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ABSTRACT
The proliferation of distributed energy resources (DERs) and
the deployment of advanced sensing and control technologies
in electric power distribution systems calls for coordinated
management of the grid’s resources. This has sparked a
growing interest in optimization methods for large-scale
unbalanced power distribution systems in academia and
industry, with the goal of improving operational efficiency
and resilience. The current fast-paced research in this do-
main is driven by the challenging mathematical problem
of three-phase optimal power flow (OPF). This monograph
introduces the state-of-the-art optimization methods applied
to unbalanced power distribution systems for the provision-
ing of grid services from DERs. To that end, fundamentals of
D-OPF methods are introduced along with the unique chal-
lenges and differences compared to the bulk grid and related
aspects of computational complexity due to mutual coupling,
unbalanced loading conditions, and control of legacy devices.
Different models for formulating D-OPF problems are de-
scribed in detail, as are methods for relaxing or approximat-
ing the formulation to achieve computational tractability.
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Finally, the use of D-OPF formulations to solve distribution-
level operational problems via advanced distribution-level
applications is described in detail. The specific applications
discussed in this monograph include: (1) Volt-VAR control
and Conservation Voltage Reduction using legacy voltage
control devices and DERs, and (2) Solutions for Tomorrow’s
Grid Reconfiguration and Restoration using DERs.



1
Introduction

With the integration of numerous actionable agents, distributed gen-
eration resources, and sensing devices, the electric power distribution
system is rapidly evolving into an autonomous and intelligent system.
For example, behind-the-meter photovoltaic (PV) output has reached
71.3 GW in the U.S. power grid, with over 2.5 million PV panels in-
stalled. Likewise, a recent study shows California’s fleet of light-duty
plug-in EVs could double the total transportation electricity demand,
from under 5,000 GWh in 2019 to over 10,000 GWh by 2030. Simultane-
ously, the grid is also getting overwhelmed with extreme weather events
that are happening at a higher frequency and causing greater dam-
age. Recent fire-related damages and fatalities caused by high-voltage
transmission lines coupled with dry weather are costing billions of dol-
lars annually, with the only practical solution being de-energizing the
lines and disrupting the power supply to millions of customers. The
recent advances in the distribution grid, including the integration of
distributed generation (DGs), distributed energy resources (DERs), and
microgrids, provide potential means to improve the grid’s operational
resilience. An advanced decision-support system is needed to plan and
manage grid operations by proactively managing the grid’s variable,

3



4 Introduction

uncertain, and distributed resources. Consequently, resilient operational
solutions for power distribution grids have drawn significant attention.
These applications range from leveraging recent advances in smart grid
technology, such as remote control capabilities and DER integration, to
enabling advanced grid services such as frequency and voltage support
for the bulk grid and resilient operations through intentional islanding
to support critical services during disruptions.

The need for advanced grid support functionality from a large
number of DERs has sparked increased interest in optimization methods
for large-scale unbalanced power distribution systems. This monograph
provides a much-needed primer on optimization methods used in active
power distribution systems for advanced operations, with the goal of
benefiting researchers working in this field. The graduate students
and young researchers working in the area of DERs and distribution
systems operations need a background on not only topics related to
power distribution engineering but also a wide variety of interdisciplinary
subjects to address the upcoming challenges. The monograph will benefit
a diverse pool of researchers and industry practitioners by building the
necessary background on modeling the distribution systems (with DERs)
and system optimization methods for provisioning grid services.

Specifically, we introduce the state-of-the-art optimization methods
applied to unbalanced power distribution systems for the provisioning
of grid services for efficient and resilient grid operations. We begin
with mathematical descriptions of the unbalanced power flow and opti-
mal power flow (OPF) models and describe a systematic approach to
problem formulation using an example test feeder. Our discussion also
includes a mathematical description of distribution system components
and controllable devices. We describe the mathematical complexity of re-
sulting optimization problems and introduce commonly used relaxation
and approximation techniques for computational tractability. We also
detail the limitations of the existing formulations. The mathematical
formulations are complemented by open-source codes using example
distribution systems. Following that, we will go over the problem formu-
lation for multiple grid service application cases that use distribution
OPF. These algorithms are tested with large-scale distribution test
systems, and the implications of using DGs for specific grid services are
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discussed. Finally, we summarize outstanding challenges and the need
for additional research in this area.

1.1 Motivation for Optimizing Distribution Systems Operations

The utility distribution systems are designed to deliver reliable electric
power economically to the electrical consumers at their place of con-
sumption. However, over the last decade, the electric power grid has
been transforming unprecedentedly, necessitating a significant change in
how we design, operate, and control traditional power systems. Starting
with the high penetration of DERs, the integration of electric vehicle
technology, bi-directional power flow, and smart metering, the energy
sector is going through vast and rapid technical and policy-related trans-
formations. The inherent variability of renewable generation and the
vulnerability of traditional power systems to the demand and generation
stochasticity can potentially result in system-level problems. However,
if deployed and controlled purposefully, they can provide multiple cru-
cial grid services that can help improve the efficiency, reliability, and
resilience of the power grid.

Historically, distribution system operations have been mostly pas-
sive, with rule-based methods primarily used to control the feeder’s
few legacy voltage control devices, such as capacitor banks and voltage
regulators. These control rules were pre-designed and acted based on
local measurements. Since the loads were predictable and the system
lacked any local generation resources, the rule-based controls were suffi-
cient to ensure desirable system operations. However, the integration
of DERs, including EVs, led to added variability and uncertainty in
distribution system operations rendering rule-based and local-control-
only algorithms inapplicable. Early studies showed the impacts of new
load types, such as EVs and photovoltaic generation (PV) resources,
on distribution systems with legacy control. Multiple studies showed
that the changes at the grid edge might lead to multiple system-level
challenges, including, but not limited to, voltage limit violations (over-
voltages/undervolatges), increased voltage variability and three-phase
voltage unbalance, and thermal limit violations (Tan and Kirschen,
2007; Liu et al., 2008; Dubey and Santoso, 2015; Dubey et al., 2015;
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Dubey and Santoso, 2017). It was also shown that the local control
might result in unnecessary tap changes and capacitor bank operations;
these are mechanical devices, and a higher number of operations can
lead to mechanical failures (Agalgaonkar et al., 2014). Mitigating these
system-level operational challenges required a coordinated operation of
systems’ controllable devices, including the new resources. It was also
recognized that the new grid-edge resources could provide additional
grid services, such as capacity, flexibility, ramping, voltage support, and
so on, that were previously not possible in a passive power distribution
system. This resulted in the development of new methods and advanced
applications to actively manage grid-edge resources (Dubey et al., 2020).

With the evolution of active power distribution systems and new grid
requirements, optimal power flow (OPF) methods emerged as a poten-
tial mechanism to optimize distribution system operations for different
grid service requirements. A comprehensive review of OPF methods is
provided in the following articles (Huneault and Galiana, 1991; Momoh
et al., 1999; Cain et al., 2012; Molzahn et al., 2017). When compared to
the bulk power grid, distribution-level OPF (D-OPF) presents distinct
challenges due to three-phase unbalanced loading, mutual coupling
among the different phases of the line, the presence of single-phase
and two-phase branches, and radial topology with a high R/X ratio,
which causes significant voltage drops. Furthermore, grid-edge opti-
mization necessitates the integration of various technologies such as
battery storage, smart inverters, capacitor banks, voltage regulators,
and secondary voltage controllers with mixed-integer decision variables
and inter-temporal constraints. Besides that, distribution-level optimiza-
tion necessitates the inclusion of multiple sources of uncertainty from
model and measurement data, resulting in computationally intractable
stochastic optimization formulations. As a result, D-OPF formulations
and approaches require separate consideration.

1.2 DGs/DERs for Grid Services and D-OPF Formulations

In this section, we identify the commonly discussed grid services that
DERs could potentially provide. These services are identified as those
that originated for the distribution system or for the bulk-grid level.
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Table 1.1: Grid Services from DGs/DERs that can benefit from Distribution Optimal
Power Flow Models and Algorithms

Grid Services Problem Objective Controllable Devices
Improved support
for voltage and
power quality

Manage feeder voltages (mag-
nitude, variability, unbalance),
reduce losses

Voltage regulators, ca-
pacitor banks, DG ac-
tive/reactive power

Network congestion
management service

Manage network thermal limit
constraints via network recon-
figuration, network tariff de-
sign and flexibility procure-
ment

Tie switches, sectionaliz-
ing switches, Building en-
ergy management system
(BMS), active/reactives
power from DGs and
other DERs (BESS, EVs)

Avoided or deferred
distribution capac-
ity costs

Conservation voltage reduc-
tion, reduce system peak, man-
age system constraints

DG active/reactive power
from DGs and other
DERs (BESS, EVs), volt-
age control devices

Leverage demand re-
sponse capability

Reduce system peak Manage
system constraints

Building energy manage-
ment system (BMS), ac-
tive power from DGs and
other DERs (BESS, EVs)

Reduce wholesale
energy costs

Distribution market to opti-
mize social welfare cost

Reliability via DG-
assisted restoration

Reduce outage duration Tie switches, sectionaliz-
ing switches, grid-forming
DGs, microgridsResilience via Inten-

tional Islanding
Reduce outage duration, Sta-
ble islands

Ancillary service
(Bulk-grid fre-
quency support)

Active power control for fre-
quency support

Active power support
from DGs and other
DERs (BESS, EVs, BMS)

Ancillary service
(Bulk-grid voltage
support)

Reactive power control for
voltage support

Reactive power support
from DGs and other
DERs (BESS, EVs, BMS)

Black-start regula-
tion

Reduce system peak, Manage
system constraint

Grid forming DERs

Flexibility reserve Manage renewable variability BESS, BMS, EVs

Energy and Ancil-
lary service markets

Generate revenue by market
participation

BESS, BMS, EVs

We also identify the possible class of objective functions associated with
each grid service, controllable devices, and DER control variables, see
Table 1.1. It is worth noting that many of these DER-enabled grid
services are currently being validated through field demonstrations or
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are in the process of being deployed in the field, see (Ardani et al., 2018;
Driscoll, 2018; Kovaleski, 2022; Australia’s OpEN project, 2022; UK
Open Networks Project, 2022). The procurement of these grid services
can be formulated as an OPF problem with a specified objective function
and constraints. The optimization problem type is dictated by control
variables, the optimization time horizon, and the problem objective.
Some grid services, such as bulk grid frequency and voltage support, may
require a closed-loop formulation instead of an open-loop OPF model.
Additionally, the problem formulation may involve multiple decision-
making hierarchies, such as coordinating distribution-level markets with
wholesale markets. Although such applications can be modeled as one
large optimization problem, they require hierarchical or distributed opti-
mization approaches to manage the resulting computational complexity
and information and data privacy requirements.

Mathematically, D-OPF is a constrained optimization problem. In
its most general form, this results in a nonlinear mixed-integer op-
timization problem. However, several versions of the general model
are solved depending on the decision variables and power flow models
used in the problem definition (Jha et al., 2022). A nonlinear D-OPF
formulation is often solved where only continuous decision variables
are modeled, excluding any discrete control devices in the formulation.
These models can use bus-injection or branch-flow power flow models,
resulting in different D-OPF formulations. In this case, the primary
source of nonlinearity is due to nonlinear power flow equations. Given
the difficulty of solving nonlinear optimization problems, power flow
equations can be approximated or relaxed to produce a simpler linear
or convex optimization formulations. Real-world D-OPF problems often
require optimizing for both discrete and continuous control variables,
resulting in a mixed-integer nonlinear optimization problem. These are
some of the most difficult optimization problems to solve.

A list of problem types is described in Table 1.2. The control variables
and optimization horizon will define the problem type. DG control
parameters, such as active and reactive power dispatch from DGs, are
modeled as continuous variables. However, integers, especially binary
variables, are often included to model the connectivity/availability
statuses of DG/DER devices; for example, the on/off status of EV
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Table 1.2: Taxonomy of D-OPF Problem Types

D-OPF type Power flow model Optimization
model

Decision
variables

Nonlinear
models

Bus-injection model (Cain et al.,
2012)

NLP Continuous

Branch flow model (Baran and Wu,
1989c; Baran and Wu, 1989b)

NLP

Linear Ap-
proximate
model

Lin-dist flow (Gan and Low, 2014;
Farivar and Low, 2013b)

LP Continuous

Other linearized models (Jha and
Dubey, 2021; Turitsyn et al., 2010;
Guggilam et al., 2016; Sankur et
al., 2016)

LP

Convex Relax-
ation models

Semi-definite relaxation (Bai et al.,
2008; Farivar and Low, 2013b)

SDP Continuous

Second-order cone relaxation
(Jabr, 2006a; Farivar and Low,
2013b; Jha and Dubey, 2021)

SOCP

Mixed-integer
models

Nonlinear power flow model
(Paudyal et al., 2011a; Wang et al.,
2014)

MINLP
Continuous,
discrete

Linear approximate model (Nazir
and Almassalkhi, 2018a; Savasci et
al., 2022)

MILP

Convex relaxation (Savasci et al.,
2021; Shukla et al., 2019; Wu et al.,
2017a; Alsaleh and Fan, 2021)

MISOCP,
MISDP

charging, and the charge/discharge status of BESS are modeled as binary
variables. Likewise, tap settings for voltage regulators and capacitor
bank switch status are modeled as discrete decisions. The optimization
time horizon is defined by the type of controllable device and whether
they result in inter-temporal constraints. For example, the state-of-
charge for BESS at future time intervals is a function of the current
decision requiring a multi-time period optimization formulation. On the
contrary, the reactive power dispatch from smart inverters connected to
PVs does not carry any memory for the next time step and hence a single-
period optimization will suffice. A stochastic optimization problem can
be considered when it is important to incorporate uncertainty in the
model parameters and measurements.
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Table 1.3: Distribution-level Controllable Devices

Controllable Device Controllable Parameter Decision Variable
Voltage regulator Tap setting Discrete
Capacitor bank On/Off status Discrete
Feeder Switches Connect/disconnect Discrete
PVs with smart
inverters

Active and/or reactive power Continuous
Connect/disconnect Discrete

BESS with smart
inverters

Active and/or reactive power Continuous
Charge/discharge status Discrete

EVs Active power Continuous
Charge/discharge Discrete

BMS Active power setpoints Continuous
Other DGs
(grid-following)

Active and/or reactive power Continuous
Connect/disconnect Discrete

Other DGs
(grid-forming)

Voltage and frequency Continuous
Connect/disconnect Discrete

Other Power Electronics Devices
Low-voltage Distribu-
tion STATCOM

Reactive power Continuous

Unified power flow
controller

Voltage and reactive power Continuous
Mode of operation Discrete

Static Var Compen-
sator (SVC)

Capacitor stages Discrete

Soft Open Point
(back-to-back VSCs,
multiterminal VSCs)

Active and reactive power flow Continuous

Table 1.3 details the controllable devices at the distribution level, cor-
responding controllable variables, and their types. Distribution systems
primarily include legacy voltage control devices such as capacitor banks
and voltage regulators, and feeder-level switches. Active distribution
systems are integrated with various DER technologies, including PVs,
BESS, EVs, BMS, etc. In the past decade, several power-electronics-
based devices have also emerged as a viable option to control voltage and
power flow in the distribution systems (Khadkikar, 2012; McMillan et
al., 2015; Barnes et al., 2014; Padullaparti et al., 2016b). Some examples
include Low-voltage Distribution Static Compensator (D-STATCOM)
(Padullaparti et al., 2018), Static Var Compensator (SVC) (Padullaparti
et al., 2017b), Unified power flow controller (UPFC) (Padullaparti et al.,



1.3. Organization of Monograph 11

2017a; D. Montenegro, J. Taylor, and R. Dugan, Nov. 2016), and Soft
open points (Jiang et al., 2022).

1.3 Organization of Monograph

The monograph is organized into seven chapters. The contents of each
chapter are outlined below.

Chapter 1 introduces the concept of active power distribution sys-
tems, motivates the optimization for grid services, and describes the
taxonomy for distribution-level optimization problems.

Chapter 2 briefly reviews the distribution systems network and
DER models for quasi-static analysis and optimization, including the
distribution power flow models and algorithms.

Chapter 3 develops the analytical framework for modeling distribu-
tion optimal power flow problems and introduces different approximation
and relaxation techniques for scalability.

Chapter 4 introduces discrete decisions into the distribution-level
optimization problems and develops different mixed-integer distribution
optimal power flow models.

Chapter 5 develops application cases for distribution-level services
using DERs under normal operating conditions, namely services for
voltage optimization. This chapter uses different OPF models introduced
in chapters 3 and 4.

Chapter 6 develops multiple application cases for resilient distri-
bution systems operations using DERs in active power distribution
systems.

Chapter 7 presents some concluding remarks and future research
directions.



2
Network Modeling and Distribution Power Flow

Formulation

2.1 Power Distribution Systems

Power Distribution System refers to the section of an electric power
system between the sub-transmission system and the customer’s end.
Distribution systems are generally considered to be electricity supply
network operating at voltage levels of 132 kV and below; the typical
distribution voltages in North America are 4.16 kV, 7.2 kV, 12.47
kV, 13.2 kV, 14.4 kV, 23.9 kV, 34.5 kV, and others (Kersting, 2018).
A schematic diagram depicting various components of a distribution
system are shown in Figure 2.1 (Gonen, 2015; Kersting, 2018). These
components are:

• Feeders: These are the main three-phase wires which originate
from the substation transformers to supply energy to the load
centers. The feeders often branch out to three-phase, two-phase,
and single-phase laterals. The wires could be overhead conductors
or underground cables.

• Transformers: These step down the voltage to a distribution system
voltage level. Three-phase as well as single-phase transformers
are found in distribution systems. The three-phase transformer

12
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connections could be a wye grounded-wye grounded, delta-wye
grounded, open delta-wye grounded, and others. The substation
transformer steps down the transmission/sub-transmission voltage
to distribution level voltages. The distribution/service transformer
further steps down the distribution level voltage to the voltage
levels appropriate for utilization at the customer end.

• Control and Protection Devices: Distribution systems include a
variety of control devices such as voltage regulators, switched
capacitors (SCs), switches, etc. Voltage regulating elements such
as load tap changers (LTCs) may be available in some trans-
formers to regulate the customer end voltage. SCs are used for
reactive power supply. Devices such as circuit breakers, reclosers,

Figure 2.1: A typical North American Distribution Feeder (Gonen, 2015; Kersting,
2018).
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sectionalizers and fuses are used for the system and equipment pro-
tection. Switches and sectionalizers are often used to reconfigure
the distribution system feeders.

• Other Components: These include the customer loads, fixed capac-
itors, and DERs connected at various nodes. Distribution systems
are also equipped with metering equipment at substation and
feeder levels. Present day distribution systems are also equipped
with a communication infrastructure and the various components
that make up the Advanced Metering Infrastructure (AMI), and
new power electronics-based controllable devices (see Table 1.3).

2.2 Defining Device Models

This section details the mathematical models for some commonly avail-
able devices at the distribution level, including, capacitor banks, voltage
regulators, smart inverters, BESS, and voltage-dependent customer
loads.

2.2.1 Notations for Network Modeling

A radial distribution system can be represented as a directed graph
G = (N , E) where N denotes set of buses and E denotes set of edges. An
edge (i, j) joins two adjacent nodes i and j where i is the parent node for
node j. The three phase {a, b, c} for a node i in the distribution system
is denoted by Φi ⊆ {a, b, c}. For each bus i ∈ N and phase ψ ∈ Φi,
let V ψ

i , sψL,i, and sψDG,i be complex voltage, complex power demand
and complex DG power generation, respectively. Let, Vi := [V ψ

i ]ψ∈Φi
,

sL,i := [sψL,i]ψ∈Φi
and sDG,i := [sψDG,i]ψ∈Φi

. For each line, let ψ phase
current be Iψij and define, Iij := [Iψij ]ψ∈Φi

. (·)H represents the conjugate
transpose and j =

√
−1. Let zij be the phase impedance matrix for the

two terminal devices such as distribution lines or transformers; kindly
refer to (Kersting, 2018) for details on line and transformer models.
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2.2.2 Voltage Regulator

A 32-step voltage regulator with a voltage regulation range of ±10%
is assumed. The series and shunt impedance of the voltage regulator
are ignored as these have very small value (Kersting, 2018). Let, aψ
be the turn ratio for the voltage regulator connected to phase ψ of
line (i, j). Then aψ can take values between 0.9 to 1.1 with each step
resulting in a change of 0.00625 pu. An additional node i′ is introduced
to model the current equations. The control for regulator is defined
using binary variables. Let, for uψtap,i ∈ {0, 1} be a binary variable
defined for each regulator step position i.e. i ∈ {1, 2, ..., 32}. Also define
a vector bi ∈ {0.9, 0.90625, ..., 1.1}. Then V ψ

i , V ψ
j , Iψii′ , and Iψi′j where

ψ ∈ Φi ∩ Φj are given as follows:

V ψ
j = V ψ

i′ = aψV ψ
i and Iψii′ = aψIψi′j (2.1)

where, aψ =
32∑
i=1

biu
ψ
tap,i and

32∑
i=1

uψtap,i = 1.

