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ABSTRACT

This article presents a numerical strategy for actively manipulating electromagnetic
(EM) fields in layered media. The active EM field manipulation problem aims to
characterize an EM source given some predetermined desired field patterns in pre-
scribed disjoint exterior regions. The source characterization problem is treated as
an inverse problem that requires solving an ill-posed optimization problem. The
optimal current distribution is sought after such that the EM source can approx-
imate the given EM fields in exterior regions. This study considers the case when
the source and control regions are in a layered media, which can model various ap-
plications. Using the integral equation method, the forward operator is defined by
formulating the EM fields as a function of the current at the source. The layered
media Green’s function (LMGF) is imposed on the integral equations to account
for the effect of the layered media. We use the Rao-Wilton-Glisson (RWG) basis
to get an ansatz for the necessary current on the source’s surface. Hence, the inte-
gral equations are subsequently discretized and solved by the method of moments
(MoM). Additionally, two regularization techniques are applied to make the approx-
imation of ill-posed (pseudo-)inverses stable. These are the truncated singular value
decomposition (TSVD) method and the Tikhonov regularization method with the
Morozov Discrepancy Principle. Numerical examples demonstrate the accuracy and
feasibility of the developed algorithms for the active control of the fields in layered
media.
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1. Introduction

Active manipulation of electromagnetic (EM) fields addresses the problem of char-
acterizing a current source (electric and/or magnetic) so that its radiated field ap-
proximates desired patterns in prescribed disjoint exterior regions. This problem is
different from the classic inverse source problem in the sense that the patterns to be
approximated are mutually different, and the source can be characterized exactly due
to the analyticity of EM fields in regions without sources. The current source under
control can approximate the given EM fields in specific regions. In contrast to the
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forward problem of determining the radiation field of a given current source, there is
no unique solution (current source) for the proposed control problem due to the exis-
tence of non-radiating currents [1,2]. The non-radiating current can be added to the
source without affecting the radiated EM fields. Therefore, the active EM field control
problem is solved as an ill-posed optimization problem. In recent years, the study of
EM field manipulation has attracted huge attention and research efforts due to its
far-reaching applications. These applications include but are not limited to, scattering
cancellation or reduction (also known as cloaking) [3-11], antenna diagnostics [12-17],
field synthesis or shaping (see [18-27]), etc.

Active EM field control techniques are becoming increasingly ubiquitous to enhance
EM wave-based systems. Take the scattering cancellation as an example. The scatter-
ing from certain objects, such as combat aircraft, often needs to be reduced to make
them invisible to radar, i.e., to reduce the objects’ radar cross-section (RCS). An
advanced approach for scattering cancellation is active cloaking. The active cloaking
scheme seeks to suppress the dominant scattering from the object using an external
source. In [4], Chen et al. demonstrated active scattering-cancellation cloaks in both
1-D and 3-D scenarios. The authors focused on ensuring broadband invisibility based
on anomalous permittivity dispersion. Theoretically, the proposed active cloak scheme
can overcome Bode—Fano bandwidth limit and operate in a much broader bandwidth
than passive cloaks. In [5] (see also [6]), the authors explored active EM cloaks using
the equivalence principle. External electric and/or magnetic currents are introduced
to cancel out the objects’ scattered fields subject to a plane wave incidence. More
recently, Qian et al. [7] proposed an intelligent cloaking driven by the deep learn-
ing technique. The pre-trained deep neural network enables a fast response to an
ever-changing incident wave and the surrounding environment without human inter-
vention. This approach allows a wide range of real-time applications, such as moving
stealth targets.

In addition, active field control techniques are also prevalent in the area of an-
tenna diagnostics. Lopéz et al. [12] proposed a source reconstruction method (SRM)
to establish the equivalent current distribution that radiates the same field as the
actual current induced in the antenna under test (AUT). The knowledge of the equiv-
alent currents allows the determination of the antenna radiating elements and the
prediction of the AUT-radiated fields outside the equivalent currents domain. In [13],
the authors formulated the source reconstruction problem on arbitrary 3-D surfaces
based on integral equations. Boundary conditions for both electric and magnetic fields
are applied, leading to a dual integral-equation formulation. The simulation results
indicate improved accuracy of the reconstructed current. The target application is
antenna diagnostics. In [16], Persson et al. applied the equivalent currents approach
for radome diagnostics. This work reconstructs tangential EM fields from a measured
far-field outside the radome surface. Using an integral representation, the measured far
field is related to the equivalent surface currents on the radome surface. The proposed
approach enables locating the defect area on the radome from the far-field data alone.

