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Abstract—For meshed power networks, even though the conic
relaxation is shown to be exact, the relaxation of angles may
not be exact using the existing Second-Order Cone Program-
ming (SOCP) based optimal power flow (OPF) models. Power
transmission networks generally have mesh orientation, and the
cyclic angle constraints are not satisfied with the existing SOCP-
OPF models. This work proposes a SOCP-OPF model for power
transmission networks that satisfies the cyclic angle constraints
for any mesh in the network. The novelty of the proposed OPF
model is that it defines a convex envelope to represent the relative
bus voltage angles that satisfy the cyclic constraint criteria for
a mesh network. The proposed SOCP-OPF model is tested
on the IEEE 14-bus, 57-bus, 118-bus, 500-bus, and 2736-bus
networks. The case studies demonstrate that the proposed model
is computationally efficient and scalable for large transmission
networks compared to the Nonlinear Programming (NLP) and
semi-definite programming (SDP) counterparts.

Index Terms—Optimal power flow (OPF), convex relaxation,
second-order conic programming (SOCP), cyclic constraints, and
transmission networks.

NOMENCLATURE

Set of all the branches in the network

Set of all the buses in the network

Set of all the buses with generators in the network

maximum limits of the variables and parameters

Bus voltage angle difference between the bus i € A

and bus j € N/

minimum limits of the variables and parameters

i Imaginary part of the off-diagonal components of the
network admittance matrix (Y")

cy, ¢t & ¢ Cost coefficients for the generator at bus i € N

Sz =b

s -

Gij Real part of the off-diagonal components of the net-
work admittance matrix (V')

I;; Current flow through a branch L;; € L connecting
the bus ¢ € A and bus j € N/

li Magnitude square of the current flow through a branch

L;; € L connecting the bus i € A" and bus j € N/
P¢ Real power demand at the bus i € A/
p’ Real power injection at the bus i € N
Pi; Real power flow through the branch L;; € £ connect-
ing the bus i € A and bus j € N
Q¢ Reactive power demand at the bus i € A/
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Reactive power flow through the branch L;; € L
connecting the bus ¢ € N and bus j € N

Reactive power injection at the bus i € N

S7 Apparent power at the bus i € N,

Sd Apparent power demand at the bus 7 € N

Sij Apparent power flow through the branch L;; € £
connecting the bus ¢ € N and bus j € N

Uu; Magnitude square of the voltage at the bus i € N
Vi Voltage at the bus i € N
Zij Impedance of the branch L;; € £ connecting the bus

i€ N and bus j € N

I. INTRODUCTION

PTIMAL Power Flow (OPF) analysis is one of the
O salient tools in power system planning and operation
for particular objectives (e.g., generation costs, power losses)
by maintaining the bus voltages and branch flows within the
operational limits [1]-[3]. OPF analysis is typically formulated
using AC power flow equations considering multiple opera-
tional constraints, referred to as AC-OPF. Due to the non-
convexity of power flow equations and network constraints, the
AC-OPF problem originally is non-deterministic polynomial
(NP)-hard [4], [5]. Moreover, the non-convexity in AC-OPF
formulation leads to computational intractability, particularly
for large power networks; thus, a globally optimal solution
may not be guaranteed [3], [6]. Conventionally, linear approx-
imations of power flow equations are commonly used to over-
come the computational challenges of the non-convex AC-OPF
formulations. However, approximation of linear formulations
like DC-OPF [7], [8] compromise the solution accuracy. Thus,
the solutions from such formulations may not be optimal.

On the contrary, the convex relaxations of AC-OPF prob-
lems are conditionally exact (hence, AC-feasible) and com-
putationally efficient [9]. Due to the ability to find global
optima, the convex AC-OPF formulations have been exten-
sively used in various power system optimization applications
[10]-[12]. Additionally, the convex envelopes have been a
promising approach for the non-linear terms in OPF analysis
[13]. However, it was noted that the accuracy of the convex
relaxations depends on the tightness of these convex envelopes
[14]. A robust convex restriction to solve robust OPF problems
is introduced in [15]. To this end, sufficient conditions for
the exactness of the relaxations are illustrated in [16], [17].
Among the variants of convex OPF formulations, the second-
order cone programming (SOCP) [18], and semi-definite pro-
gramming (SDP) [19] based models are used commonly for



OPF problems. SOCP-based load flow formulation was first
proposed for radial distribution networks in [18], and a conic
quadratic model was proposed in [20] for meshed networks.
For the SOCP-OPF model, the angle and conic relaxations are
exact in radial networks with no upper bounds on loads.

In the mesh networks, angle relaxation of AC-OPF can be
inexact as the cyclic constraints are not satisfied (i.e., the sum
of voltage angle difference around any loop should be zero)
[21]. The conditions for the angle recovery for the SOCP-
OPF model are discussed in [22], [23]. Three methods are
proposed in [21] for enhancing the original SOCP-OPF model
for mesh networks that ensure the cyclic constraints for the
mesh networks. However, the model suffers computational
challenges for large meshed networks. In [24], instead of
considering the cyclic constraints directly for the meshed net-
works, an alternative SOCP-OPF model using difference-of-
convex programming (DCP) is used, which requires convex-
concave procedure (CCP) based iterations. A SOCP-OPF
model is proposed with relaxation by generating new cutting
planes using SDP relaxation in [25]. Though the SDP cuts
effectively exclude infeasible solutions and enhance the SOCP
relaxation of OPF, they add computational burden on the
solution process. Reference [26] proposes relaxation of the
cyclic constraints, where a higher-order moment relaxation
matrix for each maximal clique is formed to satisfy the cyclic
constraints. In conclusion, the existing SOCP-OPF models face
challenges with the cyclic constraints for tight and scalable
OPF methods for the meshed networks.

On the other hand, SDP formulation retains the angle
information and can find an exact solution of OPF analysis
for meshed networks with certain conditions and limitations
[27], [28]. So, SDP relaxations are theoretically more robust
[25] compared to SOCP relaxations for meshed transmission
networks. However, the matrix size grows as the square of the
number of buses in SDP leads to a high computational need
for large networks [29]. In addition, SDP formulations find
a physically meaningful OPF solution if the line-flow limits
are not binding [30]. However, SOCP relaxation-based OPF
models are shown to be computationally efficient for large
networks [13].