In order to express (2.1) as a function of vψi = (V ψ
i )2, vψj = (V ψ

j )2,
lψψii′ = (Iψii′)2, and lψψi′j = (Iψi′j)2 we take square of (2.1) and define
(aψ)2 = Aψ and b2

i = Bi. Further realizing that (uψtap,i)2 = uψtap,i, (2.1)
can be reformulated as (2.2).

vψj = Aψ × vψi and lψψii′ = Aψlψψi′j (2.2)

2.2.3 Capacitor Banks

The per-phase model for capacitor banks is developed. The reactive
power generated by capacitor bank, qψcap,i, is defined as a function of
binary control variable uψcap,i ∈ {0, 1} indicating the status (ON/OFF)
of the capacitor bank, its rated per-phase reactive power qrated,ψcap,i , and
the square of the bus voltage at bus i for phase ψ, vψi .

qψcap,i = uψcap,iq
rated,ψ
cap,i vψi (2.3)

The capacitor bank model is assumed to be voltage dependent
and provides reactive power as a function of vψi when connected, i.e.
uψcap,i = 1. For a three-phase capacitor bank, a common control variable,
uψcap,i, is defined for each phase.
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2.2.4 Distributed Generation with Smart Inverters

A per-phase model for reactive power support from smart inverter
connected to DGs is developed. The DGs are modeled as negative loads
with a known active power generation equal to the forecasted value.
The reactive power support from DG depend upon the rating of the
smart inverter. Let, the rated per-phase apparent power capacity for
smart inverter connected to ith DG be srated,ψDG,i and the forecasted active
power generation be pψDG,i. The available reactive power, qψDG,i from the
smart inverter is given by (2.4) which is a box constraint.

−
√

(srated,ψDG,i )2 − (pψDG,i)2 ≤ qψDG,i ≤
√

(srated,ψDG,i )2 − (pψDG,i)2 (2.4)

2.2.5 Voltage-Dependent Model for Customer Loads

The most widely acceptable load model is the ZIP model which is
a combination of constant impedance (Z), constant current (I) and
constant power (P)) characteristics of the load (Bokhari et al., 2014). The
mathematical representation of the ZIP model for the load connected
at phase ψ of bus i is given by (2.5)-(2.6).

pψL,i = pψi,0

kp,1
(
V ψ
i

V0

)2

+ kp,2

(
V ψ
i

V0

)
+ kp,3

 (2.5)

qψL,i = qψi,0

kq,1
(
V ψ
i

V0

)2

+ kq,2

(
V ψ
i

V0

)
+ kq,3

 (2.6)

where, kp,1 + kp,2 + kp,3 = 1, kq,1 + kq,2 + kq,3 = 1, pψi,0 and qψi,0 are
per-phase load consumption at nominal voltage, V0. Note that the ZIP
load model represented in (2.5)-(2.6) are a function of both V ψ

i and
vψi = (V ψ

i )2.

2.2.6 Battery Energy Storage (Inaolaji et al., 2022)

A generic BESS model considers a four-quadrant operation capability
having the ability to inject and absorb both active and reactive power
during its charging and discharging cycles (2.7). The use of separate
terms for power injected into (pψ,ti,CHA) or drawn from (pψ,ti,DIS) the BESS
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allows for a roundtrip efficiency of less than 100% which realistically
accounts for BESS-to-grid interactions (Castillo and Gayme, 2014).

SOCψ,t
i = SOCψ,t−1

i

− ∆t
(
ηψi,CHAp

ψ,t
i,CHA + pψ,ti,DIS/η

ψ
i,DIS

) (2.7)

The BESS state of charge (SOC), which indicates the available capacity
in the BESS, should be maintained within pre-specified limits in order
to preserve the lifespan of the BESS indicated by (2.8a). The initial
SOC and final SOC are kept the same using (2.8b). The rate of charging
or discharging of the BESS should not exceed its specified rating as
indicated by (2.8c)-(2.8d). The binary variable, bψ,ti are included to
avoid the simultaneous charging and discharging.

SOCψ
i ≤ SOCψ,t

i ≤ SOCψ
i (2.8a)

SOCψ,1
i = SOCψ,T

i (2.8b)

−pψi,BESSb
ψ,t
i ≤ pψ,ti,CHA ≤ 0 (2.8c)

0 ≤ pψ,ti,DIS ≤ pψi,BESS(1 − bψ,ti ) (2.8d)

∀i ∈ BB, ∀ψ ∈ Ψi, ∀t ∈ T , bψ,ti ∈ {0, 1}.

The apparent power of the BESS should limit its active and reactive
power capability indicated by (2.9).√

(pψ,ti,CHA + pψ,ti,DIS)2 + (qψ,ti,BESS)2 ≤ sψi,BESS ,

∀i ∈ BB, ∀ψ ∈ Ψi. (2.9)

2.3 Distribution Power Flow Models

This sections details two popular formulations used to model distribution
power flow in optimization problems: a bus-injection model (BIM) and
a branch-flow model (BFM). The BIM model is expressed in terms of
bus injection variables, such as active and reactive power injections or
current injections at network buses. On the contrary, the BFM model is
formulated using variables defined on the network branches i.e. active
and reactive power flows or current flowing in distribution lines.
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2.3.1 Bus-injection Model (Power Injection Form)

In the power injection form, the distribution power flow model could
be written as,

S = V (YV)∗ = V

 N∑
j=1

YjiVj

H (2.10)

where,

V =


V1
V2
...
Vn

 ,Y =


Y11 Y12 · · · Y1n
Y21 Y22 · · · Y2n

...
... . . . ...

Yn1 Yn2 · · · Ynn

 (2.11)

are bus voltage vector, and the bus admittance matrix of the network,
respectively. The equations shown in (2.10) is non-linear and based
on nodal voltage and power injections. (2.10) consists of 2n non-linear
equations when real and imaginary components are separated. With
voltage and admittance bus represented in polar coordinates, (2.10) can
be written as the following:

Pm = Vm

N∑
n=1

VnYn cos (δm − δn − θmn) (2.12)

Qm = Vm

N∑
n=1

VnYmn sin (δm − δn − θmn) (2.13)

2.3.2 Bus-injection Model (Current Injection Form)

In the current injection form, the following linear set of network equa-
tions are used:

I = YV =

 N∑
j=1

YjiVj

 (2.14)

where,

I =


I1
I2
...
In

 , (2.15)
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where, I is the current injection vector. Then, the following power
injection equations are used for non-zero injection buses.

diag(S) = diag(V) diag(I)H (2.16)

Note that the number of non-linear equations in current injection
form depends on the number of non-zero injection buses, while on the
power injection form this depends on the total number of buses on the
network.

2.3.3 Branch Flow Model

Nonlinear BFM Model (BFM) The mathematical formulation for a
power flow model based on branch flow equations for a radial distribution
system is detailed in (2.17)-(2.19) (Gan and Low, 2014). The voltage
drop and power balance equations are given by (2.17) and (2.19),
respectively. The relationship between the branch power flow, nodal
voltages, and branch currents is defined using (2.19). Note that (.)H
represents the conjugate transpose.

Vj = Vi − zijIij (2.17)
diag(Sij − zijlij) =

∑
k:j→k

diag(Sjk) + sL,j (2.18)

Sij = ViI
H
ij (2.19)

The aforementioned model can be modified to incorporate the DERs.
For j ∈ NDG, equation (2.18) is modified by (2.20).

diag(Sij − zijlij) =
∑
k:j→k

diag(Sjk) + sL,j − sDG,j (2.20)

LinDistFlow - Linearized Three-Phase AC Power Flow This linear
power flow approximation assumes that the branch power losses are
relatively smaller than the branch power flows (Gan and Low, 2014). The
impact of power loss on active and reactive branch flow equations and
on voltage drop equations is ignored. After approximating (2.17)-(2.19),
we obtain linearized AC branch flow equations as shown in (2.21)-(2.22).
Here (2.21) corresponds to linearized active and reactive power flow
and (2.22) corresponds to voltage drop equations.
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Pψψij =
∑
k:j→k

Pψψjk + pψL,j and Qψψij =
∑
k:j→k

Qψψjk + qψL,j (2.21)

vψj = vψi −
∑
ϕ∈Φj

2R
[
Sψϕij (zψϕij )∗

]
(2.22)

The LinDistFlow model is reasonably accurate in representing bus
voltages under normal loading conditions. Although this model does not
include the impact of power losses on voltage drops, it does incorporate
the impacts of power flows due to load on voltage drop calculations.
Because power losses are small in comparison to power flow in the
branches, the obtained feeder voltages are a good approximation of the
actual feeder voltages (Gan and Low, 2014).

2.4 Illustrated Example

Describing power flow formulation using a 5-bus example.

Figure 2.2: Five bus example test feeder
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2.4.1 Bus-injection Model

Bus injection model requires a Y-bus for the power flow formulation.
For three-phase systems, readers are suggested follow (Bazrafshan and
Gatsis, 2017) on how to derive the respective Y-bus. Y = G+ j B.

Variable definitions: Let Φi ⊆ {a, b, c} defines set of phases corre-
sponding to bus i ∈ N , V ψ

i = |V ψ
i |∠θψi denotes complex voltage phasor

for phase ψ ∈ Φi of bus i, and Iψij = |Iψij |∠δ
ψ
i denotes complex current

phasor for branch (ij) for phase ψ ∈ Φi ∩ Φj .
Then the power flow variables for the system shown in Figure 2.2

are defined as following,

• Bus 1: V1 =
[
V a

1 , V
b

1 , V
c

1

]
• Bus 2: V2 =

[
V a

2 , V
b

2 , V
c

2

]
• Bus 3: V3 =

[
V a

3 , V
b

3 , V
c

3

]
• Bus 4: V4 =

[
V a

4 , V
b

4 , 0
]

• Bus 5: V5 = [0, 0, V c
5 ]

• Bus 1: I1 =
[
Ia1 , I

b
1, I

c
1

]
• Bus 2: I2 = [0, 0, 0]

• Bus 3: I3 =
[
Ia3 , I

b
3, I

c
3

]
• Bus 4: I4 =

[
Ia4 , I

b
4, 0
]

• Bus 5: I5 = [0, 0, Ic5]

Lets define the nodal voltage and current injection vectors as,

V = [V1,V2,V3,V4,V5]T (2.23)
I = [V1,V2,V3,V4,V5]T

Load and generation variables:
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• Bus 3: (Load) sL,3 = [saL,3, sbL,3, scL,3], (DG) sDG,3 = [saDG,3, sbDG,3, scDG,3],
(Cap bank) qcap,3 = [qacap,3, qbcap,3, qccap,3],

• Bus 4: (Load) sL,4 = [saL,4, sbL,4, 0], (DG) sDG,4 = [saDG,4, sbDG,4, 0]

• Bus 5: (Load) sL,5 = [0, 0, scL,5], (DG) sDG,5 = [0, 0, scDG,3]

Define net power injection vectors as the following:

S = [0,0,−sL,3 + j qcap,3, sDG,4 − sL,4, sDG,5 − sL,5]T (2.24)

I = YV
=

∑
j∈{1,2,3,4,5},ψ∈{a,b,c}

Y ϕ,ψ
ji V ψ

j (2.25)

diag(S) = diag(V) diag(I)H (2.26)

2.4.2 Branch flow model

In addition to variables defined in Section 2.4.1, below we define addi-
tional variables for branch flow model.

• Branch 12: I12 =
[
Ia12, I

b
12, I

c
12

]
• Branch 23: I23 =

[
Ia23, I

b
23, I

c
23

]
• Branch 34: I34 =

[
Ia34, I

b
34, 0

]
• Branch 35: I35 = [0, 0, Ic35]

The line or transformer model is given as:

• Branch 12: a12 =

 aa12 0 0
0 ab12 0
0 0 ac12



• Branch 23: Z23 =

 Zaa23 Zab23 Zac23
Zba23 Zbb23 Zbc23
Zca23 Zca23 Zcc23


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• Branch 34: Z34 =

 Zaa34 Zab34 0
Zba34 Zbb34 0
0 0 0



• Branch 35: Z35 =

 0 0 0
0 0 0
0 0 Zcc35


The power flow equations using branch flow model is given as the
following:

• Branch 12:
(Voltage Equation) V2 = a12V1;
(Current Equation) I12 = a12I23

• Branch 23:
(Voltage Equation) V3 = V2 − Z23I23;
(Power balance equation) diag(S23−Z23I23I23

H) = diag(S34)+diag(S35)+
sL,3 − sDG,3 − ucap,3qcap,3,
where, S23 = V2IH

23

• Branch 34:
(Voltage Equation) V4 = V3 − Z34I34;
(Power balance equation) diag(S34 − Z34I34I34

H) = sL,4 − sDG,4,
where, S34 = V3IH

34

• Branch 35:
(Voltage Equation) V5 = V3 − Z35I35;
(Power balance equation) diag(S35 − Z35I35I35

H) = sL,5 − sDG,5,
where, S35 = V3IH

35

2.5 Algorithms to solve Distribution Power Flow Model

In this section, we detail different algorithms that have been developed
to solve distribution power flow equations. These algorithms differ in
their approach to solving a nonlinear systems of equations defining the
power flow model.
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2.5.1 Forward-Backward Sweep Method

The Forward-Backward Sweep method exploits radial nature and over-
come the challenges related to ill-conditioned nature of distribution
networks. The algorithm consists of a nodal current calculation, a back-
ward sweep and a forward sweep. At iteration n, the nodal current
injection at node i can be calculated as

Ini =
(
P spi + jQspi
V n−1
i

)∗

(2.27)

where

P spi = PGi − PLi (2.28)
Qspi = QGi −QLi (2.29)

where P spi , PGi and PLi are active component of scheduled, generated
and load power at bus i respectively and Qspi , QGi and QLi is reactive
component of scheduled, generated and load power at bus i, respectively.

During backward sweep, the branch currents are calculated (with
initialized voltages for first iteration). A current summation method is
applied starting from nodes at far end of the feeder towards the source
bus. The current in branch {ij} connected between node i and j can
be obtained as

Inij = −Inj +
∑
k:j→k

(Ijk) (2.30)

where Ijk is currents in all branches emanating from node j. If a voltage
regulator with tap t is connected between node i and j the current in
branch {ij} is modified as

Inij = (1 + 0.00625t)Inij (2.31)

The forward sweep calculates voltages using the calculated currents
from backward sweep from the source bus till nodes at far end of
feeder.The voltage at node j is obtained using current in branch {ij}
and updated voltage in node i as

V n
j = V n

i − Zij × Inij (2.32)
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where Zij is impedance of line {ij}. If a voltage regulator with tap t is
connected between node i and j voltage at node j is modified as

V n
j = (1 + 0.00625t)V n

j (2.33)

The voltages obtained using forward sweep are used for the next
iteration in the backward sweep. The voltage mismatch is calculated as

∆V = V n − V n−1 (2.34)

The load flow iterations are repeated until voltage mismatches is lesser
than a convergence tolerance.

2.5.2 Z-bus Approach (Fixed-Point Iteration)

In an electric power network with N buses, nodal current equation can
be expressed according to the following matrix form:

I = YV =
N∑
j=1

YjiVj (2.35)

where

I =


I1
I2
...
In

 ,V =


V1
V2
...
Vn

 ,Y =


Y11 Y12 · · · Y1n
Y21 Y22 · · · Y2n

...
... . . . ...

Yn1 Yn2 · · · Ynn

 (2.36)

are the nodal injection current vector, bus voltage vector, and the
bus admittance matrix of the network, respectively. Partitioning the
matrices into slack and non-slack buses eq (2.35) can be expressed as[

Is
In

]
=
[
Yss Ysm
Yms Ymm

] [
Vs
Vm

]
(2.37)

where Is is the current injection at slack bus and Vs is the voltage at
the slack bus and Im is the current injection for all other buses and Vs
is the voltage at all other buses. Therefore

Im = Yms.Vs + Ymm.Vm (2.38)
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At iteration n, the nodal current injection at node i can be calculated
as

Ini = (P spi ) − j(Qspi )
(V ∗
i ) (2.39)

where P spi is active component of scheduled power at and Qspi is reactive
component of scheduled power at bus i. A fixed-point equation for
voltages Vm can be obtained as

V n+1
m = Y −1

mm.(Inm − Yms.V
n
s ) (2.40)

The voltage mismatch is calculated as

∆V = V n − V n−1 (2.41)

The load flow iterations are repeated until voltage mismatches is lesser
than a convergence tolerance.

2.5.3 Newton-Raphson Method (Power Injection Form)

The Newton Raphson method is a numerical method used to solve the
non-linear power flow. By expressing the node voltage and admittance
matrix in polar forms, the real and reactive power injections are given
as the following:

Pi = Vi

N∑
j=1

YijVj cos (δi − δj − θij) (2.42)

Qi = Vi

N∑
j=1

YijVj sin (δi − δj − θij) (2.43)

The power mismatch equations are

∆Pi = Pi,sch − Pi, calc (2.44)

∆Qi = Qi,sch −Qi, calc (2.45)
By applying Taylor series expansion, this mismatch equations can

be expanded as [
∆P
∆Q

]
=
[

J1 J2
J3 J4

] [
∆δ

∆V

]
(2.46)



2.5. Algorithms to solve Distribution Power Flow Model 27

The Jacobian matrix is given by

J =



∂P2
∂δ2

· · · ∂P2
∂δN

∂P2
∂V2

· · · ∂P2
∂VN...

...
∂PN
∂δ2

· · · ∂PN
∂δN

∂PN
∂V2

· · · ∂PN
∂VN

∂Q2
∂δ2

· · · ∂Q2
∂δN

∂Q2
∂V2

· · · ∂Q2
∂VN...

...
∂QN
∂δ2

· · · ∂QN
∂δN

∂QN
∂V2

· · · ∂QN
∂VN


(2.47)

The main diagonal elements of each submatrix of the Jacobian are
computed in equations (2.48)- (2.51)

J1ii = ∂Pi
∂δi

= −Vi

N∑
j=1
j ̸=i

YijVj sin (δi − δj − θij) (2.48)

J2ii = ∂Pi
∂Vi

= ViYii cos θii +
N∑
j=1

YijVj cos (δi − δj − θij) (2.49)

J3ii = ∂Qi

∂δi
= Vi

N∑
j=1
j ̸=i

YijVj cos (δi − δj − θij) (2.50)

J4ii = ∂Qi

∂Vi
= −ViYii sin θii +

N∑
j=1

YijVj sin (δi − δj − θij) (2.51)

The off diagonal entries of each submatrix of the Jacobian are
computed in equations (2.52)- (2.55)

J1ij = ∂Pi
∂δj

= ViYijVj sin (δi − δj − θij) (2.52)

J2ij = ∂Pi
∂Vj

= ViYij cos (δi − δj − θij) (2.53)

J3ij = ∂Qi

∂δj
= −ViYijVj cos (δi − δj − θij) (2.54)
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J4ij = ∂Qi

∂Vj
= ViYij sin (δi − δj − θij) (2.55)

As the voltage vector is updated, the Jacobian is recalculated, and
the power flow is said to converge when power mismatch vector is less
than the tolerance value.

One drawback to the Newton Raphson method is that it may fail
to converge for a large network with voltage regulators; in this case the
nodes with voltage regulators have to be initialized by a pre-determined
exact or approximate power flow.

2.5.4 Newton-Raphson Method (Current Injection Form)

In current injection based power flow, the complex current injection
equations are expressed in terms of rectangular coordinates and bus
admittance matrix is represented in terms of its real (G) and imaginary
values (B). The Jacobian matrix is formed from the bus admittance
matrix where, each element in bus admittance matrix is replaced with
2 × 2 blocks. The off-diagonal blocks obtained in the Jacobian are fixed
over iterations and diagonal blocks are updated at every iteration based
on type of load model connected to that bus. The complex current
mismatch at a bus i in a N bus distribution system is given as:

∆Ii = (Ispi ) − (Icalci ) (2.56)

Eq (2.56) can be expanded as

∆Ii = (P spi ) − j(Qspi )
(V ∗
i ) −

n∑
j=1

YjiVj (2.57)

where P spi is active component of scheduled power at bus i and Qspi is
reactive component of scheduled power at bus i.

Eq (2.57) which is in complex form can be represented in terms or
real and imaginary component as

∆Iri = P spi Vri +Qspi Vmi
V 2
ri + V 2

mi

−
N∑
j=1

(GijVrj −BijVmj) (2.58)

∆Imi = P spi Vmi −Qspi Vri
V 2
ri + V 2

mi

−
N∑
j=1

(GijVmj −BijVrj) (2.59)
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The Jacobian matrix can be calculated by differentiating (2.58) and
(2.59) with respect to real and imaginary parts of all the bus voltages.
Therefore the power flow formulation using current injections can be
solved using (2.60) as



∆Im1
∆Ir1

...
∆Imn
∆Irn


=



∂Im1
∂Vr1

∂Im1
∂Vm1

· · · ∂Im1
∂Vrn

∂Im1
∂Vmn

∂Ir1
∂Vr1

∂Ir1
∂Vm1

· · · ∂Ir1
∂Vrn

∂Ir1
∂Vmn...

