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In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for
constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the
extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can
generate a checkable proof of unsatisfiability. Such a proof indicates that the formula is truly unsatisfiable
without requiring the user to trust the BDD package or the SAT solver built on top of it.

We extend their work to enable arbitrary existential quantification of the formula variables, a critical ca-
pability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a BDD-based
solver, implemented by extending an existing BDD package, to several challenging Boolean satisfiability prob-
lems. Our results demonstrate scaling for parity formulas as well as the Urquhart, mutilated chessboard, and
pigeonhole problems far beyond that of other proof-generating SAT solvers.
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1 INTRODUCTION

When a Boolean satisfiability (SAT) solver returns a purported solution to a Boolean formula, its
validity can easily be checked by making sure that the solution indeed satisfies the formula. When
the formula is unsatisfiable, on the other hand, having the solver simply declare this to be the case
requires the user to have faith in the solver, a complex piece of software that could well be flawed.
Indeed, modern solvers employ a number of sophisticated techniques to reduce the search space.
If one of those techniques is invalid or incorrectly implemented, the solver may overlook actual
solutions and label a formula as unsatisfiable, even when it is not.

With SAT solvers providing the foundation for a number of different real-world tasks, this “false-
negative” outcome could have unacceptable consequences. For example, when used as part of a
formal verification system, the usual strategy is to encode some undesired property of the system
as a formula. The SAT solver is then used to determine whether some operation of the system could
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lead to this undesirable property. Having the solver declare the formula to be unsatisfiable is an
indication that the undesirable behavior cannot occur, but only if the formula is truly unsatisfiable.

Rather than requiring users to place their trust in a complex software system, a proof-generating
solver constructs a proof that the formula is unsatisfiable. The proof has a form that can readily be
checked by a simple proof checker. Initial work of checking unsatisfiability results was based on
resolution proofs, but modern checkers are based on stronger proof systems [28, 52]. The checker
provides an independent validation that the formula is indeed unsatisfiable. The checker can even
be simple enough to be formally verified [19, 33, 45]. Such a capability has become an essential
feature for modern SAT solvers.

In their 2006 papers [31, 44], Jussila, Sinz and Biere made the key observation that the underlying
logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) [6]
can be encoded as steps in a proof in the extended resolution (ER) logical framework [46]. Through
this, a BDD-based Boolean satisfiability solver can generate checkable proofs of unsatisfiability.
Such proofs indicate that the formula is truly unsatisfiable without requiring the user to trust the
BDD package or the SAT solver built on top of it.

In this article, we refine these ideas to enable a full-featured, BDD-based SAT solver. Chief among
these is the ability to perform existential quantification on arbitrary variables. (Jussila, Sinz, and
Biere [31] extended their original work [44] to allow existential quantification, but only for the root
variable of a BDD.) In addition, we allow greater flexibility in the choice of variable ordering and the
order in which conjunction and quantification operations are performed. This combination allows
a wide range of strategies for creating a sequence of BDD operations that, starting with a set of
input clauses, yield the BDD representation of the constant function 0, indicating that the formula
is unsatisfiable. Using the extended-resolution proof framework, these operations can generate
a proof showing that the original set of clauses logically implies the empty clause, providing a
checkable proof that the formula is unsatisfiable.

We evaluated the performance of both our SAT solver TBSAT and KiSSAT, a state-of-the-art solver
based on conflict detection and clause learning (CDCL) [5, 36]. Our results demonstrate that a proof-
generating BDD-based SAT solver has very different performance characteristics from the more
mainstream CDCL solvers. It does not do especially well as a general-purpose solver, but it can
achieve far better scaling for several classic challenge problems [1, 17, 27, 48]. We find that several
of these problems can be efficiently solved using the bucket elimination strategy [22] employed
by Jussila, Sinz, and Biere [31], but others require a novel approach inspired by symbolic model
checking [15].

This article assumes that the reader has some background in BDDs and their algorithms. This
background can be obtained from a variety of tutorial presentations [2, 7, 8]. The article is largely
self-contained regarding proof generation and is structured as follows. First, in Section 2, it pro-
vides a brief introduction to the resolution and extended resolution logical frameworks and to
BDDs. Then, in Section 3, we show how a BDD-based SAT solver can generate proofs by aug-
menting algorithms for computing the conjunction of two functions represented as BDDs and for
checking that one function logically implies another. We then describe our implementation and
evaluate its performance on several classic problems in Section 4. We conclude with some general
observations and suggestions for further work.

This article is an extended version of an earlier conference paper [12]. Here, we present more
background material and more details about the proof-generation algorithms as well as updated
benchmark results with a new implementation and on additional challenge problems.

2 PRELIMINARIES

Given a Boolean formula over a set of variables {xi, X3, ...,x,}, a SAT solver attempts to find
an assignment to these variables that will satisfy the formula or it declares the formula to be
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unsatisfiable. As is standard practice, A literal ¢ can be either a variable or its complement. Most
SAT solvers use Boolean formulas expressed in conjunctive normal form, where the formula
consists of a set of clauses, each consisting of a set of literals. Each clause is a disjunction: if an
assignment sets any of its literals to true, the clause is considered to be satisfied. The overall
formula is a conjunction: a satisfying assignment must satisfy all of the clauses.

We write T to denote both tautology and logical truth. It arises when a clause contains both
a variable and its complement. We write L to denote logical falsehood. It is represented by an
empty clause.

We make use of the if-then-else operation, written ITE, defined as ITE(u, v, w) = (uAv)V(-uAw).

When writing clauses, we omit disjunction symbols and use overlines to denote negation, writ-
ing—uVoV-owasuovw.

2.1 Resolution Proofs

Robinson [41] observed that the resolution inference rule formulated by Davis and Putnam [21]
could form the basis for a refutation theorem-proving technique for first-order logic. Here, we con-
sider its specialization to propositional logic. For clauses of the form CV x, and XV D, the resolution
rule derives the new clause C V D. This inference is written with a notation showing the required
conditions above a horizontal line, and the resulting inference (known as the resolvent) below:

CVx xVD
CvVvD

Intuitively, the resolution rule is based on the property that implication is transitive. To see this,
let proposition p denote =C and proposition q denote D. Then, C V x is equivalent to p — x, XV D
is equivalent to x — ¢, and C V D is equivalent to p — ¢. In other words, the resolution rule
encodes the property that if p — x and x — ¢, then p — q. As a special case, when C contains a
literal £ and D contains its complement ¢, then the resolvent of C V x and D V X will be a tautology.

Resolution provides a mechanism for proving that a set of clauses is unsatisfiable. Suppose the
input consists of m clauses. A resolution proof is given as a trace consisting of a series of steps S,
where each step s; consists of a clause C; and a (possibly empty) list of antecedents A;, where each
antecedent is the index of one of the previous steps. The first set of steps, denoted S,,, consists
of the input clauses without any antecedents. Each successive step then consists of a clause and a
set of antecedents such that the clause can be derived from the clauses in the antecedents by one
or more resolution steps. It follows by transitivity that for each step s;, with i > m, clause C; is
logically implied by the input clauses, written S,, £ C;. If, through a series of steps, we can reach
a step s where C; is the empty clause, then the trace provides a proof that S,,, £ L, that is, the set
of input clauses is not satisfiable.

