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AbstractÐFor meshed power networks, even though the conic
relaxation is shown to be exact, the relaxation of angles may
not be exact using the existing Second-Order Cone Program-
ming (SOCP) based optimal power flow (OPF) models. Power
transmission networks generally have mesh orientation, and the
cyclic angle constraints are not satisfied with the existing SOCP-
OPF models. This work proposes a SOCP-OPF model for power
transmission networks that satisfies the cyclic angle constraints
for any mesh in the network. The novelty of the proposed OPF
model is that it defines a convex envelope to represent the relative
bus voltage angles that satisfy the cyclic constraint criteria for
a mesh network. The proposed SOCP-OPF model is tested
on the IEEE 14-bus, 57-bus, 118-bus, 500-bus, and 2736-bus
networks. The case studies demonstrate that the proposed model
is computationally efficient and scalable for large transmission
networks compared to the Nonlinear Programming (NLP) and
semi-definite programming (SDP) counterparts.

Index TermsÐOptimal power flow (OPF), convex relaxation,
second-order conic programming (SOCP), cyclic constraints, and
transmission networks.

NOMENCLATURE

L Set of all the branches in the network

N Set of all the buses in the network

Ng Set of all the buses with generators in the network

() maximum limits of the variables and parameters

θij Bus voltage angle difference between the bus i ∈ N
and bus j ∈ N

() minimum limits of the variables and parameters

Bij Imaginary part of the off-diagonal components of the

network admittance matrix (Y )

ci2, c
i
1 & ci0 Cost coefficients for the generator at bus i ∈ Ng

Gij Real part of the off-diagonal components of the net-

work admittance matrix (Y )

Iij Current flow through a branch Lij ∈ L connecting

the bus i ∈ N and bus j ∈ N
lij Magnitude square of the current flow through a branch

Lij ∈ L connecting the bus i ∈ N and bus j ∈ N
P d
i Real power demand at the bus i ∈ N
P g
i Real power injection at the bus i ∈ Ng

Pij Real power flow through the branch Lij ∈ L connect-

ing the bus i ∈ N and bus j ∈ N
Qd

i Reactive power demand at the bus i ∈ N
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Qij Reactive power flow through the branch Lij ∈ L
connecting the bus i ∈ N and bus j ∈ N

Qg
i Reactive power injection at the bus i ∈ Ng

Sg
i Apparent power at the bus i ∈ Ng

Sd
i Apparent power demand at the bus i ∈ N
Sij Apparent power flow through the branch Lij ∈ L

connecting the bus i ∈ N and bus j ∈ N
ui Magnitude square of the voltage at the bus i ∈ N
Vi Voltage at the bus i ∈ N
zij Impedance of the branch Lij ∈ L connecting the bus

i ∈ N and bus j ∈ N

I. INTRODUCTION

O
PTIMAL Power Flow (OPF) analysis is one of the

salient tools in power system planning and operation

for particular objectives (e.g., generation costs, power losses)

by maintaining the bus voltages and branch flows within the

operational limits [1]±[3]. OPF analysis is typically formulated

using AC power flow equations considering multiple opera-

tional constraints, referred to as AC-OPF. Due to the non-

convexity of power flow equations and network constraints, the

AC-OPF problem originally is non-deterministic polynomial

(NP)-hard [4], [5]. Moreover, the non-convexity in AC-OPF

formulation leads to computational intractability, particularly

for large power networks; thus, a globally optimal solution

may not be guaranteed [3], [6]. Conventionally, linear approx-

imations of power flow equations are commonly used to over-

come the computational challenges of the non-convex AC-OPF

formulations. However, approximation of linear formulations

like DC-OPF [7], [8] compromise the solution accuracy. Thus,

the solutions from such formulations may not be optimal.

On the contrary, the convex relaxations of AC-OPF prob-

lems are conditionally exact (hence, AC-feasible) and com-

putationally efficient [9]. Due to the ability to find global

optima, the convex AC-OPF formulations have been exten-

sively used in various power system optimization applications

[10]±[12]. Additionally, the convex envelopes have been a

promising approach for the non-linear terms in OPF analysis

[13]. However, it was noted that the accuracy of the convex

relaxations depends on the tightness of these convex envelopes

[14]. A robust convex restriction to solve robust OPF problems

is introduced in [15]. To this end, sufficient conditions for

the exactness of the relaxations are illustrated in [16], [17].

