies. Initial works on causality extraction used rules and linguistic
features (Garcia et al., 1997; Radinsky et al., 2012; Kang et al., 2014;
Bui et al.,, 2010). Statistical-machine-learning-based models can use
linguistic features, verb-pair rules, etc., as well as discourse features, to
train the classifiers such as Naive Bayes and Support Vector Machines,
etc. Gu et al. (2016) and Pakray and Gelbukh (2014). Recently, deep
learning-based models have been used for the causality extraction
task (Zhang et al., 2018; Li et al., 2017).

Other related work in this space include (Peng et al., 2021; Li,
2022). The first article compares the performance of BERT and FinBERT
for the financial text processing tasks, and studies how different types of
pre-training affects the system’s performance. The second article studies
performance of the information extraction models on the complex
conversations using different domains, and proposes a causality method
to learn the distribution shifts in the data, and uses causal inference
frameworks to reason about these shifts.

Causality extraction methods can also be used for finding other
information of interest, such as emotions and their causes. Xia and Ding
(2019) aim to extract the emotion—cause pairs by annotating a corpus
for emotion—cause pair extraction. First, they extract the emotions and
the causes in the text individually, and then create the cause—emotion
pairs and filter them using a Bi-LSTM. Similar work, presented in Ding
et al. (2019b), aims to identify potential causes that lead to emotions
using a Bi-LSTM and attention, using a corpus consisting of texts,
their relative positions, and global labels that record the predictions of
the previous clause to record the predictions of the previous clauses.
A more recent work (Chen et al.,, 2022) addresses the problem of
cascading errors (incorrect information propagated in a pipeline model)
by introducing reinforcement learning. It utilizes the BERT semantic
embeddings and a Bi-LSTM for emotion—cause extraction. Chen et al.
(2023) aim to determine the causal relationships between the input
pair of emotion and cause. They also show how to extracts specific
context clause in causal relationships using a combination of an Albert
transformer-based model and a Bi-LSTM.

Causality extraction is a rapidly growing sub-field of NLP, and the
above presents only a sample of existing approaches to the problem. No
doubt, new methods will be developed based on newer large language
models and increasing amounts of annotated data.

3. Data

In our experiments, we use three causality extraction datasets. First,
SCITE (Li et al., 2021b), which extends the annotations of SemEval
2010 task 8 dataset (Hendrickx et al., 2019) by considering all the
causal triplets present in the sentence, whereas (Hendrickx et al., 2019)
considers only one causal triplet in the sentence. This dataset consists
of text data from the web, which is not particularly related to the
financial domain. Second, FinCausal (Mariko et al., 2022), which is
created as part of a challenge FinCausal 2022. This challenge aims to
extract causalities from financial documents. This data is extracted from
the 2019 financial news, which is collected from 14,000 economics and
finance websites. Third, the Organizational (ORG) dataset, which was
created for the causality extraction on Financial documents (Gopalakr-
ishnan et al., 2023). In this dataset, the 2020 SEC 10-K Documents of 65
S&P 80 Financial Companies were collected and manually annotated.

Here are some examples from each dataset. In the SCITE dataset, the
cause-effect pairs are annotated using the XML tags, as shown below:

Example 1 — SCITE
<item id="15" label="Cause-Effect((el,e2))"™ <sente
nce> This case arises from <el>;a December 21, 2005
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automobile accident <el> that resulted in <e2> the
death <e2> of Larry Haynes.</sentence>

In the FinCausal dataset, the cause—effect relation pairs are available
as tags. <el> represents the cause and <e2> represents the effect. The
phrases of cause/effect is also available.

Example 2 — FinCausal

Text: It found that total U.S. healthcare spending
would be about $3.9 trillion under Medicare for All
in 2019, compared with about $3.8 trillion under the
status quo. Part of the reason is that Medicare for
A1l would offer generous benefits with no copays and
deductibles, except limited cost-sharing for certain
medications.

Tag format: <e2>It found that total U.S. healthcare
spending would be about $3.9 trillion under Medicare
for A1l in 2019, compared with about $3.8 trillion un-
der the status quo.</e2><el>Part of the reason is that
Medicare for All would offer generous benefits withno
copays and deductibles, except limited cost-sharing
for certain medications.</el>

The organizational data is annotated in the BIO-label format. For
each of the tokens in the text, a label will be assigned. The cause is
represented as C, effect as E.