...
...

...
...

∂Imn
∂Vr1

∂Imn
∂Vm1

· · · ∂Imn
∂Vrn

∂Imn
∂Vmn

∂Irn
∂Vr1

∂Irn
∂Vm1

· · · ∂Irn
∂Vrn

∂Irn
∂Vmn





∆Vr1
∆Vm1

...
∆Vrn
∆Vmn


(2.60)

The elements of Jacobian can be obtained using following equations.

∂Imi
∂Vri

= Bii−ai
∂Imi
∂Vrj

= Bij , i ̸= j (2.61)

∂Imi
∂Vmi

= Gii − bi
∂Imi
∂Vmj

= Gij , i ̸= j (2.62)

∂Iri
∂Vri

= Gii − ci
∂Iri
∂Vrj

= Gij , i ̸= j (2.63)

∂Iri
∂Vmi

= −Bii − di
∂Iri
∂Vmj

= −Bij , i ̸= j (2.64)

where B and G are imaginary and real parts of admittance element
and a, b, c, d can be obtained as in (Garcia et al., 2000).

The voltage mismatch can be represented in compact form as[
∆V

]
=
[
J
]−1 [

∆I
]

(2.65)

The updated voltage is given by[
V
]k+1

=
[
V
]k

+
[
∆V

]
(2.66)
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2.6 Distribution System Simulators

The analysis of power distribution systems requires a modeling software
that can support detailed feeder and equipment modeling with advanced
distribution system analysis capabilities. A mathematical description
of a given distribution system and power flow algorithm discussed in
this chapter can be easily developed using any programming language
such as C++, python, or MATLAB. The power systems community has
also developed dedicated distribution system modeling and simulation
software to run the power systems analysis. For completeness, in this
section we briefly summarize some of the existing simulators for detailed
unbalanced power distribution system analysis. Given the focus of this
monograph, our discussion is centered around the quasi-static analysis
of power distribution systems.

Power (utility) industry uses different commercial software for the
distribution system modeling and analysis including CYMDIST, Synergi,
WindMIL, etc. However, these commercial software packages are propri-
etary and not easily accessible to the research community. Recognizing
this challenge, the power systems community has developed open-source
distribution system simulators that can model detailed distribution
systems, provide flexibility for modeling new components and oper-
ational scenarios, and are simple to integrate into external packages
such as optimization engines. Two of the most common open-source
distribution simulators used by the power community are OpenDSS
and GridLAB-D. Pandapower is another upcoming power flow simula-
tor; however, it currently cannot model unsymmetrical lines commonly
found in North American power distribution feeders. In what follows,
we briefly describe these three simulators.

OpenDSS is an open-source simulator tool developed by Electric
Power Research Institute (EPRI) to model and analyze electric power
distribution systems (OpenDSS, 2008). The program supports all fre-
quency domain (sinusoidal steady-state) and sequential power flow
analyses commonly performed for utility distribution systems planning
and analysis. One of the major benefits of OpenDSS is its extraordinary
capability to support planning and analysis of end-use technologies,
such as DGs/DERs, EVs, battery energy storage systems, thus serving
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as a valuable analysis platform for grid-edge integration. OpenDSS
can be implemented as both a stand-alone executable program and an
in-process Component Object Model (COM) server DLL designed to be
driven by a variety of existing software platforms, such as MATLAB,
Python, C++, etc. The executable version has a basic text-based user
interface on the solution engine to assist users in developing scripts and
viewing solutions. The COM interface is implemented on the in-process
server DLL version of the program to allow users to use the features
of the program to perform new types of studies and execute custom
solution modes. The external execution of OpenDSS provides powerful
analytical capabilities as well as excellent graphics for displaying results.

GridLAB-D is an open-source toolkit that supports three-phase un-
balanced power distribution system simulation and analysis (GridLAB-
D, 2017). Pacific Northwest National Laboratory (PNNL) collaborated
with industry and academia to develop GridLAB-D. This efforts was
funded by the U.S. Department of Energy Office of Electricity Delivery
and Energy Reliability (DOE/OE). GridLAB-D, uses agent-based and
information-based modeling, to help develop detailed models for distri-
bution systems with new grid-edge technologies, such as DGs/DERs,
grid-interfacing buildings, EVs, etc. GridLAB-D, in its most basic form,
allows interactions among all elements of a distribution system, from the
substation to the end-use loads. It also serves as an excellent test bed
for evaluating control strategies and researching the effects of smart grid
technologies. Similar to OpenDSS, GridLAB-D is a flexible simulation
environment that can be integrated with a variety of third-party data
management and analysis tools.

Pandapower is yet another open source tool designed to perform
steady-state analysis on three-phase power systems with symmetrical
power line designs. It currently supports the analysis of balanced trans-
mission and subtransmission systems, as well as three-phase distribution
systems with symmetrical line designs common in Europe. Asymmetri-
cal loads and generators can be considered with three-phase power flow.
Distribution systems with asymmetrical power line designs, such as the
feeder design popular in North America, cannot currently be analyzed
with pandapower.(Thurner et al., 2018).
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2.7 Summary and Discussions

This chapter introduced the approach to develop a mathematical model
for power distribution system and components. Then it introduced
different power flow formulations and described the power flow modeling
with the help of an illustrated 5-bus example. We also discussed different
algorithms to solve distribution power flow and introduced open-source
distribution power flow simulators, including OpenDSS, GridLAB-D
and Pandapower. The power flow formulation described in this chapter
and network modeling details will be used in the following chapters to
formulate and solve distribution optimal power flow (D-OPF) problems.



3
Distribution Optimal Power Flow (D-OPF)

Formulations

3.1 Introduction

In an active power distribution system, optimal power flow (OPF)
algorithms find multiple applications, including, but not limited to,
loss minimization, volt-var optimization, and effective management of
distributed energy resources (DERs) (Molzahn, Hiskens, et al., 2019).
The increasing penetration of DERs, the proliferation of proactive loads,
and the interest in demand response programs require optimization
methods for large-scale power distribution systems (Dubey et al., 2020).
Lately, these new requirements have encouraged the rapid adoption
of advanced distribution management systems (ADMS) and related
ADMS applications (Ngo et al., 2020). As the distribution systems
continue to become more active, the need for faster management of
the grid’s controllable assets will inevitably necessitate faster OPF
algorithms (Trindade et al., 2017). Compared to the bulk power grid,
distribution-level OPF (D-OPF) poses unique challenges due to three-
phase unbalanced loading, mutual coupling among the different phases of
the line, the existence of single-phase and two-phase branches, and radial
topology with high R/X ratio leading to significant voltage drops. While
earlier work focused on the balanced distribution systems (Farivar and

33
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Low, 2013b; Baran and Wu, 1989d), lately, significant strides have been
made regarding three-phase unbalanced D-OPF formulations (Paudyal
et al., 2011b; Jha et al., 2019; Bruno et al., 2011; Gan and Low, 2014).

This chapter introduces the distribution-level OPF problem and
details different models proposed in the literature. Our discussion in this
chapter is limited to single-period D-OPF problems primarily aiming to
control grid-following DGs. Control of devices with discrete decisions
are introduced in Chapter 4. This monograph does not delve into multi-
period optimization and stochastic optimization D-OPF formulations
in order to keep the discussion contained and focused.

3.2 Notations

In addition to the notations defined in Section 2.2.1, we define additional
notations required for D-OPF formulation here. Let, vi = diag(Vi×V H

i ).
(·)H represents the complex-conjugate, (·)T denotes matrix transpose,
and j =

√
−1.

3.3 Basics D-OPF Problem

D-OPF problems are formulated as constrained optimization problems
consisting of an objective function and a set of system-level and opera-
tional constraints. A typical representation of the D-OPF is given by
(3).

min /max f(x, u) (3.1)
Subject to:

g(x, u) = 0 (3.2)
h(x, u) ≤ 0 (3.3)

where, x is the set of state variables representing power flow quantities;
u is the set of decision variables that can be continuous or integer
depending upon the control parameter, f(x, u) represents problem
objective, g(x, u) is set of power flow equations modeled as equality
constraints, h(x, u) represents operating constraints specifying limits
on state and decision variables.
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3.3.1 Problem Objectives

The problem objective, f(x, u), is formulated as a function of state
and decision variables. In DOPF, different objective functions could be
formulated depending on the desired goals to be achieved for optimal
dispatch of the DERs as appropriate (Turitsyn et al., 2011). A few
example formulations are detailed below.

• Minimize the total power loss: min f(x), where,
f(x, u) =

∑
(ij)∈E real(IHij ZijIij).

• Maximize the PV hosting capacity: max f(x), where,
f(x, u) =

∑
(i)∈NDG

∑
ψ∈Φi

real(sψDG,i).

• Minimize the voltage deviations with respect to the setpoint voltage:
min f(x), where, f(x, u) =

∑
(i)∈N

∑
ψ∈Φi

|vψi − vψset|.
This is a non-convex function and can be reformulated as a con-
vex function as the following: f(x, u) =

∑
i∈N

∑
ψ∈Φi

∆vψi , with
the inclusion of the following additional constraints, vψi − vψset ≤
∆vi, and vψset − vψi ≤ ∆vi.

As an example, we also introduce an objective function for coordi-
nating PVs and BESS. The goal is to minimize net load demand by
scheduling BESS charging (pψ,ti,CHA) and discharging (pψ,ti,DIS) for t ∈ T
and coordinating active power generation from PVs (pψ,ti,DG). This objec-
tive could be associated with energy cost reduction for the customer
using DERs. The problem objective is to minimize the net load demand
for t ∈ T : min f(x), where,

f(x, u) =
∑
i∈NL

∑
ψ∈Ψi

∑
t∈T

pψ,ti,L −
∑

i∈NDG

∑
ψ∈Ψi

∑
t∈T

pψ,ti,DG

+
∑

i∈NBESS

∑
ψ∈Ψi

∑
t∈T

pψ,ti,CHA −
∑

i∈NBESS

∑
ψ∈Ψi

∑
t∈T

pψ,ti,DIS.

3.3.2 Problem Constraints

The problem constraints include a set of equations defining power flow
model and operating constraints for network variables such as bus
voltages, branch currents, DG power limits, etc.
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• Power flow constraints: The power flow constraints are binding
nonlinear equality constraints, represented by g(x, u) = 0. Depending
upon the power flow model, we obtain different formulations for D-
OPF.

• Node voltage limit: The node voltages need to be maintained with
the pre-specified upper and lower limits, Vmin and Vmax, where
|Vmin| = 0.95 p.u. and |Vmax| = 1.05 p.u.

• Thermal Limit: The thermal loading for each branch should be
maintained within the pre-specified rating designated by (Iratedij ) for
branch (ij).

• DG operating limits: The operating points for DG, both pDG,j and
qDG,j , need to be constrained depending upon the problem formula-
tion. Typically, for loss minimization and voltage deviation minimiza-
tion, we constrain reactive power generation based on the apparent
power rating of the DG, sratedDG,j , and measured/forecasted value of
active power generation, pDG,j . For the PV hosting maximization
problem, we assume the DGs are operating at unity power factor and
we constrain individual DGs power by their maximum active power
generation, pmaxDG,j . If both pDG,j and qDG,j are controllable variables,
the apparent power need to be constrained as per the apparent power
rating of the DG, sratedDG,j .

3.3.3 Decision variables

The decision variables model the controllable parameters in the distri-
bution system. Mathematically, these can be represented as continuous
or integer variables depending upon the controlled device. Based on the
device models detailed in Section 2.2, here we define decision variables
for most common controllable devices: voltage regulators, capacitor
banks and grid-following DGs (with smart inverters).

• Voltage Regulator: A 32-step voltage regulator is controlled by se-
lecting the tap position. We model the tap selection as an integer
variable. For each regulator step (per-phase), we define a binary
variables, uψtap,i ∈ {0, 1}, where uψtap,i = 1 indicates that the regulator
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is at the ith tap position. Note that additional constraints are needed
to define the decision variable in a meaningful way in the D-OPF
problem formulation.

• Capacitor Bank: A capacitor bank in an on/off control device. We
model connectivity status of capacitor banks as a binary variable,
uψcap,i = {0, 1}, where, uψcap,i = 1 indicates that the capacitor bank is
connected to the system. Note that additional constraints are needed
to appropriately represent the local control settings for the switched
capacitor banks in a D-OPF problem.

• Distributed generators (DGs): Here, we model only grid-following in-
verters (with DGs) with controllable active and reactive power. Thus,
the control parameters are active and/or reactive power dispatch
from the DGs modeled as continuous variables, pψDG,i and qψDG,i, re-
spectively. Additional constraints are needed to appropriately model
the operating limits for DGs and inverters.

3.4 Distribution Nonlinear Optimal Power Flow Models

In this section, we describe different formulations for D-OPF problem
based on nonlinear models for distribution power flow detailed in Chap-
ter 2. Specifically, we define the following two D-OPF formulations:
Nonlinear Bus-injection Model (NLP-BIM) and Nonlinear Branch-flow
Model (NLP-BFM).

3.4.1 D-OPF using Bus-injection Power Flow Model (NLP-BIM)

The current-voltage D-OPF (IV-DOPF) (Cain et al., 2012) expresses the
power flow equations in terms of the current-voltage (IV) relationship.
Linear network flows can be obtained in terms of the current injection
method. The load models at each phase are expressed in terms of bilinear
terms (V ψ,re

i Iψ,rei , V ψ,im
i Iψ,imi , V ψ,im

i Iψ,rei , V ψ,re
i Iψ,imi ). Note that the

IV-DOPF formulation has the nonlinearities in the bilinear terms which
couple variables associated with a single bus; this makes it scale better
compared to other power flow formulations that have nonlinearities
which couple variables associated with different buses (Jha et al., 2022).
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The D-OPF formulation is as follows, where, state variables, x =
(V ψ,re
i , Iψ,rei , V ψ,im

i , Iψ,imi ) and decision variables, u = (pψDG,i, q
ψ
DG,i).

min /max f(x, u) (3.4)

Subject to:
Power flow constraints g(x, u):

0 = V ψ,rei Iψ,rei + V ψ,imi Iψ,imi + pψL,i − pψDG,i (3.5)

0 = V ψ,imi Iψ,rei − V ψ,rei Iψ,imi + qψL,i − qψDG,i − qψcap,i (3.6)

Iψ,rei =
∑

j : ij∈E,ϕ∈{a,b,c}

V ϕ,rej Gψϕij − V ϕ,imj Bψϕij (3.7)

Iψ,imi =
∑

j : ij∈E,ϕ∈{a,b,c}

V ϕ,rej Bψϕij + V ϕ,imj Gψϕij (3.8)

Operating Constraints, h(x, u):

(Vmin)2 ≤ (V ψ,rei )2 + (V ψ,imi )2 ≤ (Vmax)2 (3.9)

(Iψ,reij )2 + (Iψ,imij )2 ≤
(
Iψ,ratedij

)2
(3.10)

where
Iψ,reij = −Gψψij V

ψ,re
i +Bψψij V

ψ,im
i +Gψψij V

ψ,re
j −Bψψij V

ϕ,im
j (3.11)

Iψ,imij = −Gψψij V
ψ,im
i +Bψψij V

ψ,re
i +Bψψij V

ψ,re
j +Gψψij V

ψ,im
j (3.12)

Operating constraints specific to loss and voltage deviation minimiza-
tion (assuming reactive power control):

−
√(

sψ,ratedDG,j

)2
−
(
pψDG,j

)2
≤ qψDG,j ≤

√(
sψ,ratedDG,j

)2
−
(
pψDG,j

)2
(3.13)

Operating constraints specific to PV hosting maximization (assuming
active power control):

0 ≤ pψDG,j ≤ pψ,maxDG,j and qψDG,j = 0 ∀j ∈ NDG (3.14)

3.4.2 D-OPF using Branch-flow Power Flow Model (NLP-BFM)

The NLP-BFM formulation for D-OPF problem is detailed below, where
power flow constraints are modeled using non-linear branch flow model
(BFM).
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min /max f(x) (3.15)
Subject to:
Power flow constraints:

Vj = Vi − ZijIij (3.16)

diag(Sij − zij lij) =
∑
k:j→k

diag(Sjk) + sL,j (3.17)

Sij = ViI
H
ij (3.18)

Operating Constraints, h(x, u):

V 2
min ≤ (V ψ,rei )2 + (V ψ,imi )2 ≤ V 2

max (3.19)

(Iψψ,reij )2 + (Iψψ,imij )2 ≤
(
Iratedij

)2

Operating constraints specific to loss and voltage deviation minimiza-
tion (assuming reactive power control):

−
√

(sψ,ratedDG,j )2 − (pψDG,j)2 ≤ qψDG,j ≤
√

(sψ,ratedDG,j )2 − (pψDG,j)2 (3.20)

Operating constraints specific to PV hosting maximization (assuming
active power control):

0 ≤ pψDG,j ≤ pψDG,max and qψDG,j = 0 ∀j ∈ NDG (3.21)

3.5 Approximation and Relaxation techniques

The nonlinear relationship between power flow variables makes the
OPF problem non-convex. NLP models for unbalanced D-OPF often
converge to infeasible or sub-optimal operating points, especially for
large or mid-sized feeders. Recent research in this domain actively
looked into scalable algorithms for unbalanced D-OPF that result in a
feasible and optimal solution. To this end, there is extensive literature on
relaxation and approximation techniques applied to unbalanced D-OPF
problem (Gan and Low, 2014; Wang and Yu, 2017; Guggilam et al.,
2016; Bernstein and Dall’Anese, 2017).

Another approach attempts to relax the nonlinear power flow equa-
tions as convex inequalities. This results in a convex optimization
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problem for D-OPF, which solves within a reasonable time for large-
scale distribution systems (Gan and Low, 2014; Zhao et al., 2017). These
methods either relax a BIM based D-OPF as a semi-definite program
(SDP) (Bai and Wei, 2009), or a BFM based D-OPF as a second-order
cone program (SOCP) (Jabr, 2006b) or SDP (Gan and Low, 2014)
These relaxations, however, may lead to infeasible power flow solutions.

In what follows, we discuss some common approximation and relax-
ation techniques applied to D-OPF problems. It should be noted that
D-OPF problems also encounter other types of nonlinearities due to
decision variables and objective functions. However, here we focus on
only power flow-related nonlinearities.

3.5.1 Conic Relaxation – Semidefinite programming

Conic relaxation leads to a convex problem formulation for an original
non-convex model. This is achieved by relaxing nonlinear equality
constraint into a convex inequality constraint. Below, we describe a
conic relaxation for branch flow model. First, the branch flow equations
are lifted to a new variable space by multiplying both sides of the
voltage drop constraint by its hermitian conjugate. This results in the
following power flow equations.

vi = vj + (SijzHij + zijS
H
ij ) − zij lijz

H
ij (3.22)

diag(Sij − zij lij) − sL,j + sDG,i =
∑
k:j→k

diag(Sjk) (3.23)

[
vi Sij
SHij lij

]
=
[
Vi
Iij

] [
Vi
Iij

]H
(3.24)

Now the power flow equations are described in lifted variable space,
(vij and lij) by representing (3.25) as the following two equations.[

vi Sij
SHij lij

]
≥ 0 (3.25)

rank

[
vi Sij
SHij lij

]
= 1 (3.26)

Note that the rank constraint defined in (3.26) is a non-convex
constraint. The following relaxation simply drops the rank constraints
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resulting in the following semidefinite programming (SDP) formulation.

min /max f(x) (3.27)
Subject to:
Power flow constraints:

vi = vj + (SijzHij + zijS
H
ij ) − zij lijz

H
ij (3.28)

diag(Sij − zij lij) =
∑
k:j→k

diag(Sjk) + sL,j − sDG,j (3.29)

[
vi Sij
SHij lij

]
⪰ 0 (3.30)

Operating Constraints, h(x, u):

V 2
min ≤ diag(vi) ≤ V 2

max (3.31)
diag(lij) ≤

(
Iratedij

)2

Operating constraints specific to loss and voltage deviation minimiza-
tion:

−
√

(sψ,ratedDG,j )2 − (pψDG,j)2 ≤ qψDG,j ≤
√

(sψ,ratedDG,j )2 − (pψDG,j)2 (3.32)

Operating constraints specific to PV hosting maximization:

0 ≤ pψDG,j ≤ pψDG,max and qψDG,j = 0 ∀j ∈ NDG (3.33)

Note that for solutions to be meaningful, the optimal solution
obtained using the relaxed model must satisfy the rank constraint
(3.26). Only then the optimal solution is AC-feasible and meaningful
for the real-world distribution operations.