Among the variants of convex OPF formulations, the second-

order cone programming (SOCP) [18], and semi-definite pro-

gramming (SDP) [19] based models are used commonly for
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where yj = gj + jbj is the half lump shunt admittance

equivalent of the line at the bus j ∈ N . Let Y denotes the

admittance matrix of a power network, which has off-diagonal

components as Yij = Gij + jBij for each branch Lij ∈ L
of the network. The real and reactive power flow through a

branch Lij ∈ L between two buses i ∈ N and j ∈ N can be

represented as:

Pij = −GijV
2
i +GijViVj cos(θij) +BijViVj sin(θij) (4)

Qij = BijV
2
i −BijViVj cos(θij) +GijViVj sin(θij) (5)

where θij = θi−θj ; θi and θj are the bus voltage phase angle

at the bus i and j ∈ N respectively. Further, from (4) and (5):

ViVj sin θij =
BijPij +GijQij

G2
ij +B2

ij

(6)

Eqn. (6) shows the dependency of the bus voltage angle

difference on the power flow through a branch in the network.

B. Relaxation and Inclusion of Cyclic Constraints

1) Angle Relaxation: In the proposed convex model, to

convexify (1)-(3), the phase angle of the voltage and the

current are relaxed as, Iij ⇒ |Iij | and Vi ⇒ |Vi|. New

variables have been introduced as |Iij |
2 = lij ; |Vi|

2 = ui
and |Vj |

2 = uj . The equation in (1) is converted as follows:

uilij = S2
ij (7)

Considering the magnitude squared in (2), the voltage rela-

tionship between the bus i ∈ N & bus j ∈ N is as follows:

|Vj |
2 = |Vi|

2 + |zij |
2|Iij |

2 − (zijS
∗
ij + z∗ijSij) (8)

With the new variable as |Iij |
2 = lij ; |Vi|

2 = ui and |Vj |
2 =

uj for the squared terms and with further simplification in (8):

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (9)

With the angle relaxation and new-defined variables, the

apparent power balance relationship from (3) at the bus j is:

sgj − sdj =
∑

k:j−→ k

Sjk −
∑

i:i−→ j

(Sij − zij lij) + yjuj (10)

Splitting the (10) in terms of real and reactive power, the power

balance at bus j ∈ N is as follows:

P g
j − P d

j =
∑

k:j−→ k

Pjk −
∑

i:i−→ j

(Pij − rij lij) + gjuj (11)

Qg
j −Qd

j =
∑

k:j−→ k

Qjk −
∑

i:i−→ j

(Qij − xij lij) + bjuj (12)

where zij = rij + jxij ; rij and xij are the resistance and

reactance of the line Lij ∈ L respectively. Sij = Pij + jQij ,

yj = gj + jbj , Sg
j = P g

j + jQg
j , and Sd

j = P d
j + jQd

j .

2) Conic Relaxation: For each of the branches in the net-

work, the OPF model is still non-convex due to the quadratic

equation in (7) as:

lij =
S2
ij

ui
⇒ lij =

P 2
ij +Q2

ij

ui
(13)

With the conic-relaxation, the non-convex solution space is

enclosed within a feasible conic convex space [33]. For the

proposed model, further convexification is done by conic

relaxation in (13) with a conic inequality as follows in (14):

ui + lij ≥

∥

∥

∥

∥

∥

∥

2Pij

2Qij

ui − lij

∥

∥

∥

∥

∥

∥

2

(14)

Fig. 2(a) represents the conic space for the OPF solution. The

solution gap is minimum if the OPF solution is on the surface

and the gap increases if it moves away from the surface which

is demonstrated in Fig.3. The difference between solution

points A and B is the solution gap of the SOCP-OPF analysis.

Fig. 2. (a) Representation of the conic space and (b) the envelope for θij ,
where U-E indicates upper level and L-E indicates lower level of the envelope.

Fig. 3. Feasible zone: NLP vs. SOCP. The feasible space for the NLP lies at
the boundary of the P 2

ij + Q2

ij = uilij curve, while the feasible space for

the SOCP is the shaded area right of the curve. Solution gap, σ = |B −A|.

3) Cyclic Constraints: It is stated in the earlier discussion

that for an exact SOCP-OPF analysis, cyclic constraints need

to be satisfied for mesh networks as shown below in (15):
∑

(i,j,...x)∈C

θij + θjk + ...+ θxi = 0 (15)

where suffixes i, j, and x are the buses engaged with a

particular mesh cycle (C) in a power network. In the proposed

OPF model, the bus voltage angle difference is retrieved based

on (6), and the cyclic constraints in (15) are satisfied within the
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convex solution space. For this purpose, (6) is relaxed within

an envelope comprising (16) and (17) as boundary conditions.

θij ≥
M

V iV j cos
θm
ij

2

− tan
θmij
2

+
θmij
2

(16)

θij ≤
M

V iV j cos
θm
ij

2

+ tan
θmij
2

−
θmij
2

(17)

where M = ViVj sin(θij) =
BijPij−GijQij

G2

ij
+B2

ij

. A visual repre-

sentation of the proposed envelope is illustrated in Fig. 2 (b),

and the derivation of the envelope is shown in Appendix A.