From the above discussion, the SOCP is computationally
efficient but suffers from angle relaxation for meshed power
networks due to the cyclic angle constraints. This motivates
our proposed work to consider cyclic constraints directly in
the SOCP AC-OPF formulation to obtain exact OPF solutions
for mesh networks. With this premise, this paper proposes
a convex envelope to retrieve and include the bus voltage
angle difference across the branches that satisfies the cyclic
constraints in any mesh cycle in the power network. Addi-
tionally, the branches that do not belong to any mesh follow
the radial network approach as [31], [32] to determine the bus
voltage phase difference for a tighter envelope. The bus voltage
phase angle difference is recovered after the optimization if
a wide envelope is considered. In the proposed approach,
the voltage and current phase angles are first relaxed for
converting the non-convex power flow equations into convex
form. Then, a quadratic equation is relaxed as a second-order
conic inequality constraint. Finally, a convex envelope has

been derived for the bus voltage angle difference, adhering
to the cyclic constraints of any mesh cycle in the network.
The main contributions of the proposed model are as follows:

« A convex envelope is proposed to retrieve the bus voltage
angle difference for all the branches in a power network.
The envelope is determined based on the optimal power
flow and the voltage limits. With the proposed OPF
model, the bus voltage angle difference remains within
the envelope and satisfies the mesh cyclic constraints.

e A theoretical framework, including the mathematical
proof is developed for the relaxation of meshed power
networks with the angle cyclic constraints.

« The approach also proposes a graph theory-based model
for extracting the mesh cycles from a power network.
The mesh cycles are determined from a network ex-ante
of the SOCP-OPF analysis.

The paper is organized as follows. Section II discusses the
proposed methodology, including the mathematical modeling
in the relaxation framework and the graph theory-based cycle
extraction method. The impacts of line flow limits on the SDP
and SOCP-OPF models are illustrated in Section III. Section
IV analyzes the exactness and global optimality of the pro-
posed model. Section V discusses the model implementation
and result evaluation, and Section VI concludes the paper.

II. PROPOSED METHODOLOGY

It is well known that power transmission networks are
generally in mesh orientation. Thus for generic model devel-
opment, a small section of a meshed transmission network is
considered as represented in the schematic diagram in Fig. 1.
In this article, L’ is considered as the set of all branches,
and N is the set of all buses of the network. Further, ¢ and
j € N denote the bus index, and L;; € L denotes the branch
connecting the bus ¢ € N and bus j € N.

m

Fig. 1. Schematic diagram of a simple mesh network.

A. Branch Flow Model (BFM) in Power System

Considering the above notations, the power flow relation
through a branch L;; € £ and voltage relations between the
bus i € A and bus j € A can be represented as follows:

Sij = Vil; (1)
Vi=Vi— ==t )

where z;; is the impedance of the branch L;; € £. S;; and I;;
represent the apparent power and current flow from bus i € N
to bus j € N through the branch L;; € L, respectively. The
power balance equation at the bus j € N is as follows:

SI—Si=">" Sik— > (Suy—zlll)+y[Vil* 3
kij—> & i j



where y; = g; + jb; is the half lump shunt admittance
equivalent of the line at the bus 5 € N. Let Y denotes the
admittance matrix of a power network, which has off-diagonal
components as Y;; = G;; + jB;; for each branch L;; € £
of the network. The real and reactive power flow through a
branch L;; € £ between two buses ¢ € A" and j € N can be
represented as:

—Gij V2 + Gi;ViVjcos(0:5) + BijViV;sin(0;;)  (4)

Zj_

Qij = By;Vi? — Bi;ViVj cos(bi) + Gi;ViVysin(0;)  (5)
where 0;; = 0; —0;; 0; and 0; are the bus voltage phase angle
at the bus 7 and j € N respectively. Further, from (4) and (5):

Bi;jPij + Gi;jQj

ViVjsinty; = > 2
G3 + Bij

(6)
Eqn. (6) shows the dependency of the bus voltage angle
difference on the power flow through a branch in the network.

B. Relaxation and Inclusion of Cyclic Constraints

1) Angle Relaxation: In the proposed convex model, to
convexify (1)-(3), the phase angle of the voltage and the
current are relaxed as, I;; = |[;;| and V; = |V;|. New
variables have been introduced as |I;;|* = l;;; [Vi]*? = w;
and |V;|? = u;. The equation in (1) is converted as follows:

iy = SEJ (7)

Considering the magnitude squared in (2), the voltage rela-
tionship between the bus 1 € N' & bus j € A is as follows:
V2 = [Vil* + |23 P = (20595 + 2585)  (8)
With the new variable as |1;;|* = l;;; |V;|*> = u; and |V;|? =
u; for the squared terms and with further simplification in (8):

(TUP + mijQij) + (T?j + l‘%)lij ©)]

Uj = U; —

With the angle relaxation and new-defined variables, the
apparent power balance relationship from (3) at the bus j is:

Do S Y (S —zly) + yiu

k:ij—k > j

(10)

Splitting the (10) in terms of real and reactive power, the power
balance at bus j € N is as follows:

> Pr= > (B

kij— k > g

— ’I“ijlij) + g;u; (11)

Z Qjk — Z (Qij — zijliy) + bju; (12)

kij— k > j

where z;; = 7;; + jxi;; i and x;; are the resistance and
reactance of the line L;; € L respectively. S;; = Pij + jQqj,
y; = gj +jbj, S = PY + jQY, and S¢ = P¢ + Q1.

