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Abstract—The tremendous success of the Transformer neural
networks in natural language processing (NLP) boosts the interest
in integrating and applying Transformer models to computer
vision applications. The Vision Transformer (ViT) model adeptly
captures extensive inter-dependencies among input sequences
by employing the self-attention mechanism, thereby transform-
ing picture data into semantically significant representations.
In recent times, ViT has demonstrated superior performance
in image classification tasks by implementing the transformer
architecture, surpassing the capabilities of convolutional neural
networks. Nevertheless, these deterministic architectures cannot
evaluate the uncertainty associated with predictions, a crucial
aspect in divergent and noisy situations. In order to guarantee
the effectiveness and reliability of ViT in critical applications, the
Bayesian Inference facilitates the process of making probabilistic
predictions. Estimating the Bayesian posterior distribution of the
network parameters enables a systematic method for reasoning
about predictive uncertainty. The major difficulty in this process
lies in propagating the posterior distribution through numerous
non-linear layers of ViT architecture, which is mathematically
cumbersome. In this paper, we propose a Bayesian Vision
Transformer (Bayes-ViT) model, which seeks to make predic-
tions as well as quantify the uncertainty associated with the
output decision. The variational optimization approximates the
posterior distribution over the unknown model parameters by
minimizing the evidence lower bound (ELBQO) loss function.
The variational moments are propagated through the sequential,
non-linear layers of Bayes-ViT by employing the first-order
Taylor approximation. The covariance matrix of the predictive
distribution effectively manifests the uncertainty associated with
the output prediction. Extensive experiments on benchmark
datasets (MNIST and Fashion-MNIST) exhibit (1) the superior
robustness against noise and adversarial attacks compared to the
deterministic ViT and (2) the self-evaluation ability based on the
prediction uncertainty that becomes more evident when noise
levels increase.

Index Terms—Robust Vision Transformer, Bayesian Inference,
Uncertainty Quantification, and evidence lower bound (ELBO).

I. INTRODUCTION

Recent years have witnessed the rise of deep learning (DL)
as a leading research field. Convolutional Neural Networks
(CNNs) have been the most prevalent DL models for diverse
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computer vision applications such as classification, segmen-
tation, and object detection [1], [2]. However, due to their
localized receptive fields, these models have a limited ability
to learn long-range dependencies in images. On the contrary,
the attention-based structure of Transformer has excelled in
modeling global relationships and can effectively capture such
dependencies based on the success garnered in the natural
language processing (NLP) domain [3]. The Vision Trans-
former (ViT) performs at the leading edge on vision tasks
with its capability to handle long-range dependencies between
input sequences [4]. ViT applies an encoder-based transformer
structure to a series of non-overlapping image patches to
perform image classification tasks [7].

Recently, researchers have been employing ViT extensively
in numerous image classification applications, including med-
ical diagnosis [S], [6]. For example, as part of the MIA-
COVID-19 challenge, Gao et al. suggested COVID-ViT to
differentiate COVID-19 from non-COVID photos of chest
radiography as part of solving the binary classification prob-
lem [8]. In another medical imaging application, variants of
ViT were trained and fine-tuned for meticulously identifying
brain tumors while investigating Magnetic Resonance Imaging
(MRI) images [9]. Breast cancer detection is another exciting
field of research where ViTs have demonstrated impressive
performance [10]. The ViT model has also been observed to
be effective in other image classification applications, such as
the detection and monitoring of deforestation activities [11].

Despite the success of the ViT models in image analysis
and classification, ViTs, like most neural networks, produce
deterministic predictions and can be sensitive to slight varia-
tions in input data (lack of robustness). Deterministic ViTs are
prone to overconfident predictions in noisy environments and
do not provide a direct measure of uncertainty associated with
their predictions. The quantification of uncertainty in model
predictions provides justification for the model performance
when there is a shift in the distribution of input data, such
as in the case of predictions in noisy environments. The con-
sideration of model uncertainty holds significant importance
in critical applications closely associated with human life.
Failure to identify when models are likely to be erroneous
might result in detrimental outcomes and reduce their efficacy
in overcritical applications.