C. Proposed SOCP-OPF Architecture

The primary goal of an OPF analysis is to provide a

supply-demand balance based on an objective while satisfying

the imposed network constraints. The proposed OPF model

can be applied with different objective functions f(x), such

as network loss minimization, generation cost minimization,

bus voltage regulation, or a combination of these. We have

considered only convex objective functions for the proposed

SOCP-OPF model in this article. The following objective

functions are analyzed with the proposed OPF model.

a) Network power loss minimization:

min
∑

Lij∈L

rij |Iij |
2 ⇒ min

∑

Lij∈L

rij lij (18)

b) Real power generation cost minimization:

min
∑

i∈Ng

[ci2(P
g
i )

2 + ci1P
g
i + ci0] (19)

where ci2($/MWh2), ci1($/MWh) and ci0($/h) represent

the quadratic cost coefficients of the generator at the bus

i ∈ Ng . For considering the cost function as a convex equation

ci ≥ 0. Finally, the proposed SOCP-OPF model with a convex

objective function is as follows:

min
∑

f(xi) (20)

Subject to: (9), (11), (12) and (14)- (17); along with the

following imposed constraints on the control variables:



















P g
i ≤ P g

i ≤ P
g

i

Qg

i
≤ Qg

i ≤ Q
g

i

lij ≤ lij

ui ≤ ui ≤ ui

(21)

where P g
i and Qg

i are the real and reactive power generation

of the generator at the bus i ∈ Ng . Voltage limits are defined

as, ui = |V i|
2 and ui = |V i|

2 for the bus i ∈ N . Current

flow limit is defined as lij = |Iij |
2. Iij is the rated current

flow limit for the branch Lij ∈ L.

D. Graph Theory-Based Mesh Cycle Extraction

The proposed OPF analysis process starts with determining

all the mesh cycles in a network. A graph theory-based

methodology is proposed to find all the mesh cycles. The mesh

cycles are determined from a network ex-ante of the SOCP-

OPF analysis. The bus voltage angle difference between the

buses is determined within the envelope defined by (16) &

(17), which satisfies the cyclic angle constraints in the network

with the imposed (15). An Adjacency matrix (A) is generated

for the network branches to find the cycles. If the bus number

in a network is "Nb", then the size of the Adjacency matrix is

(Nb ×Nb). Graph vertices label the rows and columns of the

matrix. If bus i ∈ N and bus j ∈ N are adjacent connected,

then in position (i, j) of A is 1 otherwise 0. Then with the

interconnected branches, mesh cycles are traced. The shortest

mesh cycle is considered for the model if a branch engages

with multiple mesh cycles. The shortest mesh cycle has the

least number of edges and buses engaged with the mesh. For

example as shown in Fig. 6, the branch L12 is engaged with

multiple mesh cycles as MC1(1, 2, 5, 1), MC2(1, 2, 4, 5, 1)
and MC3(1, 2, 3, 4, 5, 1). However, the mesh cycle MC1 is

considered the shortest for the branch L12. If a branch Lij is

already within a previous mesh cycle, then it does not need

to find for another cycle. This approach is continued until all

branches’ mesh cycles are determined. If a network branch

is not engaged with any mesh cycles, then that is listed as

a dangling branch. The algorithm for the cycle extraction is

illustrated in Algorithm 1. Worth to note that, in the meshed

branches, power transmission networks usually have a few

dangling branches forming a radial-type network part. For

those radial type branches, the phase angle difference depends

on the width of the envelopes derived in (16) and (17). If a

tight envelope is considered with a smaller θmij (i.e., 10o−20o),

the phase angle difference (θij) is retrieved during the OPF

execution. However, if a broader range of θmij is considered for

the envelope, θij is recovered after the optimization process

from (6). Algorithm 1 is also used to determine the radial-

type dangling branches of the network. The execution time

of Algorithm 1 for different test cases is shown in Table VII.

Information regarding the cycles is included as a parameter

in the proposed SOCP-OPF model after completing the mesh

cycle extracting process before the optimization begins.

III. LINE FLOW LIMITS AND BI-DIRECTIONAL FLOW

A. Impact of Line Flow Limits

This section discusses the impact of the line flow limits

on the SDP-OPF models compared to the proposed SOCP-

OPF model. The SDP-OPF models fail to determine a feasible

and physically meaningful solution for a tighter line-flow limit

[28], [30]. To evaluate the impact of line flow limits on SDP,

consider the power flow representation as follows:

P g
i − P d

i =
∑

(i,j)∈N

Re{(Wii −Wij)y
∗
ij} (22)

Qg
i −Qd

i =
∑

(i,j)∈N

Im{(Wii −Wij)y
∗
ij} (23)
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Fig. 5. Impact of the branch flow limits on different OPF models.

