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ABSTRACT: Social behaviors can be influenced by the genotypes of
interacting individuals through indirect genetic effects (IGEs) and can
also display developmental plasticity. We investigated how develop-
mental IGEs, which describe the effects of a prior social partner’s geno-
type on later behavior, can influence aggression in male Drosophila
melanogaster. We predicted that developmental IGEs cannot be esti-
mated by simply extending the effects of contextual IGEs over time and
instead have their own unique effects on behavior. On day 1 of the ex-
periment, we measured aggressive behavior in 15 genotypic pairings
(n = 600 males). On day 2, each of the males was paired with a new
opponent, and aggressive behavior was again measured. We found con-
textual IGEs on day 1 of the experiment and developmental IGEs on
day 2 of the experiment: the influence of the day 1 partner’s genotype
on the focal individual’s day 2 behavior depended on the genotypic iden-
tity of both the day 1 partner and the focal male. Importantly, the devel-
opmental IGEs in our system produced fundamentally different dynam-
ics than the contextual IGEs, as the presence of IGEs was altered over
time. These findings represent some of the first empirical evidence dem-
onstrating developmental IGEs, a first step toward incorporating de-
velopmental IGEs into our understanding of behavioral evolution.

Keywords: indirect genetic effects (IGEs), developmental plasticity,
Drosophila melanogaster, genotype-by-genotype epistasis, aggression.

Introduction

An individual’s phenotype can be influenced by its own ge-
notype (i.e., direct genetic effects [DGEs]) and also by the
genotypes of social partners, a phenomenon termed “indi-
rect genetic effects” (IGEs; Griffing 1967; Moore et al. 1997;
Wolf et al. 1998). A classic example of IGEs is maternal ge-
netic effects (Wilson and Réale 2006), which describes
when an offspring’s phenotype is influenced by the mater-
nal genotype beyond the effect of the alleles inherited. How-
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ever, IGEs have been found in a variety of contexts and
behaviors, such as communication (Kent et al. 2008), dom-
inance (Wilson et al. 2011), antipredator behavior (Bleakley
and Brodie 2009), and sexual attractiveness (Danielson-
Frangois et al. 2009; Saltz 2013).

The presence, directionality, and magnitude of IGEs can
vary depending on the interaction between the genotype of
the focal individual and the genotype of its social partner;
this phenomenon, termed “genotype-by-genotype (G x
G) epistasis” (Culumber et al. 2018; Jaffe et al. 2020; Walsh
etal. 2022), is a special case of genotype-by-environment in-
teraction. Here, “genotype” refers to DGEs, and the relevant
environment is the genotype (and phenotype) of one or
more social partners. For example, in the pharaoh ant
Monomorium pharaonis, groups of ant workers altered their
exploratory behavior based on the genotypic composition of
their social group (Walsh et al. 2022). In other words, the ef-
fect of specific genotypic combinations in the social group
explained more variation in exploratory behavior than the
main effect of individual genotypes. IGEs and G x G epista-
sis, when present, indicate that social interactions can create
an evolving, heritable social environment that could impose
new selection pressures on plastic traits (Wolf et al. 1998;
Bailey et al. 2018; Jaffe et al. 2020).