Example 3 — Organizational
text: ["When","a", "policyholder", "or", "insured",
"gets", "SiCk", "OI‘", "hurt n, "the", 'Company", npaysu’
'cash",'benefits","fairly", "and", "promptly", "for", "el-
igible","claims"]
Label: [uou’ non, HB_C!I’ "I-C", "I-C", "I_C", "I_C", "I_C", "-
C", IIOII, IIOII’ IIB_CTII, IIB_EII, "I—E", III_EH, "I—E", "I—E",
"I_E", "I_E", "I_E"]

For the transfer learning experiments, we converted all these 3
datasets into the IO label format, like the one above.

4. Methods: Data analysis and the model

Since it is an objective of this article to investigate how the dif-
ferences in text data impact the performance of a causality extraction
model on a new dataset, we first quantify these differences. Then
we briefly describe the models used — fine-tuned versions of Distil-
BERT (Sanh et al., 2019), https://huggingface.co/docs/transformers/
model_doc/distilbert, BERT-base-cased (Devlin et al., 2018) and Span-
BERT (Joshi et al., 2020).

4.1. Differences between the datasets

To understand the differences in the distributions, we have created
a feature distribution chart. This chart plots the frequency of the words
in both the training and test data.

The Organizational data (training data) had a total word count of
4747, and the SCITE data (test data) had a word of 1488. Totally
638 words were common in both of these datasets. Similarly, we have
computed a frequency distribution chart for the Organizational and
FinCausal dataset. In the FinCausal data, we had a total of 1595 words,
out of which 966 are common in both datasets.

These differences in word distributions are shown in Fig. 1 (and
further quantified in Table 1). Looking into Figs. 1(a) and 1(b), we
can see the gaps between the pairs frequency distributions. The gap
between FinCausal and Organizational data seems smaller that for the
SCITE data.

This is intuitively explained by the fact that the Organizational and
the SCITE data are from completely different domains. Organizational
data is created on the financial documents, whereas the SCITE is
from the web text. Organizational and FinCausal seem to be similar
data because they both are created using the financial text. But the
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Frequency distribution of Organizational data and SCITE data
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(a) The top part of the chart with seriesl and series2 indicates the frequency distribution on a 638 common word count between the
Organizational and SCITE data. The bottom part, with only one blue legend, shows the gap between the two distributions at the top.

Frequency distribution Organizational and FinCausal data
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(b) The top part of the chart with series]l and series2 indicates the frequency distribution on a 966 common word count between the
Organizational and FinCausal data. The bottom part, with only one blue legend, shows the gap between the two distributions at the top.

Fig. 1. From the top and the bottom panel we observe that the difference between the distributions are high for Organizational and SCITE, whereas the gap between the
Organizational and FinCausal is smaller. As we shall see later, the difference in distribution is predictive of the Fl-score in transfer learning. This is true both, when we measure
the differences by the K-L divergence and by the Wasserstein distance, although the former is more accurate. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Table 1

Summary of the computed K-L divergence values, Wasserstein distance, Kolmogorov-Smirnov test, and Maximum Mean Discrepancy (MMD) on
all the combinations of the datasets. The K-L divergence, MMD, and the Wasserstein distance on the same datasets is zero, meaning that there
is a maximum overlap between the train and the test datasets. The higher the value of the K-L divergence, the lower the similarity between
the datasets. For the K-S test, the low p-values prove that the distributions are different. From the computed values, we can understand that

SCITE is less similar to FinCausal, and Organizational datasets.

Train data Test data K-L divergence Wasserstein distance Kolmogorov-Smirnov MMD
SCITE 0 0 1.0 0
SCITE FinCausal 0.942 4.95 3.9555e-59 0.7796
Organizational 0.906 13.1 1.1294e-136 0.7982
FinCausal 0 0 1.0 0
FinCausal SCITE 0.771 4.95 0.000109 0.1067
Organizational 0.286 8.15 2.2483e—-66 0.1488
Organizational 0 0 1.0 0
Organizational FinCausal 0.279 8.15 1.1639e-65 0.1481
SCITE 0.336 13.1 3.3517e-151 0.3559

Organizational data is annotated on the financial company reports,
whereas FinCausal data is annotated on the financial text from the web.

As shown in Table 1, the K-L divergences between the datasets vary,
and confirm the impressions from Fig. 1. Thus for the Organizational
data and SCITE data we get the values 0.336 and 0.369; in contrast,
for Organizational and FinCausal we get 0.279 and 0.286. In both
cases and all directions the values are relatively high, which means the
distributions are different.