3.5.2 Linear Approximation - Three-phase LinDistFlow

The linearized three-phase model is obtained using lifted branch flow
equations. This models involves two major approximations:

• Ignoring Power Losses: The effects of power loss is ignored from
power flow equations.

• Approximating Nodal Voltage Phase Angle: For a given node, it is
assumed that the nodal voltage phase angles are separated by 1200
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and the degree of unbalance in voltage magnitudes is not large. This
assumption allows us to represent off diagonal elements Sψϕij as a
function of the diagonal elements, Sψψij , in Sij .

min /max f(x) (3.34)
Subject to:
Power flow constraints:

vψj = vψi −
∑
ϕ∈ϕj

2
(
real

(
γψϕSϕϕij (zψϕij )T

))
(3.35)

Pψψij =
∑
k:j→k

Pψψjk + pL,j − pDG,j (3.36)

Qψψij =
∑
k:j→k

Qψψjk + qL,j − qDG,j (3.37)

where,

γ =

 1 α α2

α2 1 α

α α2 1

 (3.38)

Operating Constraints, h(x, u): The bus voltages are constrained by the
allowed limits for minimum and maximum voltages.

V 2
min ≤ vψi ≤ V 2

max (3.39)

An approximation is needed to include the line thermal limit con-
straint in linear power flow model. There are multiple ways to approxi-
mate the line currents. Here we present one such approach using the
polygon-based linearization proposed in (Ahmadi and Martı, 2015). The
set of linear constraints for line thermal limit are defined in (3.40).

−
√

3 (Pij + Sij) ≤ Qij ≤ −
√

3 (Pij − Sij)

−
√

3/2 Sij ≤ Qij ≤
√

3/2 Sij
√

3 (Pij − Sij) ≤ Qij ≤
√

3 (Pij + Sij)

(3.40)

where, S ij = Srated
ij

√
(2π/n)/sin(2π/n) and n = 6.

Operating constraints specific to loss and voltage deviation minimiza-
tion:

−
√

(sψ,ratedDG,j )2 − (pψDG,j)2 ≤ qψDG,j ≤
√

(sψ,ratedDG,j )2 − (pψDG,j)2 (3.41)
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Operating constraints specific to PV hosting maximization:
0 ≤ pψDG,j ≤ pψDG,max and qψDG,j = 0 ∀j ∈ NDG (3.42)

Although the the errors introduced due to linearization are typically
small, it has been shown in the existing literature that the accuracy
of the linearization reduces under stressed system conditions such as
during high loading conditions.

3.5.3 Hybrid model - Second-order cone programming

The hybrid model detailed here incorporates elements of both approxi-
mation and relaxation techniques. The approximation includes ignoring
the mutual coupling in three phase lines. This results in three single-
phase branch flow equations written separately for each phase. The
resulting nonlinear power flow equations are then relaxed to obtain a
second-order cone programming model.

Specifically, the approximation is detailed as below:

Zij =

 Zaaij Zabij Zacij
Zbaij Zbbij Zbcij
Zcaij Zcaij Zccij

 ≈

 Zaaij 0 0
0 Zbbij 0
0 0 Zccij

 (3.43)

The resulting power flow model is as following:
vψi = vψj + (Sψψij (zψψij )H + (Sψψij )H(zψψij )) − zψψij l

ψψ
ij (zψψij )H(3.44)

Sψψij − zψψij l
ψψ
ij =

∑
k:j→k

Sψψjk + sψL,j − sψDG,j (3.45)

(Sψψij )2 = vψi l
ψψ
ij (3.46)

Note that (3.45) is a nonlinear equality constraint. The convex
relaxation involves relaxing (3.45) to a conic constraint defined below.

(Pψψij )2 + (Qψψij )2 ≤ vψi l
ψψ
ij (3.47)

The relaxed constrained shows by inequality (3.46) is a second-order
cone and can be written as the following.∥∥∥∥∥∥∥

2Pij
2Qij
lij − vi

∥∥∥∥∥∥∥ ≤ lij + vi (3.48)



44 Distribution Optimal Power Flow (D-OPF) Formulations

The hybrid model for the D-OPF problem as second-order conic
programming problem is detailed below.

min /max f(x) (3.49)

Subject to:
Power flow constraints:

vψi = vψj + 2(Pψψij Rψψij +Qψψij X
ψψ
ij ) − lψψij (zψψij )2(3.50)

Pψψij −Rψψij l
ψψ
ij =

∑
k:j→k

Pψψjk + pψL,j − pψDG,j (3.51)

Qψψij −Xψψ
ij lψψij =

∑
k:j→k

Qψψjk + qψL,j − qψDG,j (3.52)

(Pψψij )2 + (Qψψij )2 ≤ vψi l
ψψ
ij (3.53)

Operating Constraints, h(x, u):

V 2
min ≤ vψi ≤ V 2

max (3.54)

lψψij ≤
(
Iratedij

)2 (3.55)

Operating constraints specific to loss and voltage deviation minimiza-
tion:

−
√

(sψ,ratedDG,j )2 − (pψDG,j)2 ≤ qψDG,j ≤
√

(sψ,ratedDG,j )2 − (pψDG,j)2 (3.56)

Operating constraints specific to PV hosting maximization:

0 ≤ pψDG,j ≤ pψDG,max and qψDG,j = 0 ∀j ∈ NDG (3.57)

Recall that in this model we are approximating power flow equa-
tions first by ignoring the mutual coupling and second by relaxing
the voltage, current, power relationship equation. Thus, this model
is a poor approximation if the distribution system under study has
significant mutual coupling. Likewise, it is important to check the AC
feasibility of the solutions obtained from the relaxed D-OPF model.
In this model, the OPF solutions are AC-feasible if they satisfy the
equality (Pψψij )2 + (Qψψij )2 = vψi l

ψψ
ij , a the relaxed D-OPF model solves

for inequality. If the OPF solutions do not satisfy this equality, they
are AC-infeasible and meaningless.
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3.6 Multi-period Optimization: D-OPF problems

The DOPF problem formulation may require consideration of multiple
time periods in a single optimization model. Specifically, device models
including batter energy storage or OLTC daily switching limits require
inter-temporal constraints to be included on the D-OPF formulation that
links multiple time period and necessitates the development of multi-
period DOPF formulation. On the other hand, some DOPF problems
could be of time-series nature but not without inter-temporal constraints
(e.g., running DOPF for daily/yearly PV generation profiles). For such
problems, the DOPF model with multi-period time consideration may
not be required as such DOPF problems can be easily decoupled into
multiple single period DOPF problems and solve effectively.

3.7 Illustrated Example

In this section, we detail the D-OPF formulations using a 5-bus example
that was introduced in chapter 2 (see Figure 3.1). The feeder consists
of unbalanced lines and loads and the following controllable devices: a
voltage regulator, a capacitor bank, and two DGs with smart inverters.
The variable definitions follow from those defined in Chapter 2. Here,
we define the decision variables for the 5-bus system.

Figure 3.1: An example 5-bus test system.
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• Optimum step for the voltage regulator at branch 12, xm,12 =
[xam,12, x

b
m,12, x

c
m,12], where, xψm,12 ∈ {0, 1}, and m defines the step.

• Decision on on/off status of capacitor bank at bus 3, uc,3 = [uac,3, ubc,3, ucc,3],
where, uψc,3 ∈ {0, 1}

• Reactive power dispatch from DG smart inverters connected at buses
4 and 5 are {qaDG,4, qbDG,4, qcDG,5}

Next, we formulate the D-OPF formulation for the 5-bus test system
using the models introduced in this chapter including NLP-BIM, NLP-
BFM, SDP, SOCP, and LinDistFlow. The goal of the OPF problem to
minimize the feeder losses by controlling all voltage control devices in
the 5-bus test system.

Note that in all the cases, the discrete decision variables will lead
to a mixed-integer problem formulation. In order to formulate a an
optimization problem with only continuous variables, one can freeze the
set-points of discrete control devices (i.e. voltage regulator and capacitor
bank) and optimize only for the continuous decision variables.
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3.7.1 D-OPF using Bus-injection Power Flow Model (NLP-BIM)

Power flow constraints g(x, u):

0 = V a,re2 Ia,re2 + V a,im2 Ia,im2 (3.58)
0 = V a,im2 Ia,re2 − V a,re2 Ia,im2 (3.59)
0 = V b,re2 Ib,re2 + V b,im2 Ib,im2 (3.60)
0 = V b,im2 Ib,re2 − V b,re2 Ib,im2 (3.61)
0 = V c,re2 Ic,re2 + V c,im2 Ic,im2 (3.62)
0 = V c,im2 Ic,re2 − V c,re2 Ic,im2 (3.63)
0 = V a,re3 Ia,re3 + V a,im3 Ia,im3 + paL,3 (3.64)

0 = V a,im3 Ia,re3 − V a,re3 Ia,im3 + qaL,3 − qacap,3 (3.65)

0 = V b,re3 Ib,re3 + V b,im3 Ib,im3 + pbL,3 (3.66)

0 = V b,im3 Ib,re3 − V b,re3 Ib,im3 + qbL,3 − qbcap,3 (3.67)

0 = V c,re3 Ic,re3 + V c,im3 Ic,im3 + pcL,3 (3.68)

0 = V c,im3 Ic,re3 − V c,re3 Ic,im3 + qcL,3 − qccap,3 (3.69)

0 = V a,re4 Ia,re4 + V a,im4 Ia,im4 + paL,4 − paDG,4 (3.70)

0 = V a,im4 Ia,re4 − V a,re4 Ia,im4 + qaL,4 − qaDG,4 (3.71)

0 = V b,re4 Ib,re4 + V b,im4 Ib,im4 + pbL,4 − pbDG,4 (3.72)

0 = V b,im4 Ib,re4 − V b,re4 Ib,im4 + qbL,4 − qbDG,4 (3.73)

0 = V c,re5 Ic,re5 + V c,im5 Ic,im5 + pcL,5 − pcDG,5 (3.74)

0 = V c,im5 Ic,re5 − V c,re5 Ic,im5 + qcL,5 − qcDG,5 (3.75)

Ia,re2 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gaψ2j − V ψ,imj Baψ2j (3.76)

Ia,im2 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Baψ2j + V ψ,imj Gaψ2j (3.77)

Ib,re2 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gbψ2j − V ψ,imj Bbψ2j (3.78)

Ib,im2 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Bbψ2j + V ψ,imj Gbψ2j (3.79)

Ic,re2 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gcψ2j − V ψ,imj Bcψ2j (3.80)

Ic,im2 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Bcψ2j + V ψ,imj Gcψ2j (3.81)
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Ia,re3 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gaψ3j − V ψ,imj Baψ3j (3.82)

Ia,im3 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Baψ3j + V ψ,imj Gaψ3j (3.83)

Ib,re3 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gbψ3j − V ψ,imj Bbψ3j (3.84)

Ib,im3 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Bbψ3j + V ψ,imj Gbψ3j (3.85)

Ic,re3 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gcψ3j − V ψ,imj Bcψ3j (3.86)

Ic,im3 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Bcψ3j + V ψ,imj Gcψ3j (3.87)

Ia,re4 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gaψ4j − V ψ,imj Baψ4j (3.88)

Ia,im4 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Baψ4j + V ψ,imj Gaψ4j (3.89)

Ib,re4 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gbψ4j − V ψ,imj Bbψ4j (3.90)

Ib,im4 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Bbψ4j + V ψ,imj Gbψ4j (3.91)

Ic,re5 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Gcψ5j − V ψ,imj Bcψ5j (3.92)

Ic,im5 =
∑

j∈{1,2,3,4,5},ψ∈{a,b,c}

V ψ,rej Bcψ5j + V ψ,imj Gcψ5j (3.93)

Operating Constraints, h(x, u):

0.952 ≤ (V a,re2 )2 + (V a,im2 )2 ≤ 1.052 (3.94)
0.952 ≤ (V b,re2 )2 + (V b,im2 )2 ≤ 1.052 (3.95)
0.952 ≤ (V c,re2 )2 + (V c,im2 )2 ≤ 1.052 (3.96)
0.952 ≤ (V a,re3 )2 + (V a,im3 )2 ≤ 1.052 (3.97)
0.952 ≤ (V b,re3 )2 + (V b,im3 )2 ≤ 1.052 (3.98)
0.952 ≤ (V c,re3 )2 + (V c,im3 )2 ≤ 1.052 (3.99)
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0.952 ≤ (V a,re4 )2 + (V a,im4 )2 ≤ 1.052 (3.100)
0.952 ≤ (V b,re4 )2 + (V b,im4 )2 ≤ 1.052 (3.101)
0.952 ≤ (V c,re5 )2 + (V c,im5 )2 ≤ 1.052 (3.102)

(Ia,re12 )2 + (Ia,im12 )2 ≤
(
Ia,rated12

)2
(3.103)

(Ib,re12 )2 + (Ib,im12 )2 ≤
(
Ib,rated12

)2
(3.104)

(Ic,re12 )2 + (Ic,im12 )2 ≤
(
Ic,rated12

)2
(3.105)

(Ia,re23 )2 + (Ia,im23 )2 ≤
(
Ia,rated23

)2
(3.106)

(Ib,re23 )2 + (Ib,im23 )2 ≤
(
Ib,rated23

)2
(3.107)

(Ic,re23 )2 + (Ic,im23 )2 ≤
(
Ic,rated23

)2
(3.108)

(Ia,re34 )2 + (Ia,im34 )2 ≤
(
Ia,rated34

)2
(3.109)

(Ib,re34 )2 + (Ib,im34 )2 ≤
(
Ib,rated34

)2
(3.110)

(Ic,re45 )2 + (Ic,im45 )2 ≤
(
Ic,rated45

)2
(3.111)

where
Ia,re12 = −Gaa12V

a,re
1 +Baa12V

a,im
1 +Gaa12V

a,re
2 −Baa12V

a,im
2 (3.112)

Ia,im12 = −Gaa12V
a,im

1 +Baa12V
a,re

1 +Baa12V
a,re

2 +Gaa12V
a,im

2 (3.113)
Ib,re12 = −Gbb12V

b,re
1 +Bbb12V

b,im
1 +Gbb12V

b,re
2 −Bbb12V

b,im
2 (3.114)

Ib,im12 = −Gbb12V
b,im

1 +Bbb12V
b,re

1 +Bbb12V
b,re

2 +Gbb12V
b,im

2 (3.115)
Ic,re12 = −Gcc12V

c,re
1 +Bcc12V

c,im
1 +Gcc12V

c,re
2 −Bcc12V

c,im
2 (3.116)

Ic,im12 = −Gcc12V
c,im

1 +Bcc12V
c,re

1 +Bcc12V
c,re

2 +Gcc12V
c,im

2 (3.117)
Ia,re23 = −Gaa23V

a,re
2 +Baa23V

a,im
2 +Gaa23V

a,re
3 −Baa23V

a,im
3 (3.118)

Ia,im23 = −Gaa23V
a,im

2 +Baa23V
a,re

2 +Baa23V
a,re

3 +Gaa23V
a,im

3 (3.119)
Ib,re23 = −Gbb23V

b,re
2 +Bbb23V

b,im
2 +Gbb23V

b,re
3 −Bbb23V

b,im
3 (3.120)

Ib,im23 = −Gbb23V
b,im

2 +Bbb23V
b,re

2 +Bbb23V
b,re

3 +Gbb23V
b,im

3 (3.121)
Ic,re23 = −Gcc23V

c,re
2 +Bcc23V

c,im
2 +Gcc23V

c,re
3 −Bcc23V

c,im
3 (3.122)

Ic,im23 = −Gcc23V
c,im

2 +Bcc23V
c,re

2 +Bcc23V
c,re

3 +Gcc23V
c,im

3 (3.123)
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Ia,re34 = −Gϕϕ34 V
a,re

3 +Baa34V
a,im

3 +Gaa34V
a,re

4 −Baa34V
a,im

4 (3.124)
Ia,im34 = −Gaa34V

a,im
3 +Baa34V

a,re
3 +Baa34V

a,re
4 +Gaa34V

a,im
4 (3.125)

Ib,re34 = −Gϕϕ34 V
b,re

3 +Bbb34V
b,im

3 +Gbb34V
b,re

4 −Bbb34V
b,im

4 (3.126)
Ib,im34 = −Gbb34V

b,im
3 +Bbb34V

b,re
3 +Bbb34V

b,re
4 +Gbb34V

b,im
4 (3.127)

Ic,re35 = −Gϕϕ35 V
c,re

3 +Bcc35V
c,im

3 +Gcc35V
c,re

5 −Bcc35V
c,im

5 (3.128)
Ic,im35 = −Gcc35V

c,im
3 +Bcc35V

c,re
3 +Bcc35V

c,re
5 +Gcc35V

c,im
5 (3.129)

Operating constraints specific to loss and voltage deviation mini-
mization:

−
√(

sa,ratedDG,4

)2
−
(
paDG,4

)2
≤ qaDG,4 ≤

√(
sa,ratedDG,4

)2
−
(
paDG,4

)2
(3.130)

−
√(

sb,ratedDG,4

)2
−
(
pbDG,4

)2
≤ qbDG,4 ≤

√(
sb,ratedDG,4

)2
−
(
pbDG,4

)2
(3.131)

−
√(

sc,ratedDG,5

)2
−
(
pcDG,5

)2
≤ qcDG,5 ≤

√(
sc,ratedDG,5

)2
−
(
pcDG,5

)2
(3.132)

Operating constraints specific to PV hosting maximization:

0 ≤ paDG,4 ≤ pa,maxDG,4 (3.133)

0 ≤ pbDG,4 ≤ pb,maxDG,4 (3.134)
0 ≤ pcDG,5 ≤ pc,maxDG,5 (3.135)

qaDG,4 = 0 (3.136)
qbDG,4 = 0 (3.137)
qcDG,5 = 0 (3.138)

(3.139)

3.7.2 D-OPF using Branch Power Flow Model (NLP-BFM)

Problem Objective, f(x, u): Loss minimization. Total power loss is
defined as,

f(x, u) = P totalloss = real(IH23Z23I23) + real(IH34Z34I34) + real(IH35Z35I35)
(3.140)
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Subject to:
Equality constraints (Branch flow model), g(x, u) = 0

V2 = a12V1 (3.141)
V3 = V2 − Z23I23 (3.142)
V4 = V3 − Z34I34 (3.143)
V5 = V3 − Z35I35 (3.144)
I12 = a12I23 (3.145)

diag(S23 − Z23I23I23
H) = diag(S34) + diag(S35) +

sL,3 − sDG,3 − uc,3qc,3 (3.146)
diag(S34 − Z34I34I34

H) = sL,4 − sDG,4 (3.147)
diag(S35 − Z35I35I35

H) = sL,5 − sDG,5 (3.148)
S23 = V2I

H
23 (3.149)

S34 = V3I
H
34 (3.150)

S35 = V3I
H
35 (3.151)

Voltage regulator model

aψ12 =
32∑
m=1

(bmxψm,12) (3.152)

32∑
m=1

xψm,12 = 1 (3.153)

Operating constraints (inequalities, h(x,u) < 0):
Voltage limit

0.95 ≤ |V ψ
2 | ≤ 1.05 (3.154)

0.95 ≤ |V ψ
3 | ≤ 1.05 (3.155)

0.95 ≤ |V ψ
4 | ≤ 1.05 (3.156)

0.95 ≤ |V ψ
5 | ≤ 1.05 (3.157)

Thermal limit:

|Iψ23| ≤ Irated23 (3.158)
|Iψ34| ≤ Irated34 (3.159)
|Iψ35| ≤ Irated35 (3.160)
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Smart Inverter Rating

|qψDG,3| ≤
√

(sψ,ratedDG,3 )2 − (pψDG,3)2 (3.161)

|qψDG,4| ≤
√

(sψ,ratedDG,4 )2 − (pψDG,4)2 (3.162)

|qψDG,5| ≤
√

(sψ,ratedDG,5 )2 − (pψDG,5)2 (3.163)
(3.164)

3.7.3 D-OPF using SDP Relaxation for Power Flow Model

Problem Objective, f(x, u): Loss minimization. Total power loss is
defined as,

f(x, u) = P totalloss = real(Z23l23) + real(Z34l34) + real(Z35I35) (3.165)

Subject to:
Equality constraints (Branch flow model), g(x, u) = 0

v2 = A12v1 (3.166)
v3 = v2 − (S23Z

H
23 + Z23S

H
23) + Z23l23Z

H
23 (3.167)

v4 = v3 − (S34Z
H
34 + Z34S

H
34) + Z34l34Z

H
34 (3.168)

v5 = v4 − (S35Z
H
35 + Z35S

H
35) + Z35l35Z

H
35 (3.169)

l12 = A12l23 (3.170)
diag(S23 − Z23l23) = diag(S34) + sL,3 − uc,3qc,3 (3.171)
diag(S34 − Z34l34) = sL,3 − sDG,4 (3.172)
diag(S35 − Z35l35) = sL,5 − sDG,5 (3.173)

SDP relaxation (Rank constraint is relaxed to obtain a convex program-
ming model) [

v2 S23
SH23 l23

]
⪰ 0 (3.174)[

v3 S34
SH34 l34

]
⪰ 0 (3.175)[

v3 S35
SH35 l35

]
⪰ 0 (3.176)
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Voltage regulator model

A12 =


∑32
m=1(bmxam,12) 0 0

0
∑32
m=1(bmxbm,12) 0

0 0
∑32
m=1(bmxcm,12)

(3.177)

32∑
m=1

xψm,12 = 1 ∀{ψ ∈ a, b, c} (3.178)

Operating constraints (inequalities, h(x,u) < 0):
Voltage limits:

0.95 ≤ diag(v2) ≤ 1.05 (3.179)
0.95 ≤ diag(v3) ≤ 1.05 (3.180)
0.95 ≤ diag(v4) ≤ 1.05 (3.181)
0.95 ≤ diag(v5) ≤ 1.05 (3.182)

Thermal limit:

diag(l23) ≤ Irated23 (3.183)
diag(l34) ≤ Irated34 (3.184)
diag(I35) ≤ Irated35 (3.185)

Smart Inverter Rating

|qψDG,3| ≤
√

(sψ,ratedDG,3 )2 − (pψDG,3)2 (3.186)

|qψDG,4| ≤
√

(sψ,ratedDG,4 )2 − (pψDG,4)2 (3.187)

|qψDG,5| ≤
√

(sψ,ratedDG,5 )2 − (pψDG,5)2 (3.188)

3.7.4 D-OPF using LinDistFlow Power Flow Model

Problem Objective, f(x, u): Loss minimization. Total power loss is
a function of branch current. Since the LinDistFlow model does not
directly include the branch currents in power flow formulation, we
present an alternate and approximate formulation for the loss function.