Moreover, active field control can be very useful in metamaterial or metasurface de-
sign. In [28], Brown et al. explored the possibility of metasurface design by using the
electromagnetic inverse source framework. The electric and magnetic surface suscep-
tibility profiles are computed such that the transmitted field exhibits the desired field
specifications. The results show that the metasurface can focus the beam from plane
waves, change the direction and radiation pattern, etc. Huang et al. [29] reported a
reconfigurable metasurface for multifunctional control of EM waves. Recent advances
in the study of the hyperbolic metamaterials, such as [30-32] also excited the search



for active control strategies for these media, such as those proposed in [33-36].

The research into new active field manipulation methods can play an important role
in field synthesis applications. A particular example is field-shaping or field-focusing,
which allows efficient wireless power transfer. In [20], Ayestardn et al. used artificial
neural networks to realize near-field multi-focusing. It has the advantage of fast pre-
diction of feeding amplitude and phase on each antenna array element. This array
synthesis technique can be applied to wireless power transfer. Wireless links between
the antenna array and devices are established more efficiently since power radiated at
undesired positions or directions can be suppressed. Furthermore, Ayestardn et al. [22]
introduced another array synthesis technique that can focus the near field on one or
more spots and simultaneously satisfy the far-field specifications. Wu et al. [25] inves-
tigated the manipulation of the EM wavefront to realize the near-field power pattern
control. The distributions of near-field intensities are given, and source magnitudes
are also predefined. The algorithm will find the needed source phases, which can then
be applied to active antenna arrays.

To the best of our knowledge, all the existing research regarding the active EM field
control assumes that the surrounding medium is homogeneous or free space. Also,
most works in EM control are focused on far-field control. Our work is the first one
that considers the near-field active EM field control in layered media. Inspired by some
particular applications, such as wireless communication between seawater and air via
EM waves, wireless power transfer in subsurface formation, etc., we believe active EM
control in layered media is indispensable. This article presents a unified framework
and a computational platform for active EM manipulation in layered media. First,
we define the forward operator by formulating the EM fields with the current source
using integral equations. Note that the layered media Green’s function (LMGF) is
imposed on the integral equations to include the effect of layered media. Next, we
consider an arbitrary 3-D closed surface as the current source, discretized using the
Rao-Wilton-Glisson (RWG) basis. Accordingly, the continuous integral equations are
discretized and yield a linear system that can be solved by the method of moments
(MoM). Then the linear system is solved, maintaining high accuracy while requiring
less power in the sense of the L?-norm (minimum energy) [37-45]. To stabilize the
ill-posed (pseudo-) inversion, we use two regularization methods, namely, the trun-
cated singular value decomposition (TSVD) method and the Tikhonov regularization
method with the Morozov Discrepancy Principle. We perform several simulations to
illustrate the feasibility and accuracy of the proposed algorithm.

The rest of this article is organized as follows. Section 2 generally describes the
problem and provides relevant theoretical results. Section 3 formulate the integral
equation-based forward modeling. We discuss the LMGF and illustrate the MoM. In
Section 4, the inversion formulation is presented. Two regularization approaches are
introduced, TSVD and the Tikhonov regularization with the Morozov discrepancy
principle. Section 5 shows the numerical results of the benchmark examples. Finally,
we conclude the article with some remarks in Section 6.

2. Theory and formulation

This section presents a general problem statement of active EM field manipulation.
We propose to cast the active EM field manipulation as an inverse problem. The main
goal is to find an unknown cause from its known effect [28]. The unified framework of
the inverse source problem has already been discussed in [38,39,41,45]. Though some