A typical resolution proof contains many applications of the resolution rule. These enable de-
riving sequences of implications that combine by transitivity. For example, consider the following
implications, shown both as formulas and as clauses:

Formula Clause
a—b ab
x— (b—>c¢) xbc
c—d cd

x> (a—>d) Xad
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We can derive the final clause from the first three using two resolution steps:

Xbe ab
Xac cd

2.2 Reverse Unit Propagation (RUP)

Reverse unit propagation (RUP) provides an easily checkable way to express a linear sequence
of resolution operations as a single proof step [25, 49]. It is the core rule supported by standard
proof checkers [29, 51] for propositional logic. Let C = {1 {, --- {, be a clause to be proved and
let Dy, Ds, . . ., Dy be a sequence of supporting antecedent clauses occurring earlier in the proof. A
RUP step proves that A\;<;<x D;i — C by showing that the combination of the antecedents plus the
negation of C leads to a contradiction. The negation of C is the formula £; A £y A - - - A Zp having a
CNF representation consisting of p unit clauses of the form ¢; for 1 < i < p. A RUP check processes
the clauses of the antecedent in sequence, inferring additional unit clauses. In processing clause
D, if all but one of the literals in the clause is the negation of one of the accumulated unit clauses,
then we can add this literal to the accumulated set. That is, all but this literal have been falsified,
and so it must be set to true for the clause to be satisfied. The final step with clause Dy must cause
a contradiction, that is, all of its literals are falsified by the accumulated unit clauses.

As an example, consider a RUP step to derive x — (a — d) from the three clauses shown in
the earlier example. A RUP proof would take the following form. Here, the target and antecedent
clauses are listed along the top, while the resulting unit clauses are shown on the bottom, along
with the final contradiction.

Target Antecedents
Clause xad cd Xbc ab
Units X, a, d c b 1L

RUP is an alternative formulation of resolution. For target clause C, it can be seen that applying
resolution operations to the antecedent clauses from right to left will derive a clause C” such that
C’ C C. By subsumption [40], we then have C’ — C. Compared with listing each resolution opera-
tion as a separate step, using RUP as the basic proof step makes the proofs more compact.

2.3 Extended Resolution

Grigori S. Tseitin [46] introduced the extended-resolution proof framework in a presentation at
the Leningrad Seminar on Mathematical Logic in 1966. The key idea is to allow the addition of new
extension variables to a resolution proof in a manner that preserves the soundness of the proof. In
particular, in introducing variable e, there must be an accompanying set of clauses that encode
e & F, where F is a formula over variables (both original and extension) that were introduced
earlier [32]. These are referred to as the defining clauses for extension variable e. Variable e then
provides a shorthand notation by which F can be referenced multiple times. Doing so can reduce
the size of a clausal representation of a problem by an exponential factor.

An extension variable e is introduced into the proof by including its defining clauses in the list
of clauses being generated. The proof checker must then ensure that the defining clauses obey the
requirements for extension variables, as is discussed below. Thereafter, other clauses can include
the extension variable or its complement, and they can list the defining clauses as antecedents.

Tseitin transformations are commonly used to encode a logic circuit or formula as a set of
clauses without requiring the formulas to be “flattened” into a conjunctive normal form over the
circuit inputs or formula variables. These introduced variables are called Tseitin variables and
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are considered to be part of the input formula. An extended resolution proof takes this concept
one step further by introducing additional variables as part of the proof. The proof checker must
ensure that the extension variables are used in a way that does not result in an unsound proof.
Some problems for which the minimum resolution proof must be of exponential size can be
expressed with polynomial-sized proofs in extended resolution [18].

2.4 Clausal Proofs

We use a clausal proof system to validate our proofs based on the DRAT proof framework [29]. This
framework supports both extended resolution and resolution operations based on a proof rule that
generalizes reverse unit propagation. There are a number of fast and formally- verified checkers
for these proofs [20, 33, 51]. The checker ensures that all extension variables are used properly and
that each new clause can be derived via RUP from its antecedent clauses.

As in a resolution proof, a clausal proof is given as a trace, where each step s; consists of a
clause C; and a list of antecedents A;, where the initial m clauses are the input clauses. Let S,,
denote the set of input clauses, and for i > m, define S; inductively as S; = S;_; U {C;}. The proof
steps Sm+1s - - - » S represent a derivation from Sy, to S;. A clausal proofis a refutation if S; contains
the empty clause. Step s; in a proof is valid if the equisatisfiability’ of S;_; and S; can be checked
using a polynomially decidable redundancy property. For the case in which C; was obtained via
RUP, we can simply perform a RUP check using C; and the antecedents. In the case in which C; is
one of the defining clauses for some extension variable e, the checker must ensure that the clause
is blocked [32]. That is, all possible resolvents of C; with clauses in S;_; that contain e must be
tautologies. The blocked clause proof system is a generalization of extended resolution and allows
the addition of blocked clauses that are blocked on non-extension variables. However, we do not
use such capabilities in our proofs.

Clausal proofs also allow the removal of clauses. A proof can indicate that clause C; can be
removed after step s; if it will not be used as an antecedent in any step s; with k > i. With this
restriction, clause deletion does not affect the integrity of the proof. As the experimental results
of Section 5 demonstrate, deleting clauses that are no longer needed can substantially reduce the
number of clauses the checker must track while processing a proof.

2.5 Binary Decision Diagrams

Reduced, Ordered Binary Decision Diagrams (which we refer to as simply “BDDs”) provide a canon-
ical form for representing Boolean functions and an associated set of algorithms for constructing
them and testing their properties [6]. With BDDs, functions are defined over a set of variables
X = {x1,%2,...,%x,}. We let T; and T; denote the two leaf nodes, representing the constant func-
tions 0 and 1, respectively.

Each nonterminal node u has an associated variable Var(u) and children Hi(u), indicating the
case in which the node variable has value 1, and Lo(u), indicating the case in which the node
variable has value 0.

Two lookup tables—the unique table and the operation cache—are critical for guaranteeing
the canonicity of the BDDs and for ensuring polynomial performance of the BDD construction
algorithms.

A node u is stored in a unique table, indexed by a key of the form (Var(u), Hi(u), Lo(u)), so
that isomorphic nodes are never created. The nodes are shared across all of the BDDs [38]. In
presenting algorithms, we assume a function GETNODE(x, uy, up) that checks the unique table and
either returns the node stored there or it creates a new node and enters it into the table. With this

ITwo Boolean formulas are equisatisfiable if they are either both satisfiable or both unsatisfiable.
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AprprLY(OP, uy, ..., ug)
if ISTERMINAL(OP, uy, ..., uy):
return TERMINALVALUE(OP, uy, ..., uy)
K «—— (Or,uy,...,ug)
if K € Cache:
return Cache[K]
w «— AppPLYRECUR(OP, uy, ..., uy)
Cache[K] «—w
return w

Fig. 1. General structure of the Apply algorithm. The operation for a specific logical operation Op is deter-
mined by its terminal cases and its recursive structure.

table, we can guarantee that the subgraphs with root nodes u and » represent the same Boolean
function if and only if u = v. We can therefore uniquely identify Boolean functions with their
BDD root nodes.

BDD packages support multiple operations for constructing and testing the properties of
Boolean functions represented by BDDs. A number of these are based on the Apply algorithm [6].
Given a set of BDD roots uy, us, . .., uy representing functions fi, f, ..., fi, respectively, and a
Boolean operation Op, the algorithm generates the BDD representation w of the operation applied
to those functions. For example, with k = 2, and Op = AND, APPLY(AND, u;, u;) returns the root
node for the BDD representation of f; A f>.

Figure 1 shows pseudo-code describing the overall structure of the Apply algorithm. The de-
tails for a specific operation are embodied in the functions ISTERMINAL, TERMINALVALUE, and
AprPLYRECUR. The first two of these detect terminal cases and what value to return when a terminal
case is encountered. The third describes how to handle the general case, in which the arguments
must be expanded recursively. The algorithm makes use of memoizing, where previously com-
puted results are stored in an operation cache, indexed by a key consisting of the operands [37].
Whenever possible, results are retrieved from this cache, avoiding the need to perform redundant
calls to AppLYRECUR. With this cache, the worst-case number of recursive steps required by the
algorithm is bounded by the product of the sizes (in nodes) of the arguments.

