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ABSTRACT: The aggregation of a-synuclein is implicated in a
number of neurodegenerative diseases, such as Parkinson’s and
Multiple System Atrophy, but the role of these aggregates in
disease development is not clear. One possible mechanism of
cytotoxicity is the disturbance or permeabilization of cell
membranes by certain types of oligomers. However, no high-
resolution structure of such membrane-embedded complexes has
ever been determined. Here we construct and evaluate putative
transmembrane f-barrels formed by this protein. Examination of
the a-synuclein sequence reveals two regions that could form
membrane-embedded f-hairpins: 64—92 (the NAC), and 35—56,
which harbors many familial Parkinson’s mutations. The stability
of f-barrels formed by these hairpins is examined first in implicit

NAC 35-56

35-56 (4 His+)

membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and
hydrated for at least 10 us. A 35—56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are
neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated
for at least 10 us. Possible implications of these findings for a-synuclein pathology are discussed.

Bl INTRODUCTION

a-synuclein (aS) is a 140-residue protein implicated in several
neurodegenerative diseases. It is the major component of the
intracellular Lewy bodies observed in Parkinson’s and in
Dementia with Lewy Bodies' and of cytoplasmic inclusions
observed in Multiple System Atrophy.” Its physiological
function is poorly ].1nderst00cl.?"4 In solution and in cells aS
is largely unfolded,® but interaction with lipids shifts the N-
terminal domain (res. 1—95) into a helical conformation,
which can be broken in micelles’™® or extended on
vesicles'™" or sampling both conformations.'” In vitro, aS
aggregates into fibrils of varying structures.'*”'® Fragment
microcrystals have also been determined in which residues 69—
78 make parallel B-sheets.'” In addition to fibrils, aS forms a
variety of soluble oligomers.”” The structure of these oligomers
is largely unknown, although some low-resolution information
has been gleaned from various biophysical methods.”'~**

As with other amyioidogzenjc proteins, toxicity seems to be
highest for aS oligomers,zs’ ° although some reports find fibrils
to be the toxic species.””*® Various mechanisms of toxicity
have been considered.”” Prominent among them is membrane
permeabilization.26’30_4l Many studies found no permeabiliza-
tion by monomeric aS.>>*** Others reported leakage from
liposomes caused by unincubated (presumably monomeric)
aS, but usually at higher concentrations,"*’ or voltage-
induced ion channels under conditions where the protein is a
long helix on the membrane surface.”” Solid state NMR
showed that in the toxic oligomers residues 70—88 had f
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structure and inserted in the membrane, while the N-terminus
was dynamic and accessible, with the first 25 residues binding

to the membrane.*’

Most theoretical studies on aS have been concerned with
aggregation in solution** and only a few with its interaction
with membranes.™*’ Some models of membrane-inserted
pore-forming complexes have been proposed, both helical***’
and f-sheet,”® but have not been tested and are difficult to
replicate and evaluate due to the unavailability of coordinates.
Some time ago our lab examined the binding of the N-terminal
helix on an implicit membrane’’ and more recently the
dependence of this binding on membrane curvature.>” Here we
consider the hypothesis that aggregated aS makes f-barrel
supported pores in membranes. We build putative models of
these pores, examine their stability using implicit and explicit-
solvent simulations, and discuss their plausibility in light of the

available experimental data.
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Table 1
MDVEMEKGLSK AKEGVVALAE KTKQGVAELR GKTKEGVLYV GSKTKEGVVH 50
GVATVLEKTK EQVTNVGGEV VTGVTAZVZQK TVEGAGSIEZE ATGEVEKDQL 100
GKNEEGLPQE GILEDMEVDP DNELYEMPSE EGYQDYEPEZ 140
Bl RESULTS

Model Construction and Implicit Solvent Modeling.
The sequence of aS is displayed in Table 1 (strongly
hydrophobic residues are shown in bold).

Examination of transmembrane f-barrel structures reveals
that each f-strand typically exposes five side chains to the
membrane, and one of them is often Gly."*** Two side chains
are near the hydrophobic—hydrophilic interface and three are
deeply in the hydrophobic core. Thus, we looked for stretches
containing triplets of nonpolar residues separated by one
residue (ie, @ X @ X @, where @ is a hydrophobe). One of
them need not be strongly hydrophobic (e.g, A or G) but it
cannot be strongly polar. The 40-residue C-terminal domain is
disordered and rich in acidic residues. In addition, it lacks a @
X ® X @ motif and is thus unlikely to insert into the
membrane. Residues 61—95 comprise the so-called NAC
(Non-Amyloid # Component of Alzheimer’s plaques), and are
most prone to aggregation. The NAC is the most obvious
candidate for membrane insertion. Another stretch that
contains sufficient numbers of hydrophobic residues is 35—
56. We focused on these two regions and explored the
possibility of insertion of f-hairpins.