of those works addressed the problem of controlling the Helmholtz fields, the approach
could be extended to solve the EM problems governed by Maxwell’s equations. This
article investigates the theoretical results controlling the EM fields in layered me-
dia. Instead of using homogenization of the medium, i.e., replacing an inhomogeneous
medium with a homogeneous material with effective parameters [46], we assume that
the layered medium is horizontally layered, and each layer is composed of a homo-
geneous material with isotropic or uniaxial (i.e., transverse isotropic) permittivity or
permeability. Fig. 1 shows the simplified problem geometry. For an illustrative pur-
pose, we consider a single source Dy, two control regions Dy, Dy embedded in layered
media. Note that the theoretical evidence in [38,40,41,45] indicates that an arbitrary
number of source regions and exterior control regions can be considered in the active
control scheme. The control regions D; and Dy are mutually disjoint domains, i.e.,
Dy N Dy = (. We also assume that the control regions are well-separated from the
source region, i.e., (D1 U Dy) N Dy = (). In principle, the physical source Ds can be
any arbitrary 3-D closed surface. We use a “fictitious source” D, which is a sphere
compactly embedded in the actual source region Ds. This rids us of the complica-
tions that may be brought about by the possibly complicated shape of the EM source.
Meanwhile, W7 and Wy that are slightly larger and mutually disjoint regions are used
such that D1 @ Wy, Dy € W, WiNWy = ¢ and (WlUWQ)ﬂDS = 0. As proved in [41],
accurate controls in the sense of the L?-norm on W, and W5 ensure smooth interior
controls on 0Dy and 0Ds, via regularity and uniqueness theorem for the solution of
the interior Helmholtz equation. Thus, the volumetric control problem is reduced to a
surface control problem.

Let us start from the EM wave propagation in a source-free layered medium in R3;
the governing Maxwell’s equations are,
VxE =—jwupH (1)

VxH =jweeE.

where € and p are the complex relative permittivity and relative permeability of
the planar stratified media, € = Zyey + 2ze, and u = Zyus + 22, I, is the transverse
identity dyad. Note that (1) is a general formulation of Maxwell’s equations in lay-
ered media, if we only consider the isotropic media, the tensors € and p are reduced
to scalars. The time-harmonic term e/“! is assumed but suppressed in the following
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Figure 1. Problem geometry showing the control regions D1, Do and the source region D; in layered media.



demonstration.

The inverse problem addresses the source characterization from the knowledge of
the field outside the source region. Finding the necessary sources that produce the
given EM fields in the prescribed exterior regions is often desirable. Mathematically,
the problem is to find the boundary input on the source, either surface electric current
J € 9D; or magnetic current M € 9D; such that the solutions (E, H) of

V x E = —jwpopH and V x H = jwegeE  in R3\ Dy,
Exi=M,(or i xH=1J) on 0D, (2)

Silver-Miiller radiation condition at infinity

satisfy the control constraints

HE_E]HC(D]) <9é forj:1727
{ (3)

|IH-Hjllop,) <d  forj=1,2,

where ¢ is the desired control accuracy threshold. In (2), fi is the unit exterior normal
vector to 0Ds. The Silver-Miiller radiation condition in (2) at infinity is defined as [47]

{E(X) XX+ L+H(x) = 0O(1/|x[?), (4)

H(x) xx - YE(x) =01/,

as |x| — oo uniformly with respect to x € dD;. The vector x = ﬁ represents the unit
vector pointing outside, while ¥ = \/% is the admittance in non-conductive media.

The radiation conditions force that every solution (E, H) must decay as ﬁ as X — 00.

Remark 1. In [38], the authors proposed an active control strategy for acoustic fields
in a two-layered ocean strategy. We believe that this can be extended to the EM
paradigm through the formalism developed in [45] that employed Debeye potentials.
Some preliminary numerical tests were presented in [48]. Other related works on EM
control using Debeye potentials can be found in [49-53].

3. Integral equation representation

To obtain Green’s function in layered media, we need to transform the time-harmonic
Maxwell’s equations from the spatial domain into the spectral domain by taking the 2-
D Fourier transform. Physically speaking, the Fourier transformation converts a dipole
source in a spatial domain into an infinite series of plane waves in the spectral domain.
The modeling of plane waves propagating in layered media can be solved using the
transmission line analogy [54]. First, we define the Fourier transform pair,

F (k) = 7 7f<p>ejkv"’dxdy, (5)
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where F can be a scalar, vector, or dyadic quantity. Here, p = xX+y¥ is the transverse
component of the position vector r, i.e., r = p+ 2% . k, = k;X + k¥ is the transverse
component of the wavenumber. Applying (5) to (1), we can obtain the spectral-domain
form of Maxwell’s equations,

/ F(k,)e % Pdk,dk,, (6)

VxE = —jwuouI:I
{ (7)

VxH = jwsosﬁ).