3 PROOF GENERATION DURING BDD CONSTRUCTION

In our formulation, every newly created BDD node u is assigned an extension variable u. (Nodes
are denoted by boldface characters, possibly with subscripts, e.g., u, v, and ©v;, while their corre-
sponding extension variables are denoted with a normal face, e.g., u, v, and v;.) We then extend
the Apply algorithm to generate proofs based on the recursive structure of the BDD operations.

Let S, denote the set of input clauses. Our goal is to generate a proof that S, £ L, that is, there
is no satisfying assignment for these clauses. Our BDD-based approach generates a sequence of
BDDs with root nodes uy,uy, ..., u;, where u; = T, based on a combination of the following
operations. (The exact sequencing of operations is determined by the evaluation mechanism, as is
described in Section 5.)

(1) For input clause C;, generate its BDD representation u; using a series of Apply operations
to perform the disjunctions.

(2) For roots u; and uy, generate the BDD representation of their conjunction u; = u; Auy using
the Apply operation to perform conjunction.

(3) For root u; and some set of variables Y C X, perform existential quantification: u; = 3Y u;.

Although the existential quantification operation is not mandatory for a BDD-based SAT solver,
it can greatly improve its performance [23]. It is the BDD counterpart to Davis-Putnam variable
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elimination on clauses [21]. As the notation indicates, there are often multiple variables that can be
eliminated simultaneously. Although the operation can cause a BDD to increase in size, it generally
causes a reduction. Our experimental results demonstrate the importance of this operation.

As these operations proceed, we simultaneously generate a set of proof steps. The details of each
step are given later in the presentation. For each BDD generated, we maintain the proof invariant
that the extension variable u; associated with root node u; satisfies Sy, ¥ u;.

(1) Following the generation of the BDD u; for input clause C;, we also generate a proof that
C; E u;. This is described in Section 3.1.
(2) Justifying the results of conjunctions requires two parts:

(a) Using a modified version of the Apply algorithm for conjunction, we follow the structure of
its recursive calls to generate a proof that the algorithm preserves implication: u; Aug — u;.
This is described in Section 3.2.

(b) This implication can be combined with the earlier proofs that S,,, £ u; and S, £ u to
prove that Sy, F u;.

(3) Justifying the quantification also requires two parts:

(a) Following the generation of u; via existential quantification, we perform a separate
check that their associated extension variables satisfy u; — u;. This check uses a proof-
generating version of the Apply algorithm for implication checking. This is described in
Section 3.3.

(b) This implication can be combined with the earlier proof that S,, F u; to prove that S, F uy.

Compared with the prior work by Sinz and Biere [44], our key refinement is to handle arbi-
trary existential quantification operations. (When implementing a SAT solver, these quantifica-
tions must be applied in restricted ways [50], but since proofs of unsatisfiability only require
proving implication, we need not be concerned with the details of these restrictions.) Rather than
attempting to track the detailed logic underlying the quantification operation, we run a separate
check that implication is preserved. As is the case with many BDD packages, our implementation
can perform existential quantification of an arbitrary set of variables in a single pass over the
argument BDD. We only need to perform a single implication check for the entire quantification.

Sinz and Biere’s construction assumed that there were special extension variables n; and ng to
represent the BDD leaves T; and Ty. Their proofs then included unit clauses n; and 7y to force
these variables to be set to true and false, respectively. We have found that these special variables
are not required and instead directly associate leaves T; and Ty with T and L, respectively.

The n variables in the input clauses all have associated BDD variables. The proof then introduces
an extension variable u every time a new BDD node u is created. In the actual implementation, the
extension variable (an integer) is stored as one of the fields in the node representation.

When creating a new node, the GETNoDE function adds (up to) four defining clauses for the
associated extension variable. For node u with variable Var(u) = x, Hi(u) = uy, and Lo(u) = u,
the clauses are:

Notation Formula Clause

HD(u) x—->(u—-u;) Xuu
LD(u) x— (u—>uy) xuu
HU(u) x— (uy—>u) Xuju
LU(m) x—-(u—u) xuu

The names for these clauses combine an indication of whether they correspond to variable x being
1 (H) or 0 (L) and whether they form an implication from the node down to its child (D) or from

ACM Transactions on Computational Logic, Vol. 24, No. 4, Article 31. Publication date: July 2023.



31:8 R. E. Bryant and M. J. H. Heule

Target HU(u,) LU(w,) LU(up) HU(up) HU(ue) C
Clause Ug aug aip ug buy bu.uy Cu. abce

Units Uy a up b U c 1
Fig. 2. BDD representation of clause C = ab ¢ and the justification of root unit clause u, with one RUP step.

the child up to its parent (U). When one of the child nodes u, or u; is a leaf, some of these defining
clauses will degenerate into tautologies and some will reduce to just two literals. Tautologies are
not included in the proof. These defining clauses encode the assertion

u e ITE(x,uq,u),

satisfying Tseitin’s restriction on the use of extension variables. Each clause is numbered according
to its step number in the trace.

3.1 Generating BDD Representations of Clauses

The BDD representation for a clause C has a simple, linear structure. For root node u, it is easy to
prove that C £ u using one RUP step. The general algorithm is described by Sinz and Biere [44].
Here, we illustrate the idea via an example.

Figure 2 shows the BDD representation of clause C = abec. As can be seen, the BDD for a clause
has a very specific structure. For each literal in the clause, there is a node labeled by the variable,
with one child being leaf T; and the other being either the node for the next literal in the variable
ordering or leaf Ty. The lower part of the figure shows a RUP justification of C k u,, where u, is
the root node of the BDD. The proof uses the antecedents HU(u) and LU(u) for each node u in the
BDD (except for the tautological case representing the final edge to Tj), with the final antecedent
being the clause itself. The RUP steps introduce the complements of the clause variables as unit
clauses, causing a contradiction with the input clause. The order in which the two defining clauses
for a node are listed in the antecedent depends on whether the variable is positive or negative in
the clause. As this example demonstrates, we can generate a single proof step for C; £ u; for each
input clause C;.

3.2 Performing Conjunctions

The key idea in generating proofs for the conjunction operation is to follow the recursive structure
of the Apply algorithm. We do this by integrating proof generation into the Apply procedures, as is
shown in Figure 3. This follows the standard form of the Apply algorithm (Figure 1), with the novel
feature that each result includes both a BDD node w and a proof step number s. For arguments
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Terminal Cases APPLYRECUR(AND, u, v)

Condition Result J—1{
x «— min(Var(u), Var(v))
u=v (u, T) if x = Var(u):
u=Tp (To, T) uq, uy «— Hi(u), Lo(u)
o=Th  (TT) J «— J U {HD(u), LD(u)}
u=T (©.T) else: wuj,u)«—uu

v=T (. T) if x = Var(v):
v, 09 «— Hi(v), Lo(v)
J «— JU{HD(v),LD(v)}
else: 0,09 «— 0,0
wi, $1 «— APPLY(AND, Uy, ;)
wy, So «— APPLY(AND, uy, vg)
Je— JU{si s}
if wi =wy:
we—w;

else:
w «— GETNODE(x, w1, W)
J — JU{HU(w),LU(w)}
s «— JusTIFYAND({(u, v,w), J)
return (w, s)

Fig. 3. Terminal cases and recursive step of the Apply operation for conjunction, modified for proof genera-
tion. Each call returns both a node and a proof step.

u and o, step s lists clause u v w along with antecedents defining a RUP proof of the implication
UAND = w.