This paper proposes a novel Bayesian Vision Transformer



(Bayes-ViT) neural network that addresses the task of image
classification and quantifies the level of uncertainty associated
with the class prediction. We adopt the variational inference
and approximate the posterior distribution of the model’s
parameters by minimizing the evidence lower bound (ELBO)
loss function. We propagate the first two moments of the
variational posterior distribution over the model’s parameters
through all layers and non-linear activations of Bayes-ViT
using the first-order Taylor approximation (an extension of
the work in [19]). The propagated variational moments, i.e.,
the mean and covariance matrix, help simultaneously learn the
mean and covariance of the probabilistic classification output.
The mean vector at the output refers to the classification
decision, while the covariance matrix conveys the level of
uncertainty associated with that prediction. The experimental
results demonstrate that the proposed Bayes-ViT outperforms
the deterministic ViT in both no-noise and noisy environments.
Particularly, the proposed model reveals enhanced robustness
when subjected to noise and adversarial attacks during the
test time using the benchmark datasets (MNIST and Fashion-
MNIST). Moreover, we observe that the output uncertainty
(measured by the predictive covariance matrix) increases with
the increasing level of natural or adversarial noise. This
behavior serves as a warning for human users to identify the
failure mode of the model, especially important in mission-
critical domain applications.

II. BAYESIAN VISION TRANSFORMER
A. Bayes-ViT Structure

The proposed Bayes-ViT model takes a sequence of non-
overlapping image patches as input and linearly projects these
patches into vectors, i.e., X1,Xsa, -, X, € RP, where p is the
size of each patch. The positional embedding is then applied
to provide spatial information about the location of image
patches within an input image. The output of the embedding
is fed to the encoder structure of the Bayes-ViT model. The
encoder structure consists of several layers, including the self-
attention function, the multi-layer perceptron (MLP), and the
layer normalization. The self-attention mechanism is the core
of the Bayes-ViT model because it ascertains the correlation
between the image patches within the input sequence. Given
a set of n query vectors qi,qz, - - -, qn € R%, n key vectors
ki, ko, -, k, € R%, and n value vectors vi,Va,---,V, €
R™, the attention mechanism maps the query vector, q;, the
key vector, k;, and the value vector, v; and computes a set
of output vectors z1, zo, - - -, 2z, € R, such that
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where q; = W(q) X, kj = W(k) X, and vV = W(V) X, and
W@, W& and W) are the weight matrices. The query,
key, and value vectors represent the linear projection of the

input sequence, dj, denotes the dimension of the key vector, ¢
is the softmax function, and ® is the Hadamard product. The
MLP consists of two fully connected layers and a Gaussian
error linear unit (GeLU) activation function.

B. Bayesian Inference in the Bayes-ViT Model

We define a prior probability distribution over the model pa-
rameters, p(W), where W = {W (@ W) W) WMLPL
We impose the independence assumption between the param-
eters across layers to (1) extract uncorrelated features across
layers and (2) develop a feasible optimization problem, as
estimating the joint distribution of all layers is mathemati-
cally intractable in large models. Using the training samples
D = {X;,y:}Y¥, and the prior distribution p(W), we ap-
proximate the true unknown posterior distribution, p(W|D),
with a simpler parametric variational distribution ¢,(W). The
optimal parameters ¢* of this variational approximation are es-
timated by minimizing the Kullback-Leibler (KL) divergence
between the approximate and the true posterior distributions,
KL [g4(W)||p(W|D)], which is known as the evidence lower
bound (ELBO), L(¢; D).

L(¢:D) = —Eq, () {log p(D|W)} + KL [q¢(W)Hp<W)](-3)
The first term in the ELBO loss is the log-likelihood ex-
pectation on the given set of training datasets and weight
matrices. The second term is the KL divergence between
two multivariate Gaussian distributions, i.e., the variational
posterior distribution and the prior distribution, defined over
the network parameters.