We repeated the same set of comparisons using the Wasserstein
metric and the Kolmogorov-Smirnov test. The Wasserstein distance
between the Organizational data and the SCITE data is 13.09, and the
distance between the Organizational and FinCausal data is 8.14. We
got a Wasserstein distance of O between the dataset with itself, and the
distance between SCITE and FinCausal is 4.95.

Kolmogorov-Smirnov (KS) test can be used to compare two prob-
ability distributions to check whether they are drawn from the same
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Fig. 2. A schematic description of the experiments. The source/training data are the causal annotated data The knowledge gained during training the model on one of the datasets
will be used to predict the other two datasets. For example, training can be done on Organizational and prediction on FinCausal and SCITE data. The data should be preprocessed
into IO label format, with special marks for C (Cause) and E (Effect), with the remaining tokens marked as O.

distribution. We chose the standard confidence level of 95%, which
means the values that are in favor of the alternative will be rejected if
the p-value is less than 0.05. All the p-values we obtained were much
smaller than that, indicating and quantifying the differences between
the word frequency distributions.

For both computation we used the SCIPY packages: https://docs.sci
py.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance
html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.stat
s.ks_2samp.html#scipy.stats.ks_2samp

The Maximum Mean Discrepancy (MMD) is a non-parametric sta-
tistical test that can be used to identify the amount of discrepancy
between the two probability distributions. It can be given as the dis-
tance between the feature means. The MMD between the same datasets
will be 0. The maximum the MMD value, the maximum discrepancy
between the source and target domain. All the obtained values of
differences between the datasets are summarized in Table 1. The table
also suggests their intended experimental use in transfer learning. That
is, training on one set and testing on another. The impact of these
measured differences and the predictive value of each test is discussed
in Section 5.

4.2. Models

Given the performance of DistilBERT is good for the causality ex-
traction task on all three datasets individually ((Li et al., 2021b; Mariko
et al., 2022; Gopalakrishnan et al., 2023)), in this paper, we ask the
next natural question, namely, what happens when we attempt transfer
learning, and if there are differences in performance what are they due
to. Apart from that, we have also tried BERT, which is the base version,
and SpanBERT, which is designed to predict spans of texts. Given the
performance of SpanBERT is good for FinCausal data (Li et al., 2021b),
we have chosen SpanBERT to compare its performance with its variant
BERT and DistilBERT.

5. Experiments and results

To answer this question, we ran several transfer learning experi-
ments with the three datasets. In all the experiments, the DistilBERT,
BERT, and SpanBERT models were fine-tuned on one of the datasets,
and the other two were used as the test data.

We train our model for (the optimal) 3 epochs with a batch size of
16. All the experiments are conducted on NVIDIA-SMI 525 GPU (using
Google Colab).

Fig. 2 gives a schematic overview of the transfer learning experi-
ments. For the FinCausal dataset and Organizational data, several BERT
variants perform well, as reported in Lyu et al. (2022) and Gopalakrish-
nan et al. (2023). In another example, experiments using DistilBERT on
the SCITE data produce a (relatively good) macro average F1-score of
0.88 (in our experiment). Here, and later, the results are reported using
macro-average scores; for example, F1 refers to the macro-average F1
score, i.e. the average Fl-score for all the labels.

Before we discuss the results, we need to mention the composition
of the datasets. Thus, SCITE contains the gold annotation for all train,
validation, and test subsets. In contrasts, in FinCausal, although, we
have splits into train, validation and test sets, there is no gold standard
released for the test set, and therefore we use the validation set as test
data. In Organizational (2235 sentences), we do the split train (70%),
validation (10%), and test (20%).

We performed three sets of rounds of transfer experiments. In the
first round of experiments, we fine-tuned the DistilBERT, BERT, and
SpanBERT model on the SCITE train dataset, and we tested it on SCITE
test data and on validation data of both FinCausal and Organizational
test data. In the second round, we fine-tuned on the FinCausal train
data and tested on the FinCausal validation and on Organizational and
SCITE test data. And in the third set of experiments with transfer, we
first fine-tuned on the Organizational training data, and then tested on
Organizational and SCITE test data and on FinCausal Validation data.

We are reporting our results of fine-tuning DistilBERTon the Fin-
Causal data and predicting on the FinCausal, even though earlier results
of Lyu et al. (2022) are available, showing the F1 of 87.31% on the
validation data. Our results, for comparison, are 92%, as shown in
Table 2. The difference perhaps due to the fact that we use the Trainer()
from the Huggingface to fine-tune the model (https://huggingface.
co/docs/transformers/tasks/token_classification), whereas (Lyu et al.,
2022) use the transformer model from the Huggingface source (git
clone https://github.com/huggingface/transformers.git).