The per-phase branch current is defined as the following.

(Iψψij )2 =
(Pψψij )2 + (Qψψij )2

(V ψ
i )2

(3.189)
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Assuming, |V ψ
i | ≈ 1, The per-phase branch current can be approxi-

mated as a function of branch active and reactive power flow as shown
below.

(Ĩψψij )2 = (Pψψij )2 + (Qψψij )2 (3.190)

Then, loss minimization objective function is expressed using ap-
proximated branch current.

f(x, u) = P totalloss =
∑

ψ∈{abc}
(Ĩψψ23 )2rψψ23 +

∑
ψ∈{ab}

(Ĩψψ34 )2rψψ34 +
∑
ψ∈{c}

(Ĩψψ35 )2rψψ35

(3.191)
Subject to:
Equality constraints (Branch flow model), g(x, u) = 0

vψ2 = aψ12v
ψ
1 (3.192)

vψ3 = vψ2 −
∑
ϕ∈Φ2

2
(
real

(
γψϕSϕϕ23 (Zψϕ23 )H

))
(3.193)

vψ4 = vψ3 −
∑
ϕ∈Φ3

2
(
real

(
γψϕSϕϕ34 (Zψϕ34 )H

))
(3.194)

vψ5 = vψ3 −
∑
ϕ∈Φ3

2
(
real

(
γψϕSϕϕ35 (Zψϕ35 )H

))
(3.195)

Sψψ12 = Sψψ23 (3.196)
Sψψ23 = Sψψ34 + Sψψ35 + sψL,3 − uψc,3q

ψ
c,3 (3.197)

Sψψ34 = sψL,4 − sψDG,4 (3.198)

Sψψ35 = sψL,5 − sψDG,5 (3.199)

Voltage regulator model

aψ12 =
32∑
m=1

(bmxψm,12) (3.200)

32∑
m=1

xψm,12 = 1 (3.201)
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Operating constraints (inequalities, h(x,u) < 0): Voltage limits:

0.95 ≤ |V ψ
2 | ≤ 1.05 (3.202)

0.95 ≤ |V ψ
3 | ≤ 1.05 (3.203)

0.95 ≤ |V ψ
4 | ≤ 1.05 (3.204)

0.95 ≤ |V ψ
5 | ≤ 1.05 (3.205)

Thermal limit constraints are difficult to define in LinDistFlow
formulation. One can use linearization techniques such as the one using
polygon-based approximation as defined in previous sections.

Smart Inverter Ratings:

|qψDG,3| ≤
√

(sψ,ratedDG,3 )2 − (pψDG,3)2 (3.206)

|qψDG,4| ≤
√

(sψ,ratedDG,4 )2 − (pψDG,4)2 (3.207)

|qψDG,5| ≤
√

(sψ,ratedDG,5 )2 − (pψDG,5)2 (3.208)

3.7.5 D-OPF using SOCP Relaxation for Power Flow Model

Problem Objective, f(x, u): Loss minimization. Total power loss is
defined as,

f(x, u) = P totalloss = real(Z23l23) + real(Z34l34) + real(Z35I35) (3.209)

Subject to:
Equality constraints (Branch flow model), g(x, u) = 0

vψ2 = aψ12v
ψ
1 (3.210)

vψ3 = vψ2 + 2(Pψψ23 R
ψψ
23 +Qψψ23 X

ψψ
23 ) − lψψ23 (zψψ23 )2 (3.211)

vψ4 = vψ3 + 2(Pψψ34 R
ψψ
34 +Qψψ34 X

ψψ
34 ) − lψψ34 (zψψ34 )2 (3.212)

vψ5 = vψ3 + 2(Pψψ35 R
ψψ
35 +Qψψ35 X

ψψ
35 ) − lψψ35 (zψψ35 )2 (3.213)
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Pψψ12 = Pψψ23 (3.214)
Qψψ12 = Qψψ23 (3.215)

Pψψ23 −Rψψ23 l
ψψ
23 = Pψψ34 + Pψψ35 + pψL,3 (3.216)

Qψψ23 −Xψψ
23 l

ψψ
23 = Qψψ34 +Qψψ35 + qψL,3 − uψc,3q

ψ
c,3 (3.217)

Pψψ34 −Rψψ34 l
ψψ
34 = pψL,4 − pψDG,4 (3.218)

Qψψ34 −Xψψ
34 l

ψψ
34 = qψL,4 − qψDG,4 (3.219)

Pψψ35 −Rψψ35 l
ψψ
35 = pψL,5 − pψDG,5 (3.220)

Qψψ35 −Xψψ
35 l

ψψ
35 = qψL,5 − qψDG,5 (3.221)

lψψ12 = aψ12l
ψψ
23 (3.222)

(Pψψ23 )2 + (Qψψ23 )2 ≤ vψ2 l
ψψ
23 (3.223)

(Pψψ34 )2 + (Qψψ34 )2 ≤ vψ3 l
ψψ
34 (3.224)

(Pψψ35 )2 + (Qψψ35 )2 ≤ vψ3 l
ψψ
35 (3.225)

Voltage regulator model

aψ12 =
32∑
m=1

(bmxψm,12) (3.226)

32∑
m=1

xψm,12 = 1 (3.227)

Operating constraints (inequalities, h(x,u) < 0):
Voltage limits:

0.95 ≤ |V ψ
2 | ≤ 1.05 (3.228)

0.95 ≤ |V ψ
3 | ≤ 1.05 (3.229)

0.95 ≤ |V ψ
4 | ≤ 1.05 (3.230)

0.95 ≤ |V ψ
5 | ≤ 1.05 (3.231)

Thermal limit constraints:

lψψ23 ≤ Irated23 (3.232)
lψψ34 ≤ Irated34 (3.233)
lψψ35 ≤ Irated35 (3.234)
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Smart Inverter Ratings:

|qψDG,3| ≤
√

(sψ,ratedDG,3 )2 − (pψDG,3)2 (3.235)

|qψDG,4| ≤
√

(sψ,ratedDG,4 )2 − (pψDG,4)2 (3.236)

|qψDG,5| ≤
√

(sψ,ratedDG,5 )2 − (pψDG,5)2 (3.237)

3.8 Modeling Tools and Solvers

This section briefly summarizes the modeling tools and solvers commonly
used to solve D-OPF problems.

3.8.1 MATLAB

MATLAB, programming and numeric computing platform, has been
extensively used to model and solve optimization problems. MAT-
LAB, designed to operate on whole matrices and arrays, have provided
structure to model linear, nonlinear, convex, and mixed-integer pro-
gramming problems. Moreover, MATLAB’s Optimization Toolbox can
solve LP, MILP, QP, and NLP problems. For example, fmincon and
inlinprog are MATLAB’s function for solving NLP and MILP prob-
lems, respectively. The toolbox includes multiple algorithms for each
class of the optimization problems. More details can be found here
(https://www.mathworks.com/products/optimization.html). MATLAB
can also call external optimization solvers such as: CPLEX, Knitro,
Gurobi, SDPT3, SeDuMi, Mosek and GLPK solvers.

Dedicated MATLAB-based software packages have also been devel-
oped to model and solve optimization problems. These packages have
been extensively used in D-OPF problems.

• CVX: CVX is a MATLAB based software designed to model and
solve convex optimization problems (http://cvxr.com/cvx/). It doesn’t
support modeling of general nonlinear and mixed-integer optimization
problems, but a newer version supports mixed-integer disciplined con-
vex programming (MIDCP) problems. CVX already includes SDPT3,
SeDuMi solvers and supports external solvers including Gurobi,
Mosek and GLPK (see http://web.cvxr.com/cvx/doc/solver.html).
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• YALMIP: This is another MATLAB toolbox for modeling opti-
mization problems. YALMIP supports efficient modeling of several
classes of optimization problems including LP, MILP, SOCP, SDP,
QP, MIQP, NLP (https://yalmip.github.io/). YALMIP relies on
external solvers to solve the optimization problems. It support the
integration of many open-source and commercial optimization solver,
see https://yalmip.github.io/allsolvers/.

3.8.2 Python

Python is a high-level, general-purpose programming language, that
has been extensively used for scientific computing and optimization.
Multiple Python-based and open-source optimization modeling platform
have been developed that readily support many external optimization
solvers.

• CVXOPT: CVXOPT is a Python-based free software package for
modeling and solving convex optimization problems (https://cvxopt.org/).
It interfaces to the linear programming solver in GLPK, the semidef-
inite programming solver in DSDP5, and the linear, quadratic and
second-order cone programming solvers in MOSEK.

• Pyomo: Pyomo is a Python-based open-source software package
that supports modeling of multiple classes of optimization problems
(http://www.pyomo.org/about). Pyomo also supports a wide variety
of solvers with specialized interfaces such as BARON, CBC, CPLEX,
and Gurobi. It also has generic interfaces that support calling any
solver that can read AMPL “.nl” and write “.sol” files and the ability
to generate GAMS-format models and retrieve the results.

• PuLP: PuLP is an linear programming (LP) modeler written in
Python. PuLP can generate MPS or LP files and call GLPK, COIN-
OR CLP/CBC, CPLEX, GUROBI, MOSEK, XPRESS, CHOCO,
MIPCL, SCIP to solve linear problems (https://pypi.org/project/PuLP/).

• SciPy: SciPy is a free and open-source Python library used for
scientific computing and technical computing (https://scipy.org/).
SciPy optimizer provides a modeling interface to define optimization
problem. It includes solvers for nonlinear problems, linear program-
ming, constrained and nonlinear least-squares, root finding, and curve
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fitting (https://docs.scipy.org/doc/scipy/reference/optimize.html).
• gurobipy: gurobipy is a Python interface to Gurobi and provides

access to the Gurobi Optimizer, which is a mathematical optimiza-
tion software library for solving mixed-integer linear and quadratic
optimization problems.(https://pypi.org/project/gurobipy/).

3.8.3 Julia and JuMP

Julia is a flexible dynamic language extensively used by scientific and nu-
merical computing community (https://julialang.org/). One can employ
JuMP modeling language to model and solve optimization problems in
Julia (https://jump.dev/JuMP.jl/stable/). JuMP currently supports
multiple open-source and commercial solvers for a variety of problem
classes, including linear, mixed-integer, second-order conic, semidefinite,
and nonlinear programming.

3.9 Summary and Discussions

In this chapter, we introduced mathematical modeling of different
D-OPF formulations based on nonlinear power flow models (both bus-
injection and branch flow) and introduced different relaxation and
approximation techniques. We also described the detailed D-OPF for-
mulations using 5-bus test system. Note that a practically viable D-OPF
algorithm should be able to obtain an optimal and feasible solution
faster than the changes in distribution systems operating conditions. The
added nonlinearities due to phase unbalance, mutual coupling among
distribution lines, heterogeneous decision variables, and nonlinear load
models make solving the D-OPF problems especially challenging.

Linear approximations scale well for large systems (Bernstein and
Dall’Anese, 2017; Yang et al., 2018; Bolognani and Zampieri, 2016); but
they either ignore power losses, or assume balanced system conditions,
or assume node voltages to be close to their nominal values (1 pu).
These assumptions may not valid for unbalanced power distribution
systems that typically under high loading conditions observe significant
power losses and voltage drops (Dhople et al., 2015). Furthermore, the
solutions of linearized D-OPF models are typically not feasible for the
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original nonlinear programming (NLP) OPF problem. One approach is
to employ successive linear programming (SLP) methods where the basic
idea is to solve the NLP OPF as multiple iterations of approximate
linear programming (LP) problems. This simultaneously leads to a
feasible and optimal solution. This approach has been explored to solve
OPF for the bulk power grid (Castillo et al., 2016; Watson et al., 2014).
However, the existence of mutual coupling among the phases and the
requirement for solving OPF on the full three-phase model makes it
challenging to apply the SLP algorithm in distribution OPF. It is to
be noted that while the exact linearization of three-phase power flow
equations, as proposed in (Bernstein et al., 2018), may be used to
develop SLP problems, the resulting linearized power models may pose
computational challenges for large feeders.

Likewise, although the proposed SDP and SOCP relaxations lead to a
convex problem of reduced complexity, they may result in solutions that
are infeasible for the original nonlinear power flow model. Consequently,
several researchers have attempted to derive conditions that ensure the
exactness of the relaxed OPF problems (Jabr, 2006b; Farivar et al.,
2012a; Low, 2014). While convex relaxations for single-phase distribution
systems have been found to be exact for a certain choice of objective
functions and under specific conditions on the distribution system, no
such guarantees exist for a three-phase unbalanced system (Wang and
Yu, 2018). For example, SDP relaxation has been applied to three-phase
D-OPF problems (Gan and Low, 2014; Dall’Anese et al., 2013). However,
it has been reported that for three-phase distribution systems, SDP
relaxation may lead to numerical stability issues (Gan and Low, 2014;
Wang et al., 2017), and infeasible power flow solutions depending upon
the choice of system parameters and objective functions (Zamzam et al.,
2018a; Wang and Yu, 2018; Jha and Dubey, 2019). More generally, the
algorithms based on relaxation do not render exact solutions for the
cases when the overall OPF cost function is not strictly increasing in the
power injections (Zamzam et al., 2018a); minimizing PV curtailment is
one such example (Jha and Dubey, 2019).

As most of the relaxed problems for unbalanced D-OPF were found
to be ac-infeasible, several iterative algorithms have also been proposed
to obtain ac-feasible solutions (Zamzam et al., 2018b; Bolognani and
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Dörfler, 2015; Guggilam et al., 2016; Jha and Dubey, 2021). These
algorithms still make use of convex optimization techniques that are
computationally attractive but can simultaneously result in feasible
power flow solutions. For example, in (Wang and Yu, 2018), the authors
proposed a convex iteration technique to solve SDP relaxation for the
D-OPF model that leads to a feasible and optimal solution. However, the
approach does not scale well for large systems and requires additional
heuristics. In (Zamzam et al., 2018a), authors proposed an iterative
approach that starts with a feasible operating point for power flow and
solves multiple iterates of convex programming problems to reach to
the optimal solution. In (Jha and Dubey, 2021; Jha and Dubey, 2019),
authors proposed an iterative approach where a feasible OPF solution is
obtained by solving multiple iterations of relaxed-OPF problems. Scaling
D-OPF for large systems and multiple and diverse control variables in
an open research problem as further outlined in conclusions and future
work sections.



4
Mixed-Integer D-OPF Model

4.1 Introduction

The inclusion of legacy Volt/VAr control devices (e.g., OLTC, cap
banks) and network switches render the D-OPF problem mixed-integer
in nature as these control devices can only take discrete (integer) states,
e.g., binary ON/OFF (cap banks) or integer states, e.g., −16,−15, . . . , 16
(OLTCs). Since legacy controllers on distribution can only be controlled
in discrete integer steps, this turns continuous D-OPF problem into a
mixed-integer program (MIP). When a base non-linear power flow model
is used along with the discrete control, the D-OPF becomes mixed-
integer non-linear programming (MINLP) in nature. Often times, the
mixed-integer model of OLTCs and Cap banks are combined with linear
or SOCP-based power grid model that render the D-OPF as mixed-
integer linear progrmam (MILP or MIP) or mixed-integer SOCP model
(MISOCP). This chapter intents to provide basic modeling approaches
for developing MISOCP (Savasci et al., 2021) and MILP versions of the
D-OPF problems.

62
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4.2 Mixed-Integer Non-Linear Formulation

The mathematical model of the D-OPF can be concisely stated as an
objective function, followed by several linear and non-linear constraints.
For an arbitrary distribution network, let the nodes in that network be
indexed by i and j. yij is complex admittance, for the branch between
node i and node j. Shunt admittance at arbitrary node j is represented
by gj . For every line segment between node i and node j, the real
power flowing from i to j be denoted by Pij and reactive power by Qij ,
Sij = Pij + iQij . pi and qi denote real and reactive injections at node i.
Voltage at each node is given by Vi. Vi and Vi are the lower and upper
voltage limits on the ith node. Similarly, the limits on real power are
given by Pi and Pi, and the reactive powers are constrained by the
lower limit Qi and upper limit Qi. The MINLP version of D-OPF can
mathematically be stated as,

argmin
V,p,q

f(V, p, q) (4.1a)

subject to : Sij = Vi (V ∗
i − V ∗

j ) yij
∗ (4.1b)∑

j:i→j

Pij = pi (4.1c)

∑
j:i→j

Qij = qi + bi q
cap
i (4.1d)

Pi ≤ pi ≤ Pi (4.1e)
Qi ≤ qi ≤ Qi (4.1f)

Q2
ij + P 2

ij ≤ S2
ij (4.1g)

Vi ≤ |Vi| ≤ Vi (4.1h)
yij = f(yij , tapij) (4.1i)

4.3 Mixed-Integer Convex Formulation

4.3.1 Modeling of Legacy Grid Devices

Branch Flow Model (BFM) (Baran and Wu, 1989a) based SOCP for-
mulation is adopted as the base DOPF model (Farivar and Low, 2013a).
However, integrating the following LTC model, as shown in Fig.4.1,
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voltage relation (4.2) of LTCs renders the problem non-convex.

Figure 4.1: LTC model with an impedance branch and ideal LTC branch (Wu
et al., 2017b).

vf = h2
ij vj (4.2)

where i, j indicate nodes on the feeder. f is fictitious node on a LTC
connected between nodes i and j. vj is squared node voltage, i.e.,
vj = |Vj |2. vf is squared of voltage at the fictitious node of a LTC. hij ∈
[hminij , hmaxij ] represents the turn ratio. Note that LTC is modelled as an
ideal LTC section with series impedance, where the series impedance of
LTC is modelled similar to a feeder section in the SOCP formulation.

The relation between tap position and turns ratio can be modelled
as,

hij = hmin
ij + ∆hij Tapij (4.3)

where Tapij ∈ {0, 1, 2, .., Dij} denotes the integer tap position. Dij is
the total number of tap positions. ∆hij is the change in turns ratio
for one step change in tap position. For tap settings of -16 to +16, we
represent as Tapij ∈ {0, 1, 2, .., 32} in (4.3).

Utilizing binary expansion scheme, linear LTC model can be ob-
tained and readily incorporated to the SOCP model (Wu et al., 2017b).
Applying binary expansion to Tapij as,

hij = hmin
ij + ∆hij

Nij∑
n=0

2nλij,n (4.4)

Nij∑
n=0

2nλij,n ≤ Dij (4.5)

where λij,n represents binary digit to represent integer tap position.
Multiplying both sides of (4.4) by vj , and replacing the bi-linear terms
vj hij = mij and λij,n vj = xij,n we obtain,

mij = hmin
ij vj + ∆hij

Nij∑
n=0

2n xij,n (4.6)
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The bi-linear term λij,n vj = xij,n can be linearized using McCormick
relaxation as in (Shukla et al., 2019), which would require iterative bound
tightening techniques. Instead, we eliminate the need for McCormick
relaxation by adopting an exact mixed-integer linear reformulation of
the bi-linear term (product of a binary and a continuous variable) as,

0 ≤ vj − xij,n ≤ (1 − λij,n) M (4.7)

0 ≤ xij,n ≤ λij,nM (4.8)

Substituting (4.4) and (4.6) in (4.2), using the bi-linear term λij,nmij =
yij,n we obtain,

vf = hmin
ij mij + ∆hij

Nij∑
n=0

2n yij,n (4.9)

similarly, using big-M the bi-linear term λij,nmij = yij,n can be repre-
sented using mixed-integer linear form as,

0 ≤ mij − yij,n ≤ (1 − λij,n) M (4.10)

0 ≤ yij,n ≤ λij,nM (4.11)

Integer-linear LTC model is represented by (4.6)-(4.11) utilizing auxil-
iary variables mij , λij,n, xij,n, yij,n.