We considered octamers of hairpins because they create
pores sufficiently large for ion conduction. We used our
previous f-barrel of eight protegrin ﬁ—hairpinsss as a template
and considered different alignments for the NAC (Table 2).

Table 2. Possible Alignments of the NAC Region with the
Protegrin Hairpin and Their Transfer Energy from Water to
the Pore”

AW (keal/moly
1. RGGRLCYCRRRFCVCVGR
TO-VIGVTAVAQKTVEGAGSI-BE +3
2. RGGRLCYCR RRFCVCVGR
68 -GAVVTGVTAVAQKTVEGAGSIARA-91 4]
3. RGGRLCYCR REFOCVCOVGR
&1 -EQVTNVGEAVVTCEGVTAVAQKTVEGAGSIARLATEEFV +5
4. REGELCYCR REFOVOVGE
EQVTNVEEAVVTGVTAVAQKTVEGAGSIARATGEV -13
5. RGGRLCYCR RRFCVCVGR
EQVTNVGGAVVTCVTAVAQKTVEGAGS IAAATGFV -15
[ RGGRLCYCR RRFCVCVGER
68 -GAVVTGVTAVAQKTVEGAGSIARR-9] +6
7. RGGRLCYCRERFOVCOVGR
EQV-THNVGEGEAVVT GVTAVAQK-TVEGAGSIAAATGEV -&
a. REGELCYCHRRFCOVCOVGE

EQV-TNVGGAVVT GVTAVAQK-TVEGAGSIARATGEV -3

“The first line in each alignment is the protegrin sequence. In bold are
the residues facing lipids.

The stability of the model was judged by (a) how well
preserved the barrel structure was, (b) whether it stayed in the
pore, and (c) the magnitude of the transfer energy AW from
water to the pore. Some alignments (e.g, #4) showed a
favorable AW but the barrel either broke or moved partly out
of the pore. Other alignments preserved the structure of the
barrel but exhibited an unfavorable transfer energy. The best
overall was alignment #5 with favorable AW and a reasonable
barrel structure (Figure 1). This model was selected for further
study using all-atom simulations.
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Figure 1. NAC barrel alignment 5. Blue lines indicate the implicit
membrane-water interface.

Section 35—56 also has enough hydrophobic residues to
possibly insert into the membrane. Two models were
constructed based on the NMR structure of this fragment in
complex with a protein engineered to bind it (pdb id 4BXL).*®
The two models differ in which side of the hairpin faces inside/
out. In 4BXL one face of the hairpin has the side chains of
residues V37, Y39, G41, V48, H50, V52, T54, A56 and the
other 138, V40, S42, V49, G51, A53, V55. The hydrophobicity
of the latter face seems higher than that of the former. Indeed,
the model with Y39 and HSO pointing inside (Figure 2)

Figure 2. Initial 35— 56 barrel models based on 4BXL. Left: Y39 and
HS50 facing outward. Right: Y39 and HS0 facing inward. The latter
model was chosen for further study. Blue lines indicate the implicit
membrane - water interface.

Table 3. Barrel Models for Fragment 35—56 of aS“

AW (keal/mol)
1. 48XL-based octamer, (YinHin)
EGVLYVGSKTKEGVVHGVATVA =25
2. 4B¥L-based octamer, (YouHou)
EGVLYVGSKTKEGVVHGVATVA +27
3. RGGRLCYCR_RRFCVCVGR, (YipHou!
GVLYVGSKTKEGVVHGVAT -14

“In bold are side chains facing outwards.

exhibited favorable insertion energy (Table 3), so it was
selected for further study by all-atom MD. It is possible to
construct models with one strand flipped. For example, model
3 based on our protegrin octamer has the C-terminal strand
flipped compared to model 1 and exhibits favorable insertion
energy, albeit less than Y, H;.

All-Atom Simulations. NAC Barrel. The 64—92 model
(NACS) remains stable with limited structural changes during
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0ps

64-92 (NAC5)

Figure 3. NACS barrel at 0, §, and 10 us of all-atom simulation.