2) Conic Relaxation: For each of the branches in the net-
work, the OPF model is still non-convex due to the quadratic
equation in (7) as:

S92 Pz 1+ Q2
lij = = lij =4 7Y Q” (13)

With the conic-relaxation, the non-convex solution space is
enclosed within a feasible conic convex space [33]. For the
proposed model, further convexification is done by conic
relaxation in (13) with a conic inequality as follows in (14):

2Qi;

U; —lij 2

u; + lij > (14)

Fig. 2(a) represents the conic space for the OPF solution. The
solution gap is minimum if the OPF solution is on the surface
and the gap increases if it moves away from the surface which
is demonstrated in Fig.3. The difference between solution
points A and B is the solution gap of the SOCP-OPF analysis.
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Fig. 2. (a) Representation of the conic space and (b) the envelope for 0;;,
where U-E indicates upper level and L-E indicates lower level of the envelope.
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Fig. 3. Feasible zone: NLP vs. SOCP. The feasible space for the NLP lies at
the boundary of the Pfj + Q?j = wu;l;; curve, while the feasible space for
the SOCP is the shaded area right of the curve. Solution gap, o = |B — A|.

3) Cyclic Constraints: 1t is stated in the earlier discussion
that for an exact SOCP-OPF analysis, cyclic constraints need
to be satisfied for mesh networks as shown below in (15):

>

(i.j,..@)€C

0ij + 0+ ...+ 0, =0 (15)

where suffixes ¢, j, and x are the buses engaged with a
particular mesh cycle (C) in a power network. In the proposed
OPF model, the bus voltage angle difference is retrieved based
on (6), and the cyclic constraints in (15) are satisfied within the



convex solution space. For this purpose, (6) is relaxed within
an envelope comprising (16) and (17) as boundary conditions.

M or  on
0ij > ———g= — tan —- + —- (16)
ViV jcos - 2 2
Gijgieertan—jf—j (17)
KLZJ cos - 2 2

. BiiPii—GiiQis
where M = ‘/1‘/] Sln(ﬁij) — %C;ZJQJ

sentation of the proposed envelope is illustrated in Fig. 2 (b),
and the derivation of the envelope is shown in Appendix A.

. A visual repre-

C. Proposed SOCP-OPF Architecture

The primary goal of an OPF analysis is to provide a
supply-demand balance based on an objective while satisfying
the imposed network constraints. The proposed OPF model
can be applied with different objective functions f(x), such
as network loss minimization, generation cost minimization,
bus voltage regulation, or a combination of these. We have
considered only convex objective functions for the proposed
SOCP-OPF model in this article. The following objective
functions are analyzed with the proposed OPF model.

a) Network power loss minimization:

min Z rij|Iij|2 = min Z 7'ijlij (18)
Li;eL L;eL
b) Real power generation cost minimization:
min Y [c5(P)* + i PY + cf) (19)

1€EN

where ¢4 ($/MWh?), ¢i($/MWh) and c{($/h) represent
the quadratic cost coefficients of the generator at the bus
i € Ny. For considering the cost function as a convex equation
¢’ > 0. Finally, the proposed SOCP-OPF model with a convex
objective function is as follows:

min Z f(x;) (20)

Subject to: (9), (11), (12) and (14)- (17); along with the
following imposed constraints on the control variables:

P PSP

—g
Q7 Sing <Q;
lij <1y

u; <up <y

2n

where P? and QY are the real and reactive power generation
of the generator at the bus 7 € N;. Voltage limits are defined
as, u; = |V,;|* and w; = [V;|? for the bus i € N. Current

flow limit is defined as l;; = |I;;|%. 1;; is the rated current
flow limit for the branch L;; € L.

D. Graph Theory-Based Mesh Cycle Extraction

The proposed OPF analysis process starts with determining
all the mesh cycles in a network. A graph theory-based
methodology is proposed to find all the mesh cycles. The mesh
cycles are determined from a network ex-ante of the SOCP-
OPF analysis. The bus voltage angle difference between the
buses is determined within the envelope defined by (16) &
(17), which satisfies the cyclic angle constraints in the network
with the imposed (15). An Adjacency matrix (A) is generated
for the network branches to find the cycles. If the bus number
in a network is "NN,", then the size of the Adjacency matrix is
(Np x Np). Graph vertices label the rows and columns of the
matrix. If bus ¢ € N and bus j € A are adjacent connected,
then in position (7,7) of A is 1 otherwise 0. Then with the
interconnected branches, mesh cycles are traced. The shortest
mesh cycle is considered for the model if a branch engages
with multiple mesh cycles. The shortest mesh cycle has the
least number of edges and buses engaged with the mesh. For
example as shown in Fig. 6, the branch L;5 is engaged with
multiple mesh cycles as MCy(1,2,5,1), MCy(1,2,4,5,1)
and MC5(1,2,3,4,5,1). However, the mesh cycle MC; is
considered the shortest for the branch Lq,. If a branch L;; is
already within a previous mesh cycle, then it does not need
to find for another cycle. This approach is continued until all
branches’ mesh cycles are determined. If a network branch
is not engaged with any mesh cycles, then that is listed as
a dangling branch. The algorithm for the cycle extraction is
illustrated in Algorithm 1. Worth to note that, in the meshed
branches, power transmission networks usually have a few
dangling branches forming a radial-type network part. For
those radial type branches, the phase angle difference depends
on the width of the envelopes derived in (16) and (17). If a
tight envelope is considered with a smaller 6;7 (i.e., 10°—20°),
the phase angle difference (6;;) is retrieved during the OPF
execution. However, if a broader range of 0;’; is considered for
the envelope, 0;; is recovered after the optimization process
from (6). Algorithm 1 is also used to determine the radial-
type dangling branches of the network. The execution time
of Algorithm 1 for different test cases is shown in Table VII.
Information regarding the cycles is included as a parameter
in the proposed SOCP-OPF model after completing the mesh
cycle extracting process before the optimization begins.