IGEs and G x G epistasis have been well documented;
however, most of the current work on IGEs focuses on its
role in contextual plasticity (i.e., how an individual re-
sponds to immediate or current external stimuli; Stamps
2016). This snapshot picture of IGEs limits our understand-
ing of the impact of IGEs on evolutionary processes. In-
deed, at the behavioral level, we often see that how an indi-
vidual behaves is a function of its past experiences, not only
its current context. This type of longer-term plasticity,
called “developmental plasticity,” is when an individual’s
current behavioral response varies as a result of past stimuli
or experiences. Here, the word “development” refers to the
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effects of prior experiences over any time frame. Behavioral
traits that display developmental plasticity are common,
and this plasticity creates variation in behavioral pheno-
types that may significantly impact the behavior and lifetime
fitness of an individual (reviewed in Frost et al. 2006; Snell-
Rood 2013; Nettle and Bateson 2015; Stamps 2016). Mech-
anisms through which prior experiences can affect future
behavior often involve changes at the neural or hormonal
level (McBride et al. 1999; Oliveira et al. 2001). Despite this
wealth of knowledge on developmental plasticity, the effect
of the genotype of a previously experienced social partner on
a focal individual’s later behavior has scarcely been studied
or even described. To our knowledge, only two studies have
considered how the genotypes of prior social partners may
influence later behavior: Filice and Long (2017) studied
the persistence of IGEs over time in the context of female
Drosophila melanogaster mate choice, and Makowicz et al.
(2022) investigated how contextual IGEs could extend to
influence new social partners in Poecilia formosa. We pro-
pose to refer to the ability of prior social partner genotype
to alter behavior at a later time as “developmental IGEs.”
Studying developmental IGEs is important because they
may produce different behavioral and evolutionary dynam-
ics than contextual IGEs. For example, a common modeling
approach used to estimate IGEs is to average the trait values
of all of an individual’s social partners over its lifetime
(Moore et al. 1997; McGlothlin et al. 2010; Montiglio et al.
2018). If every individual reacts similarly to interactions with
social partners across different time points, then this method
would produce accurate predictions of social dynamics.
However, developmental plasticity theory suggests that
how individuals respond to social interactions is determined
in part by their past experiences (Clark et al. 1999). A well-
known example of this is seen in winner/loser effects, which
explains how prior aggressive contests can influence an indi-
vidual’s fighting behavior, thus impacting the likelihood of
winning or losing subsequent contests (Hsu et al. 2006;
Trannoy et al. 2016). This example highlights an additional,
more subtle consequence of developmental plasticity in so-
cial behaviors: individuals can modify their behavior based
on their own prior experiences, and their behavioral modifi-
cation may cause their future social partners to change their
own reactions in response (Moretz et al. 2006). By extension,
the presence, magnitude, or direction of contextual IGEs at
a particular time point is predicted to be dependent on the
history of all participants’ previous interactions, but this
hypothesis has not been tested. Empirical studies on devel-
opmental IGEs are needed to determine whether current
IGEs models are effective in capturing and predicting how
developmental IGEs alter behavioral, social, and evolution-
ary dynamics (Bijma 2013; Marjanovic et al. 2022).
Aggression is a common behavior displayed across a wide
range of organisms and is often associated with the ability of

an individual to secure access to and defend resources, such
as mating partners or territory (Huntingford and Turner
1987; Baxter et al. 2015). Aggression, being an inherently
social behavior, is heavily influenced by the social envi-
ronment in which these interactions occur (Fitzsimmons
and Bertram 2013). Contextual IGEs have been well doc-
umented in aggressive contests, with individuals modify-
ing their aggressive behaviors based on the phenotypes
and genotypes of their current partner (Wilson et al. 2009;
Camerlink et al. 2013; Saltz 2013). Additionally, the timing
and order in which aggressive encounters occur during an
individual’s life span can be crucial for determining that in-
dividual’s later behavioral responses (e.g., winner/loser ef-
fects; Hsu et al. 2006; Trannoy et al. 2016). However, we
are unaware of any research into this intersection of social
partner genotype and developmental plasticity on aggressive
interactions—that is, developmental IGEs. Using aggressive
behavior to analyze how IGEs and developmental plasticity
are linked will illuminate the unique role, if any, that devel-
opmental IGEs may play in shaping trait variation.

In this study, we conducted an experiment to test how
prior social experiences and IGEs can influence an aggressive
contest (fig. 1). By manipulating the genotypes of opponents
and having individuals participate in a series of dyadic ag-
gressive contexts, we were able to test how prior experience
with different genotypes influenced individual behavior in
subsequent contests (i.e., developmental IGEs). We were also
able to investigate how developmental plasticity influences
the dynamics of future social interactions (i.e., differences
between contextual and developmental IGEs). Specifically,
we tested the following nonexclusive hypotheses:

Hypothesis 1 (H1): contextual IGEs. We predict that
the genotype of an individual’s current partner will influ-
ence the focal individual’s aggression during the contest.

Hypothesis 2 (H2): developmental IGEs. We predict
that the genotype of the focal individual’s prior social partner
will influence the focal individual’s aggression at a later time.

Hypothesis 3 (H3): fundamental differences between
contextual IGEs and developmental IGEs. We predict that
developmental IGEs (H2) will not be a simple extension
of contextual IGEs (H1) through time. Instead, we predict
that developmental IGEs will produce novel behavioral
patterns—for example, changes in the presence, magni-
tude, and/or direction of contextual IGEs—in an aggressive
contest at a later time, compared with the previous contest.