10 ps

the 10 us all-atom simulation. Initial, middle, and final
structures are shown in Figure 3. The N-terminus of hairpin
E (yellow) is more mobile than the others and often forms salt
bridges to the C-terminus of hairpin G (light gray), or to
glutamic acid side chains. Between 1.6 and 2.5 us hairpin E
imparts much disorder unto hairpin D (orange). During this
time, the H-bond register within hairpin D changes from
GLY5:0-ALA27:N initially to GLY5:0-THR29:N. The H-
bond register between hairpins C and D also shifts by one from
(C)SER24:0-(D)VALS:N to (C)SER24:0-(D)ALA6:N. The
increased shear causes the C-terminal strand of D and the N-
terminal strand of E to slide deeper into the aqueous phase, but
their f-sheet content remains relatively constant, as shown in
Figure 4. The total f-sheet content oscillates around 37% up to

[
total
05+ —
0.4
=
= 03 4
3
£
2z
02K =
[INR —
B : I : ! s ! . I
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time / ns

Figure 4. ff-sheet content in the NACS during 10 us. Black line is for
the entire complex and colored lines for hairpins D and E.

4 us, then increases slightly to 42%. The barrel’s overall shape
also visually seems to improve at that point. It then remains
open and hydrated in this state for the remaining 6 us. RMSD
and radius of gyration plots for this and the other all-atom
simulations are shown in Figures S1 and S2 in SI, respectively.
A plot of the number of water molecules in the NACS barrel is
shown in Figure S3 in SL

35-56 Barrel. During the first § ps, the 35—56 Y, ,H;, barrel
gradually flattens (Figure 5), although the f-strands themselves
remain relatively ordered and the total f-sheet content remains

7173

stable at about 60% throughout. The final structure’s interior is
mostly dry. Figure 6 shows the number of water molecules
within the barrel diminishing over time. This is clearly due to
the predominantly hydrophobic nature of the barrel interior.
The only polar residues are Y39 and H50. The (partially polar)
Y39 residues mainly point toward the termini and the H50
residues toward the loops; they H-bond with each other when
opposite strands come close after the barrel’s collapse. The
Y, Hoy model has an even more hydrophobic interior and
already flattened during equilibration in implicit solvent
(Figure S4).

H50Q is a familial mutation in Parkinson’s disease which
was found to aggregate faster and to be more cytotoxic.”” We
simulated an H50Q mutant of our barrel and found that it
remained stable and hydrated for 4 us, but then flattened and
dried out like the wild type barrel in the remaining 6 us (Figure
5). Total S-sheet content diminished from 70 to 55% within 3
Hs and remained stable thereafter.

Because the His has a pK, of 6.5, it is conceivable that at
least some of the His in the interior surface of the barrel might
be charged. To examine the effect of this on pore stability, we
repeated the above simulation with four of the eight His
doubly protonated. In that case the pore also flattened
somewhat, but the additional charge attracted enough solvent
to keep the pore from collapsing and hydrated for the entire 10
ps. The flattening is likely caused by hydrophobic interactions
and aromatic stacking between the TYR rings. Figure 7 shows
the correlation between TYR ring distance, measured between
two adjacent strands, and pore diameter, approximated by the
distance between two C,s in opposite strands. The total f-
sheet content dropped from 70% initially to 45% at 1 us, and
remained stable thereafter (Figure S5). Water molecules that
diffuse along the backbones of strands E and F, where the
barrel curvature becomes acute, transiently form an intercalat-
ing chain at various times (Figure 8). Figure S6 shows the
fraction of each lipid type in contact with protein.

Bl DISCUSSION

‘We have identified two regions of aS that may be able to form
at least metastable, oligomeric, membrane-embedded g-
barrels: 35—56 and 64—92. The simulations do not prove
that the barrels are thermodynamically stable because they
start from preformed barrels and have a limited time scale
compared to experiment. No account has been taken of the
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35-56 — neutral His50

side
view

35-56 — H50Q

Figure 5. 35—56 oligomer with Y39/HS0 pointing inward after 5 ps all-atom MD. Upper left: His5S0 neutral at 0 and 5 us. Upper right: HS0Q

mutant at 5 us. Lower half: H50 half charged at 0, 5, and 10 us.
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Figure 6. Water molecules inside the Y, H, barrels. Red: Neutral
H50. Water drains first from the central hydrophobic TYR area. The
molecules that remain reside at the barrel top and bottom, between
either the loops or the termini of the hairpins. Blue: Half of the H50
residues are charged. The barrel remains hydrated. Purple: HS0Q
mutant. Dehydration is delayed.

entropic cost of bringing several hairpins together in a precise
register and orientation and no alternative structures were
considered. The results only indicate that the structure are
plausible and cannot be immediately dismissed. The kinetics of
forming these structures, which is also not considered here, is
expected to be quite slow but the time scale on which amyloid
diseases develop is also very slow. The octameric oligomeric
state chosen for our models is nearly the smallest that could
allow ion transport. Small variations in aggregation number
should not have a large effect on stability. Many aS oligomers
have higher aggregation numbers.*>***? It is possible that not
all monomers in an oligomer participate in membrane
perturbation.