From the transmission line analogy, the transformed fields can now be written directly
in terms of transformed dyadic Green’s functions as,

[e.e]

E(k,, z) = / [QE"(kp, 5 2) - J(ky, 2)+ N

"M (k) 2, ) M(k,, )| d,

and
o0
] HHJ AR | /
Bl 2) = [ [0tz #) 30k )
o0 (9)
QHM(kpa 2, Z/) ’ M(kp7 Z,) dZ/>
where the functions, GEJ, QEM, GHJ, and QHM, in the square brackets on the right-

hand side in (8) and (9) can be expressed using the analogy of transmission line
voltages and currents. More detailed expressions of dyadic Green’s functions in the
spectral domain are elaborated in [54]. As long as we obtain the Green’s function in
the spectral domain, we are ready to calculate their spatial-domain forms using (6).
Let us use the electric field as an example. Taking the inverse Fourier transform of
(8), we can write the electric field in the spatial domain as,

[celNe clENe e

B = [ [ [ 167065536 o

GEM(p—p',2,2) - M(r')] da'dy'd?,

where GE/

is a dyadic tensor and it can be evaluated by

1 - ) , 11
- / / G (k,, z, 2 )e % 0= e, dks,. (11)
(o] [o¢]



Note that G in (10) can be evaluated in a similar procedure. This procedure also
applies to the magnetic field. To accelerate the computation of (11), we apply the
Hankel transform to reduce the double integral into a single integral, i.e., the Som-
merfeld integral (SI). More details can be seen in A. With a rigorous derivation, the
calculation of all the components of dyadic Green’s function in layered media involv-
ing general electric and magnetic sources can be expressed in terms of 16 independent
SIs [55]. The detailed expressions are available in A. The evaluation of SIs in (A1)
is usually carried out in the numerical sense. Some algorithms are developed for the
accurate and efficient evaluation of these independent Sls, including deformed integral
path [56], asymptotic singularity extraction [55,57,58], and weighted average method
for integral tails [59,60].

For simplicity, we can express the integrals for evaluating E and H in the compact
form:

= K{I(x), M(r')}

H(r)
[ om s
(G (x,1); 3(x')) + (G (r,x'); M(x"))

where the notation (,) denotes the integral of products of two functions separated by
the comma over their common spatial support, with a dot over the comma indicating
a dot product. To perform the integrals numerically, MoM is applied to reduce the
continuous integrals to discrete EM moments. This is realized by discretizing the source
surface 0D, into finite triangle patches such that the surface currents can be expressed
as

N
J@) =3 LA,
" (13)
M(r) = Y VZAu(r), 1’ €D,
n=1
where N is the total number of basis functions. I = [I¥ I --- Iy] and V¥ =
[Vls |75 V]\ﬂ are two vectors whose elements are the coefficients of discredited

surface currents J and M. Each A, is a divergence-conforming Rao-Wilton-Glisson
(RWG) basis function [61].

4. Inversion

In Section 3, the integral equation method is used to define the forward operator. Once
the electric and magnetic currents are given, the EM fields can be evaluated via the
forward operator K in (12). We can express the forward modeling in a compact form
K(J,M) = (E,H). In contrast to the forward problem of determining the radiation
field of a given current source, the electromagnetic inverse source problem aims to find
an unknown cause from its known effect [28], i.e., (J,M) = K~1(E, H). Following the
same strategy in [38,39,41-43,45], the continuous integral operator K is converted into
matrix form by discretizing the control regions and source region into discrete meshes.



Then the forward operator K yields a linear system,
AWd = b7 (14)

where wq = [I¥; V] is a vector containing the coefficients in discrete forms of (J, M)
in (13). A represents the matrix of moments computed from the propagator I, and b
is the vector of (E, H) at the mesh of evaluation points distributed within the control
regions. In (14), wy is to be determined from the knowledge of the discrete EM fields,
i.e., b. In principle, wg can be evaluated by wy = A~'b. However, A is not square in
most cases due to the inconsistent dimension of w4 and b. Consequently, A~! does not
exist. The alternative way is to find a solution w’y that can produce the approximate
field b’. Note that the data misfit can determine the proximity. Therefore, we can
formulate an optimization problem

2
Wy = arg min ijHAde — ij%z(awj) ) (15)
wa€0D, J=1 ’
where &; is the weight to balance the importance of the residuals, j = 1,2. Solving the
optimization problem (15) yields a classical least-squares inversion. The minimization
of the discrete least-squares cost functional can ultimately result in an ill-posed linear
system, i.e., there is no unique solution. Hence, the original problem (15) must be
regularized. We can apply two commonly used regularization approaches, including
the truncated singular value decomposition (TSVD) and the Tikhonov regularization
with the Morozov discrepancy principle [62,63]. The TSVD method is modified from
the SVD method. TSVD has the virtues of being straightforward to implement and it
allows getting a quick estimate on the degree of ill-posedness by examining the singular
values. The drawback of TSVD is its computational cost, caused by performing the
necessary matrix decomposition. Tikhonov regularization is typically the method of
first choice for linear problems. The generalized Tikhonov regularization provides an
opportunity to incorporate known properties of the solution into the solution method
[62]. Compared with the TSVD method, Tikhonov regularization does not suffer from
the expensive computational cost. However, classic question arises, “How to choose
the regularization parameter?” In the following, we first formulate the inversion with
these two regularization methods and then we will compare the inversion performance
against each other.
We start from the TSVD regularization. We know from matrix algebra that any
matrix A € R™*" can be written in the form,