Methods
Study System

We used Drosophila melanogaster, the fruit fly, to deter-
mine whether and how the genotype of previous social
partners can affect an individual’s later behavior. Fruit
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Figure 1: Overview of experimental trials for measuring developmental indirect genetic effects (IGEs) in aggression. A focal male fly (n = 6
inbred genotypes) was measured for aggressive behaviors with a partner fly on day 1. The genotype of the partner fly was varied (n = 6
inbred genotypes). Every possible genotype combination (except same-genotype combinations) was tested (n = 15 genotypic pairings)
for a total of 300 trials. The same focal male fly from day 1 was again measured for aggressive behaviors against a new opponent on
day 2 of the experiment. The new opponent’s genotype was kept constant, but its prior social experience was varied before the experimental
trials (pretrials). The black arrows represent contextual IGEs, the orange arrow represents developmental plasticity, and the red arrow rep-
resents developmental plasticity that is mediated by IGEs (i.e., developmental IGEs).

flies readily form social groups on their rotting fruit food
sources, both in the laboratory and in the field (Powell 1997;
Wertheim et al. 2002, 2006; Saltz and Foley 2011; Dukas
2020). A number of social interactions occur within these
social groups, including aggressive encounters (reviewed
in Chen et al. 2002; Nilsen et al. 2004). IGEs in developmen-
tal plasticity would require us to examine not only the past
experiences of an individual but also the genotype of prior
interactants. Fruit flies are amenable to this complex exper-
imental design, as they are well suited for laboratory use and
we can easily obtain distinct genotypes for experimental
testing (Stamps et al. 2005b; Saltz and Foley 2011; Stamps
2016). Additionally, fruit flies have been shown before to
be an ideal study system for investigating IGEs, as demon-
strated by the number of contextual IGE studies that have
previously been conducted (Cabral et al. 2008; Saltz 2013;
Filice and Long 2017; Kilgour et al. 2020).

Overview

Our study aimed to assess how DGEs, IGEs, and prior social
experiences can interact to influence aggressive contest dy-
namics across time (fig. 1). To accomplish this, on day 1
of the experiment, we paired individuals from six distinct
genotypes to engage in an aggressive contest, creating a total

of 15 unique genotypic pairings. During day 1 of the exper-
imental trials, we measured contextual IGEs on aggressive
behavior (H1 and H3; i.e., the extent to which the genotype
of a focal fly’s social partner influenced his aggression). On
day 2 of the experiment, both day 1 participants were paired
with a new opponent from a standard stimulus genotype.
We manipulated the prior experience of the day 2 new
opponents: new opponents were either group housed or so-
cially isolated before the day 2 trials. These two treatments
were chosen according to previous work that has shown
how social experience (or lack thereof) can influence aggres-
sive behaviors (Hoffmann 1990; Yurkovic et al. 2006; Wang
et al. 2008). Day 2 experimental trials also allowed us to
measure developmental IGEs (H2; i.e., the extent to which
the genotype of a focal fly’s day 1 partner influenced his later
aggression against the new opponent on day 2). Further-
more, measuring social dynamics on day 2 allowed us to
identify any novel behavioral patterns that may have arisen
because of the developmental IGEs (H3).

Genotypes

Flies used in this study were created by repeated crosses of
inbred parental lines. The parental lines were originally wild
derived from a population in Raleigh, North Carolina
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(MacKay et al. 2012), representing a sample of natural var-
iation, plus Canton-S (CS), which is the standard wild-type
genotype that is widely used in studies of fly behavior (Chen
et al. 2002; Nilsen et al. 2004; Trannoy et al. 2016). The
Raleigh genotypes used were 208, 335, 360, 637, and 707
(the genotype names/numbers are arbitrary and have no
meaning other than providing a name for each genotype).
Genotype CS was used both as a focal genotype and as a
new opponent for the day 2 experiments.

Rearing

Flies were reared on approximately 10 mL of standard fly
food. Each vial was founded by 10 males and 10 virgin
females to create standard conditions that minimized vari-
ability in larval densities. All experimental flies were collected
within 8 h of eclosion. To identify individual males dur-
ing the trials, each fly was anesthetized with CO,, and a small
dot of paint was placed on its back (Stamps et al. 20054; Saltz
2013). The paint color was chosen randomly both for focal
males and for day 2 new opponents. Focal male flies were
housed individually in vials and were maintained under a
12L:12D cycle, with lights turning on at 0900 hours. Exper-
imental trials began 5 days after eclosion.

Aggression Arenas

Aggressive contests were conducted in arenas that were as-
sembled by taping two Petri dishes together (3 cm in diam-
eter, 1 cm high) and adding a small blue cap (1.5 cm in di-
ameter, 1 cm high) in the middle of the arena that was filled
with standard fly food medium (Chen et al. 2002). The cap
was topped with a small dot of yeast paste (made by com-
bining live Fleishman’s yeast with a small amount of water).