The result of fine-tuning DistilBERT on the Organizational data and
testing it on the Organizational data were obtained earlier and are
presented in Gopalakrishnan et al. (2023).

5.1. Results and their dependence on the K-L divergence

The results of running the causality extraction task on the SCITE,
FinCausal, and Organizational dataset using DistilBERT, BERT, and
SpanBERT are summarized in Tables 2, 3, and 4 respectively. All the
results are the average of 10 runs.
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Table 2

Summary of the transfer learning experiments. This table shows the performance of
DistilBERT (DistilBERT-base-cased) for causality extraction. The scores are the average
of 10 runs.

Train data Test data P R F1
SCITE 0.86 0.72 0.73
SCITE FinCausal 0.38 0.55 0.12
Organizational 0.40 0.28 0.16
FinCausal 0.91 0.93 0.92
FinCausal SCITE 0.48 0.56 0.31
Organizational 0.71 0.59 0.59
Organizational 0.78 0.78 0.78
Organizational FinCausal 0.40 0.66 0.39
SCITE 0.32 0.40 0.26
Table 3

Summary of the transfer learning experiments. This table shows the performance of
BERT (BERT-base-cased) for causality extraction. The scores are the average of 10
runs.

Train data Test data P R F1
SCITE 0.91 0.77 0.79
SCITE FinCausal 0.39 0.54 0.10
Organizational 0.41 0.28 0.16
FinCausal 0.91 0.93 0.92
FinCausal SCITE 0.48 0.56 0.31
Organizational 0.76 0.62 0.63
Organizational 0.32 0.41 0.29
Organizational FinCausal 0.41 0.66 0.39
SCITE 0.33 0.41 0.27
Table 4

Summary of the transfer learning experiments. This table shows the performance of
SpanBERT ((SpanBERT-large-cased)) for causality extraction. The scores are the average
of 10 runs.

Train data Test data P R F1
SCITE 0.92 0.91 0.92
SCITE FinCausal 0.41 0.3 0.2
Organizational 0.41 0.3 0.2
FinCausal 0.93 0.95 0.94
FinCausal SCITE 0.48 0.58 0.32
Organizational 0.77 0.65 0.64
Organizational 0.83 0.83 0.83
Organizational FinCausal 0.59 0.68 0.55
SCITE 0.33 0.42 0.26

The objective is to understand the relation between the K-L di-
vergence and the Fl-score. With respect to the transfer learning task,
from Table 2, we see that the performance of the model is much better
when the model is fine-tuned on the FinCausal dataset. We got a macro
average F1 score of 0.59. There is almost a 29% increase in the F1
score when Organizational data is used as a test rather than using the
SCITE. Similarly, we can see a 13% increase in the F1 score when the
model is fine-tuned on the Organizational data and tested on FinCausal
rather than on the SCITE. The percentage increase between FinCausal
as train and Organizational as the test is higher than Organizational
as train and FinCausal as a test. This may be because of the number
of training samples in Fincausal, which is higher than the number of
training examples in Organizational data.

It means that the model performs better when there is more sim-
ilarity between the vocabulary used in the train and test dataset and
the number of samples is higher — confirming the intuitions. From
Section 3, we know that the SCITE data is created from the web text,
and the FinCausal data is annotated on the financial documents. To
understand how the F1-score varies depending on the K-L divergence,
Wasserstein distance, and Kolmogorov-Smirnov test p-values, we have
plotted the dependencies in Fig. 3, in their simplest forms, as linear
regression lines.
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Linear regression R2 values help quantify these impressions. Thus
K-L divergence predicts the performance of transfer learning with high
accuracy as measured by R2 = [0.07462152], and confidence interval
[-0.81916225 0.87093901]. The other two measures are not particu-
larly good: surprisingly, Wasserstein distance gives R2 = [0.52912651],
and the confidence interval [—0.03987017 0.78268854], the MMD
gives R2 = [0.17625334], with the confidence interval [-0.92479103,
0.79202877], and the K-S test R2 = [0.40025979], with the confidence
interval [0.48917194 0.38749281]. With a small number of points, we
obtain wide confidence intervals. So, the results, even though confirm-
ing the observations of Hematialam and Zadrozny (2021) on medical
transfer learning, have to be taken with a grain of salt. Nevertheless,
they do suggest the higher predictive value of K-L divergence for this
and perhaps similar tasks.