III. LINE FLOW LIMITS AND BI-DIRECTIONAL FLOW
A. Impact of Line Flow Limits

This section discusses the impact of the line flow limits
on the SDP-OPF models compared to the proposed SOCP-
OPF model. The SDP-OPF models fail to determine a feasible
and physically meaningful solution for a tighter line-flow limit
[28], [30]. To evaluate the impact of line flow limits on SDP,
consider the power flow representation as follows:

P!~ Pl= 3" Re{(Wi — Wij)y;} 22)
(i,5)eEN

QI -Qf= > Im{(Wii — Wi)yj;} (23)
(i,5)EN



Algorithm 1: Network Mesh Cycle Extraction

1 Determine the total bus number /N, and branch
number Ny, in the power network.

2 Get data input for "from bus (f;)" and "to bus (¢)",
{fv,ts} € N and form the Adjacency matrix (A) of
size (Nb X Nb).

3 Define a matrix A for the vertices engaged with mesh
cycles in the network.

4 Define a matrix B for the vertices of the dangling
branches.

s forn=1: Ny do

6 | if branch L;;(n) is not already in matrix "A" or
"B" then
7 Trace for the inter-connected branches from the

branch L;;(n) for any mesh cycles (C) engaged

8 if branch L;;(n) is in 'k" number of mesh
cycles: then

9 Find the total number of buses in each
mesh cycle from Cy.

10 Find the shortest path mesh cycle Cghortest
engaged with the branch L;;(n) from Cj.

1 Find the total bus no. N/7**" in the
shortest mesh cycle Cghortest,

12 for m =1 10 N[7*" do

13 Find all of the bus indexes i, j..x of the

mesh cycle Cghrtest and store them in
the matrix A.

14 end

15 end

16 else if branch L;;(n) is not in a mesh then

17 Store the bus indexes ¢ & j engaged with
the dangling branch L;; in the matrix B.

18 end

19 end

20 end

21 The matrix A returns the cycles, and the matrix B
returns the radial branches of the network.

22 Here, Cihor'es! s the shortest mesh cycle among the
mesh cycles C, for branch L;; with minimum edges.

where W;; = V;V;* and W;; = VLVJ* Vi and Vj are the bus
voltage at the bus ¢ € N and bus j € N respectively. The
inequality constraints are defined as follows:

Py < P! <P]
9 9 <Y
Q<@ <Q;
VZ<W, <V

For a branch L;; € £ connecting the buses ¢ € A" and j € N,

the line constraints can be imposed in a convex form as:
|1Si;] = (Wi = Wiz)yg;| < Sij (24)

Splitting (24) in terms of real and reactive flow, the power
flow relation can be represented as follows:

|Pyj| = |Real [|(Wi — Wiz)yislll < Pij (25)

|Qij] = [Imag[|(Wii — Wij)yi;ll| < Q;; (26)

where W € H" is a semidefinite Hermitian matrix. The SDP-
OPF formulation is tight and the solution is feasible optimal
if W >0 and rank{W} = 1.

Remark 1. If a narrow band line flow limits are imposed on
(24), then the SDP-OPF solver computationally fails or leads
to an incorrect solution.

Proof. From (24) it can be written as, <
Sij = |(ViViF=ViV)ys;| < Sij. 1f i € N and j € N are two
adjacent buses connected with a line L;; € £; V; = V,,20;
Vi = (Vin + AV)Z(0 + Af) and y;; = m, then

(Wi — Wiyl <

(Vi — (Vi + Ve AV)Z = AGYys| <85 (27)

If the SDP OPF is characterized with a voltage range [1 —
&1+ ¢], where ¢ is small, then —2¢ < AV < 2¢. Thus
VAV = 0 or negligible = (V2 — V,2Z — Af)y;;| < Sij.
This means |V,2(1—1/— A0)|y;;|£6:;| < 'S;;. Then in terms
of real power, it can be shown that:

|V73L|yij‘{COS 51']' — COS ((51']' — A@)H S ?ij (28)

For a branch L;; € £ the line impedance is z;; = 7;; + ji;.
Considering that for a transmission network, x;; >> r;; and
Yij = ﬁ 0ij ~ %. So for a transmission network (28)
can be represented as follows:

lyij |V, sin(AG)| < Pj; (29)

If the voltage phase angle difference Af between two adjacent
connected buses is not significantly low, the lower line flow
constraint shown in (29) fails. So, the solution from the SDP
formulation becomes infeasible or inaccurate.

The SOCP-OPF model is relaxed with the conic relaxation
as u;ly; > S7;. The current flow l;; = |I;;|? is proportional
to the apparent power flow .S;;. So, in contrast with the SDP-
OPF models, the SOCP-OPF models do not suffer from the
line flow limit issue. O

1) Example: The impact of the line flow limit on the SOCP-
OPF and SDP-OPF analysis is illustrated with an example
of the IEEE 5-bus network [34], shown in Fig. 4. Line flow

6? A
Bus 1 Bus 3
é’)Bus 4

Fig. 4. Schematic diagram of the IEEE 5-bus network (Ref: MATPOWER).

Bus 2
T~ 400 MW

240 MW

Bus 5

limits are imposed on the two branches L;o and L4, as
P(12) = 400MW and P(y5 = 240MW respectively. It
is observed that the SDP-OPF model became infeasible with
these network constraints. Further, the two-line flow limits
have been increased by a multiplying factor €. For a range of
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Fig. 5. Impact of the branch flow limits on different OPF models.

€P(12) and €P 4 5); the network has been solved with different
OPF models, and the results are illustrated in Fig. 5. With the
increase of the value of e, the line limit increases (i.e., when
€ = 2, the flow limit is increased by 100%). The total load
is 1000 MW in the network, and a feasible solution occurs
when the total generation meets the total demand. Besides
the IEEE 5-bus network, tighter line limits are also imposed
and tested for different branches in the IEEE 57 and 118-bus
networks. Because of the stricter line limits, the SDP-OPF
model computationally fails to provide a feasible solution as
opposed to the SOCP-OPF model.