Trials

Trials took place from October 2016 to November 2017.
All trials were conducted in the morning at subjective dawn
(0900-1000 hours), reflecting peak activity time for the flies
(Partridge et al. 1987).

Day 1. On day 1 of the experimental trials, two focal males
were added to the arena without anesthesia and allowed to
acclimate to the new environment for 30 min (Chen et al.
2002). After the acclimation period, an observer recorded
how many times each of the males performed one of our
five measures of aggressive behavior: lunging (one fly
rearing on his back legs and pouncing on his opponent),
fencing (both flies extending and engaging with each other’s
legs by tapping and/or pushing), wing threat (one fly lifting
and holding his wings at a 45° angle while facing his oppo-
nent), chasing (one fly closely following/running behind his
opponent), and boxing (a high-level behavior characterized

by both flies rearing on their hind legs and engaging each
other with their front legs by pushing and/or hitting; Chen
et al. 2002; Nilsen et al. 2004). Trials were conducted for
30-min periods.

Day 2. On day 2 of the experiment, each focal male
who participated in a day 1 contest was then paired against
anew opponent. All day 2 new opponent males were geno-
type CS. We used two treatments of opponent males: group
housed and socially isolated. Upon eclosion, new opponent
males were placed into vials either in groups of five or indi-
vidually, depending on their treatment, and aged in those
vials for 6 days. Each male focal fly from day 1 was placed
into an identical arena along with his assigned new oppo-
nent to test how prior social experience and IGEs influence
developmental plasticity in aggression. Again, after a 30-min
acclimation period, an observer recorded five measures of
aggressive behavior for each of the two males for 30 min.

Experimental Design and Replication

On day 1, each genotype (n = 6) was paired and observed
for aggressive behaviors with each other genotype in a
round-robin design (focal males of the same genotype did
not fight each other). Thus, we tested a total of 15 unique ge-
notypic pairings. We conducted 361 day 1 trials; however,
about 20% of individual flies either escaped or died before
day 2. In trials where escapes occurred, we retained the re-
maining male and also conducted make-up trials, resulting
in 20 trials for each genotypic pairing. In total, we had ob-
servations of 600 individual focal flies for day 1.

Next, males tested on day 1 of experimental trials were
assigned to one of two treatments for day 2 of trials, corre-
sponding to different prior experiences of their new op-
ponents: focal male flies faced a CS male who was either so-
cially isolated (n = 300) or group housed (n = 300). We
conducted a total of 600 trials on day 2, using the 600 in-
dividual focal flies from day 1 against 600 new opponents.

Analysis
Approach

To quantify aggression, we summed the number of lunges,
wing threats, fencing, and chasing behaviors performed by
each fly on each day; we refer to this measure as “total ag-
gression.” Boxing was excluded from this measure because
of its low rate of occurrence (day 1 boxing: n = 15,
mean = 0.025; day 2 boxing: n = 12, mean = 0.02).
All analyses were performed using R (ver. 4.1.0; R Core
Team 2021). To investigate how previous social experience,
genotype, and current social partners could modify an in-
dividual’s aggression, we created generalized linear mixed
models in a Bayesian framework using the brms package



in R (Biirkner 2018), which is an interface to the MCMC
sampler Stan (Carpenter et al. 2017). Generalized linear
mixed models were used to model the nonnormal error dis-
tribution and account for random effects (Bolker et al.
2009). Our response variables were total aggression of the
focal male on day 1 and total aggression of the focal male
on day 2 (see table S1 [tables S1-S6 are available online]
for a model with a response variable of new opponent ag-
gression on day 2). For all of our models, we specified a neg-
ative binomial error distribution with a logit link function,
which is appropriate for overdispersed count data (for a
histogram of the raw data, see figs. S2-S4; figs. S1-S4 are
available online). In all models, for 8 values of fixed effects,
we specified weakly noninformative priors centered on zero.

Model Building and Model Selection

We modeled the genotype of the focal individual and the
genotype of his day 1 partner as random effects in all three
of our models. By using random effects, we were able to in-
fer variance in male aggressive behavior due to genetic dif-
ferences. Additional fixed effects and their interactions were
determined through hypothesis-led model building. The
full results of the models are given in tables 1 and 2.

We used a variance-based approach to model the effects
that IGEs had on aggressive behavior (McGlothlin and
Brodie 2009). The variance-based modeling approach
considers how the genotype of a focal individual’s current
or prior social partner affects focal behavior. Thus, the
variance-based approach captures the indirect effects of
all traits that vary among genotypes in this sample, quanti-
fying the overall influence of interacting with individuals of
different genotypes on a focal individual’s aggressive behav-
ior over time.