We can see that lower K-L divergence values predict higher F1
scores. The same is true for Wasserstein distance. The dependence
between the computed p-values of Kolmogorov-Smirnov test and the
F1 score is plotted in the bottom panel of Fig. 3, but the diagram does
not seem informative — the high F1 values correspond to identical
distributions.

We are also confirming this result using Spearman correlation.
We compute the correlation between the predictive measures (K-L
divergence, Wasserstein distance, and Kolmogorov—-Smirnov test) and
the F1 scores. (We used the Python Scipy library https://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.spearmanr.html). For exam-
ple, the input to the Spearman correlation will be K-L-divergence
(column 1 in Table 1) and F1 score (column 5 in Table 2).

KLd = [0, 0.942,0.906,0,0.771,0.286,0,0.279,0.336]
F1=1[0.73,0.12,0.16, 0.92, 0.31,0.59, 0.78,0.39,0.26]
res = stats.spearmanr (KLd, F1)

print(res.statistic)

Thus we obtained the Spearman correlation of —0.94 between K-L
divergence and the F1 score. This indicates a strong negative cor-
relation between K-L divergence and F1 score, i.e., when the K-L
divergence increases, the F1 score decreases. Similarly, we got the
Spearman correlation of —0.69 between the Wasserstein distance and
F1 score, indicating a negative correlation. With Kolmogorov—-Smirnov
test, we got the Spearman correlation of 0.69. This is because the
higher the p-value, the higher the similarity between datasets which
is opposite of the other two measures.

5.2. Confirming the results using SpanBERT and BERT

We performed additional transfer experiments using SpanBERT
(Joshi et al., 2020), and BERT (Devlin et al., 2019). BERT and Span-
BERT results also indicate the same interpretation as DistilBERT,
i.e., we see a 32% increase in the F1 score when the model is fine-
tuned on FinCausal data and Organizational data has used a test rather
than SCITE. Similarly, with BERT and SpanBERT, there is a 12% and
29% increase in the F1 score when trained on Organizational data and
tested on FinCausal rather than on SCITE.

With BERT, we got the Spearman correlation of —0.77 between K-
L divergence and F1 score, —0.49 between Wasserstein distance and
F1 score, and 0.50 between the KS test and F1 score. Similarly, with
SpanBERT, we got the Spearman correlation of —0.94 between K-
L divergence and F1 score, —0.73 between Wasserstein distance and
F1 score, and 0.72 between the KS test and F1 score. The results
of BERT and SpanBERT also indicate a strong negative correlation
between predictive measures and F1 score. This suggests the strategy
for data augmentation, where we choose examples that contribute to
the decrease in the K-L divergence between the train and test.
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Fig. 3. Top Left Panel: A linear regression model approximating between the data points of the experiments; the K-L divergence between datasets is represented along the X-axis,
and the Fl-scores of the corresponding machine learning transfer experiments are shown represented along the Y-axis. Top Right Panel: The results of the same experiments
using the Wasserstein distance instead of the K-L divergence. Bottom Panel: The results of the same experiments using the Kolmogorov-Smirnov test. Bottom Left Panel: The
results of the same experiments using the Kolmogorov-Smirnov test. Bottom Right Panel: The results of the same experiments using the Maximum Mean Discrepancy (MMD).

5.3. Confirming the predictive measures with a few-shot transfer learning

We want to see if the strategy works. The results of comparing
the predictive measures and the Fl-score show that if there is some
similarity between the training and the test data, there will be an
increase in the performance, but it is not necessary that they should
be in the same domain. In order to confirm these results, we added
a small subset of the test data to the training data. Since all three
models expressed a strong negative correlation and not much difference
in performance, we report the few-shot transfer learning results by fine-
tuning DistilBERT. We did four-fold cross-validation on the test data,
and for each fold, we appended the smaller split to the training data as
given in the equation below.

The results of this experiment when using DistilBERT are sum-
marized in Table 5. There is a performance increase in all sets of
the experiments. Specifically, when the model is fine-tuned on SCITE
data and tested on FinCausal and Organizational data, there is ap-
proximately 60% to 63% increase in the performance. For the other
set of experiments, when FinCausal and Organizational are used for
training and tested on the other two datasets, the performance increase
is relatively small. This may be because SCITE is an annotated corpus of
text from the web, whereas FinCausal and Organizational are domain-
specific datasets annotated on financial text. This method facilitates a
method to choose a subset of data from the test data to increase the
performance based on the K-L divergence value. For example, with the
proposed method, when SCITE is used as a train, and FinCausal is used
as a test, a small portion of the split, say 66 examples out of a total 265
examples in the test, are added to the SCITE data. Adding this reduces
the K-L divergence value from 0.94 to 0.41, which gives approximately
a 63% of increase in the F1 score (see Table 6).