ϵP (1,2) and ϵP (4,5); the network has been solved with different

OPF models, and the results are illustrated in Fig. 5. With the

increase of the value of ϵ, the line limit increases (i.e., when

ϵ = 2, the flow limit is increased by 100%). The total load

is 1000 MW in the network, and a feasible solution occurs

when the total generation meets the total demand. Besides

the IEEE 5-bus network, tighter line limits are also imposed

and tested for different branches in the IEEE 57 and 118-bus

networks. Because of the stricter line limits, the SDP-OPF

model computationally fails to provide a feasible solution as

opposed to the SOCP-OPF model.

B. Bi-directional Flow in SOCP-OPF

The SOCP-based OPF models are widely used for radial-

type power networks, and the conditions for the exact solution

for any reverse power flow are discussed in [35]. However, it

is necessary to check the feasibility of the SOCP-OPF model

for possible bi-directional power flow conditions for meshed

network systems. Consider bus j ∈ N in Fig. 1 with connected

two adjacent buses i ∈ N & k ∈ N . The power flow through

the branches connected with the bus j ∈ N is as follows:

Pij = rij lij − Pji

Pjk = rjkljk − Pkj

Plj = rlj llj − Pjl

Pjm = rjmljm − Pmj (30)

These relations can be derived for reactive power flow as well.

From Fig. 1, the real power balance at the bus j ∈ N is as:

P g
j − P d

j =
∑

k:j−→ k

Pjk −
∑

i:i−→ j

(Pij − rij lij) + gjuj (31)

If the power flows in at bus j from the bus i and l and goes
out to the bus k and m then from (31):

P
g
j − P

d
j = Pjk + Pjm − (Pij − rij lij)− (Plj − rlj llj) (32)

If the direction of power flow at bus j is reversed, then:

P
g
j − P

d
j = Pjl + Pji − (Pkj − rkj lkj)− (Pmj − rmj lmj) (33)

From (32) and (33); ljk = lkj and ljm = lmj . If the solution

gap from the proposed SOCP model is minimal for the forward

flow from bus i to bus j, then S2
ij
∼= uilij . If the power flows

from bus j to bus i, the solution will also be considered exact

if it satisfies S2
ji
∼= uj lij , which can be extended as follows:

S2
ij + (r2ij + x2ij)l

2
ij − 2lij(Pijrij −Qijxij) ∼= uj lij (34)

As the optimal solution for the forward flow is considered with

a minimal solution gap as S2
ij
∼= uilij , then from (34):

(r2ij + x2ij)lij − 2(Pijrij −Qijxij) ∼= 0 (35)

For the proposed SOCP-OPF model the voltage relation be-

tween bus i ∈ N and bus j ∈ N is expressed as follows:

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (36)

From (35) and (36) for a reverse flow, the solution gap is

also minimal if ui ∼= uj . For the reverse flow in the branch

Ljk ∈ L, it can also be shown that for minimal gap solution,

uj ∼= uk. Suppose there is any possible bi-directional flow

through a branch in a mesh network; the OPF solution gap

will be minimal if the bus voltage difference between the two

connected buses with that particular branch is minimal.

IV. EXACTNESS AND THE OPTIMALITY OF THE PROPOSED

SOCP-OPF MODEL

The exactness and the global optimality of the proposed

SOCP-OPF model are discussed in this section. The feasible

set of the OPF problem is convex with the angle relaxation

and conic relaxation of the non-linear equality in (13) within

a conic space. The exactness of an OPF solution from the

proposed model depends on the conic space formed by (14)

and the cyclic angle constraints. The solution gap is defined

as, σ = |uilij − S2
ij | in this article.

For the proposed OPF model, we have considered the objec-

tive function f(x) as convex and increasing with the current

flow Iij . Let us consider an optimal solution set from the

proposed OPF model as, ψ̃ = (S̃ij , l̃ij , ũ, S̃g). Further, assume

there exist another feasible solution set as ψ̂ = (Ŝij , l̂ij , û, Ŝg),
where l̂ij = l̃ij − ϵ, Ŝij = S̃ij − ϵzij , ûi = ũi, Ŝ

g
i = S̃g

i ,

Ŝd
i = S̃d

i +ϵzij and Ŝd
j = S̃d

j for a ϵ ≥ 0. Also, the solution ψ̂
satisfies the angle cyclic constraints. The OPF objective value

f(ψ̂) is smaller than the objective value f(ψ̃) as, l̂ij = l̃ij− ϵ,
has a strict smaller value. This contradicts the optimality of the

solution set ψ̃ from the proposed OPF model. The proposed

model will be proved as tight, and the solution is globally

optimal if the cyclic constraints are satisfied and there is

no other solution set lower than ψ̃. It is sufficient to show

ϵ = 0 for proving the global optimality. The following remarks

validate the global optimality and the tightness of the model

when cyclic constraints are satisfied in a mesh network.