7174

The hairpins constructed by the NAC fragment give a
reasonably stable pore, although a barrel with higher initial
shear might have been preferable. For this segment some
experimental results on toxic oligomers interacting with
membranes are available via solid state NMR.*> The data
showed that residues 70—88 were in f# conformation. 70—88 is
slightly shorter than our model (64—92) and does not include
some strongly hydrophobic residues that stabilize membrane
insertion. In NACS the residues in f conformation are 67—72
and 86—92, so 70—88 is mostly in the loops. Alignment NAC1
in Table 2 was inspired by these NMR results, but turned out
not to be very stable. Perhaps the structure detected in ref 33 is
not a barrel; there is no evidence in that work that the
oligomers cross the membrane.

What makes fragment 35—56 especially interesting is that
the majority of Parkinson’s disease familial mutants occur
within or near this fragment: A30P, E35K, E46K, H50Q,
G51D, and A53T. The biophysical properties of these mutants
are well studied: some accelerate aggregation (H50Q60_62)
while others slow it down (ASCIP,63 G5 1D62’64). Some reduce
binding to and disruption of membranes, some enhance it, and
some have no effect.*~% A macrocyclic f-hairpin derived
from 35 to 56 was found to be toxic’’ and deletion of the 36—
42 fragment prevented toxicity in C. f:If:gltms.;rl Sequesterin
37—54, which was seen to form a hairpin in MD simulations,
reduces aggregation and toxicity.”® These two strands were
proposed to form hairpins in oligorners.22

We found that the 35—56 barrel dehydrates and collapses
due to the hydrophobicity of its interior. Although this could
result from improper balance of protein—protein and protein—
water interactions in the force field used, it seems rather
unlikely. The barrel could remain hydrated if some of the
His50 are doubly protonated. In neurons the resting
intracellular pH is 7.03—7.46"> and it is reported to decrease
with age.”* Synaptic vesicles have a pH lower by 1.5 units’®
and during their exocytosis there is strong transient acid-

https://doi.org/10.1021/acs.jdm.3c00997
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Figure 7. Pore diameter and aromatic ring distances with four His50 doubly protonated. Left: Configuration at 10 us. Right: Time series, and
correlation coefficients within select trajectory sections between Ca—Ca distance across the barrel and distance between TYR in adjacent strands
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Figure 8. Transient water chain forms at various times in the half-His50-charged 35—56 model. The plot shows the number of H bonds formed by
E and F strands with water. A snapshot was taken whenever the running average exceeded 6.

ification of the synaptic cleft.”® So, for some periods of time,
the pH in some regions may become low enough to protonate
His. This finding predicts a pH effect on pore formation by the
fragment 35—56, which could be tested by in vitro experi-
ments. A dehydrated barrel could still play a role, for example
anchoring the oligomers on the membrane and facilitating their
endocytosis from the extracellular medium, a process that has
been observed experimentally.”’

In the Y; H;, model that we simulated, G51 is facing lipids,
so the mutation G51D would destabilize the pore. The mutant,
however, could form a barrel with the C-terminal strand
flipped. As shown in Table 3, Y;H,, also has favorable
insertion energy, albeit less favorable than Y, H;,. Similarly,
AS3T/E would stabilize a pore in the flipped conformation,

7175

whereas A53 V would stabilize the pore in the Y; H;, strand
orientation. The E35K mutation is at the edge of the barrel and
the E46K in the loop, surrounded by two other Lysines. The
latter might slow down the kinetics of membrane insertion.
The substitution of H50 with Q did not help keep the channel
open, so the source of the higher extracellular toxicity of this

mutant®” should be sought elsewhere, for example in enhanced
aggregation.

The presence of H50 within the pore lumen could also
mediate some metal effects. His is known to bind Cu, Zn, Fe
and other metals.”® Inhibition of vesicle leakage by Zn has
been observed,” which could be explained by binding of Zn to
His in the pore lumen. On the other hand, exposure to metals
is a known risk factor for Parkinson’s."” Perhaps metals have

https://doi.org/10.1021/acs.jdm.3c00997
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two competing effects: first, accelerate oligomerization by
tethering together His residues but then inhibit ion leakage by
blocking the formed channels.