As the table of terminal cases shows, these cases all correspond to tautologies. For example,
the case of u = T, giving w = o is justified by that tautology T A v — wv. Failing a terminal
or previously computed case, the function must recurse, branching on the variable x that is the
minimum of the two root variables. The procedure accumulates a set of proof steps J to be used
in the implication proof. These include the two steps (possibly tautologies) from the two recursive
calls. At the end, it invokes a function JUsTIFYAND to generate the required proof. In returning the
pair (w, s), this value will be stored in the operation cache and returned as the result of the Apply
operation.

3.2.1  Proof Generation for the Standard Case. A proof generated by AppLy with operation AND
inducts on the structure of the argument and result BDDs. That is, it assumes that the result nodes
wy and wy of the recursive calls to arguments u; and v; and to uy and v, satisfy the implications
uy A vy = wyand ug A vy = wy, and that these calls generated proof steps s; and s, justifying
these implications. For the standard case, in which none of the equalities hold and the recursive
calls do not yield tautologies, the supporting clauses for the proof are shown in Figure 4. That is,
the set J contains references to eight clauses, which we identify by labels. Six of these are defining
clauses: the downward clauses for the argument nodes (labeled vaD, vHD, ULD, and vLD) and the
upward clauses for the result (labeled wrU and wiv). The other two are implications for the two
recursive calls, labeled (ANDH and ANDL). We partition these supporting clauses into two sets:

Ay = UHD,VHD, WHU, ANDH (1)

A; = ULD, VLD, WLU, ANDL (2)
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31:10 R. E. Bryant and M. J. H. Heule

Label Formula Clause

UHD HD(u) Xuuy

ULD LD(u) XU u

VHD HD(v) X00;

VLD LD(v) X0

WHU HU(w) Xwiw

WLU LU(w) X wow
ANDH U1 ANvyp — wq ﬁl 51 W1

ANDL Uy A0y — Wo Uy 0y Wy

Fig. 4. Supporting clauses for standard step of the Apply algorithm for conjunction operations.

Target UHD VHD WHU ANDH
Clause XxXuow }HU] EZ_)Ul le w ﬂl 51 W1
Units X, U, 0, W Uy 01 w1 1

Target Previous ULD VLD WLU ANDL
Clause uow Xuow XUy X009 XWoW UyUy W
Units Uu, 0, w X U v Wo €L

Fig. 5. RUP proof steps for standard recursive step of the conjunction operation.

These supporting clauses are used to derive the target clause u A v — w using the two RUP
steps shown in Figure 5. The first step proves the weaker target x — (u A v — w), having clausal
representation X u 0 w using the supporting clauses in Ay. The second step proves the full target,
having clausal representation u v w. It uses both the weaker result and the supporting clauses in Ay.

3.2.2  Proof Generation for Special Cases. The proof structure shown in Figure 5 only holds
for the standard form of the recursion. However, there are many special cases, such as when a
recursive call yields a tautologous result, when some of the child nodes are equal, and when the
two recursive calls return the same node. Fortunately, a general approach can handle the many
special cases that arise. The examples shown in Figure 6 illustrate a range of possibilities. Based
on these and the standard case of Figure 5, we show how to handle all of the cases with a simple
algorithm.

Figure 6(A) illustrates the case in which some of the nodes in the recursive calls are equal. In
particular, when Var(u) > Var(v), the recursion will split, with u; = u, = u. This will cause
supporting clauses UHD and ULD to be tautologies. This example also has w; = wy = w, as will
occur when the two recursive calls return the identical result. This will cause supporting clauses
wHU and WLU to be tautologies. The two sets of equalities will cause supporting clause ANDH to
be uv; w and supporting clause ANDL to be u Dy W. As can be seen, the resulting proof will consist
of the same two steps as the standard form, but with fewer supporting clauses.

Figure 6(B) illustrates the case in which u; = T; and, therefore, the first recursive call generates
a tautologous result. This case will cause w; = ©v; and, therefore, supporting clause waU will be
X v; w. In addition, supporting clauses UHD and ANDH will be tautologies. Despite these changes,
the proof will still have the same two-step structure as the standard case.

Finally, Figure 6(C) illustrates the case in which u; = Ty and, therefore, the first recursive call
again generates a tautologous result. This case will cause w; = T, and only two clauses among
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(A) u; = up and wy =wy

Target VHD ANDH
Clause Xuow X00; uogw
Units X, U, 0, W 01 1
Target  Previous VLD ANDL
Clause uow Xuow X0 Uy W
Units u, 0, w x [ 1
B)u; =T,
Target VHD WHU
Clause Xuow X00; X0 w
Units X, U, 0, W 01 1
Target  Previous ULD VLD WLU ANDL
Clause uow Xuow XUty X009 XWow UylyWwy
Units u, o, w x U 0o Wo L
Q) u =Ty
Target UHD ULD VLD WLU ANDL
Clause uow xXu XU U X00) XWoW UyUgWy
Units U, 0, w X Up Vo Wo €

Fig. 6. RUP proof steps for conjunction for illustrative special cases.

those in Ay will not be tautologies: UHD will be xu and vaD will be XD v;. As can be seen, the
proof for this case consists of a single RUP step. Furthermore, it does not make use of supporting
clause vHD.

These three examples illustrate the following general properties:

e When neither ANDH nor ANDL is a tautology, the proof requires two steps. Some of the
supporting clauses may be tautologies, but the proof can follow the standard form shown in
in Figure 5.

e When either ANDH or ANDL is a tautology, it may be possible to generate a single-step proof.
Otherwise, it can follow the standard, two-step form.

Given these possibilities, our implementation of JusTIFYAND uses the following strategy:

(1) If supporting clause ANDH is a tautology, then attempt a single-step proof, using the non-
tautologous clauses in Ay followed by those in Ay. If this fails, then perform a two-step
proof.

(2) Similarly, if supporting clause ANDL is a tautology, then attempt a single-step proof, using the
non-tautologous clauses in Ay followed by those in Ap. If this fails, then perform a two-step
proof.

(3) A two-step proof proceeds by first proving the weaker clause xuow using the non-
tautologous clauses in Ag. It then uses this result plus the clauses in Ay to justify target
clause o w.

In all cases, the antecedent is generated by stepping through the clauses in their specified order,
adding only those that cause unit propagation or conflict.
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Terminal Cases AprPLYRECUR(IMPLY, u, v)

Condition Result J—{
x «— min(Var(u), Var(v))
u=v T if x = Var(u):
u= T() T

uy, ug <— Hi(u), Lo(u)

J «— JU{HD(u),LD(u)}
else: wuj,uy«—uu
if x = Var(v):

01,99 «— Hi(v), Lo(v)

J «— JU{HU(v),LU(v)}
else: ov,0) — 0,0
s; «— Appry(IMPLY, uy, v1)
so «— AprpLY(IMPLY, uy, v)
J—JU{s1, 5}
s «— JUSTIFYIMPLICATION ({u, v), J)
return s

U= T] T
u=T,v+T; Error
v=Tyu+T, Error

Fig. 7. Terminal cases and recursive step of the Apply algorithm for implication checking.

Label Formula Clause

uHD HD(u) Xuw
ULD LD(u)  xuug
vHU  HU(v) X070
VLU LU(v) X0yv
IMH U >0y U0
IML Uy — 0y ao 0o

Fig. 8. Clause structure for the standard step of implication checking.