Remark 2. An optimal solution set is within the conic convex

solution space if the solution satisfies (9), (11), (12), and (14).

Proof. As ψ̃ is the optimal solution from the proposed OPF

model, it satisfies (9), (11), (12) and (14). The (11) and (12)

are derived in terms of real and reactive power by splitting the

(10). For analyzing (11)-(12) together, the power flow equation

(10) with the apparent power Sg
i , apparent power flow Sij , and
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current flow lij are considered here for the bus i & j ∈ N .

For the solution set ψ̂ at the bus i ∈ N :

Ŝi = Ŝg
i − Ŝd

i = S̃g
i − S̃d

i − ϵzij

=
∑

j:i−→ j

S̃ij −
∑

k:k−→ i

(S̃ki − zki l̃ki) + yiũi − ϵzij

=
∑

j′:i−→ j′,j ̸=j′

Ŝij′ + (Ŝij + ϵzij)−
∑

k:k−→ i

(Ŝki − zki l̂ki)

+ yiûi − ϵzij

=
∑

j:i−→ j

Ŝij −
∑

k:k−→ i

(Ŝki − zki l̂ki) + yiûi

At the bus j ∈ N :

Ŝj = Ŝg
j − Ŝd

j = S̃g
j − S̃d

j

=
∑

k:j−→ k

S̃jk −
∑

i:i−→ j

(S̃ij − zij l̃ij) + yj ũj

=
∑

k:j−→ k

Ŝjk −
∑

i′:i′−→ j,i′ ̸=i

( ˆSi′j − zi′j ˆli′j) + yj ûj

− [(Ŝij + ϵzij)− zij(l̂ij + ϵ)]

=
∑

k:j−→ k

Ŝjk −
∑

i:i−→ j

(Ŝij − zij l̂ij) + yj ûj

For the solution set ψ̃, the voltage relation (9) is as follows

considering the branch Lij ∈ L:

ũj = ũi − 2(rijP̃ij + xijQ̃ij) + (r2ij + x2ij)l̃ij

⇒ ûj = ûi − 2[rij(P̂ij + ϵrij) + xij(Q̂ij + ϵxij)]

+ (r2ij + x2ij)(l̂ij + ϵ)

⇒ ûj = ûi − 2(rijP̂ij + xijQ̂ij) + (r2ij + x2ij)l̂ij

− ϵ(r2ij + x2ij)

The solution ψ̂ satisfies (9) if ϵ(r2ij+x
2
ij) ≈ 0. As for a branch

Lij ∈ L, (r2ij + x2ij) ̸= 0. So ψ̂ satisfies (9) only if ϵ = 0.

As, ψ̃ is the optimal solution from the proposed OPF model,

it is within the conic space as follows:

ũi l̃ij − S̃2
ij ≥ 0

⇒ ûi(l̂ij + ϵ)− (Ŝij + zijϵ)
2 ≥ 0

⇒ ûi l̂ij − Ŝ2
ij + ϵ[ûi − z2ijϵ− 2Ŝijzij ] ≥ 0

If ϵ = 0; ûi l̂ij−Ŝ2
ij ≥ 0. The solution set ψ̂ is within the conic

space and the solution gap ϵ[ûi−z
2
ijϵ−2Ŝijzij ] is minimal.

Remark 3. When the solution satisfies the cyclic angle con-

straints, the OPF model is tight, along with when ϵ = 0 the

solution from the proposed OPF model is globally optimal.

Proof. ψ̂ is the optimal solution with a minimal solution gap

satisfying the cyclic angle constraints in the network. So for

a mesh including the branch Lij ∈ L:

sin−1 BijP̂ij +GijQ̂ij

V̂iV̂j(G2
ij +B2

ij)
+ sin−1 BjkPjk +GjkQjk

VjVk(G2
jk +B2

jk)
+ ...+ sin−1

Bj
′
iPj

′
i +Gj

′
iQj

′
i

Vj′Vi(G
2
j
′
i
+B2

j
′
i
)

= 0

(37)

As the cyclic angle constraint is imposed on the proposed

SOCP-OPF model for the solution ψ̃ in the mesh cycle

consisting of the branch Lij ∈ L. Then for the solution set of

ψ̃:

sin−1 BijP̃ij +GijQ̃ij

ṼiṼj(G2
ij +B2

ij)
+ sin−1 BjkPjk +GjkQjk

VjVk(G2
jk +B2

jk)
+ ...+ sin−1

Bj
′
iPj

′
i +Gj

′
iQj

′
i

Vj′Vi(G
2
j
′
i
+B2

j
′
i
)

= 0

⇒ sin−1 BijP̂ij +GijQ̂ij + ϵ(Bijrij +Gijxij)

V̂iV̂j(G2
ij +B2

ij)
+ sin−1 BjkPjk +GjkQjk

VjVk(G2
jk +B2

jk)
+ ......