A =UDVT (16)

where the superscript ‘T’ represents the matrix transpose. Let U € R™*™ and V €
R™ ™ he the orthogonal matrices satisfying UTU = UUT =1, and VIV =VVT =1.
I is the identity matrix while D € R™*" is a diagonal matrix whose diagonal elements
d; are the singular values of A. The minimum norm solution of the equation Ax = b is
given by x = VD™ UTb, where VD UT is the pseudo-inverse of A. D™ is a diagonal
matrix with diagonal elements dj_l. The numerical instability issue may occur when
the ' diagonal element d, in D is much smaller than d; , i.e., d,~ ! appearing in
D~ is much larger than d; ~!. D~ then suffers from bad conditioning. To tackle this
problem, we need to ignore the small diagonal elements which are below a defined



threshold. This is the truncated SVD (TSVD) method. Hence, the TSVD solution is
expressed as

Wg = VD; UTb, (17)

where t denotes the number of diagonal elements in the truncated matrix.
Compared with (15), the Tikhonov regularization method introduces a regulariza-
tion parameter as a penalty weight for the power required by the solution

2
Wg = argmin | Y & Ajwq — byl|7: o) + @l WallTz0p) | (18)

wdE@DS j:1
where a > 0 is the regularization parameter. The Tikhonov regularization can be
regarded as a balance between two requirements, i.e.,

(1) Wy should give a small residual Aw; — b
(2) W should be small in the sense of L2-norm.

The regularization parameter « is selected to minimize the misfit. W, is considered
to be an acceptable characterization if [|[Awg — b|| < 0, where 0 is a desired accuracy
threshold. The optimal « is determined by the Morozov’s discrepancy principle [62,63].
The idea of Morozov’s discrepancy principle is to choose a > 0 such that || Awy—b|| =
0. wq is then taken to be the Tikhonov solution with a determined by Morozov’s
discrepancy principle,

Wwq = (oI +A*A)"'A*Db, (19)

where A* is the complex conjugate transpose of A.

To summarize, two regularization methods, including TSVD and Tikhonov regular-
ization, are introduced in this section. Combined with the forward modeling in Section
3, the inverse source problem can be tackled in two approaches, of which the algorithms
can be summarized as Algorithm 1 and Algorithm 2.

5. Numerical results

To validate the feasibility of proposed algorithms, we present several numerical simu-
lations in this section. For an illustrative purpose, we consider a three-layer medium
as shown in Fig. 2. First, we investigate the EM fields control in one near region in
Fig. 2(a). Then, we extend our numerical study into a multiple-region regime with
two near field control regions W; and W as sketched in Fig. 2(b). The control regions
and the source are placed in different layers. Note that the control region can be in
the same layer as the source. In general, the physical source Dg can have an arbitrary
shape as long as it has a Lipschitz boundary, which compactly includes the fictitious
source D’ and is well separated from the control regions.

5.1. Omne region control

We start from a simple geometry where only one control region and one source are
considered. The background medium is horizontally layered transverse isotropic. From



Algorithm 1: TSVD Regularization

R W N

[=2]

10

11

12

13
14

15

16

17
18
19

input : Prescribed fields, (E;, H;) in D;, j = 1,2,
accuracy threshold 6.
(I%, V%) « (J,M) using (13),
b; < (E;, H;),
b = [by; by,
for n=1to N do
‘ Compute GE/, GEM  GIHJ GHM yia (A2)-(A5),

end

EJ oEM
A =[A; Ay,

A =UDVT, D™ = pinv(D),
t < 1000, truncate the first 1000 singular values,
wyg = VD, UTb,

= (X6 Awa = byl
while 72 > 62 do
t + (t+100),
wq = VD, UTh,

T2 = [Z?:1 &illAjwa — ijQ}-
end
(IS, VS) — Wyq,
(I, M) « (1%, V¥),
output: Surface currents J and/or M € D.
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Algorithm 2: Tikhonov Regularization