The first model, focal day 1 model, was used to test the
hypothesis that the genotype of the focal individual’s
day 1 partner influenced his aggression during the contest
(H1). We modeled the focal individual’s total aggression
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on day 1 of the experiment as our response variable in this
model (table 1). A nonzero effect of partner genotype on fo-
cal aggression would indicate that we observed contextual
IGEs. In addition to the random effects of the genotypes
of both focal flies and partner flies, we also included an in-
teraction term between the two, to test for G x G epistasis.
Our full model for the aggressive response of the focal male,
i, against a partner, m, was as follows:

Yim = po + Bic; + (di TGt gn +gim) + Ein-

Thus, 3, describes the fixed effect of focal paint color, d, is
the random effect of date, ¢, is the random effect of trial ID,
& is the random effect of focal genotype, g,, is the random
effect of partner genotype, and g, is the interaction be-
tween partner and focal genotype.

Our second model, the focal day 2 model, assessed how
the focal individuals” aggression on day 2 of the experiment
varied as a function of his own and his opponents’ past so-
cial experiences, thus testing for the effects of developmen-
tal IGEs on focal aggression (H2). Additionally, by compar-
ing how IGEs influenced focal aggression in this day 2
model compared with the day 1 model, we could test the
hypothesis that developmental IGEs are not simply an ex-
tension of contextual IGEs and rather could create new or
altered behavioral patterns (H3). The focal individual’s total
aggression on day 2 of the experiment was the response var-
iable for this model (table 2).

The prior social experience of the new opponent was a
fixed effect. We included a random effect of the genotype
of the focal male’s partner on day 1; a nonzero estimate
for this term would provide support for developmental
IGEs (H2). In addition, we tested several interactions in
our focal day 2 model to further investigate our proposed
hypotheses. We tested the interaction between the genotype
of the focal male and the genotype of the focal male’s part-
ner from day 1 as a random effect to investigate G x G epis-
tasis and to test whether developmental IGEs were different
in their presence, magnitude, and/or direction compared

Table 1: Generalized linear mixed model assessing focal aggression on day 1 of the experiment

Estimate Proportion total Permutation

Predictor variable Description (95% CI) variance (95% CI) P value
Focal genotype Direct genetic effects .75 (.39-1.83) 202 (.04-.1) <.001
Day 1 partner genotype Contextual indirect genetic .27 (.05-.81) .03 (0-.14) .009

effects (variance based)
Focal genotype x day 1 G x G epistasis on day 1 of .12 (.01-.35) 0 (0-.03) 4

partner genotype experimental trials

Trial ID Nonindependence of two 93 (.72-1.12) 29 (.14-.42)

interacting males in each arena
Date Day the trial was conducted .31 (.32-.58) .03 (0-.1)

Note: CI = credible interval; G x G = genotype by genotype.
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Table 2: Generalized linear mixed model assessing focal aggression on day 2 of the experiment

Estimate Proportion total Permutation
Predictor variable Description (95% CI) variance (95% CI) P value
Focal genotype Direct genetic effects 48 (.19 to 1.28) .19 (0 to .53) .001
Day 1 partner genotype Effect of developmental IGEs on .1 (.00 to .45) .01 (.00 to .09) 5
focal individual aggression
Focal genotype x day 1 G x G epistasis in developmental IGEs .3 (.06 to .53) .07 (0 to .18) .006

partner genotype
New opponent treatment  Effect of prior social experience
on focal individual

Date Day the trial was conducted

—.16 (—.37 to .05)*

.34 (.09 to .54) .08 (0 to .18)

Note: CI = credible interval; G x G = genotype by genotype; IGE = indirect genetic effect.

* Solo.

with the contextual IGEs from day 1 (H3). Our full model
for the aggressive response of the focal male, i, against a
new opponent, #, and a prior partner, m, was as follows:

Yimn = Ko + 6161' + BZSn + (dx + gi + gm + gxm) + Eimn+

Thus, 3, describes the fixed effect of focal paint color, 3,
describes the fixed effect of new opponent treatment, d;
is the random effect of date, g; is the random effect of focal
genotype, g, is the random effect of day 1 partner geno-
type, and g, is the interaction between partner and focal
genotype.