3.3 Checking Implication

As described in Section 3, we need not track the detailed logic of the algorithm that performs
existential quantification. Instead, when the quantification operation applied to node u generates
node v, we generate a proof of implication afterwards, using the Apply algorithm adapted for
implication checking, as shown in Figure 7. A failure of this implication check would indicate an
error in the BDD package. Thus, its only purpose is to generate a proof that the implication holds,
signaling a fatal error if the implication does not hold.

This particular operation does not generate any new nodes; thus, the returned result is simply
a proof step number. The (successful) terminal cases correspond to the tautological cases u — u,
1 —>v,andu — T.

Each recursive step accumulates up to six proof steps as the set J to be used in the implication
proof. Figure 8 shows the structure of these clauses for the standard case in which neither equality
holds and neither recursive call returns T. The clauses consist of the two downward defining
clauses for argument u, labeled UHD and ULD, the two upward defining clauses for argument v,
labeled vaU and viu, and the clauses returned by the recursive calls, labeled ima and 1ML.

Figure 9 shows the two RUP steps required to prove the standard case. The first step proves the
weaker target x — (u — v), having clausal representation X u v using the three supporting clauses
containing x. The second proves the full target, having clausal representation u v using the weaker
result plus the supporting clauses containing x.
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Target UHD VHU IMH
Clause Xuv Xuu X0,0 U 01
Units X, U, 0 Uy [ 1

Target  Previous ULD VLU IML
Clause uv Xuv XUuUy  X0yv Ug Vg
Units u, v x U Vo €

Fig. 9. RUP proof steps for standard recursive check of implication checking.

As with the conjunction operation, there can be many special cases, but they can be handled
with the same general strategy. If either recursive result iMH or 1ML is a tautology, a one-step proof
is attempted. If that fails, or if neither recursive result is a tautology, a two-step proof is generated.

4 IMPLEMENTATION

We implemented the TBUDDY proof-generating BDD package by modifying the widely used BuDDy
BDD package, developed by Jern Lind-Nielsen in the 1990s [9]. This involved adding several addi-
tional fields to the BDD node and cache entry data structures, yielding a total memory overhead
of 1.35X. TBUDDY generates proofs in the LRAT proof format [19]. We then implemented TBSAT, a
proof-generating SAT solver based on TBUDDY.

TsAT supports three different evaluation mechanisms:

Linear: Forms the conjunction of the clauses. No quantification is performed. This mode
matches the operation described for the original version of EBDDRES [44]. When forming
the conjunction of a set of terms, the program makes use of a first-in, first-out queue, remov-
ing two elements from the front of the queue, computing their conjunction, and placing the
result at the end of the queue. This has the effect of forming a binary tree of conjunctions.

Bucket Elimination: Place the BDDs representing the clauses into buckets according to the
levels of their topmost variables. Then process the buckets from lowest to highest. While
a bucket has more than one element, repeatedly remove two elements, form their conjunc-
tion, and place the result in the bucket designated by its topmost variable. Once the bucket
has a single element, existentially quantify the topmost variable and place the result in the
appropriate bucket [22]. This matches the operation described for the revised version of
EBDDRES [31]. It provides a systematic way to perform an analog to the early quantification
method of symbolic model checking [14].

Scheduled: Perform operations as specified by a scheduling file, as described below.

The scheduling file contains a sequence of lines, each providing a command in a simple, stack-
based notation:

ccy,...,ck  Push the BDD representations of the specified clauses onto the stack
am Replace the top m elements on the stack with their conjunction
qui,...,0r Replace the top stack element with its quantification by the specified variables

5 EXPERIMENTAL RESULTS

In our preliminary experiments, we found that the capabilities of TBsAT differ greatly from the
more mainstream CDCL solvers. Therefore, it must be evaluated by a different set of standards.
In particular, CDCL solvers are most commonly evaluated according to their performance on
collections of benchmark problems in a series of annual solver competitions. Over the years, the
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benchmark problems have been updated to provide new challenges and to better distinguish
the performance of the different solvers. This competition has stimulated major improvements
in the solvers through improved algorithms and implementation techniques. One unintended
consequence, however, has been that the benchmarks have evolved to be only at, or slightly
beyond, the capabilities of CDCL solvers.

As an example, Chatalic and Simon [16] and Li [34] contributed multiple benchmark formulas for
the 2002 SAT competition [42] based on a class of unsatisfiable formulas devised by Urquhart [48].
(These are described in Section 5.2.) The formulas scale quadratically by a size parameter m both
in terms of the number of variables and the number of clauses. Simon’s largest benchmark had
m = 5, while Li’s had m = 4. No solver at the time could complete for these formulas, even though
Li’s formula for m = 4 has only 288 variables and 768 clauses. The 2022 SAT competition featured
a special “Anniversary track” using as formulas the 5355 formulas that have been used across all
prior SAT competitions. In all, 32 solvers participated in the competition with a 5000-second time
limit for each problem. Even after years of improvements in the solvers and with vastly better
hardware, none of the solvers completed these 20-year-old benchmark problems. There has been
no attempt to evaluate solvers running on Urquhart formulas for larger values of m because these
were clearly beyond the reach of the competing solvers.

By contrast, TBSAT can easily handle the Urquhart formulas. Generating proofs of unsatisfiability
for Simon’s benchmark with m = 5 and Li’s benchmark with m = 4 requires 0.23 and 0.13 seconds,
respectively. We show experimental results with m = 38 for Li’s version and m = 60 for Simon’s.
In a more recent effort [9], we augmented TBSAT to use Gaussian elimination for reasoning about
parity constraints, allowing us to generate an unsatisfiability proof for Li’s version with m = 316,
a formula with over two million variables and five million clauses. This example demonstrates
that measuring performance on benchmarks designed to evaluate CDCL solvers cannot capture
the full capabilities of a BDD-based SAT solver.

In the following experiments, we explore the capability of TBSAT on four scalable benchmark
problems that pose major challenges for CDCL solvers. These do not to show that BDD-based
methods are uniformly superior to CDCL, but rather that they can perform very well on some
classes of problems for which CDCL is especially weak. A long-term research direction is to com-
bine the capabilities of CDCL and BDDs to build on the strengths of each.

All experiments were performed on a 3.2 GHz Apple M1 Max processor with 64 GB of mem-
ory and running the OS X operating system. The runtime for each experiment was limited to
1000 seconds. We compare the performance of TBSAT to that of kissAT, the winner of several recent
SAT solver competitions [5]. KissAT represents the state-of-the-art in CDCL solvers. The proofs
were checked using DRAT-TRIM for the proofs generated by kiSSAT and LRAT-cHECK for those gener-
ated by TBsAT. We report both the elapsed time by the solver and the total number of clauses in the
proof of unsatisfiability. For KissAT, the proof clauses indicate the conflicts the solver encountered
during its search. For TBSAT, these are the defining clauses for the extension variables (up to four
per BDD node generated) and the derived clauses (one per input clause and up to two per result
inserted into the operation cache.)

5.1 Reordered Parity Formulas

Chew and Heule [17] introduced a benchmark problem based on computing the parity of a set of
Boolean values x1, . . ., X, using two different orderings of the inputs and with one of the variables
negated in the second computation:

ParityA(x1,...,%n) = x1®X® - Dx,
ParityB(xy, ...,x,) = [pl @ xﬂ(l)] @ [pg ® x,,(z)] CRERNC) [pn ® xn(n)] )
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where 7 is a random permutation, and each p; is either 0 or 1, with the restriction that p; = 1 for
only one value of i. The two sums associate from left to right. Therefore, the formula ParityA A
ParityB is unsatisfiable, but the permutation makes this difficult for CDCL solvers to determine.
The CNF has a total of 3n — 2 variables: n values of x;, plus the auxiliary variables encoding the
intermediate terms in the two expressions.