+ sin−1
Bj

′
iPj

′
i +Gj

′
iQj

′
i

Vj′Vi(G
2
j
′
i
+B2

j
′
i
)

= 0

(38)

ψ̂ is the optimal solution with a minimal solution gap. So,

comparing (37) and (38) if ϵ ≈ 0; the cyclic constraints are

satisfied similarly for ψ̃ as ψ̂. The solution gap for ψ̃ is also

minimal. The solution gap, defined as σ = |uilij − S2
ij | is

measured after the OPF analysis. The solution gap (σ) is very

small from the proposed model for the test cases in this article.

Further, for the two solution set ψ̃ and ψ̂, it is assumed

f(ψ̂) ≤ f(ψ̃). From the definition of the convexity for convex

objective functions:

f(aψ̂ + (1− a)ψ̃) ≤ af(ψ̂) + (1− a)f(ψ̃) (39)

where a ∈ [0, 1]. Then:

af(ψ̂) + (1− a)f(ψ̃) ≤ af(ψ̃) + (1− a)f(ψ̃)

⇒ af(ψ̂) + (1− a)f(ψ̃) ≤ f(ψ̃) (40)

From (39) and (40):

f(aψ̂ + (1− a)ψ̃) ≤ f(ψ̃) (41)

Since f(ψ̃) is the optimal solution, so for any other solution

within the convex space is f(ψ) > f(ψ̃), which contradicts

with (41). To satisfy both conditions it must be ψ̃ = ψ̂, thus

ϵ = 0. So for a convex objective function, it is impossible to

have another solution set lower than ψ̃. So the solution from

the proposed OPF model is globally optimal and satisfies the

cyclic angle constraints in the mesh network.

V. SIMULATION RESULTS AND DISCUSSIONS

The proposed OPF model has been simulated and tested in

the MATLAB® with the MOSEK® solver platform. The pro-

posed OPF model is simulated in multiple standard test cases

(i.e., IEEE 14-bus, 57-bus, 118-bus, and 2736-bus network

systems [34]) and a synthetic 500-bus network [36]. The re-

sults from the proposed SOCP-OPF model are compared with

the NLP-OPF and SDP-OPF solutions from MATPOWER®

[34]. The solution from the SDP-OPF in MATPOWER® for

the 118-bus network is globally optimal and feasible with a

minimum branch resistance of 1 × 10−4 per unit [27]. Thus,

The same network conditions are applied in the proposed

SOCP-OPF model. It has been observed that the solution from

the SOCP-OPF model matches with the solution from the

SDP-OPF proven to yield global optimal solutions [27] for

the test systems considered.

A. Implementation of the Proposed SOCP-OPF Model

The model implementation starts with the identification of

the mesh cycles in the network using Algorithm 1. Then the

optimization process is executed with the proposed SOCP-

OPF model, where the cyclic constraints for all the meshes are
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Table IV
COMPARISON OF DIFFERENT OPF MODELS WITH THE PROPOSED SOCP-OPF MODEL

Test Case
Connected Load SOCP NLP SDP SOCP vs NLP SOCP vs SDP
Pd

(MW)
Qd

(MVAR)
Pg

(MW)
Qg

(MVAR)
Pg

(MW)
Qg

(MVAR)
Pg

(MW)
Qg

(MVAR)
∆Pg ∆Qg ∆Pg ∆Qg

14-Bus Network 259.00 73.50 268.44 70.44 268.58 69.94 268.58 69.94 0.05% 0.70% 0.05% 0.70%

57-Bus Network 1250.80 336.40 1266.61 273.60 1267.00 272.24 1267.00 272.24 0.03% 0.50% 0.03% 0.50%

118-Bus Network 4242.00 1438.00 4328.47 455.67 4329.05 451.84 4329.05 457.73 0.01% 0.84% 0.01% 0.45%

500-Bus Network 3692.69 984.73 3750.68 608.31 3750.43 607.40 3750.41 607.58 .006% 0.15% .007% 0.12%

2736-Bus Network 18074.5 5837.2 18419.3 3042.4 18437.4 3056.5 18439.7 3067.2 0.09% 0.46% 0.11% 0.81%

Table V
IMPACT OF THE WIDTH OF THE PROPOSED ENVELOPE ON THE θij FROM THE PROPOSED SOCP-OPF MODEL

Test Case
θmij

(Degree)

Branch No. with
Maximum θij

Connected Buses
(From-To)