[, SV R VR

(=]

10

11

12

13
14

15

16

17
18
19

input : Prescribed fields, (E;,H;) in D;, j = 1,2,
accuracy threshold 4.
(I%, V%) « (J,M) using (13),
b; < (E;, Hj),
b = [by; by,
forn=1to N do
‘ Compute GF/, GEM GHJ  GHM yia (A2)-(A5),

end
gE‘J gEM
Aj [gHJ GHM |
A =[A; Ay,
a+— 10712
8+ 1.05,
wg = (ol + A*A)"1A*D,
w2 = [z;‘;lngAJWd — b, |2 + aflwal?),
while 72 > 62 do
o
6’
wg = (al+ A*A)"1A*Db,
2= |20 &l1A wa — by 2 + allwa ],
end
(IS7VS) — Wq,

(3, M) « (I%,V¥),
output: Surface currents J and/or M € D.

11
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Figure 2. Problem geometry: control region(s) Wi, Wa, and the source region Ds in layered media. (a) One
control region. (b) Two control regions.
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the top to bottom, the relative permittivity e, is [1,2,1]. The conductivity is zero,
i.e., the media is lossless. The layered media is non-magnetic, i.e., y,, = 1. The control
region is an annular sector and satisfies D1 € Wy, where W1 is defined in the spherical
coordinates (with respect to the origin) by

Wy = {(r,e,cb) 1€ [0.5,0.55],0 ¢ [_g, ﬂ 7
3r b (20)
NS [4, 4] } +10.3,0,0].

It should be noted that the spherical coordinate allows a simpler representation of
Wi. When we calculate the Green’s functions involving the observation and source
points, we convert the spherical mesh coordinates on the annular sector to Cartesian
coordinates. In our experiment, the operating frequency is 47.7 MHz. Throughout this
subsection, we use a sphere as the source D, and its radius is 0.31 m centered at
the origin. We assume that only electric current J is present on Ds. In our experi-
ment, we apply the RWG basis functions to discretize the source surface. We used
2808 triangle patches and the number of unknowns, i.e., degrees of freedom (DoF) is
4212. The prescribed field in W7 is a plane wave and the electric field is defined by
E(z,y, 2) = XEq-e /%% where k = 1 is the wavenumber in the top layer. The magnetic

1
field can be attained by H(r) = —2z x E(r). The defined electric field in Cartesian
Wit

coordinates indicates the EM wave propagates along the z direction, and the electric
field is polarized in the X direction. On the boundary of the control region, there are
2750 mesh points. Since we are combining 6 components of EM fields together, the
number of mesh points should be limited, otherwise the system is too large.

Two approaches were used to address the inverse problem, namely, the “integral
equation- TSVD” and the “integral equation-Tikhonov” methods. We shall compare
the performance of these two methods. Here and in the following content, we use the
L?-norm error to measure the control performance, which is defined as

”GJ_PJ”Lz(aVVj) .
TP ow, if [Pjll2ow,) # 0O
lerrlow, =4 e reem T (21)

1G; — Pjllziow,y  if IPjllz2ow,) = 0,

for each j = 1,2. G; = Ajwq denotes the generated field, and P; is prescribed field.
G; and P; can be ecither E or H. Such a L?-norm error is an overall quantitative
measure of control performance. Additionally, we define another measure to show the
control accuracy in each mesh point, i.e., the pointwise error,

GoRL i P #£0
err; = 17 o (22)

G~ P ifP=0,

where err; is the relative or absolute error in the " evaluation point. In what follows,
we present the simulation results of the one-region control. Fig. 3 shows the E and H
obtained by the “integral equation- TSVD” method. Only non-zero components E,
and H,, are displayed. In Fig. 3, the first row shows the E, synthesis, and the second
row is H,. Three columns represent the prescribed field, generated field, and pointwise
relative error, respectively. Note that only the real part of the fields is shown here since

13
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Figure 3. Electric and magnetic field synthesis in an exterior control region by “integral equation-TSVD”
method.
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Figure 4. Electric and magnetic field synthesis in an exterior control region by “integral equation-Tikhonov”
method.