6. Discussion and future work

This work raises several questions. Regarding predictive value of
K-L divergence and other tests, we only looked at word frequencies.

Table 5

Summary of the few-shot transfer learning experiments. This table shows the perfor-
mance of DistilBERT for causality extraction. Four-fold cross-validation was done. The
smaller portion of the split is appended with the train data.

Train data Test data P R F1
SCITE FinCausal 0.73 0.80 0.75
Organizational 0.79 0.76 0.76
FinCausal SCITE 0.42 0.48 0.43
Organizational 0.79 0.77 0.77
Organizational FinCausal 0.79 0.83 0.80
SCITE 0.47 0.59 0.45

Table 6

Percentage increase between the results of DistilBERT when different domain data are
used and when a small portion of the test data is added to the training data. There is an
increase in the performance with all the sets of experiments. Specifically there is a huge
increase in the performance when domain-specific data (FinCausal and Organizational)
added to the general English data from web (SCITE).

Train data Test data % increase
SCITE FinCausal 63%
Organizational 60%
FinCausal SCITE 12%
Organizational 18%
Organizational FinCausal 41%
SCITE 19%

For larger datasets, bigrams and trigrams could be added to the list of
terms, and the tests could be repeated. In our domain such corpora do
not exist, and bigrams and trigrams repeat infrequently. But it is beyond
the scope of this article to investigate this larger version of the transfer
problem.

Given the paucity of annotated data and the possible predictive
value of K-L divergence, perhaps it can be used to guide a data aug-
mentation strategy, that is choosing the texts that might have highest
impact in reducing the differences between the distributions. It was
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shown in Schlaefer et al. (2011) and Chu-Carroll et al. (2012) that a
good strategy for data augmentation can have substantial impact on
understanding meaning of texts in the context of question answering.
As to the choice of models, DistilBERT, it is perhaps still best
performing model from the BERT family for the causality extraction
task, based e.g. on our experiments with SpanBERT. The next natural
question is: what about GPT? The use of new large language models
like GPT-3.5, GPT-4, Llama and others remains an open problem. The
issues in applying these models are discussed in a recent IEEE Spectrum
article (https://spectrum.ieee.org/open-source-llm-not-open). We re-
ported our experience with GPT-3 on Organizational data (Gopalakr-
ishnan et al., 2023), where its performance was subpar compared to
DistilBERT. And more recently, our preliminary experiments with GPT-
4 with a few (1-16) shot learning, on a similar causality extraction
task, we did not do better than using DistilBERT (report to appear
later in August). Other researchers (Gao et al., 2023) confirm these
observations. We hypothesize that these negative results are due to
paucity of data annotated with causality markers — as we know these
models required huge amount of data for training, and causality is not
a simple linguistic concept, like e.g. dependency, and perhaps cannot
be learned from raw text. Thus how to use LLMs for causality extraction
seems to be an open problem, which we plan to continue to address.

7. Conclusion

In this article, we discussed the transfer learning (also called domain
adaptation) performance of DistilBERT, a variant of BERT, for the
causality extraction task. We reported results on pairwise transfer be-
tween three different datasets. We showed that the higher performance
is correlated with lower difference in distributions of word frequencies
in the datasets. And we quantified these differences using three mea-
sures: K-L divergence, Wasserstein distance, and Kolmogorov—Smirnov
test. We estimated the predictive values of three tests for transfer
learning (in this domain). We report K-L divergence performed the
best.

For our experiments, we use three datasets Organizational
(Gopalakrishnan et al., 2023), annotated on financial text; SCITE (Li
et al., 2021b), annotated on texts from the web; and FinCausal (Mariko
et al.,, 2022), annotated on the financial news articles. Even though
Organizational data and FinCausal data are created from financial texts,
both of these datasets have different distributions, which was shown
to lead to different success rate in transfer learning. Since our work is
based on information theory, we hypothesize that this transfer learning
approach should work for other domains.

We also discussed preliminary experiments with new large language
models in the GPT family, and plans to use these and other large
language models. It is yet to be seen which of them can support transfer
learning, or guarantee out-of-the-box high performance on causality
extraction tasks.
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