Envelope Lower
Limit (Degree)

Envelope Upper
Limit (Degree)

θij From the
Model (Degree)

Standard Deviation
∆θij (Degree)

14-Bus Network
20◦ 3 2-3 8.6447 8.9503 8.6562 0.2969
30◦ 3 2-3 8.5482 9.6529 8.8552 0.3951

57-Bus Network
20◦ 8 8-9 5.1142 5.4198 5.1611 0.1330
30◦ 8 8-9 5.0916 5.7963 5.2189 0.2487

118-Bus Network
20◦ 68 49-42 18.575 18.781 18.594 0.3507
30◦ 68 49-42 18.086 18.791 18.607 0.4451

500-Bus Network
20◦ 521 247-246 14.580 14.620 14.591 0.2061
30◦ 521 247-246 14.570 14.621 14.593 0.3472

2736-Bus Network
20◦ 74 28-25 12.087 12.292 12.170 0.2601
30◦ 74 28-25 12.076 12.781 12.657 0.3670

Fig. 7. Voltage profile for the IEEE 118-bus network.

Table VI
VOLTAGE COMPARISON BETWEEN SOCP-OPF VS NLP-OPF

Test case
Voltage Mismatch
(SOCP vs NLP)

Power Loss
(SOCP)

Avg. Solution
Gap (SOCP)

14-Bus Network 0.000 % 3.56 % 5.1e-09

57 Bus Network 0.008 % 1.28 % 9.4e-09

118-Bus Network 0.015 % 1.99 % 2.3e-09

500-Bus Network 0.007 % 1.54 % 1.4e-08

2736-Bus Network 0.025 % 1.87 % 7.03e-09

bus voltage angle difference within the envelope based on the

power flow and satisfies the cyclic angle constraints as (15).

The impact of the envelope width on the θij is illustrated

in Fig. 8 for the IEEE 14-bus, IEEE 57-bus, and IEEE 118-

bus networks. In the figure, θij is shown for the θmij = 20◦,

and 30◦, where, θmij is defined as θmij = max[|θij |, |θij |]
for the envelope in (16) and (17). While θmij increases, the

width of the envelope increases, so the deviation of θij from

the optimal point increases, which is illustrated in Table

V. The θij(NLP ) is the reference value determined from

the NLP-OPF solution in MATPOWER. Then the standard

Table VII
OPF SOLUTION CONVERGENCE TIME COMPARISON AND EXECUTION TIME

OF ALGORITHM 1

Test
Case

Run Time (sec)
(Algorithm 1)

OPF Convergence Time (sec)
SOCP NLP SDP

14-Bus Network 0.34 0.31 0.34 0.39

57-Bus Network 1.52 0.34 0.56 0.44

118-Bus Network 2.04 0.41 0.64 0.48

500-Bus Network 6.24 0.52 1.05 6.47

2736-Bus Network 15.85 1.47 3.52 322.4

deviation of θij is illustrated as ∆θij , which is defined as

∆θij =
√

[θij(NLP )−θij(SOCP )]2

NL
, NL is the total number

of branches in the network. From the analysis, the standard

deviations are considerably low even for θmij = 30o for all

the cases, which is an acceptable range for the envelope for

most practical transmission networks. From this, it is observed

that a reasonable width can be considered for the envelope

with the proposed SOCP-OPF model for optimal operation.

The impact of the envelope width on the solution gap (σ)

is illustrated in Fig. 9 for the IEEE 118-bus network. It is

observed as when the width of the envelope is smaller, and

the cyclic constraints (CC) are considered, the solution gap

(σ) is considerably lower than without considering (WCC).

With the cyclic constraints, the solution gap (σ) is less than

1× 10−7. The figure shows the results in per-unit (pu) with a

base of 100 MVA. This concludes that the proposed model’s

cyclic constraints significantly improve the exactness of the

SOCP-OPF model for mesh networks.

C. Analysis of Voltage Difference on the Solution Gap

The effect of the voltage change for bi-directional flow is

analyzed with the change of loading conditions. A load in a

particular bus is changed with a multiplying factor λ ∈ [0, 3]
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Fig. 8. θij from the proposed envelope satisfying the cyclic constraints. Here, (a) & (d) are for the IEEE 14-bus network, (b) & (e) are for the IEEE 57-bus
network, and (c) & (f) are for the IEEE 118-bus network, respectively.

Fig. 9. Impact of the envelope width on the solution gap (σ) for the IEEE
118-bus network (a) θmij = 20o (b) θmij = 30o.

Fig. 10. Impact of the bus voltage difference on the solution gap (σ). Here,
(a) & (b) and (c) & (d) are for the IEEE 14-bus and 118-bus networks,
respectively. (CC: Cyclic constraints, WCC: Without cyclic constraints.)