the imaginary part exhibits similar results. We notice that the generated fields, either
electric or magnetic, almost have the same pattern as the prescribed fields. Though
some artifacts are observed in the generated fields, the maximum relative error of the
approximated fields is less than 0.1. The overall L?-norm error is within the order
1073, Similarly, we perform the experiment using the “integral equation-Tikhonov”
method. Fig. 4 demonstrates the control performance. We notice the approximated
E; is almost the same as that in Fig. 3. However, the generated H, in Fig. 4 is worse
than the “integral equation-TSVD” method. The pointwise relative error exceeds 0.1.
The characterized current is shown in Fig. 5, where Fig. 5(a) and Fig. 5(b) corre-
spond the results of the “integral equation-TSVD” method and “integral equation-
Tikhonov” method. Due to the wide range of the current magnitude on Dy, we make
use of the logarithmic scale of current density, i.e., dB Am~2. We observe that the in-
verted current has an irregular distribution, and its amplitude is considerable in some
areas. The characterized current source is a high-power source for both approaches.
From the accuracy perspective, the TSVD regularization is better than the Tikhonov
regularization. Essentially, the Tikhonov regularized solution is the same as the SVD
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Figure 5. Characterized surface electric current (J) on the source D5. (a) “integral equation-TSVD” method.
(b) “integral equation-Tikhonov” method.

solution as long as the regularization parameter « is sufficiently small (smaller than the
smallest singular value) [62]. However, the selection of an appropriate regularization
parameter « in (18) depends on the step size 3 in Algorithm 2. The number of iterations
will be large if 3 is too small. Consequently, the computational cost would increase.
In contrast, the optimal « could be missed if the step size is too large. However, this
limitation does not exist in the TSVD method. In terms of the characterized current
source, the current obtained by the “integral equation-TSVD” method is about 20
dB larger than the “integral equation-Tikhonov” method. In this regard, the current
source is more likely to be implemented if we use the Tikhonov regularization, which
allows lower power consumption.

Remark 2. Note that the Tikhonov approach addresses the minimum energy solution
(with ||||z2), while the TSVD approach does not. That is why the two solutions appear
differently in Fig. 5.

5.2. Two region control

In this subsection, EM field control in two regions is investigated. We examine the
performance of our framework in creating a plane EM wave in W; and null field
in Wa. This technique could be potentially used for wireless power transfer or EM
contrast control, where the EM wave is projected in the target areas. Whereas the
power radiated in undesired regions is suppressed. The problem geometry is shown
in Fig. 2(b), where Wi, Dg, and Wy locate in three layers from top to bottom. The
background medium is identical to the previous example. Wi and W5 are defined in
the spherical coordinate,

W, = {(T,H,gb) .7 €[0.5,0.55),0 € [—g, g : o
be {T,T]}ﬂo-l,o,m,
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Wy = {(r707¢) :r €1[0.35,0.4],0 € [7;, 9;} ,

3m o
Qb € |:4, 4:| } - [0.4,7’(’,0].

(24)

In W1, the radiating field is a plane EM wave propagating in the z direction. The
electric field is polarized in the x direction, i.e., only E, is non-zero. As a result, the
magnetic field only has the H, component. The prescribed field in W5 is null. The
surface current is characterized using the proposed two approaches. The number of
DoF's is the same as that in Subsection 5.1, i.e., 4212. While the number of mesh points
(3960) on the control regions is larger than the one-region regime since more points are
required to increase the resolution. This is also due to the challenge posed by contrast
control. Then we could calculate the radiated field by the current source via the forward
operator K. The simulation results are shown in Fig. 6 for “integral equation-TSVD”
method and Fig. 7 for “integral equation-Tikhonov” method. In each figure, the first
two rows respectively denote E and H in Wy, the third row is the absolute E and H
in Wi. In particular, the three columns in the first two rows are the prescribed field,
generated field, and the pointwise relative error. We observe that the generated E and
H fields are in good agreement with the prescribed fields in both Fig. 6 and Fig. 7.
The maximum pointwise relative errors are less than 5%. The overall L?-norm errors
are within 1073, especially, it is in order of 10~* for E, in Fig. 6.

Regarding the control performance in Wy, the generated fields could be regarded
as the absolute error since the prescribed fields are zero. In the third row of Fig.
6, the generated E is in order 1072 and H is in order 107%. Compared with the E
in Wi, the magnitude is almost three orders lower in W5, which also applies to H.
Namely, the power in W7 is about 60 dB lower than that in Wy. In this regard, the EM
contrast control is realized. The power is projected in W; while the radiated power in
Wy is suppressed. The characterized currents are shown in Fig. 8. The first subplot is
obtained by the “integral equation-TSVD” method, while the second one shows the
results of the “integral equation-Tikhonov” method. We find the magnitudes of both
currents are enormous, indicating high-power sources. Unlike the one-region regime,
the current distributions are very similar by the proposed methods. This observation
can back up the statement that the Tikhonov regularized solution is essentially the
same as the TSVD solution as long as the regularization parameter « is sufficiently
small.