B. Bi-directional Flow in SOCP-OPF

The SOCP-based OPF models are widely used for radial-
type power networks, and the conditions for the exact solution
for any reverse power flow are discussed in [35]. However, it
is necessary to check the feasibility of the SOCP-OPF model
for possible bi-directional power flow conditions for meshed
network systems. Consider bus j € N in Fig. 1 with connected
two adjacent buses i € N' & k € N. The power flow through
the branches connected with the bus j € N is as follows:

Pij = rijlij — Pji
Pjk = rjrljx — Prj
Pij = mijli; — Py

— P, (30)

ij = ’l"jmljm

These relations can be derived for reactive power flow as well.
From Fig. 1, the real power balance at the bus j € A is as:

Y. Pi— Y (Py—rily) +gu; BD
kij— k i j

If the power flows in at bus j from the bus ¢ and ! and goes
out to the bus k£ and m then from (31):

P9 — P! = Py + Pjm — (Pyj — 1ijli;) — (P — mi5li;)  (32)

If the direction of power flow at bus j is reversed, then:
P P = Pgl + sz - (ij - Tk}]lk)j) - ( mj ijlmj) (33)

From (32) and (33); I = lx; and l;,, = l,,;. If the solution
gap from the proposed SOCP model is minimal for the forward
flow from bus ¢ to bus j, then Sfj = w;ls;. If the power flows

from bus 5 to bus ¢, the solution will also be considered exact
if it satisfies S; & u;l;;, which can be extended as follows:

S5+ + @il — 20 (Piyjrig — Quijag) = usliy  (34)
As the optimal solution for the forward flow is considered with
a minimal solution gap as Sfj = u;l;;, then from (34):

(7";‘23‘ + x?j)lij Qi) =0

For the proposed SOCP-OPF model the voltage relation be-
tween bus 7 € A/ and bus j € A is expressed as follows:

(35)

— 2(Pyrij —

uj = ui = 2(rij Py + 24;Quz) + (3 + 2)li;  (36)
From (35) and (36) for a reverse flow, the solution gap is
also minimal if u; = u;. For the reverse flow in the branch
Ljj, € L, it can also be shown that for minimal gap solution,
u; = wuy. Suppose there is any possible bi-directional flow
through a branch in a mesh network; the OPF solution gap
will be minimal if the bus voltage difference between the two

connected buses with that particular branch is minimal.

IV. EXACTNESS AND THE OPTIMALITY OF THE PROPOSED
SOCP-OPF MODEL

The exactness and the global optimality of the proposed
SOCP-OPF model are discussed in this section. The feasible
set of the OPF problem is convex with the angle relaxation
and conic relaxation of the non-linear equality in (13) within
a conic space. The exactness of an OPF solution from the
proposed model depends on the conic space formed by (14)
and the cyclic angle constraints. The solution gap is defined
as, o = |u;li; — Sfj| in this article.

For the proposed OPF model, we have considered the objec-
tive function f(x) as convex and increasing with the current
flow I;;. Let us consider an optimal solution set from the
proposed OPF model as, ¢ = (Sij, iz, @, S ) Further, assume
there exist another feasible solution set as 1) = (.5, l” U, Sg),
where lw = l” €, S” = Sij — ezij, U = 1y, Si =57,
Sd Sd +e€z;; and Sd Sd for a € > 0. Also, the solution 1/1
satisfies the angle cychc constramts The OPF objective value
f(1)) is smaller than the objective value f(1) as, lij = l;; — €,
has a strict smaller value. This contradicts the optimality of the
solution set 7,/; from the proposed OPF model. The proposed
model will be proved as tight, and the solution is globally
optimal if the cyclic constraints are satisfied and there is
no other solution set lower than 1Z It is sufficient to show
€ = 0 for proving the global optimality. The following remarks
validate the global optimality and the tightness of the model
when cyclic constraints are satisfied in a mesh network.

Remark 2. An optimal solution set is within the conic convex
solution space if the solution satisfies (9), (11), (12), and (14).

Proof. As v is the optimal solution from the proposed OPF
model, it satisfies (9), (11), (12) and (14). The (11) and (12)
are derived in terms of real and reactive power by splitting the
(10). For analyzing (11)-(12) together, the power flow equation
(10) with the apparent power S7, apparent power flow S;;, and



current flow [;; are considered here for the bus ¢ & j € N.
For the solution set 1) at the bus i € N:

Si = Svg Sd Sg S,Ld — €245
Z Sij - Z (Ski = znilki) + yitls — €z

ju—rj k:k— 1
- Z Sijr + (Sij + €zij) — Z (Ski — 2ili)

Jla—r j',g#5’ kik—> i

+ yiﬂi — €Z45

= Z Sij — Z (Ski — 2rili) + yiits

ju—rj k:k—>1

At the bus j € NV:
S; =89 -94=289-5¢

= Y Sik— Y (S — zilis) + st

kij— k ]
= D S > (Suy =zl + iy
kij—k i71il = §il i

— [(Sij + €2i5) — 2i (lij + €)]

> Sie= Y (Sij — zili) + vyt

kij— k ]

For the solution set 1[}, the voltage relation (9) is as follows
considering the branch L;; € L:

iy = s — 2(rigPy + 24;Qi) + (rfy + 23l
ij = i — 2[rij (P + erig) + @ij(Quj + exiy)]
+(rd + 22l +e)
= iy =10 — 2(rig Pij + 255 Qig) + (v} + 23,)li

—e(r; + i)

The solution ) satisfies (9) if e(ri;+x3;) = 0. As for a branch
Lij € L, (r7; +a3;) #0. So ¢ satisfies (9) only if € = 0.
As, 1 is the optimal solution from the proposed OPF model,
it is within the conic space as follows:
iy — 8% >0
= d,(il] +€) = (Sij + zi5)2 >0
S + elt; — zi e — 25”1-]-,21»,»] >0

2
i

:>'U/z ij

Ife=0; uZ ij S > 0. The solution set 1/) is within the conic
space and the solutlon gap e[t — 27— 2S,;2;] is minimal.  [J

Remark 3. When the solution satisfies the cyclic angle con-
straints, the OPF model is tight, along with when € = 0 the
solution from the proposed OPF model is globally optimal.