Switched capacitors are another legacy devices, which can be mod-
elled in mixed-integer linear form as,

uj Cj = qcj (4.12)

where Cj represents VAr rating of each capacitor, whose switching
operation is modelled by binary variable uj . qcj denotes the reactive
power injection of the capacitor.

4.3.2 Objective Functions

We have considered three objective functions that provide choices to
the operator as each feeder could be operated with different objective.
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The first objective function J1 refers to total active power losses given
as,

J1 =
∑

t∈T ,(i,j)∈E
rijℓ

t
ij (4.13)

where rij is line resistance, ℓij represents the square of branch current,
E represents the set of all branches, and t(∈ T ) denotes the time index.

We consider a multi-objective function J2 as the combination of
total active power losses and voltage deviations from the nominal values.
Multi-objective function J2 is motivated by the fact that the underlying
SOCP model may be inexact for voltage deviation objective alone, and
it is a common practice in SOCP formulation to combine the two terms
as this improves the tightness (Li and Vittal, 2017).

J2 = J1 +
∑

t∈T ,i∈N
∆Vti (4.14)

where ∆Vti := (vti − vnomi )2, is defined as the squared voltage deviations
from the nominal value at each bus in the node set N .

Since the operators may want to limit the number of LTC operations
per day to reduce wear and tear, we consider a third multi-objective
function J3 which includes inter-temporal representation of number of
tap operations per day.

J3 = J2 +
∑

t∈T ,(i,j)∈H
∆X t

ij (4.15)

where ∆X t
ij :=| Taptij − Tapt−1

ij | defines the absolute value of the tap
position deviations between two consecutive time intervals for each LTC
branch. H is the set of LTC branches.
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4.3.3 MISOCP DOPF Model

Three different MISOCP DOPF models are developed based on the
choice of the objective function.

Min : J1

Subject to :
LTC Constraints (4.6) − (4.11) ∀(i, j) ∈ H,∀t ∈ T (4.16)
Capacitor Constraints (11) ∀j ∈ N ,∀t ∈ T (4.17)

pg,tj − pd,tj =
∑

k:(j,k)∈E
P tjk −

∑
i:(i,j)∈E

(
P tij − rijℓ

t
ij

)
∀j ∈ N , ∀t ∈ T (4.18)

qg,tj + qc,tj − qd,tj =
∑

k:(j,k)∈E
Qtjk −

∑
i:(i,j)∈E

(
Qtij − xijℓ

t
ij

)
∀j ∈ N , ∀t ∈ T (4.19)

vtj = vti − 2
(
rijP

t
ij + xijQ

t
ij

)
+
(
(rij)2 + (xij)2

)
ℓtij

∀(i, j) ∈ E \ H, ∀t ∈ T (4.20)

vtj = vtf − 2
(
rijP

t
ij + xijQ

t
ij

)
+
(
(rij)2 + (xij)2

)
ℓtij

∀(i, j) ∈ H,∀t ∈ T (4.21)∥∥∥∥∥∥∥
2P tij
2Qtij
ℓtij − vti

∥∥∥∥∥∥∥
2

≤ ℓtij + vti ∀(i, j) ∈ E ,∀t ∈ T (4.22)

pg,tj ∈ [pjg,t, pjg,t], vtj ∈ [vjt, vjt] ∀j ∈ N ′, t ∈ T (4.23)

uti ∈ {0, 1}, λtij,n ∈ {0, 1} ∀i ∈ N , t ∈ T (4.24)

where pg,tj (qg,tj ) and pd,tj (qd,tj ) are the real (reactive) power generation
and demand respectively at bus j. P tij and Qtij represent the sending-end
real and reactive power flowing on the line (i, j) at time t. N ′ is the
set of nodes excluding the substation node. In the formulation, (15)
represents LTC model, (16) represents switched capacitor constraint,
real and reactive power balance equations are given by (17) and (18),
voltage drop equations for line segments and LTC branches are given
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by (19) and (20), respectively. Second-order cone constraint are given
by (21), which relates the node voltage and branch current with branch
power flow variables. Variable bounds and integrality constraints are
provided by (22) - (23).

OPF model with objective function J2 is obtained by modifying the
quadratic deviation term as second order cone constraint (24) as,

Min : J2

Subject to :
Constraints (15) − (23)∥∥∥∥∥ 2(vti − vnom

i )
∆Vti − 1

∥∥∥∥∥
2

≤ ∆Vti + 1, ∀i ∈ N ′, ∀t ∈ T (4.25)

The absolute value function of tap deviations in J3 is modified to
linear formulation using valid inequalities (25)-(27) as,

Min : J3

Subject to :
Constraints (15) − (24)
∆X t

ij ≥ Taptij − Tapt−1
ij ∀(i, j) ∈ H, ∀t ∈ T (4.26)

∆X t
ij ≥ Tapt−1

ij − Taptij ∀(i, j) ∈ H, ∀t ∈ T (4.27)
∆X t

ij ≥ 0, ∀(i, j) ∈ H,∀t ∈ T (4.28)

4.3.4 Mixed-Integer Linear Formulation

DOPF formulation using LinDist3FLow model is given by (4.29)-(4.37),
where the objective function is defined as total generation minimization.
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Min :
∑
t∈T

∑
i∈N

∑
ϕ∈Φi

pϕg,i (4.29)

Subject to :

pϕ,tg,j − pϕ,td,j =
∑

k:(j,k)∈E
P ϕ,tjk −

∑
i:(i,j)∈E

P ϕ,tij , ∀j ∈ N , ∀ϕ ∈ Φj , ∀t ∈ T (4.30)

qϕ,tg,j + qϕ,tc,j − qϕ,td,j =
∑

k:(j,k)∈E
Qϕ,tjk −

∑
i:(i,j)∈E

Qϕ,tij , ∀j ∈ N , ∀ϕ ∈ Φj , ∀t ∈ T

(4.31)

vϕ,tj = vϕ,ti −
∑
γ∈Φij

HP
ij(ϕ, γ)P γ,tij −

∑
γ∈Φij

HQ
ij(ϕ, γ)Qγ,tij ,

∀(i, j) ∈ E \ H, ∀ϕ ∈ Φij , ∀t ∈ T (4.32)

vϕ,tfij
= vϕ,ti −

∑
γ∈Φij

HP
ij(ϕ, γ)P γ,tij −

∑
γ∈Φij

HQ
ij(ϕ, γ)Qγ,tij ,

∀(i, j) ∈ H, ∀ϕ ∈ Φij , ∀t ∈ T (4.33)

LTC Model(i, j, ϕ, t), ∀(i, j) ∈ H, ∀ϕ ∈ Φij , ∀t ∈ T (4.34)

0 ≤ pϕ,tg,j ≤ pg
ϕ,t
j , ∀j ∈ NPV, ∀ϕ ∈ Φj , ∀t ∈ T (4.35)

qg
ϕ,t

j
≤ pϕ,tg,j ≤ qg

ϕ,t
j , ∀j ∈ NPV, ∀ϕ ∈ Φj , ∀t ∈ T (4.36)

pϕ,tg,j ∈ [pgϕ,t
j
, pg

ϕ,t
j ], qgϕ,tj ∈ [qgϕ,t

j
, qg

ϕ,t
j ], vϕ,tj ∈ [vtj , v

ϕ,t
j ],

∀j ∈ N ′, ∀ϕ ∈ Φj , t ∈ T (4.37)

4.4 Performance of MISOCP DOPF Formulation

Simulations are carried out using one phase of the IEEE 123-node feeder.
Loads are modelled as constant power loads, shunt capacitors on the
original network are considered to have on/off capability, and 15 PV
generators are added to the network as shown in Fig. 4.2, which operate
at unity power factor mode. Delta connected loads are converted to wye
type for modeling convenience. We used 6-bit of binary representation for
33 tap positions. A Macintosh machine with core-i5 2.9 GHz processor
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and 8 GB of RAM is used, and Gurobi is chosen as an optimization
solver. Simulations are run with 15-minute time interval for an entire
day, hence, 96 intervals in total. LTC settings, Cap bank settings, and
active power dispatch of PV are used as decision variables.

Figure 4.2: Single-line diagram of the modified IEEE 123-node feeder.

Objective functions J1 and J2 are tested for the single period op-
eration with an optimality gap of 0.01%, and setting M to 1010. As
intuitively expected, J1 yields a lower active power losses compared
to multi-objective function J2 as shown in Fig. 4.3. However, as can
be seen from Fig. 4.4, the distribution of node voltages with J1 has
larger standard deviation (0.01 p.u.) compared to that of J2 (0.0053
p.u.); thus, J2 can provide narrower min. and max. distribution of nodal
voltages and is better suited for voltage positioning applications without
degrading loss reduction impact.

Fig. 4.5 shows the daily power supplied by the grid and PV gen-

Figure 4.3: Active power losses with J1 and J2 for 24 hours (15-min res.).
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Figure 4.4: Voltage histograms for objective functions J1 and J2.

erators. It can be observed that J2 leads to 4.8% more PV energy
curtailment compared to J1. Note that the energy curtailment with
objective J2 depends on the weight of each objective terms.

Figure 4.5: Grid and PV power with J1 and J2 for 24 hours (15-min res.).

Table 4.1 summarizes the total number of tap operations per day
with J1 and J2 as an objective. The number of tap operations are
calculated using

∑
| Tapt − Tapt−1 | for each LTC over the daily

operation window based on sequential run of single-period DOPF models.
J2 results in 60 total number of tap operations, while J1 results in 259
tap operations. The average computation times (wall-clock) over 96-time
intervals are 0.87 s. and 1.75 s for J1 and J2, respectively, which are
very efficient for single-period optimization.
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Table 4.1: Number of tap changes for different objective functions

Obj LTC-1 LTC-2 LTC-3 LTC-4 Total Tap Changes
J1 0 72 125 62 259
J2 10 12 14 24 60

4.5 Performance of MILP DOPF Formulation

The MILP DOPF formulation is tested on a 2500-node three-phase
distribution feeder (see Figure 4.6), which is obtained by modifying
the original IEEE 8500-node test feeder. Five OLTCs are added as the
controllable assets, which are controlled in discrete steps (thus modeled
as integer variables). The MILP model was successfully solved using
off-the-shelf Gurobi solver for the large scale test feeder. Figure 4.7
shows the optimal tap settings of the OLTCs obtained every 15 minute
interval for an entire day of simulation. Figure 4.8 shows the voltage
profile on each phase of the feeder. The solve time of DOPF for each
interval was less than 1 minute.

Figure 4.6: A 2522-node test system obtained by modifying the IEEE 8500-node
test system.
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Figure 4.7: Change of five LTC taps A) with J1 as an objective, and B) with J2 as
an objective.

Figure 4.8: Feeder voltage profile with obtained from SOCP model.

4.6 Summary and Discussion

As seen on the problem formulation in this Chapter, the discrete control
makes the D-OPF mixed-integer in nature. This is the most difficult
class of D-OPF problem to solve. Depending on the choice of base grid
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model, and with the inclusion of mixed-integer constraints for OLTC,
cap bank, and network switches, the D-OPF could lead to MINLP,
MILP, MISOCP, and MISDP problems. Among these, MINLP is the
most accurate but most difficult to solve. However, their applications
are unavoidable in distribution grid volt/var management and reconfig-
uration problems. The performance and accuracy of these models on
the large-scale distribution grids depends on the choice of underlying
grid models using in those methods, state-of-the-art methods in solv-
ing mixed integer problems, and the implementation of such methods
in the off-the-shelf mixed-integer solvers. MILP solvers being mature
technology, the MILP models are better tractable.

To gain the computational tractability for mixed-integer D-OPF
problem, integer variables are often relaxed in (Paudyal et al., 2011a;
Robbins et al., 2016; Bazrafshan et al., 2019; Daratha et al., 2014) and
rounding heuristics are used in (Paudyal et al., 2011a; Daratha et al.,
2014). A linear grid model is used in (Nazir and Almassalkhi, 2018b)
to reduce computational complexity, which renders the D-OPF as a
MILP problem. In (Li et al., 2020; Shukla et al., 2019; Wu et al., 2017a),
computational efficiency of second-order cone programming (SOCP) is
leveraged. Similarly, in (Alsaleh et al., 2019) integer LTC variables are
added to a Semi-definite Programming (SDP) OPF which makes the
resulting problem mixed-integer SDP (MISDP).



5
Distribution Voltage Control: Conservation

Voltage Reduction

Most of the operational problems at the distribution system level require
coordination of the grid’s voltage control devices (voltage regulators,
capacitor banks, smart inverters, etc.) to meet a specific system-level
objective. In this chapter, we select a specific operational problem for the
power distribution system, namely conservation voltage reduction (CVR)
that uses Volt/VAR optimization (VVO) methods to reduce customer
power consumption. The benefits of voltage control to energy savings are
realized due to the sensitivity of customer loads to service voltages where
decreasing the voltage helps to reduce the demand (Forsten, 2011). A
study by PNNL shows that implementing conservation voltage reduction
in all the distribution feeder in the US will cause a total reduction in
energy consumption by 3% (Schneider et al., 2010). Traditionally, CVR
is accomplished by controlling the feeder’s legacy voltage control devices
such as capacitor banks, load tap changers, and voltage regulators using
Volt-VAR control (VVC) techniques. The feeder is operated at a lower
service voltage range while still maintaining the service voltages within
the recommended ANSI voltage limits (0.95 - 1.05 pu). Since most
DERs are equipped with smart inverters that can absorb and supply
reactive power, they can be used to control feeder voltages locally that
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can help achieve additional CVR benefits (Bokhari et al., 2016). This
chapter introduces a D-OPF formulation to optimally manage the grid’s
all voltage control devices, including legacy devices s(capacitor banks,
voltage regulators) and new devices (smart inverters), can help achieve
higher CVR benefits.

Figure 5.1: XX

In literature, several Volt-VAR Control (VVC) methods have been
proposed: 1) by employing autonomous or rule-based approach, 2)
using end-of-line measurements, and 3) using integrated Volt/VAR
control (IVVC) based on real-time measurements (Baran and Hsu, 1999;
Hashim et al., 2012; Padullaparti et al., 2016a). Several commercial
VVC products are also available that perform IVVC function mostly
using heuristic (Green, 2010). They primarily optimize the operation of
legacy control devices. Several researchers have worked on optimizing
the reactive power dispatch from DERs and have proposed methods
for smart inverter control using: 1) autonomous control, 2) distributed
control, and 3) centralized control (Farivar et al., 2012b; Zhu and Liu,
2016; Kekatos et al., 2015; Dall’Anese et al., 2014; Su et al., 2014;
Ren et al., 2022). Maximizing CVR benefis require methods that can
coordinate the system’s legacy devices that introduce discrete decision
variables, along with the new devices with continuous control set-points
in a computationally tractable manner for an unbalanced distribution
system. In this chapter, we discuss the use of optimization methods to
help orchestrate the feeder-level voltage control devices, both legacy
and new devices, to maximize the CVR benefits.
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5.1 Optimization Problem Formulation

The problem objective is to minimize the substation power flow subject
to network operating constraints. The variable notations are stated
below. A radial distribution system can be represented as a directed
graph G = (N , E) where N denotes set of buses and E denotes set of
edges. An edge (i, j) joins two adjacent nodes i and j where i is the
parent node for node j. The three phase {a, b, c} for a node i in the
distribution system is denoted by Φi ⊆ {a, b, c}. For each bus i ∈ N
and phase ψ, let V ψ

i , sψL,i, and sψDG,i be complex voltage, complex
power demand and complex DG power generation, respectively. Let,
Vi := [V ψ

i ]ψ∈Φi
, sL,i := [sψL,i]ψ∈Φi

and sDG,i := [sψDG,i]ψ∈Φi
. For each

line, let ψ phase current be Iψij and define, Iij := [Iψij ]ψ∈(Φi∩Φj). Let zij
be the phase impedance matrix.

5.1.1 Problem Objective

The objective is to reduce power demand for the feeder. This can be
simply achieved by minimizing the power flow from the substation, as
defined in (5.1).

min
∑

ψ∈a,b,c
real(Sψ12) (5.1)

5.1.2 Problem Constraints

The problem constraints include power flow model, device models, and
system and device operating constraints.

Power Flow Constraints

We employ branch power flow model to describe power flow constraints.
Both nonlinear and three-phase lindistflow models are detailed below.
Branch-flow Nonlinear Model

Vj = Vi − ZijIij (5.2)
diag(Sij − zijlij) =

∑
k:j→k

diag(Sjk) + sL,j − sDG,j (5.3)

Sij = ViI
H
ij (5.4)
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Three-phase LinDistFlow Model

vψi = vψj +
∑
ϕ∈ϕj

2R
(
γψϕSϕϕij (zψϕij )T

)
∀ψ ∈ Φi (5.5)

Pψψij =
∑
k:j→k

Pψψjk + pL,j − pDG,j ∀ψ ∈ (Φi ∩ Φj) (5.6)

Qψψij =
∑
k:j→k

Qψψjk + qL,j − qDG,j ∀ψ ∈ (Φi ∩ Φj) (5.7)

γ =

 1 α α2

α2 1 α

α α2 1

 (5.8)

Voltage-dependent Load Model

The most widely acceptable load model is the ZIP model which is a
combination of constant impedance (Z), constant current (I) and con-
stant power (P) characteristics of the load Bokhari. The mathematical
representation of the ZIP model for the load connected at phase ψ
of bus i is given by (5.9)-(5.10). The ZIP load model represented in
(5.9)-(5.10) is a function of both V ψ

i and vψi = (V ψ
i )2.

pψL,i = pψi,0

kp,1
(
V ψ
i

V0

)2

+ kp,2

(
V ψ
i

V0

)
+ kp,3

 (5.9)

qψL,i = qψi,0

kq,1
(
V ψ
i

V0

)2

+ kq,2

(
V ψ
i

V0

)
+ kq,3

 (5.10)

where, kp,1 + kp,2 + kp,3 = 1, kq,1 + kq,2 + kq,3 = 1, pψi,0 and qψi,0 are
per-phase load consumption at nominal voltage, V0.

Here we introduce an equivalent load model for voltage-dependent
loads using the definition of CVR factors. We also detail an equivalence
between the ZIP parameters and the CVR factors. This model is linear
in vψi and hence can be easily used with LinDistFlow power flow model
(Jha et al., 2019).

CVR factor is defined as the ratio of percentage reduction in active
or reactive power to the percentage reduction in bus voltage. Let CVR
factor for active and reactive power reduction be CV Rp, and CV Rq,
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respectively defined in (5.11).

CV Rp =
dpψL,i

pψi,0

V0

dV ψ
i

and CV Rq =
dqψL,i

qψi,0

V0

dV ψ
i

(5.11)

where, pψL,i = pψi,0 + dpψi and qψL,i = qψi,0 + dqψi . Furthermore, vψi = (V ψ
i )2.

Therefore, dvψi = 2V ψ
i dV

ψ
i . Assuming V ψ

i ≈ V0 and dvψi = vψi − (V0)2,
we obtain:

pψL,i = pψi,0 + CV Rp
pψi,0
2

(
vψi
V 2

0
− 1

)
(5.12)

qψL,i = qψi,0 + CV Rq
qψi,0
2

(
vψi
V 2

0
− 1

)
(5.13)

Note that the CVR based load model detailed in (5.12) and (5.13) is
linear in vψi , thus can be easily included in approximate power flow
equations. The CVR factors, CV Rp and CV Rq are estimated from the
ZIP coefficients of the load. On differentiating the ZIP model detailed
and assuming V0 = 1 p.u., we obtain:

dpψL,i

dV ψ
i

= pψi,0

(
2kp,1V ψ

i + kp,2
)

(5.14)

dqψL,i

dV ψ
i

= qψi,0

(
2kq,1V ψ

i + kq,2
)

(5.15)

Using (5.11), (5.14), (5.15) and assuming V ψ
i ≈ V0, we obtain (5.16).

Using (5.16), the CVR factors for customer loads can be obtained from
the ZIP coefficients.