(i.e., when λ = 1 the load is increased by 100% and when

λ = 2, increased by 200% and so on) for observing the impact

of the bus voltage difference between two adjacent connecting

buses and thus tightness of the proposed model. For the IEEE

14-bus network’s overload condition, the voltage difference

between bus no. 1 and bus no. 2 is low. Hence, the solution

gap (σ) is low, and while the cyclic constraints are applied, the

OPF model is tighter, which is shown in Fig. 10 (a)-(b). The

metric σ presents the overall tightness, with close to zero being

tighter and thus more accurate. To illustrate the effect of a

more extensive network, bus no. 43 and bus no. 44 in the IEEE

118-bus network are considered. The solution gap is checked

by assessing the voltage difference for both conditions (i.e.,

with and without imposing the cyclic constraints). When there

is a load increase (considered as the multiplying factor λ ∈
[0, 3]). The results show that the model is tight with CC and

WCC when the voltage difference between two adjacent buses

is small. However, with a larger voltage difference between

adjacent buses, the solution gap is comparatively higher when

cyclic constraints are not considered. This impact is observed

on other buses as well. The solution gap from the proposed

SOCP-OPF model is significantly lower, as shown in Fig. 10

(c)-(d). These results show that the proposed architecture is

tight even for bi-directional flow if the cyclic constraints are

applied with the OPF model.

VI. CONCLUSION

This paper represents a novel branch flow-based SOCP-OPF

model for meshed power transmission networks. A convex en-

velope is derived to satisfy cyclic angle constraints in meshed

power networks. The tightness of the proposed OPF model and

the solution gap is improved when the cyclic angle constraints

are imposed. The condition for the proposed SOCP-OPF

model’s tightness for bi-directional power flow through a

branch is also analyzed. The OPF model has been simulated
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and evaluated for several IEEE standard meshed transmission

test networks and compared with NLP-OPF and SDP-OPF

models. From the simulation analysis, the proposed model is

tight and provides a globally optimal solution. Furthermore,

the computational efficiency and solution time for convergence

of the proposed SOCP-OPF is improved by up to 58% when

compared to the NLP-OPF and SDP-OPF models for large

networks. In future work, the proposed OPF model will be

extended for the mixed-integer version of OPF analysis and

contingency analysis for unbalanced power networks.

APPENDIX A

A. Derivation of the Envelope for the θij:

The following convex envelope in (42)-(43) encloses the

sine function in a polyhedral set as follows [33]:

sin θij ≤ cos (
θmij
2
)(θij −

θmij
2
) + sin (

θmij
2
) (42)

sin θij ≥ cos (
θmij
2
)(θij +

θmij
2
)− sin (

θmij
2
) (43)

where θmij = max[|θij |, |θij |].

Power transmission system networks are commonly in mesh

orientation. For transmission networks, as the bus voltage

(p.u) maximum and minimum limits are near unity and

usually, the voltage (p.u) maximum and minimum limit of

[V , V ] = [0.9, 1.1]. If, ViVj sin θij = M , then within the

voltage limit, the sin θij function is relaxed as, sin θij ≥
M

V iV j

and sin θij ≤
M

V iV j
. Then from (42):

M

V iV j

≤ cos (
θmij
2
)(θij −

θmij
2
) + sin (

θmij
2
)

⇒ θij −
θmij
2

≥
M

V iV j cos
θm
ij

2

− tan
θmij
2

⇒ θij ≥
M

V iV j cos
θm
ij

2

− tan
θmij
2

+
θmij
2

(44)

From (43):

M

V iV j

≥ cos (
θmij
2
)(θij +

θmij
2
)− sin (

θmij
2
)

⇒ θij +
θmij
2

≤
M

V iV j cos
θm
ij

2

+ tan
θmij
2

⇒ θij ≤
M

V iV j cos
θm
ij

2

+ tan
θmij
2

−
θmij
2

(45)

where M = ViVj sin(θij) =
(BijPij−GijQij)

(G2

ij
+B2

ij
)

.

B. Convexity of the Proposed Envelope

The envelope in (44) and (45) are represented as follows:

f1(P,Q) = α(BijPij −GijQij) + β1

f2(P,Q) = α(BijPij −GijQij) + β2

where α = 1

V iV j cos
θm
ij
2

; β1 = − tan
θm
ij

2 +
θm
ij

2 and β2 =

tan
θm
ij

2 −
θm
ij

2 . f(P,Q) can be split into two first-order functions

as, f(P,Q) = f(P ) + f(Q). From the definition, a first-

order equation can be considered as convex. In this article

the envelope formed by f(P,Q) is used for the relaxation of

θij from (6) as, f1(P,Q) ≤ θij ≤ f2(P,Q).
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