In principle, it is possible for DGEs and IGEs to be
correlated (Wolf 2003; Fisher et al. 2019). To test whether
this might be important in our case, we fitted prelim-
inary models for each day, in which we either estimated
the DGE-IGE correlation or set it to zero. We found that
including a nonzero DGE-IGE correlation in the model
substantially degraded the fit of the model for day 1
(AWAIC = 9.4 in favor of the model without the co-
variance) and had no major effect on model fit for day 2
(AWAIC = 1.9 in favor of the model with the covari-
ance). Furthermore, all estimated DGE-IGE correlations
were small and had credible intervals (CIs) overlapping
zero (tables S2, S3). Therefore, our final models did not
include a correlation between DGEs and IGEs.

Inference

Our main focus was on the variance components (i.e., ran-
dom effects) of each model, as these capture DGEs and
IGEs and their interaction. Because variance components
are bounded at zero (i.e., a variance cannot be negative), in-
spection of Cls for variance components is not a reliable
guide for determining whether a particular variance is
meaningfully different from zero. Following recent guid-
ance for using simulated data to improve statistical infer-
ence (Pick et al. 2022), we computed additional measures
to determine support for nonzero group-level variance.

To calculate P values (i.e., in the frequentist’s sense)
for the random effects, we used a permutation approach
(Araya-Ajoy and Dingemanse 2017; Pick et al. 2022).
For each dataset, day 1 or day 2, we randomly shuffled the
values of the focal genotype and day 1 partner genotype
pairing 1,000 times. Therefore, all of the same genotype
pairings in our real data, in the same sample sizes, were
present, but they were disassociated from the relevant be-
havioral data (for another example of using this approach
to estimate IGEs and G x G epistasis, see Wice and Saltz
2023).

To preserve the structure of the data and facilitate direct
comparison to the real variance estimates, we randomized
genotype-pair information within trial dates. Next, each per-
muted dataset was analyzed using the relevant generalized
linear mixed model: either the focal day 1 model for the per-
muted day 1 datasets or the focal day 2 model for the per-
muted day 2 datasets. Following each analysis, we retained
the median value of the posterior parameter estimate for
each random effect of interest (i.e., DGEs, IGEs, and their
interactions). This approach allowed us to generate a null
distribution of 1,000 medians of the posterior parameter es-
timate for each effect of interest on each day, describing the
expected value of the median for the posterior parameter es-
timate if a fly’s aggressive behavior was randomized with re-
spect to his own genotype and that of his partner. We then
computed the proportion of these null estimates that were
greater than or equal to the median of the posterior distribu-
tions from analysis of our real data to compute a P value
(Pick et al. 2022). Variance components from analysis of
our real data (assessed as the median of the posterior param-
eter distribution) were considered to be nonzero if their mag-
nitude was greater than 95% or more of the correspond-
ing estimates in the null distribution.

To assess the magnitude of the variance components, we
report the model parameter estimate as well as estimates of
the proportion of variance “explained” by each random ef-
fect (similar to Bowdring et al. 2021). The model parameter



estimate, standard deviation (SD) parameter estimate, is the
square root of the variance of random effect slopes; thus,
greater values indicate greater differences among levels of
the relevant parameter (e.g., for the random effect of geno-
type, greater values of the SD parameter estimate mean
greater differences among genotypes). To estimate the var-
iance “explained” by each random effect, we calculated the
posterior medians and highest-density continuous intervals
for each random effect and residual variance (Nakagawa
and Schielzeth 2013) by taking draws from the posterior
distribution, a method used to calculate a Bayesian version
of R* (Gelman et al. 2019). We report estimates of variance
on the log-odds scale (i.e., the scale of the model rather than
the scale on which the data were originally collected). While
there is some dispute about which scale is more relevant for
evolutionary analysis, our focus here was on directly com-
paring these magnitudes across days to test H3.

Results

HI: Direct and Indirect Genetic Effects on
Aggression on Days 1 and 2

We found support for both DGEs and contextual IGEs. We
observed that genotypes differed in their aggression levels
both on day 1 (focal day 1 model: SD parameter estimate,
0.75 [0.39-1.83 95% CIJ; proportion total variance, 0.20
[0.04-0.52 95% CIJ; zero permuted values were greater than
or equal to this estimate, P < .001) and day 2 (focal day 2
model: SD parameter estimate, 0.48 [0.19-1.28 95% CIJ;
proportion total variance, 0.19 [0.00-0.53 95% CIJ; zero per-
muted values were greater than or equal to this estimate,
P <.001), indicating evidence of DGEs. The genotype of
the day 1 opponent had an effect on the focal male’s aggres-
sion on day 1 (focal day 1 model: SD parameter estimate,
0.27 [0.05-0.81 95% CI]; proportion total variance, 0.03
[0.00-0.14 95% CI]J; nine permuted values were greater than
or equal to this estimate, P = .009), indicating evidence of
contextual IGEs.