CV Rp = 2kp,1 + kp,2 and CV Rq = 2kq,1 + kq,2 (5.16)

Voltage Regulator and Capacitor Banks Models

A 32-step voltage regulator with a voltage regulation range of ±10%
is assumed. The series and shunt impedance of the voltage regulator
are ignored as these have very small value (Kersting, 2018). Let, aψ
be the turn ratio for the voltage regulator connected to phase ψ of
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line (i, j). Then aψ can take values between 0.9 to 1.1 with each step
resulting in a change of 0.00625 pu. An additional node i′ is introduced
to model the current equations. The control for regulator is defined
using binary variables. Let, for uψtap,i ∈ {0, 1} be a binary variable
defined for each regulator step position i.e. i ∈ (1, 2, ..., 32). Also define
a vector bi ∈ {0.9, 0.90625, ..., 1.1}. Then V ψ

i , V ψ
j , Iψii′ , and Iψi′j where

ψ ∈ Φi ∩ Φj are given as follows:

V ψ
j = V ψ

i′ = aψV ψ
i and Iψii′ = aψIψi′j (5.17)

where, aψ =
32∑
i=1

biu
ψ
tap,i and

32∑
i=1

uψtap,i = 1.

We also express (5.17) as a function of vψi = (V ψ
i )2, vψj = (V ψ

j )2,
lψψii′ = (Iψii′)2, and lψψi′j = (Iψi′j)2. Take square of (5.17) and define a2

p = Ap

and b2
i = Bi. Further realizing that (uψtap,i)2 = uψtap,i, (5.17) can be

reformulated as (5.18).

vψj = Aψ × vψi and lψψii′ = Aψlψψi′j (5.18)

Next, we detail the per-phase model for capacitor banks. The reactive
power generated by capacitor bank, qψcap,i, is defined as a function of
binary control variable uψcap,i ∈ {0, 1} indicating the status (ON/OFF)
of the capacitor bank, its rated per-phase reactive power qrated,ψcap,i , and
the square of the bus voltage at bus i for phase ψ, vψi .

qψcap,i = uψcap,iq
rated,ψ
cap,i vψi (5.19)

The capacitor bank model is assumed to be voltage dependent
and provides reactive power as a function of vψi when connected, i.e.
ucap,i = 1. For a three-phase capacitor bank, a common control variable,
uψcap,i, is assumed for each phase.

Distributed Generation with Smart Inverters

A per-phase model for reactive power support from smart inverter
connected to DGs is developed. The DGs are modeled as negative loads
with a known active power generation equal to the forecasted value.
The reactive power support from DG depend upon the rating of the
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smart inverter. Let, the rated per-phase apparent power capacity for
smart inverter connected to ith DG be srated,ψDG,i and the forecasted active
power generation be pψDG,i. The available reactive power, qψDG,i from the
smart inverter is given by (5.20) which is a box constraint.

−
√

(srated,ψDG,i )2 − (pψDG,i)2 ≤ qψDG,i ≤
√

(srated,ψDG,i )2 − (pψDG,i)2 (5.20)

Network Operating Constraints

For Nonlinear OPF problem:

V 2
min ≤ (V re

i )2 + (V im
i )2 ≤ V 2

max (5.21)

(Ireij )2 + (Iimij )2 ≤
(
Iratedij

)2
(5.22)

For LinDistFLow OPF problem: we define voltage limits using square
of the per-phase voltages.

V 2
min ≤ vψi ≤ V 2

max (5.23)

We use the polygon-based linearization approach proposed in (Ah-
madi and Martı, 2015) to linearize line thermal limit constraint as a set
of linear constraints defined in (6.10).

−
√

3 (Pij + Sij) ≤ Qij ≤ −
√

3 (Pij − Sij)

−
√

3/2 Sij ≤ Qij ≤
√

3/2 Sij
√

3 (Pij − Sij) ≤ Qij ≤
√

3 (Pij + Sij)

(5.24)

where, S ij = Srated
ij

√
(2π/n)/sin(2π/n) and n = 6.

5.1.3 Overall Problem

The overall CVR optimization problem is defined as the following:

Status of voltage control devices

Minimize:
∑
ψ∈{a,b,c} real(S

ψ
12)

Subject to: (5.2) - (5.4), (5.9), (5.10), (5.17), (5.19), (5.20)-
(5.22).
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Note that the resulting optimization problem is a Mixed-Integer
Nonlinear Programming problem (MINLP). The MINLP problems are
hard to solve and do not be scaled well for larger systems (as also
discussed in Chapter 4). Commercial solvers have been demonstrated to
solve small-scale feeder (≈ 100 nodes) with few OLTC devices. Therefore,
to reduce the complexity and ensure scalability, we use a two-stage
approach by decomposing the problem into MILP (Stage 1) and NLP
(Stage 2). Another approach could be to convexify the “continuous part”
of the problem to obtain a MI convex models (e.g., MISCOP, MISDP).
These models scale better compared to their MINLP counterparts.
However, additional feasibility evaluations are needed to ensure that
the relaxed solutions are power flow feasible (see additional discussions
in Chapter 4).

5.2 Solution Approach

We decompose the original MINLP problem into two relatively simpler
problems: MILP and NLP, see (Jha et al., 2019) for additional details.

1. Stage 1 (MILP Formulation): Develops a 5-min/15-min schedule for
legacy devices and smart inverter reactive power demand set-points
with the objective of minimizing active power consumption for the
feeder based on a MILP formulation. This is a coarse timescale
operation and employed to dispatch discrete control assets (voltage
regulator and capacitor banks).

Status of voltage regulator (uψtap,i) and capacitor bank
(uψcap,i)

Minimize:
∑
ψ∈{a,b,c} real(S

ψ
12)

Subject to: (5.5) - (5.8), (5.12), (5.13), (5.18), (5.19), (5.20),
(5.23), (5.24).

2. Stage 2 (NLP Formulation): Develops a revised fine time-scale sched-
ule for smart inverter control using a NLP formulation. It also corrects



5.3. Large-feeder Simulation Results 83

any errors due to Stage-1 approximations. Stage-1 uses a linear three-
phase power flow model that approximates the losses. The solutions
although feasible for linear power flow formulation, may violate the
critical operating constraints of the feeder. The objective of this
stage is to adjust the set-points of smart inverter control variables in
order to obtain an optimal and feasible three-phase nonlinear power
flow solution. The discrete control variables, uψtap,i(t), u

ψ
cap,i(t), are

assumed to be fixed as obtained in Stage-1. The optimal control set
points for reactive power dispatch from smart inverters are obtained
by solving the NLP problem (with linear objective and quadratic
constraints) defined below.

Optimal DG reactive power dispatch, qψDG.

Fix voltage regulator (uψtap,i) and capacitor bank (uψcap,i) posi-
tions based on Stage-1 solutions.
Minimize:

∑
ψ∈{a,b,c} real(S

ψ
12)

Subject to: (5.2) - (5.4), (5.9), (5.10), (5.17), (5.19), (5.20)-
(5.22).

5.3 Large-feeder Simulation Results

In what follows, we demonstrate the proposed VVO approach using
standard test feeders: IEEE 123-bus (Schneider et al., 2018), and PNNL
R3-12.47-2 test feeder(Schneider et al., November 2008). All simulations
are done on MATLAB platform. Stage-1 problem, modeled as MILP,
is solved using CPLEX 12.7 and Stage-2 problem, modeled as NLP, is
solved using fmincon function in MATLAB optimization toolbox. A
computer with core i7 3.41 GHz processor with 16 GB of RAM has
been used for the simulations. The results obtained from MATLAB are
validated against OpenDSS. For additional discussions, also refer to
(Jha et al., 2019).

IEEE-123 bus feeder is a standard test feeder used for OPF analysis
for unbalanced loading conditions. It includes several single-phase lines
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and loads with voltage drop problems making it a good candidate for
demonstration of VVO application. There are four voltage regulators
and four capacitor banks deployed along the feeder as shown in Fig.5.2.
The feeder is modified to include three DGs of capacity 345 kVA, 345
kVA, and 690 kVA at nodes 35, 52, and 97 respectively (see Fig. 5.2).
The R3-12.47-2 test feeder is used to demonstrate the scalability of
the proposed approach. Notice that R3-12.47-2 feeder includes 329
physical nodes and a total of 860 single-phase nodes. Compared to the
state-of-art, this is a significantly large test system to demonstrate the
coordinated control of all voltage control devices. The feeder includes
one voltage regulator, one 600 kVAr three-phase capacitor bank, three
100 kVAr single-phase capacitor banks, and three DGs of capacity
23kVA, 57.5kVA and 115kVA (see Fig. 5.3).
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Figure 5.2: IEEE 123-bus distribution test feeder.

Customer loads are assumed to have a CVR factor of 0.6 for active
power and 3 for reactive power (Forsten, 2011). Note that the CVR
values are arbitrary and can be easily adjusted based on the parameters
for ZIP model of the load, if available, as detailed in the previous
section. To demonstrate the applicability of the proposed approach for
different load mix, additional cases are simulated using a combination
of residential and small and large commercial loads. The daily load and
generation profiles are simulated in 15-min interval and are based on
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Figure 5.3: Modified R3-12.47-2 feeder.
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Figure 5.4: Load demand and PV generation in 15-min interval.

example profiles provided in OpenDSS (see Fig. 5.4).

5.3.1 Validation of CVR-based Load Model

The CVR-based voltage dependent load model introduced in this chapter
in equations (5.12)-(5.13) is validated against an equivalent ZIP load
model detailed in equations (5.9)-(5.10). The CVR-based load model
should incur the same power demand as the equivalent ZIP load model
for the acceptable range of operating voltages (0.95-1.05 pu). To validate
the load models, the active and reactive power consumption for CVR-
based load models are compared against the power consumption for
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ZIP load model for varying node voltages. ZIP models for residential,
small commercial, and large commercial loads are used for validation.
The ZIP coefficients for the different class of loads are obtained from
(Bokhari et al., 2014) and converted to CVR-based load model using
equation (5.16) (see Table 5.1).

Table 5.1: ZIP coefficients for different class of loads

Load Class Zp Ip Pp Zq Iq Qq CV Rp CV Rq

Residential 0.96 -1.17 1.21 6.28 -10.16 4.88 0.75 2.4
Small Commercial 0.77 -0.84 1.07 8.09 -13.65 6.56 0.7 2.53
Large Commercial 0.4 -0.41 1.01 4.43 -7.99 4.56 0.39 0.87

The simulation details are included here. For each load class, the
base active pi,0 and qi,0 reactive power are assumed to be 100 kW and
100 kVAr, respectively at voltage of 1 pu. The voltage at the load node is
then varied from 0.95 to 1.05 pu. The active and reactive power demand
for the three load classes are shown in Fig. 5.5. It can be observed
that for different load classes, the variation in power demand, both
active and reactive, due to change in bus voltage are similar for both
CVR-based load model and equivalent ZIP load model. This validates
that CVR-based load models are reasonably accurate when modeling
voltage dependent loads.
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Figure 5.5: Comparison of proposed load model with ZIP model: (a) Active power
demand, (b) Reactive power demand (Jha et al., 2019).
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IEEE 123-bus test system

The two-stage approach detailed in Section 5.2.3 is validated using the
IEEE 123-node system. The VVO control is run for 1 day at 15-min
time intervals. The results are shown Table 5.2 and 5.3. The optimal
statuses for all voltage regulation devices per the optimization program
for both minimum and maximum loading conditions are detailed in
Table 5.2. The voltage regulator 1, located at the substation (see Fig.
5.2), has the following optimal setting: −13 tap at minimum load and
−8 tap at maximum load conditions. The voltage regulator 4 is always
at tap 0. Voltage regulators 2 and 3 are single and two-phase devices,
respectively, and their tap settings vary as per the loading conditions.
Cap1 is a three-phase device and is OFF during minimum loading and
ON at maximum loading conditions. Cap2, Cap3, and Cap4 are single-
phase devices and their ON/OFF statuses vary as per the variation
in loading conditions. The DGs are located at three-phase nodes (see
Fig. 5.2). The reactive power demand or generation for DG1 does not
change significantly for either loading condition. DG3, on the other
hand, absorbs reactive power in Phase B during the maximum load
condition; it has a similar pattern for phases A and C for either loading
condition. Since Reg3 does not change the tap position, Phase B of
DG3 adjusts the set points to account for the increase in load. Similarly,
since there is no other VVC device between Reg1 and DG2, there is
a significant change in optimal dispatch for DG2 for the two loading
conditions. The feeder voltage characteristics are also shown in Table
5.3. On average, the feeder operates close to the minimum voltage limit
for both load conditions.

The results obtained using the two-stage VVO approach are vali-
dated using OpenDSS – a distribution system simulation platform. The
optimal statuses of the capacitor banks, voltage regulator taps, and
reactive power reference to the DGs obtained from the optimization
model are implemented in the OpenDSS model for the test system. The
substation power demand and feeder voltage characteristics obtained
using optimization program validated against OpenDSS (see Table 5.3).
It can be observed that system parameters obtained from BFM closely
match those obtained from OpenDSS.
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Table 5.2: VVO for IEEE 123-bus (CV Rp = 0.6 and CV Rq = 3) (Jha et al., 2019)

IEEE-123 Minimum Load Maximum Load
Phase A B C A B C

OPF solution from BFM
Reg1 Tap -13 -13 -13 -8 -8 -8
Reg2 Tap 0 — — -2 — —
Reg3 Tap 1 — 1 7 — 2
Reg4 Tap 0 0 0 0 0 0

Cap1 Status OFF OFF OFF ON ON ON
Cap2 Status OFF — — ON — —
Cap3 Status — OFF — — OFF —
Cap4 Status — — OFF — — OFF

DG1 qp
DG(MVAR) -0.03 0.045 0.012 -0.028 0.03 0.04

DG2 qp
DG(MVAR) 0.04 -0.03 0.03 -0.025 0.039 -0.01

DG3 qp
DG(MVAR) -0.08 -0.02 -0.08 -0.09 0.045 -0.09

Table 5.3: OpenDSS Validation for IEEE-123 Node System (Jha et al., 2019)

IEEE-123 Minimum Load Maximum Load
Phase A B C A B C

Optimal substation power flow and voltages using MATLAB
Load (MW) 0.20 0.13 0.18 0.99 0.78 1.02

Min. Voltage (pu) 0.955 0.955 0.955 0.951 0.953 0.951
Max. Voltage (pu) 0.965 0.965 0.965 0.995 0.995 0.995
Avg. Voltage (pu) 0.957 0.957 0.958 0.963 0.965 0.966
Validation of substation power flow and voltages using OpenDSS

Load (MW) 0.205 0.134 0.183 1.00 0.79 1.024
Min. Voltage (pu) 0.954 0.954 0.954 0.95 0.95 0.95
Max. Voltage (pu) 0.965 0.965 0.965 0.995 0.995 0.995
Avg. Voltage (pu) 0.956 0.956 0.956 0.96 0.961 0.963

Finally, the CVR benefits obtained using the proposed approach are
reported. The total three-phase substation load demand is compared to
the case when VVO control is not enabled as shown in Fig. 5.6. On an
average a reduction of around 150 kW is reported in net feeder active
power demand. As expected the largest savings are reported during the
minimum load conditions.

The proposed approach is further validated using ZIP load models for
residential, commercial and large commercial loads. The ZIP coefficients
detailed in Table 5.4 are used to obtain CVR factors for each case with
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Figure 5.6: IEEE-123 CVR Benefits Observed using the Proposed Approach
(CV Rp = 0.6 and CV Rq = 3) (Jha et al., 2019).

different load mix. The total feeder load demand for the minimum and
maximum load condition are reported in Table 5.4. As anticipated, loads
with higher voltage sensitivity show larger CVR benefits.

Table 5.4: CVR for IEEE 123-Bus Feeder, R-Residential, SC-Small Commercial,
LC-Large Commercial (Jha et al., 2019).

Load Minimum Load Maximum Load
Composition CVR No CVR CVR No CVR

100% R 0.588 0.777 2.726 2.842
70% R, 30% SC 0.588 0.776 2.727 2.846

50% R, 30% SC, 20% LC 0.589 0.748 2.728 2.859

Computational Complexity: On average, on a dual-core i7 3.41 GHz
processor with 16 GB of RAM, the Stage-1 solutions are obtained in
less than 5 sec for the IEEE 123-bus system. The Stage-2 problem for
the 123-bus system takes an average of 2 minutes to solve. The longest
time taken to solve the Stage-2 problem for the 123-bus system is 4 min.
The solution times for Stages 1 and 2 are within the 15-minute control
interval. It should be noted that the 123-bus test feeder is a practical
mid-size primary distribution circuit. The test feeder consists of 123
buses and 267 single-phase nodes.

It should be noted that the Stage-1 formulation scales well for larger
feeders. This is due to the fact that Stage-1 solves a MILP, which is
relatively easier to solve even with a large set of constraints. The Stage-2
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NLP problem, on the other hand, is more difficult to scale for a large
distribution system. In such cases, network reduction techniques are
required to represent the system with fewer equations. Additional simu-
lation to demonstrate scalability of the proposed approach is detailed
in the following section.

R3-12.47-2 Test Feeder

The selected PNNL taxonomy feeder includes 329 buses, where, the
number of nodes for phases A, B and C are 288, 298 and 274, respectively
(total 860 single-phase nodes) (see Fig. 5.3). The proposed two-stage
approach is implemented on 329-bus system. It is observed that Stage-1
problem (MILP) takes on an average 20-sec. to solve, however, Stage-2
problem (NLP) takes on an average 20-mins. Note that Stage-2, for R3-
12.47-2 system, solves for 4233 variables. In order to scale the Stage-2
problem and to obtain a solution within 15-min interval, the R3-12.47-2
test feeders is reduced using a simple network reduction technique.
To reduce the network, we used the property of radial distribution
feeders; the nodes that do not include branches, loads, or voltage control
devices are combined using the equations for the series system for the
corresponding branches. Using this method, the R3-12.47-2 system is
reduced to a 184-bus system where, the number of nodes in phase A ,
B and C are 163, 171 and 156, respectively. After network reduction,
the total number of variables for the Stage-2 problem are reduced to
2415. Since network reduction is exact both models result in same power
flow quantities. The maximum computation time required to solve the
Stage-2 problem for the reduced network model is 9 mins.

The CVR results obtained for maximum and minimum load condi-
tions are shown in Table 5.5 and 5.6. Note that the Stage-1 problem is
implemented using full R3-12.47-2 test feeder and the Stage-2 problem
is implemented using reduced 184-bus feeder. As the load is closely
balanced, the behavior of each phase is almost similar. The voltage
regulator at the substation is at -6 tap for the minimum load and at 1
tap position for the maximum load condition. At minimum load, the
three-phase as well as single-phase capacitor banks are OFF. However,
at the maximum load condition, the three-phase capacitor is ON and



5.3. Large-feeder Simulation Results 91

Table 5.5: VVO Results for R3-12.47-2 Test Feeder, (Jha et al., 2019).

IEEE-329 Minimum Load Maximum Load
Phase A B C A B C

OPF solution from BFM
Reg1 Tap -6 -6 -6 1 1 1

Cap1 Status OFF OFF OFF ON ON ON
Cap2 Status OFF — — OFF — —
Cap3 Status — OFF — — OFF —
Cap4 Status — — OFF — — OFF

DG1 qp
DG(MVAR) 0.02 0.02 0.02 0.01 0.01 0.01

DG2 qp
DG(MVAR) -0.06 -0.06 -0.06 -0.03 -0.03 -0.03

DG3 qp
DG(MVAR) -0.11 -0.11 -0.08 0.055 0.035 0.022

Table 5.6: OpenDSS Validation for R3-12.47-2 feeder, (Jha et al., 2019).

IEEE-329 Minimum Load Maximum Load
Phase A B C A B C
Optimal substation power flow and voltages using BFM

Load (MW) 0.444 0.459 0.434 2.86 2.97 2.775
Min. Voltage (pu) 0.958 0.958 0.958 0.955 0.955 0.955
Max. Voltage (pu) 0.962 0.962 0.962 1.0063 1.0063 1.0063
Avg. Voltage (pu) 0.959 0.959 0.959 0.974 0.972 0.976

Validation of substation power flow and voltages using OpenDSS
Load (MW) 0.445 0.462 0.438 2.87 2.98 2.79

Min. Voltage (pu) 0.958 0.958 0.958 0.954 0.953 0.954
Max. Voltage (pu) 0.962 0.962 0.962 1.0063 1.0063 1.0063
Avg. Voltage (pu) 0.959 0.959 0.959 0.971 0.97 0.973

single-phase capacitor banks are OFF. The reactive power support
from DG1 is same for all phases for both maximum and minimum load
conditions. The minimum voltage for all the phases is at 0.958 pu at
minimum load condition and at 0.955 pu at maximum load. The average
voltage along the feeder is 0.959 and 0.972 at minimum and maximum
load conditions, respectively. The substation power demand and feeder
voltage characteristics obtained using MATLAB are validated against
OpenDSS (see Table 5.6). The system parameters obtained from MAT-
LAB closely match to those obtained from OpenDSS, validating the
proposed VVO model.
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The CVR benefits obtained using the proposed approach for 24-hour
duration are reported in Fig. 5.7. The total three-phase substation load
demand is compared to the case when VVO control is not enabled. On
an average a reduction of around 200kW is reported in the net feeder
active power demand.
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Figure 5.7: R3-12.47-2 test feeders CVR Benefits Observed using the Proposed
Approach (CV Rp = 0.6 and CV Rq = 3) (Jha et al., 2019).