Proof. ’(/AJ is the optimal solution with a minimal solution gap
satisfying the cyclic angle constraints in the network. So for
a mesh including the branch L;; € L:

By P+ GyriQy
+ ... +sin 7:0

NED)

As the cyclic angle constraint is imposed on the proposed
SOCP-OPF model for the solution v in the mesh cycle

B;;P,
sin~! 24 s+ G 'Qu + sin
VV(G2 +BZ)

_1 BjxPji + G Qi
ViVi(G3), + Bj)

consisting of the branch L;; € L. Then for the solution set of

sin~ 1 ByPy + Gy +s B”"PJ’“+GJ’“C;)]’“ +. +sm*1737 LP“;G (2‘2 =0
VV(G2 + B%) ViVi(G%, + B3,) VyVi(G2, + B2
ésinle P + G Q +€(BJTJ+( ’Tj) 11171 BjkPJkTFG‘ijk +
VV((” + B) ViVi(G2, + B3,)
B, P+ G
+Sm—lM -0
Vy V(G2 +B2 b

(38)

1[) is the optimal solution with a minimal solution gap. So,
comparing (37) and (38) if € ~ 0; the cyclic constraints are
satisfied similarly for Y as 1[) The solution gap for P is also
minimal. The solution gap, defined as o = |u;li; — S| is
measured after the OPF analysis. The solution gap (o) is very
small from the proposed model for the test cases in this article.

Further, for the two solution set w and w it is assumed
f(¥) < f(+). From the definition of the convexity for convex
objective functions:

fla+ (1 —a)p) <af()+ (1 —a)f() (39
where a € [0, 1]. Then:
af(¥) + (1 —a)f() < af() + (1 —a)f ()
= af()+ (1 —a)f(¥) < f(¥) (40)
From (39) and (40):
flad + (1= a)d) < f(¥) (41)

Since f (@/;) is the optimal solution, so for any other solution
within the convex space is f(¢/) > f(¢), which contradicts
with (41). To satisfy both conditions it must be z/; = 77/} thus
e = 0. So for a convex objective function, it is impossible to
have another solution set lower than 1; So the solution from
the proposed OPF model is globally optimal and satisfies the
cyclic angle constraints in the mesh network. [

V. SIMULATION RESULTS AND DISCUSSIONS

The proposed OPF model has been simulated and tested in
the MATLAB® with the MOSEK® solver platform. The pro-
posed OPF model is simulated in multiple standard test cases
(i.e., IEEE 14-bus, 57-bus, 118-bus, and 2736-bus network
systems [34]) and a synthetic 500-bus network [36]. The re-
sults from the proposed SOCP-OPF model are compared with
the NLP-OPF and SDP-OPF solutions from MATPOWER®
[34]. The solution from the SDP-OPF in MATPOWER® for
the 118-bus network is globally optimal and feasible with a
minimum branch resistance of 1 x 104 per unit [27]. Thus,
The same network conditions are applied in the proposed
SOCP-OPF model. It has been observed that the solution from
the SOCP-OPF model matches with the solution from the
SDP-OPF proven to yield global optimal solutions [27] for
the test systems considered.

A. Implementation of the Proposed SOCP-OPF Model

The model implementation starts with the identification of
the mesh cycles in the network using Algorithm 1. Then the
optimization process is executed with the proposed SOCP-
OPF model, where the cyclic constraints for all the meshes are



satisfied. This improves the exactness of the SOCP-OPF model
for mesh networks and provides a globally optimal solution.
As an illustrative example, in Fig. 6, the schematic diagram
of the IEEE 14-bus network shows the mesh cycles with all
of the branches associated with any loop. In the network, bus
no. 8 is not associated with any mesh cycle and is considered
as a radial type dangling branch from the Algorithm 1. Table

14-Bus Network

:\ - - &
@ B s iy
T
12 '
I E 1

l.oomﬁ

13 v

Fig. 6. Single line schematic diagram of the IEEE 14-bus network.

Table 1
COMPARISON OF THE ANGLE DIFFERENCE SUMMATION OVER CYCLES
BETWEEN SOCP WITH CYCLIC CONSTRAINTS (CC) AND WITHOUT
CYCLIC CONSTRAINTS (WCC) ON THE IEEE 14-BUS NETWORK

Loop SOCP-WCC  SOCP-CC  SOCP-WCC  SOCP-CC

No. 100% load 100% load 200% load 200% load
(Degree) (Degree) (Degree) (Degree)

1 2.1347 3.803e-07 4.4935 1.007e-06

2 -2.9525 0 -4.9639 0

3 0.0272 1.493e-07 -0.5300 6.981e-08

4 -0.3881 0 -2.2302 0

5 -0.5042 -9.94e-17 1.7143 1.988e-16

6 0.0999 0 0.8921 0

7 -0.1146 0 -0.394 0

I shows the comparison of the bus voltage phase difference
summation over mesh cycles between SOCP-OPF with cyclic
constraints (CC) and without cyclic constraints (WCC) for dif-
ferent loading conditions. For the WCC, the sum of the angle
difference increases with the higher loading conditions. As a
convex OPF model, the proposed model promises a globally
optimal solution for convex objectives with the imposed cyclic
constraints. The OPF solution from the proposed model for the
IEEE 14-bus network is compared with the benchmark results
from NLP-OPF and SDP-OPF models in MATPOWER. The
real and reactive power generation for the minimum generation
cost objective function is shown in Table II and Table III. It
is observed that the power generation in different buses is the
same as the NLP-OPF model from MATPOWER.