H2: Genotype of a Previous Social Partner Influenced
Later Aggressive Behavior

We found evidence for developmental IGEs that affected
focal male behavior on day 2. While we did not see a main
effect of day 1 partner genotype (focal day 2 model: SD pa-
rameter estimate, 0.1 [0.00-0.45 95% CI]; proportion total
variance, 0.01 [0.00-0.09]; 501 permuted values were greater
than or equal to this estimate, P = .5), the interaction term
between focal genotype and day 1 partner genotype pre-
dicted focal male aggression on day 2 (focal day 2 model:
SD parameter estimate, 0.30 [0.06-0.53 95 %Cl]; proportion
total variance, 0.07 [0.00-0.18 95 %CI]; six permuted values
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were greater than or equal to this estimate, P = .006). This
result indicates that how IGEs from day 1 influenced focal
behavior on day 2 of the experiment depended on the geno-
type of both the focal male and his day 1 partner (fig. 2).

H3: Developmental IGEs Differed from Contextual IGEs

Developmental IGEs produced distinct effects on focal male
behavior over time compared with contextual IGEs. In the
focal day 1 model, we found evidence for a main effect of
day 1 partner genotype in predicting the aggression of the
focal male (reported above under H1). While we found that
the median of the posterior parameter estimate for partner
genotype differed from the distribution of medians derived
from the permuted datasets on day 1, the CI for the propor-
tion of total variance explained by this grouping factor was
very wide. Therefore, while we found support that this var-
iance component is nonzero, we are unable to draw firm
conclusions about its exact magnitude.

In contrast, we did not see a main effect of day 1 partner
genotype in predicting aggression of the focal male on day 2
(reported above under H2). Additionally, in the focal day 1
model, we did not find evidence that the variance compo-
nent for G x G epistasis differed meaningfully from zero (fo-
cal day 1 model: SD parameter estimate, 0.12 [0.01-0.35
95% CIJ; proportion total variance, 0.00 [0.00-0.03 95%
CIJ; 375 permuted values were greater than or equal to this
estimate, P = .4). However, we did see support for G x G
epistasis in predicting focal male aggression on day 2 of the
experiment (reported above under H2). Specifically, our
permutation tests showed support for differences between
our null and real estimates for G x G epistasis only on
day 2. Again, given the wide CIs for the proportion of total
variance estimates, we are unable to draw firm conclusions
about the exact magnitude of these variance components.

Full results from each model can be found in tables 1 and
2, and the model covariate results as well as the results from
the new opponent model are presented in the supplemental
PDF. Altogether, these results indicate that developmental
IGEs produce novel dynamics in male aggressive behaviors
over time compared with contextual IGES.

Discussion

Despite the wealth of knowledge on both developmental
plasticity and IGEs, developmental IGEs, which describe
the effect of the genotype of a previously experienced social
partner on a focal individual’s later behavior, have only re-
cently been described. Studying IGEs purely within the im-
mediate interaction in which they occur results in empirical
studies and theoretical models that are unable to answer
how IGEs operate on longer timescales. IGEs could interact
with prior experience to produce novel or distinct effects on
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Figure 2: Genotype-by-genotype (G x G) epistasis in developmental indirect genetic effects. Each graph represents the focal male’s aggres-
sion (y-axis) toward his day 1 and day 2 opponents (x-axis), and each line in the graph represents a day 1 partner genotype. The genotype of
the day 2 opponent was always Canton-S (CS). We identified G x G epistasis even after controlling for the new day 2 opponent’s prior social
experience (see text). The genotype of the focal male’s day 1 partner significantly influenced focal male behavior on both day 1 and day 2 of
the experimental trials. On day 2 of the experiment, the effect of the day 1 partner genotype depended on the genotype of both the day 1
partner and the focal male (see text). A color version of this figure is available online.

individuals, but this has yet to be demonstrated. In this
study, we used Drosophila melanogaster to investigate how
prior social experience and IGEs can influence aggressive
contests through developmental IGEs. We found support
for our first hypothesis, as contextual IGEs did affect fo-
cal male aggressive behavior. We also found evidence that
IGEs continued to affect focal male aggressive behavior a
day after the initial interaction, representing developmental
IGEs. Finally, developmental IGEs had distinct effects on
behavior compared with contextual IGEs. These results sup-
port our second and third hypotheses and represent one
of the first experimental demonstrations of developmen-
tal IGEs (fig. 2).