Chew and Heule experimented with the CDCL solver CAD1CAL [3] and found it could not handle
cases with n greater than 50. They devised a specialized method for directly generating proofs
in the DRAT proof system, obtaining proofs that scale as O(nlogn), and gave results for up to
n = 4,000. They also tried EBDDRES, but only in its default mode, where it performs only linear
evaluation without any quantification.

Figure 10 shows the result of applying both TBSAT and kissAT to this problem. In this and other
figures, the top graph shows how the runtime scales with the problem size, whereas the bottom
graph shows how the number of proof clauses scale. Both graphs are log-log plots; thus, the values
are highly compressed along both dimensions. Linear evaluation performs poorly, only handling
up to n = 24 within the 1000-second time limit, generating a proof with over 312 million clauses.
Using kissAT, we found that the results were very sensitive to the choice of random permutation.
Thus, we show results using three different random seeds for each value of n. We were able to
generate proofs for instances with n up to 46 within the time limit but also started having timeouts
with n = 42. We can see that kissaT does better than linear evaluation with TBsAT, but both appear
to scale exponentially.

Bucket elimination, on the other hand, displays much better scaling. We found that the best
performance was achieved by randomly permuting the variables, although this strategy only yields
a constant factor improvement over the ordering from the CNF file. As the graphs show, we were
able to handle cases with n up to 9,750, within the time limit. This generated a proof with over
419 million clauses, but the LRAT checker was able to verify this proof in 256 seconds. Although
TBSAT could generate proofs for larger values of n, these exceeded the capacity of the LRAT checker.

Included in the second graph are results for running Chew and Heule’s proof generator on this
problem. As can be seen, the proof sizes generated by TBSAT are comparable to theirs up to around
n = 100. From there on, however, the benefit of their O(n log n) algorithm becomes apparent. Even
for n = 10,000, their proof contains less than 11 million clauses. Of course, their construction relies
on particular properties of the underlying problem, while ours was generated by a general-purpose
SAT solver.

5.2 Urquhart Formulas

Urquhart [48] introduced a family of formulas that require resolution proofs of exponential size.
Over the years, two families of SAT benchmarks have been labeled as “Urquhart Problems”: one
developed by Chatalic and Simon [16], and the other by Li [34]. These are considered to be difficult
challenge problems for SAT solvers. Here, we define their general form, describe the differences
between the two families, and evaluate the performance of both kissAT and TBSAT on both classes.

Urquhart’s construction is based on a class of bipartite graphs with special properties. Define
Gy as the set of undirected graphs, with each graph satisfying the following properties:

o It is bipartite: The set of vertices can be partitioned into sets L and R such that the edges E
satisfy E € L X R.

e It is balanced: |L| = |R|.

e It has bounded degree: No vertex has more than k incident edges.

Furthermore, the graphs must be expanders, defined as follows [30]. For a subset of vertices U C L,
define R(U) to be those vertices in R adjacent to the vertices on U. A graph in Gy, is an expander
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Parity Proof Generation Time
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Fig. 10. Generating unsatisfiability proofs for reordered parity encodings with n data variables.

if there is some constant d > 0 such that for any U c L with |U| < |L|/2, the set R(U) satisfies
IR(U)| = (d + 1)|U]|. Urquhart considers expander graphs with degree bound k = 5 and that are
parameterized by a size value m with |L| = |R| = m?.

To transform such a graph into a formula, each edge (i, j) € E has an associated variable xy; ;).
(We use this notation to emphasize that the order of the indices does not matter.) Each vertex is
assigned a polarity p; € 0,1 such that the sum of the polarities is odd. The clauses then encode the
formula:

2m?
Z Z Xy +pil = 0 (mod 2).

i=1 | (i.j)€E
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This is false, of course, since each edge gets counted twice in the sum and the sum of the polarities
is odd.

The two families of benchmarks differ in how the graphs are constructed. Li’s benchmarks are
based on the explicit construction of expander graphs due to Margulis [24, 35] that is cited by
Urquhart. Thus, his graphs are fully defined by the size parameter m. Simon’s benchmarks are
based on randomly generated graphs. Thus, they are characterized by both the size parameter
m and the initial random seed s. Although random graphs satisfy the expander condition with
high probability [30], it is unlikely that the particular instances generated by Simon’s benchmark
generator are truly expander graphs. The widely used SAT benchmarks with names of the form
UrgM_S.cnf were generated by Simon’s program for size parameter m = M and initial seed S. For
Simon’s benchmarks, we used five different seeds for each value of m.

Figure 11 shows data for running KissAT as well as TBSAT using bucket elimination. The data for
KissAT demonstrate how difficult these benchmark problems are for CDCL solvers. With a time
limit of 1000 seconds, we found that kissAT could handle all five instances of Simon’s benchmarks
with m = 3 but none for larger values of m. For Li’s benchmarks, it failed for even the minimum
case of m = 3. Running TBsAT with bucket elimination with a random ordering of the variables fares
much better. For Li’s benchmarks, it successfully handled instances up to m = 38, yielding a proof
with around 373 million clauses. For Simon’s benchmarks, bucket elimination handled benchmarks
for all five seeds up to m = 60. We can also see that Simon’s benchmarks are decidedly easier than
Li’s, requiring up to an order of magnitude fewer clauses in the proofs.

Jussila et al. [31] showed benchmark results for what appear to be Simon’s Urquhart formulas
up to m = 8 with performance (in terms of proof size) comparable to ours. Indeed, in using bucket
elimination, we are replicating their approach. We know of no prior proof-generating SAT solver
that can handle Urquhart formulas of this scale.

5.3 Mutilated Chessboard

The mutilated chessboard problem considers an nxn chessboard, with the corners on the upper left
and the lower right removed. It attempts to tile the board with dominos, with each domino covering
two squares. Since the two removed squares had the same color, and each domino covers one white
and one black square, no tiling is possible. This problem has been well studied in the context of
resolution proofs, for which it can be shown that any proof must be of exponential size [1].

A standard CNF encoding involves defining Boolean variables to represent the boundaries be-
tween adjacent squares, set to 1 when a domino spans the two squares, and set to 0 otherwise.
The clauses then encode an Exactly1 constraint for each square, requiring each square to share a
domino with exactly one of its neighbors. We label the variables representing a horizontal bound-
ary between a square and the one below as y; j, with 1 < i < nand 1 < j < n. The variables
representing the vertical boundaries are labeled x; ;, with 1 < i < nand 1 < j < n. With a
mutilated chessboard, we have that y;,; = X1,1 = Yn—1.n = Xn.n—1 = 0.

As the plots of Figure 12 show, a straightforward application of linear conjunctions or bucket
elimination by TBsAT displays exponential scaling. Indeed, TBSAT fares no better than kissAaT when
operating in either of these modes, with all limited to n < 20 within the 1000-second time limit.

On the other hand, another approach, inspired by symbolic model checking [15], demonstrates
far better scaling, reaching n = 340. It is based on the following observation: when processing
the columns from left to right, the only information required to place dominos in column j is the
identity of those rows i for which a domino crosses horizontally from j — 1 to j. This information
is encoded in the values of x; j_; for 1 <i < n.

In particular, group the variables into columns, with X; denoting variables xy j,...,xp ;, and Y;
denoting variables yy j, . . ., Yn—1,;. Scanning the board from left to right, consider X; to encode the
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Fig. 11. Generating unsatisfiability proofs for Urquhart formulas with size parameter m. Kissat timed out
for even the minimume-sized version of Li’s benchmark (m = 3).