C. Uncertainty Propagation in the Bayes-ViT Model

We propagate the moments of the variational distributions,
q5(W), ie., the mean and covariance matrix, through all
layers of the Bayes-ViT model. In our proposed model, all the
learnable parameters are random variables. In the self-attention
function, we have inner products between two random vectors,
Hadamard products between random vectors and non-linear
functions applied to random vectors. We will formulate the
moment propagation for the self-attention function, and the
mathematical relations can then be generalized to all layers.

Let, w,(lq) be the ht" row vector of the weight matrix w@
where h = 1,2,---, H and H is number of hidden nodes.
The variational distribution is w,(Lq) ~N (uw](lq),Ew(q)). We
assume the weight vectors are independent of each other
and of the input vector x;. Each row of the matrix w@
multiplies the vector x; in the matrix-vector multiplication
q; = W @x;. Thus, the inner product between each pair of
independent random vectors, ;LW(hq) and x; can be written as

G = (w,(Lq))T x;. The mean and covariance of q; can be
derived as the following,

pg, = M@y, where M@ = [ )] )
h
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Fig. 1. A schematic diagram of the proposed Bayes-ViT model illustrating the
uncertainty propagation through the various non-linear layers of the model.

Similarly, the mean and covariance matrix of the key vector
k;, the value vector v; and the vector a; in Equation 1 follow
the derivation in Equation 4.

The first-order Taylor approximation estimates the mean and
covariance matrix after the non-linear activation functions in
the model, including the softmax function. Thus, the mean and
covariance of a; in Equation 1 are derived as follows.

Sa, & T, %0, I7, 5)

where J, denotes the Jacobian matrix of a; with respect to a;
evaluated at p1,,. The results presented in Equation 5 hold true
for any non-linear activation function, including hyperbolic
tangent (Tanh), sigmoid, or rectified linear unit (ReLU). The
mean and covariance matrix of the element-wise multiplication
in Equation 2, i.e., z; = a; ® vj, are derived as follows,

Ma, = ©(Ha,;),

Bz, = Ha; © Py, (6)
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where D(u.;) represents the diagonal matrix whose entries
are given by the column vector py;.

By propagating the variational moments through all lay-
ers, we obtain the moments of the predictive distribution,
p(y|X, D). The mean of p(y|X, D), i.e., py represents the
network’s prediction, while the covariance matrix, 3, reflects
the uncertainty associated with the output classification. Figure
1 illustrates the proposed Bayes-ViT model.

III. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed
Bayes-ViT model compared to the deterministic ViT using
the benchmark MNIST and Fashion-MNIST datasets. Both
models are trained on clean datasets and then evaluated
during the test time in two separate cases: (1) using clean
test samples and (2) after adding various levels of natural
noise and adversarial attacks. We use random noise, the fast

gradient sign method (FGSM) [20], and the projected gradient
descent (PGD) adversarial attacks to evaluate the models
in noisy situations [21]. The hyperparameters selected for
training the models are outlined in Table I. Table II presents
the classification accuracy of the proposed Bayes-ViT model
compared to the deterministic counterpart using MNIST and
Fashion-MNIST datasets in clean and various noisy situations.

We plot the uncertainty measured by the output variance
(diagonal element of the output covariance matrix that cor-
responds to the predicted class) versus signal-to-noise ratio
(SNR) for the various noisy conditions. Figure 2 shows the
output variance of the proposed model versus SNR for the
MNIST and Fashion-MNIST datasets.

A. Discussion and Robustness Analysis

We observe from Table II that the proposed Bayes-ViT
model attains higher accuracy for both MNIST and Fashion-
MNIST datasets when tested on clean as well as noisy test
samples. Particularly, the proposed model maintains its perfor-
mance with high accuracy under high levels of random noise
and adversarial attacks. We highlight the highest accuracy for
the two models for the highest level of noise. For example,
the proposed Bayes-ViT obtains 87.01% and 88.59% for the
highest level of FGSM and PGD adversarial noise compared to
56.52% and 80.92% for the deterministic ViT on the MNIST
dataset. Similarly, the proposed model produces 51.5% and
68% accuracy for the highest level of FGSM and PGD
adversarial noise as compared to 28.9% and 45.9% for the
deterministic model on the Fashion-MNIST dataset.