Remark 3. In Subsection 5.2, we showed the contrast control where a plane wave is
approximated in one region while the null field is realized in the other one. In general,
more control regions could be added so that the radiated field is forced to approximate
more and more different patterns in all these regions, which is far from a true inverse
source problem scenario where one measured field data in the control regions belonging
to an EM field interacting with the measurement apparatus.

6. Conclusion
This article presents a unified framework for actively manipulating electromagnetic
fields in layered media. We cast the EM field manipulation as an inverse source prob-

lem where the main goal is to characterize the current source from the knowledge of
the radiated field outside the source region. Firstly, we formulate the EM fields re-
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Figure 7. Electric and magnetic field synthesis in two exterior control regions by “integral equation-Tikhonov”

method.

garding the current source using the integral equation method. We impose the dyadic
Green’s function in layered media on the integral equations to account for multiple
reflections in the background medium. The source region and the control region are
discretized to dense enough meshes of points. Thus, the integral equation is reduced
to a discrete linear system by the method of moment. The linear system is solved in
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Figure 8. Characterized surface electric current (J) on the source D to control EM fields in two regions.
(a) “integral equation-TSVD” method. (b) “integral equation-Tikhonov” method.

the sense of the minimum L?-norm (least-squares inversion) as directly solving the
linear system would result in unstable solutions due to the ill-posedness of the inverse
problem. We use the regularization methods to stabilize the solution to the inversion,
namely the truncated singular value decomposition (TSVD) method and the Tikhonov
regularization method.

Two simulations are provided to support the proposed algorithms. The first example
contains one control region and one source region. The second example has two control
regions and one source. We place the control region(s) and the source in the planar
stratified media in both examples. The simulation results demonstrate the existence of
a current source (modeled as surface electric current). It is capable of approximating
a priori given fields in some near control regions. In addition, we compare the control
performance between two approaches, i.e., the “integral equation-TSVD” method and
the “integral equation-Tikhonov” method. In the one-region scenario, the “integral
equation-TSVD” method outperforms the other method in control accuracy. However,
the characterized current source by the “integral equation-TSVD” method requires
higher power. The high-power source is a limitation when the source is physically
implemented. The second simulation illustrates the capability of achieving the EM
contrast control by our methods. Two regions are prescribed to be a plane EM wave
and null. The contrast control can facilitate focusing applications such as wireless
power transfer, beamforming, etc. We observe that the calculated current source can
produce the EM field with small misfits between the given EM fields in control regions.
Unlike the first simulation, the control accuracies evaluated by the pointwise error and
L?-norm error of the two approaches are almost identical. Both two approaches show
that the L?-norm error is within an order of 1073. Meanwhile, the current sources have
a very similar distribution as the Tikhonov regularized solution is essentially the same
as the TSVD solution as long as the regularization parameter « is sufficiently small.

In general, the current source can be modeled as an electric and /or magnetic current.
The background medium can have an arbitrary number of layers, and each layer can
be either isotropic or anisotropic. In addition, the number of source regions and control
regions is also arbitrary as long as each region is well-separated from the others, i.e.,
with no overlapping. Otherwise, Green’s function can be highly singular. In this article,
we consider a simplified three-layer medium. The simulation results indicate that our
approaches can manipulate the EM fields in layered media. The relative error of the
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control could be as low as 1073.
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Appendix A. Dyadic Green’s function in spatial domain

Taking the inverse 2-D Fourier transform, the spectral-domain Green’s function can be
converted back to the spatial domain. In (11), the evaluation of G/ involves double
infinite integral, which can be computationally intensive when the number of obser-
vation points is large. To accelerate the computation of (11), the Hankel transform is
applied to reduce the double infinite integral into a single semi-infinite integral. The
general Hankel transform is written as

Flp=p202) = Sul Pl 2)
1 (A1)
% k ,2,2) Jn(kplp — P,kadkpv
0

where the integral operator S, {-} is called the generalized Sommerfeld integral (SI). J,,
is the Bessel function of the first kind of order n with n = 0,1,2. p and p’ respectively
denote the transverse projection of the observation point r and source point r’ in
xy-plane.

Therefore, the dyadic Green’s function can be expressed with respect to 16 Sls,
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L;;i=1,2,...,16 denote 16 independent Sls. The discussion of the Sls is beyond the
scope of this article. More details can be referred to [55].
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