“state” of processing after completing column j. As the scanning process reaches column j, there is
a characteristic function oj_1(X;-1) describing the set of allowed crossings of horizontally oriented
dominos from column j — 1 into column j. No other information about the configuration of the
board to the left is required. The characteristic function after column j can then be computed as:

oi(X;) = 3dXj, [Uj—l(xj—l) A Y Tj(Xj-a, Yj,Xj)], (3)

where Tj(Xj-1, Y;, X;) is a “transition relation” consisting of the conjunction of the Exactly1 con-
straints for column j. From this, we can existentially quantify the variables Y; to obtain a BDD
encoding all compatible combinations of the variables X;_; and X;. By conjuncting this with the
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Fig. 12. Generating unsatisfiability proofs for n X n mutilated chess boards.

characteristic function for column j — 1 and existentially quantifying the variables X;_;, we ob-
tain the characteristic function for column j. With a mutilated chessboard, we generate leaf node
Ly in attempting the final conjunction. Note that Equation (3) does not represent a reformulation
of the mutilated chessboard problem. It simply defines a way to schedule the conjunction and
quantification operations over the input clauses.

One important rule-of-thumb in symbolic model checking is that the successive values of the
next-state variables must be adjacent in the variable ordering. Furthermore, the vertical variables
in Y; must be close to their counterparts in X;_; and X;. Both objectives can be achieved by ordering
the variables row-wise, interleaving the variables x; ; and y; ;, ordering first by row index i and
then by column index j. This requires the quantification operations of Equation (3) to be performed
on non-root variables.
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In our experiments, we found that this scanning reaches a fixed point after processing n/2
columns. That is, from that column onward, the characteristic functions become identical, except
for a renaming of variables. This indicates that the set of all possible horizontal configurations sta-
bilizes halfway across the board. Moreover, the BDD representations of the states grow as O(n?).
For n = 340 largest has just 29,239 nodes. The problem size for the mutilated chessboard scales is
n?, the number of squares in the board. Thus, an instance with n = 340 is 289 times larger than
an instance with n = 20 in terms of the number of input variables and clauses. Column scanning
yields a major benefit in the solver performance.

The plot labeled “No Quantification” demonstrates the importance of including existential quan-
tification in solving this problem. These data were generated by using the same schedule as with
column scanning but with all quantification operations omitted. As can be seen, this approach
could not scale beyond n = 10.

It is interesting to reflect on how our column-scanning approach relates to SAT-based bounded
model checking (BMC) [4]. This approach to verification encodes the operation of a state transition
system for k steps, for some fixed value of k, by instantiating the transition relation k times. It
then uses a SAT solver to detect whether some condition can arise within k steps of operation. By
contrast, we effectively compress the mutilated chessboard problem into a state machine that adds
tiles to successive columns of the board and then perform a BDD-based reachability computation
for this system, much as would a symbolic model checker [15]. Just as BDD-based model checking
can outperform SAT-based BMC for some problems, we have demonstrated that a BDD-based SAT
solver can sometimes outperform a search-based SAT solver.

5.4 Pigeonhole Problem

The pigeonhole problem is one of the most studied problems in propositional reasoning. Given a
set of n holes and a set of n + 1 pigeons, it asks whether there is an assignment of pigeons to holes
such that (1) every pigeon is in some hole and (2) every hole contains at most one pigeon. The an-
swer is no, of course, but any resolution proof for this must be of exponential length [27]. Groote
and Zantema have shown that any BDD-based proof of the principle that uses only conjunction
operations must be of exponential size [26]. On the other hand, Cook constructed an extended reso-
lution proof of size O(n?), in part to demonstrate the expressive power of extended resolution [18].

We used a representation of the problem that scales as O(n?), using an encoding of the at-most-
one constraints due to Sinz [43]. It starts with a set of variables p; jfor1 <i<nand1 <j<n+1,
with the interpretation that pigeon j is assigned to hole i. Encoding the property that each pigeon
Jj is assigned to some hole can be expressed with a single clause:

n
Pigeon; = \/p,-’j.
i=1

Sinz’s method of encoding the property that each hole i contains at most one pigeon introduces
auxiliary variables to effectively track which holes are occupied, starting with pigeon 1 and work-
ing upward. These variables are labeled s; ; for 1 < i < nand 1 < j < n. Informally, variables
Si1>Si,2s -« . Si,n Serves as a signal chain that indicates the point at which a pigeon has been as-
signed to hole i. For each hole i, there is a total of 3n — 1 clauses:

Effect Formula Clause Range

Generate  p;j —si;  p;;Si; 1<j<n
Propagate s; ;1 —s;; Sij18; 1<j<n
Suppress  sij-1 = p;; Sij1Pi; 1<j<n+1
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Fig. 13. Generating unsatisfiability proofs for assigning n + 1 pigeons to n holes using Sinz’s encoding.

Each of these clauses serves either to define how the next value in the chain is to be computed,
or to describe the effect of the signal on the allowed assignments of pigeons to the hole. That is,
for hole i, the signal is generated at position j if pigeon j is assigned to that hole. Once set, the
signal continues to propagate across higher values of j. Once the signal is set, it suppresses further
assignments of pigeons to the hole. This encoding requires 3n — 1 clauses and n auxiliary variables
per hole.

Figure 13 shows the results of running the two solvers on this problem. Once again, we see
TBSAT with either linear or bucket evaluation having exponential scaling, as does kissAT. None can
go beyond n = 13 within the 1000-second time limit.

On the other hand, the column scanning approach used for the mutilated checkerboard can also
be applied to the pigeonhole problem when the Sinz encoding is used. Consider an array with hole i

ACM Transactions on Computational Logic, Vol. 24, No. 4, Article 31. Publication date: July 2023.



31:22 R. E. Bryant and M. J. H. Heule

represented by row i and pigeon j represented by column j. Let S; represent the auxiliary variables
s;,j for 1 < i < n. The “state” is then encoded in these auxiliary variables. In processing pigeon j,
we can assume that the possible combinations of values of auxiliary variables S;_; is encoded by a
characteristic function 0j_;(S;-1). In addition, we incorporate into this characteristic function the
requirement that each pigeon k, for 1 < k < j — 1 is assigned to some hole. Letting P; denote the
variables p; j for 1 < i < n, the characteristic function at column j can then be expressed as

0i(S;) = 381 [0j-1(S;-1) A TP Ti(Sj1. P S)) ] (@)

where the “transition relation” T; consists of the clauses associated with the auxiliary variables plus
the clause encoding constraint Pigeon;. As with the mutilated chessboard, having a proper variable
ordering is critical to the success of a column scanning approach. We interleave the ordering of
the variables p; ; and s; j, ordering them first by i (holes) and then by j (pigeons).

Figure 13 demonstrates the effectiveness of the column-scanning approach. We were able to
handle instances up to n = 210. Unlike with the mutilated chessboard, the scanning does not reach
a fixed point. Instead, the BDDs start very small, because they must encode the locations of only a
small number of occupied holes. They reach their maximum size at pigeon n/2, as the number of
combinations for occupied and unoccupied holes reaches its maximum of C(n, n/2). The BDD sizes
then drop off, symmetrically to the first n/2 pigeons, as the encoding needs to track the positions
of a decreasing number of unoccupied holes. Fortunately, all of these BDDs scale quadratically
with n, reaching a maximum of 11,130 nodes for n = 210.

We also ran experiments using a direct encoding of the at-most-one constraints, having a clause
Pij V Py for each hole i and for 1 < j < k < n + 1. This encoding scales as ©(n®). With this
encoding, we were unable to find any method that avoided exponential scaling using either TBSAT
Or KISSAT.

5.5 Evaluation

Overall, our results demonstrate the potential for generating small proofs of unsatisfiability using
BDDs. We were able to greatly outperform traditional CDCL solvers for four well-known challenge
problems.