The robust behavior of the proposed Bayes-ViT model can
be justified by the uncertainty (measured by the covariance
matrix) propagated through the model’s layers and associated
with the output classification. The uncertainty associated with
the model’s parameters passes the important information from
the data and filters out the irrelevant information, which helps
improve the model’s performance. Furthermore, we observe
from Figure 2 that the output uncertainty (variance) gets higher
values in the case of noise, especially when there is an adver-
sarial attack. When the noise level increases (SNR decreases),
the variance values increase significantly, especially in the
adversarial noise cases. The increasing value of the uncertainty
adjusts the learning process of the Bayes-ViT model and
promotes robustness in its performance. The uncertainty plays
a vital role in preserving important features of the data and
eliminating weak and redundant features that might be severely
affected by the attacks.

TABLE I
HYPERPARAMETER SETTING IN OUR SIMULATION.

Dataset |Patch| No. No. |Batch| No. | Initial | Final KL
Size |Encoder|Hidden| Size |Epoch|Learning|Learning| Weight
layers | Units Rate Rate | Factor
MNIST | 4 5 64 20 | 300 | 0.001 |0.00001 |0.00001
F-MNIST| 8 7 64 50 | 500 | 0.001 [0.00001 | 0.001




Output Variance

~

o

«

IS

w

~

-

o

x10?

TABLE II
CLASSIFICATION ACCURACY OF THE PROPOSED BAYES-VIT AND
DETERMINISTIC VIT MODELS USING MNIST AND FASHION-MNIST
DATASETS. BOTH MODELS ARE TESTED FOR VARIOUS LEVELS OF
RANDOM NOISE AND FGSM AND PGD ADVERSARIAL ATTACKS.

(a) MNIST Dataset
Noise Type | Noise level | Bayes-ViT | Deterministic ViT
No Noise 90.08 88.1
0.05 90.01 85.57
Gaussian 0.1 89.53 84.57
0.2 86.50 78.22
0.001 89.43 85.7
0.005 89.43 84.88
FGSM 0.01 89.35 83.51
0.05 87.01 56.52
0.001 89.59 86.07
0.005 89.53 85.12
PGD 0.01 89,34 83
0.05 88.59 80.92
(b) Fashion-MNIST Dataset
Noise Type | Noise level | Bayes-ViT | Deterministic ViT
No Noise 82.44 79.9
0.05 81.60 79.2
Gaussian 0.1 75.40 72.4
0.2 52.20 47.7
0.001 81.10 79.23
0.005 771.97 76.05
FGSM 0.01 70.50 69.4
0.05 51.50 28.9
0.001 82.00 79.01
0.005 80.30 T1.2
PGD 0.01 78.60 73.2
0.05 68.00 459

IV. CONCLUSION

This work presents a novel Bayes-ViT model for image
analysis and classification that delineates both robustness and
uncertainty awareness. We adopt the Bayesian inference and
propagate the mean and covariance matrix of the variational
posterior across the model’s layers. The mean of the predictive
distribution refers to the predicted class, whilst the covariance
matrix provides insights about the uncertainty associated with
the prediction. The proposed model exhibits robust behavior
against random noise and adversarial attacks compared to
the deterministic model. Moreover, the learned uncertainty
increases significantly with the level of noise, which defines
the failure mode of the model under noisy situations. The
excellent robustness and self-assessment properties of the pro-
posed model make it highly suitable for critical applications.

a
Variance vs. Signal to Noise Ratio for MNIST Variance vs. Signal to Noise Ratio for Fashion-MNIST
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Fig. 2. The predictive variance versus SNR for Bayes-ViT for MNIST and
Fashion-MNIST under random noise, FGSM and PGD adversarial attacks.
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