We found that developmental IGEs can produce funda-
mentally distinct dynamics from predictions that are formed
from contextual IGEs alone. Most importantly, we identified
G x G epistasis on day 2 of the experiment but not on day 1.
In other words, on day 1 the influence of a partner’s geno-
type on the focal individual’s aggression (i.e., contextual
IGEs) was similar across all focal genotypes. In contrast,
the effect that day 1 partner genotypes had on focal individ-
uals’ aggression the next day (i.e., developmental IGEs) was

dependent on the genotypic identity of both the focal male
and the partner male. Our finding of G x G epistasis during
day 2 of the experiment suggests that the presence of IGEs
was altered from day 1 to day 2 in a genotypic-specific
way. Additionally, our finding of G x G epistasis for devel-
opmental, but not contextual, IGEs indicates that develop-
mental IGEs are not simply an extension of contextual IGEs
but instead produce distinct effects on behavior. Social
behaviors are flexible and depend heavily on the environ-
ment, and researchers have long suggested that the most rel-
evant way to study these behaviors is through the lens of
interacting phenotypes and genotypes (Moore et al. 1997).
Our results affirm this view and suggest that IGE models
should incorporate G x G epistasis and other forms of non-
additive variance when studying any individual phenotype,
but especially behavior, to make accurate estimations of
IGEs in social groups across time (Meffert et al. 2015;
Culumber et al. 2018; Jaffe et al. 2020).

There are several mechanisms that may be driving the
observed genetic variation in developmental IGEs (ie.,
the G x G epistasis we observed on day 2). Individuals en-
gaged in fights can utilize learning and memory to adjust



their later behavior based on this prior social experience
(including in flies; Yurkovic et al. 2006). Thus, the presence
of G x G epistasis during the second set of interactions in
this experiment could arise because some genotypes did
not remember the social interactions that happened to
them the day before. As a result, these genotypes would
have adjusted their behavior in response to their social part-
ner on day 1 but then returned to their genotype-specific
“baseline” on day 2, regardless of what had happened to
them the day before. Other neurobiological mechanisms,
such as peptide and amine systems, have also been heavily
implicated in influencing aggression levels through several
complex pathways and could also contribute to genetic dif-
ferences in aggressive response (reviewed in Kravitz and
Fernandez 2015). Factors that contribute to developmental
IGEs and G x G epistasis, especially those concerning ag-
gression, are likely to be complicated and multifaceted, in-
corporating various molecular, neuronal, and sensory mech-
anisms. Further studies into the mechanisms through which
developmental IGEs can influence future contest dynamics
could help us better understand the long-lasting effects of
social encounters.

There are a few caveats to acknowledge within this study.
The first is that we used inbred lines of D. melanogaster in
our experiments. While using inbred lines allowed us to an-
swer our questions about how genetic variance and its effects
can influence developmental plasticity, inbred lines do not
always reflect the genetic diversity that we may see in the
wild. In addition, we unexpectedly saw a nonzero effect of
paint color on aggression on days 1 and 2 (tables S4-S6).
Since paint colors were assigned randomly, and we adjusted
for the unexpected effect of paint color in the model, this ef-
fect did not interfere with our ability to test our hypotheses
about IGEs over development. However, it reinforces the
fact that individual aggressive behavior can be shaped by
all prior experiences, such as handling stress, not just social
experiences. Experimentalists continue to seek the best meth-
ods for marking individuals in species such as fruit flies,
where individuals look mostly indistinguishable to the hu-
man eye.

Additionally, we experimentally manipulated the social
experiences of focal individuals to address our research ques-
tions. However, in nature, individuals can choose who they
interact with, a process that may further influence the dy-
namics and fitness outcomes of social interactions (Partridge
1980; Wolf et al. 1999; Weidt et al. 2008; Saltz and Nuzhdin
2014; Saltz 2016). Subsequent studies into developmental
IGEs would benefit from allowing individuals to select their
own social partners, which could uncover how assortative
interactions can alter the effects and evolutionary outcomes
of developmental IGEs (Agrawal et al. 2001).

Our results confirm that prior social experience and IGEs
can interact together to influence developmental plasticity
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in an aggressive context. To the best of our knowledge, we
are among the first to demonstrate an empirical example
of developmental IGEs. Continuing to examine develop-
mental IGEs in a variety of traits and social contexts will
further illuminate the many ways in which IGEs can influ-
ence behavior and evolution.
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