The success for the first two benchmark problems relies on the ability of BDDs to handle
exclusive-or operations efficiently. Generally, the exclusive-or of k variables can be expressed as
a BDD with 2k + 1 nodes, including the leaves. These representations are also independent of the
variable ordering. As we saw, however, it is critical to quantify variables whenever possible to
avoid requiring the BDD to encode the parity relationships among many overlapping subsets of
the variables. We found that bucket elimination works well on these problems and that random-
ness in the problem structure and the variable ordering did not adversely affect performance. This
strategy was outlined by Jussila et al. [31]; our experimental results serve as a demonstration of
the utility of their work.

The success of column scanning for the final two benchmark problems relies on finding a way
to scan in one dimension, encoding the “state” of the scan in a compact form. This strategy only
works when the problem is encoded in a way that it can be partitioned along two dimensions. This
approach draws its inspiration from symbolic model checking, and it requires the more general
capability to handle quantification that we have presented. One strength of modern SAT solvers
is that they generally succeed without any special guidance from the user. It remains an open
question whether column scanning can be made more general and whether a suitable schedule
and variable ordering can be generated automatically. Without these capabilities, our results for
column scanning show promise, but they require too much guidance from the user.
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Table 1. Summary Data for the Largest Parity and
Urquhart Formulas Solved

Instance Parity-9750 Urquhart-Li-38
Input variables 29,244 29,868
Input clauses 77,984 79,648
Total BDD nodes 62,722,228 55,763,704
Total clauses 419,255,800 372,999,366
Maximum live clauses 166,706,941 148,101,720
Solver time (secs) 928.4 809.5
Checking time (secs) 288.3 258.5

Table 2. Summary Data for the Largest Chess and
Pigeonhole Problems Solved

Instance Chess-340 Pigeon-Sinz-210
Input variables 230,516 88,410
Input clauses 805,112 132,301
Total BDD nodes 100,804,928 53,093,749
Total clauses 449,676,065 465,887,970
Maximum live clauses 119,957,540 30,295,942
Solver time (secs) 969.4 857.2
Checking time (secs) 298.0 340.4

Other studies have compared BDDs to CDCL solvers on a variety of benchmark problems. Sev-
eral of these observed exponential performances for BDD-based solvers for problems for which we
have obtained more promising results. Uribe and Stickel [47] ran experiments with the mutilated
chessboard problem, but they did not do any variable quantification. Pan and Vardi [39] applied a
variety of scheduling and variable ordering strategies for the mutilated chessboard and pigeonhole
problems. Although they found that they could get better performance than with a CDCL solver,
their performance still scaled exponentially. Obtaining scalability requires devising more problem-
specific approaches than the ones they considered. Our experiments with kissAT confirm that a
BDD-based SAT solver requires careful attention to the problem encoding, the variable ordering,
and the use of quantification in order to outperform a state-of-the CDCL solver.

Tables 1 and 2 provide some performance data for the largest instances solved for each of the
four benchmark problems. A first observation is that these problems are very large, with tens of
thousands of input variables and clauses.

Looking at the BDD data, the total number of BDD nodes indicates the total number generated
by the function GETNoODE and for which extension variables are created. These are numbered in
the millions, and far exceed the number of input variables.

The entries for “Maximum live clauses” show the peak number of clauses that had been added
but not yet deleted across the entire proof. As can be seen, these can vary from 7% to nearly 40%
of the total clauses. The peak number of live clauses proved to be a limiting factor for the LRAT
proof checker.

Figure 14 provides more insight into the nature of the proofs generated by the CDCL solver
kissAT and the BDD-based solver TBsSAT. Each point indicates one benchmark run, with the value
on the Y axis indicating the runtime of the solver divided by the number of clauses generated,
scaled by 10°, whereas the X value is the proof size. In other words, the Y values show the average
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time in microseconds for each proof clause to be generated. In all, 340 points are shown, with 75
for kissAT and the rest for TBSAT in its various operating modes.

These data reflect a fundamental difference between how proofs are generated with a CDCL
solver versus with a BDD-based solver. A CDCL solver emits a clause each time it encounters a
conflict during the search. This may come after many steps involving selecting a decision variable
and performing Boolean constraint propagation. Thus, there can be considerable and highly vari-
able amounts of processing between successive clause emissions. We see average times ranging
between 4 and 60 microseconds for the kiSSAT runs, and even these averages mask the considerable
variations that can occur within a single run.

With a BDD-based solver, on the other hand, the proof has the form of a log describing the
recursive steps taken by the BDD algorithm, expressed within a standard proof framework. There
is very little variability from one run to the next, and the different evaluation modes have min-
imal impact. The only trend of note is a general increase in the average time per clause as the
proofs get longer. The short runs require less than 1.0 microsecond per clause, whereas the longer
ones require over 2.0. This increase can be attributed to the complexity of managing long BDD
computations, requiring garbage collection, table resizing, and other overhead operations.

Figure 15 shows a similar plot, but with the Y axis indicating the average time for the proof
checkers to check each clause. Again, we see two important characteristics. The proof steps
generated by KissAT do not include lists of antecedent clauses (hints). Instead, the checking pro-
gram DRAT-TRIM scans the set of clauses and constructs each hint sequence. This takes significant
effort and can vary greatly across benchmarks. The proofs generated by TBsAT, on the other hand,
contain full hints and can therefore be readily checked at an average of around 0.7 y seconds per
proof clause, regardless of the proof size or solution method.
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6 CONCLUSION

The pioneering work by Biere, Sinz, and Jussila [31, 44] did not lead to as much follow-up work
as it deserved. Here, many years later, we found that small modifications to their approach enable
a powerful BDD-based SAT solver to generate proofs of unsatisfiability. The key to its success is
the ability to perform arbitrary existential quantification. As the experimental results demonstrate,
such a capability is critical to obtaining reasonable performance.

More advanced BDD-based SAT solvers employ additional techniques to improve their perfor-
mance. Extending our methods to handle these techniques would be required to have them gener-
ate proofs of unsatisfiability. Some of these would be straightforward. For example, Weaver et al.
[50] derive a very general set of conditions under which existential quantification can be applied
while preserving satisfiability. For generating proofs of unsatisfiability, our ability to prove that
existential quantification preserves implication would be sufficient for all of these cases. On the
other hand, more advanced solvers, such as SBSAT [23], employ a variety of techniques to prune
the intermediate BDDs based on the structure of other BDDs that remain to be conjuncted. This
pruning generally reduces the set of satisfying assignments to the BDD; thus implication does not
hold.

In more recent work, we have been able to show that BDD-based methods can use solution
methods that view a Boolean formula as encoding linear equations over integers or modular inte-
gers [10]. Proof-generating BDD operations can be used to justify the individual steps taken while
solving systems of equations by several different methods. That has allowed us to scale the bench-
mark problems considered in Section 5 even further, and to avoid the need for problem-specific
solution methods. We have also demonstrated that proof-generating BDDs can be integrated into
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a convention CDCL solver to allow it to use Gauss-Jordan elimination on the parity constraints
encoded in the formula [13]. Overall, we believe that BDD-based methods can augment other SAT
solving methods to provide new capabilities.

The ability to generate correctness proofs in a BDD-based SAT solver invites us to also consider
generating proofs for other tasks to which BDDs are applied. We have already done so for quan-
tified Boolean formulas, demonstrating the ability to generate proofs for both true and false for-
mulas in a unified framework [11]. Other problems of interest include model checking and model
counting. Perhaps a proof of unsatisfiability could provide a useful building block for constructing
correctness proofs for these other tasks.
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