The proposed OPF model is further simulated on more
extensive networks to check the scalability. Table. IV shows

Table 1T
GENERATION COMPARISON IN IEEE 14-BUS NETWORK
(LINEAR COST FUNCTION)

Bus C Pg MW) Qg (MVAR) Pg (MW) Qg (MVAR)
No. 1 (SOCP) (SOCP) (NLP) (NLP)
1 20 128.58 0 128.58 0
2 20 139.99 21.72 140.00 21.70
3 40 0 30.04 0 30.04
6 40 0 10.22 0 10.15
8 40 0 8.05 0 8.05
Table IIT
GENERATION COMPARISON IN IEEE 14-BUS NETWORK
(QUADRATIC COST FUNCTION)
Bus Pg Qg Pg Qg
No. Co C: Co (MW) (MVAR) (MW) (MVAR)
(SOCP) (SOCP) (NLP) (NLP)
1 0.04 20 0 194.40 0 194.43 0
2 025 20 0 36.78 23.70 36.80 23.67
3 0.01 40 0 28.74 25.12 28.75 25.13
6 0.01 40 0 0 12.71 0 12.63
8 0.01 40 0 8.52 8.51 8.50 8.51

the generation comparisons of the proposed SOCP-OPF model
with NLP-OPF and a convex SDP-OPF model. The network
conditions for the proposed SOCP-OPF model are the same as
the MATPOWER models. The percent of generation mismatch
between the proposed SOCP-OPF vs. NLP-OPF and SOCP-
OPF vs. SDP-OPF model is illustrated in Table IV. MAT-
POWER uses an interior point solver. Due to the solver dif-
ference, there is a negligible generation discrepancy between
the OPF models. The maximum real power difference for the
SOCP-OPF vs. NLP-OPF is 0.09% (2736-Bus Network), and
the reactive power difference is 0.84% (118-Bus Network).
For the SOCP-OPF vs. SDP-OPF, the maximum real power
difference is 0.11%, and the reactive power difference is
0.81% (2736-Bus Network). Due to space constraints, only the
voltage profile of the IEEE 118-bus network is demonstrated
in Fig.7. The power loss from the proposed SOCP-OPF model
and the voltage profile mismatch between the proposed OPF
model and the NLP-OPF model is illustrated in Table VI.
The tightness of the OPF model has been analyzed using the
solution gap from (14) represented as o = |u;l;; — Sfj| The
solution gap (o) for all the branches is measured, and the
average value is presented in Table VI. For all of the test
cases, the o and % of voltage deviation (Av) are minimal for
the proposed OPF model compared to the NLP counterpart.
The convergence time of the proposed SOCP-OPF is compared
with the SDP-OPF and NLP-OPF models as shown in Table
VII. The test system is an Intel(R) Core(TM) i7-10510U CPU,
2.30 GHz processor, and 16 GB RAM machine. From the
results shown in Table VII, it is observed that the convergence
time for the proposed SOCP-OPF model is significantly lower
than the NLP-OPF and SDP-OPF models.

B. Impact of the Envelope Width on the SOCP-OPF

This section evaluates one of the major contributions to
deriving a convex envelope based on (16) and (17). The
optimal solution from the proposed model includes an optimal



Table IV
COMPARISON OF DIFFERENT OPF MODELS WITH THE PROPOSED SOCP-OPF MODEL

Test Case Connected Load SOCP NLP SDP SOCP vs NLP SOCP vs SDP

Pd Qd Pg Qg Pg Qg Pg Qg AP AQ AP AQ
(MW) (MVAR) (MW) (MVAR) (MW) (MVAR) MW) (MVAR) g 9 9 9
14-Bus Network 259.00 73.50 268.44 70.44 268.58 69.94 268.58 69.94 0.05% 0.70% 0.05% 0.70%
57-Bus Network 1250.80 336.40 1266.61 273.60 1267.00 272.24 1267.00 272.24 0.03% 0.50% 0.03% 0.50%
118-Bus Network 4242.00 1438.00  4328.47 455.67 4329.05 451.84 4329.05 457.73 0.01% 0.84% 0.01% 0.45%
500-Bus Network 3692.69 984.73 3750.68 608.31 3750.43 607.40 3750.41 607.58 .006% 0.15% .007% 0.12%
2736-Bus Network  18074.5 5837.2 18419.3 3042.4 18437.4 3056.5 18439.7 3067.2 0.09% 0.46% 0.11% 0.81%

Table V

IMPACT OF THE WIDTH OF THE PROPOSED ENVELOPE ON THE 6;; FROM THE PROPOSED SOCP-OPF MODEL

Test C 9{; Branch No. with  Connected Buses  Envelope Lower  Envelope Upper 0;; From the Standard Deviation
est Lase (Degree) Maximum 0;; (From-To) Limit (Degree) Limit (Degree) Model (Degree) Af;; (Degree)
14-Bus Network 20° 3 2-3 8.6447 8.9503 8.6562 0.2969
30° 3 2-3 8.5482 9.6529 8.8552 0.3951
57-Bus Network 20° 8 8-9 5.1142 5.4198 5.1611 0.1330
30° 8 8-9 5.0916 5.7963 5.2189 0.2487
118-Bus Network 20° 68 49-42 18.575 18.781 18.594 0.3507
4 W 30° 68 49-42 18.086 18.791 18.607 0.4451
500-Bus Network 20° 521 247-246 14.580 14.620 14.591 0.2061
~bus etwor 30° 521 247-246 14570 14,621 14.593 03472
20° 74 28-25 12.087 12.292 12.170 0.2601
2736-Bus Network 30° 74 2825 12.076 12.781 12,657 0.3670
Table VII

40 80 100
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Fig. 7. Voltage profile for the IEEE 118-bus network.

Table VI
VOLTAGE COMPARISON BETWEEN SOCP-OPF vs NLP-OPF

Test case Voltage Mismatch ~ Power Loss ~ Avg. Solution
(SOCP vs NLP) (SOCP) Gap (SOCP)
14-Bus Network 0.000 % 3.56 % 5.1e-09
57 Bus Network 0.008 % 1.28 % 9.4e-09
118-Bus Network 0.015 % 1.99 % 2.3e-09
500-Bus Network 0.007 % 1.54 % 1.4e-08
2736-Bus Network 0.025 % 1.87 % 7.03e-09

bus voltage angle difference within the envelope based on the
power flow and satisfies the cyclic angle constraints as (15).
The impact of the envelope width on the 6;; is illustrated
in Fig. 8 for the IEEE 14-bus, IEEE 57-bus, and IEEE 118-
bus networks. In the figure, 6;; is shown for the 9;;? = 20°,
and 30°, where, 07 is defined as 67 max[|9£\,\%|]
for the envelope in (16) and (17). While 9;-;? increases, the
width of the envelope increases, so the deviation of ¢;; from
the optimal point increases, which is illustrated in Table
V. The 6;;(NLP) is the reference value determined from
the NLP-OPF solution in MATPOWER. Then the standard