Experimental structural information on aS oligomers and
possible membrane pores is of low-resolution. Early EM and
AFM studies of aS and other amyloid-forming proteins
showed membrane-bound annular structures®>**°**'~%3 with
inner diameter of 2—2.5 nm, similar to that of the octamers
simulated here. The picture obtained by these studies is likely
to be dominated by the extramembranous portions of the
protein. We recently applied our methodolqggf to IAPP,**
amyloid # 1-42,"° and amyloid f 25-35" and found
reasonably stable f-barrel structures in each case. A recent
computational study of a generic FKFE repeat sequence found
spontaneous formation of imperfect beta barrels on the time
scale of a few us at somewhat elevated temperatures.”” These
results support the plausibility of the amyloid pore hypothesis.

It may be argued that structures like the ones considered
here are too ordered. Indeed, given the high disorder of the
oligomers, highly symmetric structures seem unlikely. Perhaps
they can be viewed as ideal limits that tell us what is
theoretically feasible. It is also possible that oligomers do not
form well-defined structures but simply create defects that
lower the ion permeation barrier.*® What actually happens can
only be ascertained by careful experimentation. Study of
fragments corresponding to our putative membrane-inserting
regions would be useful. Lowering the entropy cost of forming
these barrels® would also facilitate their experimental
observation.

B METHODS

Implicit Solvent Modeling. Implicit membrane simu-
lations employed the IMM1 model,” an extension of the EEF1
effective energy function for soluble proteins’' to heteroge-
neous membrane-water systems. IMM1 uses a switching
function that transitions smoothly from a nonpolar to an
aqueous environment and accounts for the surface potential
using the Gouy—Chapman theory.”> Modeling of pores”"* is
accomplished by making the switching function F dependent
not only on the vertical (z) coordinate but also on the radial
coordinate (the distance r from the z axis):

1 L O

E—
r

F(z,r) = f(&) + b(r") = f(2)b(r),

m

R z
)=
@) 142"
rﬂl
b(r')=1=-
) 14"

2 =121/(T/2), ¥ =r/R, R =R, + kz* (1)

p-barrel models of fragments of aS were constructed in two
ways. First, by aligning them to the protegrin f-hairpin and
using our previously constructed octameric protegrin barrel®
as a template. The replaced side chains were built in an
extended conformation. Second, we used the NMR structure
of a hairpin.>® In the latter case the hairpin was first flattened
using geometric restraints. Then eight copies were super-
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imposed on the template barrel according to backbone RMSD.
The structures were refined by a series of energy minimizations
and MD simulations in the presence of gradually decreasing H-
bonding restraints in an implicit toroidal pore (R, = 13 A, k =
15 A). The stability of the barrel was judged by the difference
in effective energy of the entire complex in water versus in the
membrane pore (transfer energy AW), evaluated for the last
conformation sampled during the MD simulation in the
membrane.

All-Atom Simulations. After the 35—56 barrel with Y39
pointing inside exhibited a favorable AW and remained stable
over 1.1 ns in the implicit pore, CHARMM GUI was used to
place it in an explicit 5:3:2 DOPE:DOPS:DOPC membrane,
which is the membrane composition used in recent in vitro
experiments.’® A box size of 100 A was chosen for the ~40 A
diameter barrel, resulting in 140 lipid molecules. Pore water
and KCl counterions were added. The structure was
equilibrated in NAMD for 6 ns. After it proved stable for
another 9.2 ns, the final structure was submitted to the
ANTON 2 supercm:ﬂpl.lterg'5 and run for 5 ws. Two
protonation states were chosen for the His50 residue, which
lines the pore lumen: either all neutral or four of the eight
residues doubly protonated. A HS0Q mutant was also
generated and run for 10 ps.

The most stable 64—92 model (NACS) was treated
analogously: CHARMM GUI was used to place it in an
explicit 5:3:2 DOPE:DOPS:DOPC membrane with a box size
of 100 A. The structure was equilibrated in NAMD for 6 ns.
After it proved stable for another 9.7 ns, the final structure was
submitted to ANTON 2 and run for 10 ws. The f-sheet
content was calculated using the COOR SECS command in
CHARMM, which is based on DSSP.”

Bl ASSOCIATED CONTENT

Data Availability Statement

The implicit solvent simulations were carried out with the
program CHARMM, which is available by license from Prof.
M. Karplus (Harvard University). The all-atom simulations
were done with the freely available software NAMD and the
Anton software (D.E. Shaw Research), available to grantees at
the Pittsburgh Supercomputer Center. The final coordinates of
all-atom simulations are provided in Supporting Information.
All other structures mentioned in this article are available from
the corresponding author upon request. The Anton trajectories
are available through the Pittsburgh Supercomputer Center.
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Final coordinates of the all-atom simulations:

3556 Sus (PDB)

3556 hS0q 10us (PDB)
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