OPF SOLUTION CONVERGENCE TIME COMPARISON AND EXECUTION TIME
OF ALGORITHM 1

Test Run Time (sec)  OPF Convergence Time (sec)
Case (Algorithm 1) SOCP NLP SDP
14-Bus Network 0.34 0.31 0.34 0.39
57-Bus Network 1.52 0.34 0.56 0.44
118-Bus Network 2.04 0.41 0.64 0.48
500-Bus Network 6.24 0.52 1.05 6.47
2736-Bus Network 15.85 1.47 3.52 3224

deviation of 6;; is illustrated as Af;;, which is defined as

Ab;; = [aif(NLP);f;j(SOCP)P, Ny, is the total number

of branches in the network. From the analysis, the standard
deviations are considerably low even for ¢;7 = 30° for all
the cases, which is an acceptable range for the envelope for
most practical transmission networks. From this, it is observed
that a reasonable width can be considered for the envelope
with the proposed SOCP-OPF model for optimal operation.
The impact of the envelope width on the solution gap (o)
is illustrated in Fig. 9 for the IEEE 118-bus network. It is
observed as when the width of the envelope is smaller, and
the cyclic constraints (CC) are considered, the solution gap
(o) is considerably lower than without considering (WCC).
With the cyclic constraints, the solution gap (o) is less than
1 x 1077, The figure shows the results in per-unit (pu) with a
base of 100 MVA. This concludes that the proposed model’s
cyclic constraints significantly improve the exactness of the
SOCP-OPF model for mesh networks.

C. Analysis of Voltage Difference on the Solution Gap

The effect of the voltage change for bi-directional flow is
analyzed with the change of loading conditions. A load in a
particular bus is changed with a multiplying factor A € [0, 3]
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Fig. 10. Impact of the bus voltage difference on the solution gap (o). Here,
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6;; from the proposed envelope satisfying the cyclic constraints. Here, (a) & (d) are for the IEEE 14-bus network, (b) & (e) are for the IEEE 57-bus

(i.e., when A = 1 the load is increased by 100% and when
A = 2, increased by 200% and so on) for observing the impact
of the bus voltage difference between two adjacent connecting
buses and thus tightness of the proposed model. For the IEEE
14-bus network’s overload condition, the voltage difference
between bus no. 1 and bus no. 2 is low. Hence, the solution
gap (o) is low, and while the cyclic constraints are applied, the
OPF model is tighter, which is shown in Fig. 10 (a)-(b). The
metric o presents the overall tightness, with close to zero being
tighter and thus more accurate. To illustrate the effect of a
more extensive network, bus no. 43 and bus no. 44 in the IEEE
118-bus network are considered. The solution gap is checked
by assessing the voltage difference for both conditions (i.e.,
with and without imposing the cyclic constraints). When there
is a load increase (considered as the multiplying factor A €
[0, 3]). The results show that the model is tight with CC and
WCC when the voltage difference between two adjacent buses
is small. However, with a larger voltage difference between
adjacent buses, the solution gap is comparatively higher when
cyclic constraints are not considered. This impact is observed
on other buses as well. The solution gap from the proposed
SOCP-OPF model is significantly lower, as shown in Fig. 10
(c)-(d). These results show that the proposed architecture is
tight even for bi-directional flow if the cyclic constraints are
applied with the OPF model.

VI. CONCLUSION

This paper represents a novel branch flow-based SOCP-OPF
model for meshed power transmission networks. A convex en-
velope is derived to satisfy cyclic angle constraints in meshed
power networks. The tightness of the proposed OPF model and
the solution gap is improved when the cyclic angle constraints
are imposed. The condition for the proposed SOCP-OPF
model’s tightness for bi-directional power flow through a
branch is also analyzed. The OPF model has been simulated



and evaluated for several IEEE standard meshed transmission
test networks and compared with NLP-OPF and SDP-OPF
models. From the simulation analysis, the proposed model is
tight and provides a globally optimal solution. Furthermore,
the computational efficiency and solution time for convergence
of the proposed SOCP-OPF is improved by up to 58% when
compared to the NLP-OPF and SDP-OPF models for large
networks. In future work, the proposed OPF model will be
extended for the mixed-integer version of OPF analysis and
contingency analysis for unbalanced power networks.

APPENDIX A
A. Derivation of the Envelope for the 0;;:

The following convex envelope in (42)-(43) encloses the
sine function in a polyhedral set as follows [33]:

sin;; < cos (%)(9” ?]) + sin (%) (42)
i 0 i
sin6;; > cos (= )(9” + 23 ) —sin (7J) (43)

where 077 = mazx[|0y], |%|]

Power transmission system networks are commonly in mesh
orientation. For transmission networks, as the bus voltage
(p-u) maximum and minimum limits are near unity and
usually, the voltage (p.u) maximum and minimum limit of
V,V] = [0.9,1.1]. If, V;V;sin6;; = M, then within the
voltage limit, the sin 0;; functlon is relaxed as, sin 0;; > M

ViV,
and sin 0, < v . Then from (42):

(44)

:>9i‘§7m+tan%—; 45)
J Kﬁz] cos 01217‘ 2 2

(szng G’L]Q?])

where M = V;V;sin(0;;) = (@ 15%)

B. Convexity of the Proposed Envelope
The envelope in (44) and (45) are represented as follows:
[1(P, Q) = a(Bij Pij — Gi;Qi5) + B
f2(P, Q) = a(Byj Pij — Gi;Qi5) + B2

m m

o™ o™
55+ == and B =

where a = P — f1 = —tan
v, V cos —-

tan 92 — 0 L f(P, Q) can be split into two first-order functions

as, f(P, Q) = f(P) + f(Q). From the definition, a first-

order equation can be considered as convex. In this article

the envelope formed by f(P, Q) is used for the relaxation of

0;; from (6) as, f1(P,Q) < 0;; < f2(P,Q).
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