5.4 Summary and Discussions

Optimal voltage control of distribution system is one of the most fun-
damental applications of the optimal power flow algorithms. In this
chapter, we presented an application of distribution optimal power flow
models (D-OPF) for distribution-level voltage control to achieve conser-
vation voltage reduction (CVR). CVR leverages the load’s sensitivity
to nodal voltages to help reduce the customer power demand by oper-
ating the system toward it’s lower operating limit. We described how a
CVR optimization problem could be formulated as an OPF problem.
The resulting optimization formulation is a MINLP problem that is
extremely difficult to solve and scale for large systems. We describe a
two-stage algorithm to efficiently handle the discrete and continuous
control variables simultaneously by separating the MINLP into simpler
problems: Stage 1 solves a MILP problem, and Stage 2 solves an NLP
problem. The approach is thoroughly validated using test feeders. The
results demonstrate that the proposed approach successfully coordinates
the operation of legacy and new devices for CVR benefits.
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The growing complexity with grid-edge integration requires com-
putationally efficient approaches to manage the real-time operational
requirements of voltage control applications. Significant efforts have
been made to employ optimal power flow (OPF) algorithms to optimize
the grid-edge resources (Molzahn, Hiskens, et al., 2019). However, power
grid optimization is computationally challenging due to multiple sources
of nonlinearities, a combination of continuous and discrete decisions,
decision-making under uncertainties, and the sheer scale of the problem.
Moreover, the problem complexity grows significantly when attempting
to optimize millions of grid-edge controllable nodes with the integration
of roof-top PVs, battery storage units, transportation electrification,
grid-interactive buildings, data centers. Scalable algorithms are called
for to manage massive penetration of grid-edge resources. Existing
methods manage the computational challenges using convex relaxation
or linear approximation techniques. Methods based on both approxima-
tion and relaxation techniques use a centralized paradigm that leads
to scalability challenges as the problem size increases; Fig. 5.8 shows
how poorly the central nonlinear OPF model scales with the network
size (all cases are solved using a commercial NLP solver). Alterna-
tively, distributed optimization techniques can be used to scale OPF for
large networks. These methods decompose the large-scale optimization
problem into several smaller sub-problems that are solved parallely
at distributed computing nodes and use message-passing protocols to
enforce network-level consensus. Please refer to following articles for
additional discussions (Sadnan and Dubey, 2021; Molzahn et al., 2017).

100% Penetration

50% Penetration

10% Penetration

(a) Loss minimization objective

50% Penetration

20% Penetration

10% Penetration

(b) DER maximization objective

Figure 5.8: Solution time for central OPF problems for different objective functions



6
Resilient Distribution Systems Operations

Electric power grids face severe threats from extreme weather events
leading to extended outages and adversely affecting community well-
being. In the aftermath of an outage/disruption, restoring the power
supply to critical loads as quickly as possible is crucial to minimize
economic loss and ensure reliability. While utility companies might be
well-equipped to manage normal outages, extreme events are much more
challenging. Extreme events lead to drastic changes in the system’s
operational conditions requiring new mechanisms for system recovery
and restoration. Usually, an outage caused by extreme events takes
several days and sometimes even weeks and months to restore the normal
power supply. After extreme weather events, distribution networks may
not be able to connect with the bulk power system. Multiple distribution
system facilities may also be damaged, making the feeder and service
restoration even more challenging. The staggering cost of power outages
and their impacts on the grid demands expedited incorporation of
resilience in aging and stressed power distribution systems towards these
high-impact, low-probability (HILP) events (National Academies of
Sciences, Engineering, and Medicine, 2017). Fortunately, recent advances
in distribution systems, including the integration of DGs and distribution
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automation capabilities, provide potential means to improve system
resilience if applied in a purposeful and methodical manner.

Figure 6.1: Framework to enable resilient operations in power distribution systems.

Figure 1 describes an overall framework for enabling resilience-
driven operations in power distribution systems to enhance community
resilience. The top left portion of Figure 1 illustrates a notional system
performance curve when impacted by an extreme weather event; the
figure of merit (FOM) quantifies the system’s overall resilience. The
FOM drops immediately after the system is impacted by an extreme
weather event; this drop in FOM can be reduced via deploying appropri-
ate infrastructure planning and hardening measures such as microgrids,
grid forming DGs for emergency support, etc. (see curve with green line).
The resilience can be further improved by enabling resilient operations
such as intentional islanding using DGs to support community loads
(Poudel et al., 2020a). Enabling such advanced operations requires (1)
infrastructure planning that is driven by the cost of system upgrades
and the outage risk posed by extreme weather events and (2) appro-
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priate mechanisms for communication and controls to enable resilient
operations.

This chapter is focuses on the use of optimization methods to ensure
resilience grid operations. To this end, we focus on distribution system
restoration problem using all available resources including grid-forming
DGs and microgrids. The problem objective is to maximize the load
restored using minimum number of switching operations while allowing
for the formation of intentional island to support system’s critical
loads. The resulting application is termed as “DG-assisted Resilient
restoration”. In what follows, we provide the description of problem,
define problem objectives and constraints, and provide demonstration
using large-scale test feeders. For additional details, kindly refer to the
following articles (Poudel et al., 2022; Poudel and Dubey, 2019).

6.1 DG-assisted Distribution System Restoration

Distribution companies employ a fault location, isolation, and service
restoration (FLISR) system for distribution system restoration (DSR)
during outages. Algorithmically, DSR solves a feeder reconfiguration
problem which is typically a combinatorial optimization problem. The
growing complexity of distribution grids due to numerous sectionalizing
switches, tie switches, and DERs available for restoration significantly
increases the complexity of the inherent combinatorial DSR problem.
Earlier methods for DSR focused on designing expert systems and
heuristic search methods to avoid solving the combinatorial problem
(Liu et al., 1988; Miu et al., 2000). Soft computing algorithms, including
genetic algorithm, particle swarm optimization, simulated annealing,
and fuzzy set approaches, have also been proposed (Kumar et al., 2006;
Li et al., 2008). To manage the growing computational complexity,
several optimization-based methods for DSR have been explored (Lei
et al., 2000; Khushalani et al., 2007; Wang and Wang, 2015). For an
unbalanced power distribution system, the DSR problem is typically
formulated as a mixed-integer nonlinear program (MINLP). Though
accurate, MINLP formulations are computationally unattractive as they
do not scale well, i.e., the simulation time increases significantly with
the increase in the complexity of the restoration problem. This led to use
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of scalable linearized formulations with mixed-integer decision variables
to model DSR problem. Mathematically, the problem remains nonlinear
due to integer/binary decision variables. However, recent advances in
solvers for mixed-integer linear programming (MILP) problems renders
the resulting formulation more scalable.

In what follows, we describe the use of D-OPF models to formulate
the DSR problem for a three-phase unbalanced distribution system
(Poudel et al., 2022). The presented DSR formulation is developed at
Washington State University (WSU) and integrated into Pacific North-
west National Laboratory’s (PNNL) GridAPPS-D platform – an open-
source platform for hosting advanced distribution system applications
(Poudel et al., 2020b). The proposed DSR application determines feeder
restoration and reconfiguration using all available resources: backup feed-
ers, microgrids, and DGs. Intentional islanding methods are employed to
ensure resilience to extreme events using DGs and remotely-controlled
smart switches that may help restore critical loads during emergency
conditions, especially when the upstream subtransmission/transmission
system is outaged.

6.2 Optimization Problem Formulation

Fault detection and isolation routines autonomously isolate the parts
of the distribution system downstream from the affected protection
devices due to a fault. While repairing the root cause and impacts of
fault is time-consuming, one can employ available switches to recon-
figure the system to serve the customers connected to healthy feeders.
This feeder reconfiguration problem can be formulated as a D-OPF
problem. Specifically, given the post-fault status of the network, the
D-OPF problem obtains an optimal restored network topology that
minimizes the impacts of the outages while complying with the system’s
operational constraints. The restoration plan includes the possibility of
intentional DG-supplied islands (with the grid-forming capability) to
restore additional loads. For computational advantages, a linear power
flow model is used in the optimization formulation. Given discrete de-
cision variables, the resulting formulation is of a MILP form where
the problem objective is to maximize the restored loads subject to
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network operational and topological constraints. The decision variables
are switch (line/load) statuses and the statuses of grid-forming DGs.

6.2.1 Defining Problem Variables

We represent the distribution system comprised of multiple feeders and
DGs using a connected graph, G(V, E), where nodes represent buses
and edges represent physical line sections including switches. An edge,
e ∈ E , is defined by its incident nodes (i, j) with (i, j) ∈ V.

The normal operating tree of a well-planned distribution network is
given as To = (Vo, Eo) where all tie-switches are open, all grid-forming
DGs are disconnected, and all sectionalizing-switches are closed. Once
a fault occurs on a normal operating tree, the proposed DSR algorithm
identifies a desired tree or subtrees (if intentional islanding is needed)
within the original graph, G, that maximizes the given objective func-
tion of restoring loads subject to various connectivity and operating
constraints. After the suitable switching scheme is implemented, the
new operating tree is defined as T = (V̂, Ê) where Ê ⊆ E and V̂ ⊆ V.
We describe a mathematical programming formulation to obtain the
optimal restored operational topology.

The following define the binary variables associated with the pro-
posed DSR algorithm.

• Bus Energization Variable: A binary variable vi = {0, 1} is assigned
to each bus, where vi = 1 implies that bus i is energized, while vi = 0
implies bus i is not energized during the restoration

• Load Energization Variable: Each load bus is assigned a binary
variable si = {0, 1} that represents the switch status of the load
connected to the particular bus. This variable helps in the case when
only a few critical loads are to be restored without restoring all the
loads in the path. Note that for a load to be restored, both si and vi
must be 1.

• Switch Status Variable: A binary variable {δe}e∈ES
∈ {0, 1}|ES | is

associated with each switch, where δe = 1 implies that switch con-
necting buses i and j is closed, while δe = 0 implies that the switch is
open. The decision on the line/switch binary variable helps maintain
a radial configuration for the restored network. The line variable
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Figure 6.2: An example restoration scenario. The colors indicate energized feeder
sections and binary variables define the topology.

will be used to formulate power flow constraints and connectivity
constraints for the distribution system.

• DG Islanding Variable: The complexity of the restoration problem
in the distribution system increases significantly in the presence of
grid-forming DGs that can intentionally island to restore additional
loads. To formulate a unified DSR problem that enables restoration
using both DG islands and other feeders, a virtual edge, δe, is added
between the sub-transmission bus and each grid-forming DG as
shown in Fig. 6.2. The state of this edge determines whether the DG
is in isolation mode (OFF) or an island is formed.

6.2.2 Problem Objective

The problem objective is to maximize the restored load and minimize
the number of switching operations subject to the feeder’s operational
and connectivity constraints. The first objective is to maximize the
amount of load restored while considering different weight factors for
each load (wi) that indicate load priority. The objective is defined as
the following.

Maximize
∑
i∈VS

∑
ϕ∈{a,b,c}

wi si P
ϕ
Li. (6.1)
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The number of switching operation determines the performance of the
restoration plan as it closely relates to the time taken to execute the
restoration plan. Also, frequently operating switches adds additional
maintenance cost. Therefore, it is desirable to minimize the number of
switching operations so that the restoration plan can be executed in an
efficient and timely manner. Thus, the second objective is to minimize
the total number of switching operations defined in (6.2).

Minimize
( ∑
e∈Es

S

(1 − δe) +
∑
e∈Et

S

δe +
∑
e∈Ev

S

δe
)
. (6.2)

We define a multi-objective restoration problem using a weighted
combination of the two previously defined objective functions in (6.3).

Maximize
(
α
∑
i∈VS

∑
ϕ∈{a,b,c}

wi si P
ϕ
Li−β

( ∑
e∈Es

S

(1 − δe) −
∑
e∈Et

S

δe

)
−γ

∑
e∈Ev

S

δe

)
.

(6.3)
The maximization of the restored load is defined as the primary

objective and is always given a higher preference. The minimization of
the total number of switching operations is defined as the secondary
objective. The weights, α, β, and γ are defined such that the primary
objective is always prioritized. Since the secondary objective is a sum
of binary variables only, making β < 1, γ < 1, and assigning α a large
number ensures that the problem first restores the maximum weighted
loads and then minimizes the switching operations. Also, gamma is
made at least 2|E tS | times higher than β (i.e, γ ≥ 2|E tS |β) to account for
switch operations needed to get a radial topology.

6.2.3 Problem Constraints:

The several constraints associated with the service restoration problem
are described below.

Connectivity Constraints

This section defines the set of constraints required to ensure proper
network connectivity and radial topology for the restored network/s.
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• Constraint (6.4a) ascertains that a load with a switch can be picked
up if and only if it is connected to a bus that is energized in the
restored network by one of the feeders or DGs. Constraint (6.4b)
ensures that a non-switchable load will be energized depending upon
the associated bus energization variable. Thus, a non-switchable load
is always picked up if the corresponding bus is energized.

si ≤ vi, ∀i ∈ V R (6.4a)
si = vi, ∀i ∈ V \V R (6.4b)

• Next, we describe the constraints for line energization variable, (δij)
in (6.5a-6.5d). The set of equations indicates the relationship among
line energization variable corresponding buses and their energization
statuses. Equation (6.5a) ensures that if a line with a switch is
energized, the buses connecting the line must be energized. Equation
(6.5b) ensures that a line without a switch must be energized if any
of the buses connecting it is energized. The faults and the open
switches in the distribution network are modeled using constraint
(6.5c). For a disaster case, a substation fault is included using (6.5d),
which implies all the feeders are disconnected from the main supply.

δij ≤ vi, δij ≤ vj , ∀(i → j) ∈ ER\EF (6.5a)
δij = vi = vj , ∀(i → j) ∈ E\(ER ∪ EF ) (6.5b)
δij = 0, ∀(i → j) ∈ EF (6.5c)
δij = 0, ∀(i → j) ∈ ET (6.5d)

• A radial topology for restored network/s is ensured using constraint
(6.6) that enforces at least one switch in any cycle to be open.
All possible cycles in a distribution network are enumerated using
iterative loop counting algorithm (Count Loops in a Graph, J.kirk,
2020). Then, (6.6) is written for each cycle. The number of cycles
in a graph increases with the increase in the number of tie switches.
Despite that, G is usually sparse for a distribution network where
the total number of cycles is much less than 2|V |. Note that the
cycle enumeration is done offline using as-built topology of the power
distribution system.
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∑
(i→j)∈Ec

δij ≤ |Ec| − 1, ∀(i → j) ∈ Ec (6.6)

Power Flow Constraints

We use three-phase LinDistFlow model for the unbalanced distribution
system (Gan and Low, 2014). The linearized model is sufficiently accu-
rate and applicable for restoration problems. The linearized model for
the 1096-bus test system incurs the largest errors of 2.56%, and 0.002 pu
in apparent power flow and bus voltages, respectively compared to the
actual power flow solution obtained using OpenDSS. The restoration
problem requires the decision upon which lines are energized while
accounting for network operating constraints. The power flow along a
line is only valid if the line is energized. Therefore, to appropriately
represent the restoration problem the branch flow equations are coupled
with line and bus decision variables.
• Constraints (6.7a-6.7c) represent three-phase unbalanced linearized

power flow equations coupled with line decision variable δij and load
pick-up variable si. Note that δij = 1, if (i → j) ∈ E\(ER ∪ EF ).
Constraint (6.7a) defines voltage equations where if two buses i and
j are connected without a remotely switchable line or if the line is
energized, the voltage difference of the branch is then constrained by
the branch power flow. Similarly, constraints (6.7b) and (6.7c) define
active and reactive power flow constraints that must be satisfied
for each energized line. Note that constraints (6.7a)-(6.7c) are non-
convex as they involve product of variables. These constraints are
linearized by defining an auxiliary variable and using big-M method
(Winston et al., 2003).

δij (U i − U j) = 2
(
r̃ijPij + x̃ijQij), ∀(i, j) ∈ V (6.7a)∑

(i→j)∈E

δijPij = sj PLj +
∑

(j→c)∈E
i̸=c

δjcPjc, ∀(i, j) ∈ V (6.7b)

∑
(i→j)∈E

δijQij = sj QLj +
∑

(j→c)∈E
i ̸=c

δjcQjc, ∀(i, j) ∈ V (6.7c)
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where, r̃ij = Real{ααH} ⊗ rij + Im{ααH} ⊗ xij ,x̃ij = Real{ααH} ⊗
xij + Im{ααH} ⊗ rij , α = [1 e−j2π/3 ej2π/3]T

Network Operating Constraints

This section defines nodal voltage limit constraints and thermal limit
constraints for lines and transformers.
• The voltage of each bus should be within the limit as specified in

ANSI C84.1 and is ensured by equation (6.8). Umin and Umax are
set to (0.95)2 and (1.05)2, respectively for each phase of the bus.

viUmin ≤ U i ≤ viUmax, ∀i ∈ V (6.8)

• The loading on the lines and transformers must not exceed the
rated kVA capacity. The rated kVA capacity is specified for the
transformers. The thermal limit for the lines is, however, specified in
terms of their ampacity. We use a nominal feeder voltage of 1 p.u. to
convert line ampacity rating to their rated kVA capacity. The actual
thermal limit constraint is specified using the quadratic equation
in (6.9). We use the polygon-based linearization approach proposed
in (Ahmadi and Martı, 2015) to linearize (6.9) by a set of linear
constraints defined in (6.10). We use (6.10) instead of (6.9) in MILP
model.

(Pij)2 +
(
Qij

)2 ≤
(

Srated
ij

)2
∀(i → j) ∈ E (6.9)

−
√

3 (Pij + Sij) ≤ Qij ≤ −
√

3 (Pij − Sij)

−
√

3/2 Sij ≤ Qij ≤
√

3/2 Sij
√

3 (Pij − Sij) ≤ Qij ≤
√

3 (Pij + Sij)

(6.10)

where, S ij = Srated
ij

√
(2π/n)/sin(2π/n) and n = 6.
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DG Operating Constraints

Constraint (6.11) ensures that the power flow from DG does not exceed
its rated DG capacity.∑

ϕ∈{a,b,c}
P ϕij ≤ δijP

max
G ,

∑
ϕ∈{a,b,c}

Qϕij ≤ δijQ
max
G (6.11)

6.2.4 Overall Problem

We define a multi-objective restoration problem using a weighted com-
bination of the two previously defined objective functions in (6.12).

Final Optimal Configuration

Maximize:(
α
∑
i∈VS

∑
ϕ∈{a,b,c}

wi si P
ϕ
Li − β

( ∑
e∈Es

S

(1 − δe) −
∑
e∈Et

S

δe

)
− γ

∑
e∈Ev

S

δe

)
.

(6.12)
Subject to: (6.4) - (6.11)

where:
r̃e = Real{ααH} ⊗ re + Im{ααH} ⊗ xe,x̃e = Real{ααH} ⊗ xe +
Im{ααH} ⊗ re, α = [1 e−j2π/3 ej2π/3]T
Se = Srated

e

√
(2π/n)/sin(2π/n) and n = 6

aϕ =
32∑
i=1

biu
ϕ
tap,i and

32∑
i=1

uϕtap,i = 1

6.3 Results and Discussions

The effectiveness of the proposed approach is validated using a multi-
feeder 1069-bus test system consisting of four R3-12.47-2 PNNL taxon-
omy feeders connected using several tie switches (Schneider et al., 2009).
The restoration problem is formulated as an MILP that can be solved
using off-the-shelf solvers. The restoration formulation is modeled using
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Figure 6.3: Simplified one-line diagram of the multi-feeder 1069-bus distribution
system with seven additional tie switches and four DGs.

PuLP modeling functions and solved using CPLEX 12.6 solver. The
simulation is carried out on a PC with 3.4 GHz CPU and 16 GB RAM.

The taxonomy feeder R3-12.47-2 represents a moderately populated
urban area. The total load on the feeder is 4366.955 kW and 1299.206
kVAr. Four identical feeders are replicated to obtain the four-feeder
1069-bus distribution system where feeders are interconnected using
seven normally open tie switches (see Fig. 6.3). With a total of 1069
multi-phase physical buses (3444 single-phase buses), 152 sectionalizing
switches, 190 possible cycles, and 122, 586 number of normal operational
radial topologies the 1069-bus test case is a sufficiently large-scale model.
We also incorporate several grid-forming utility-owned DGs in test case.
To ensure the ability to transfer the load to other feeders, the feeder
loading is limited to 70%, consequently, the feeder transformer capacity
is 6.7 MVA. This system is assumed to be operating in a peak load
condition. Kindly refer to (Poudel et al., 2022) for additional discussions.

6.3.1 Restoration During Typical Outages

First, we simulate typical outage scenarios with a few lines at fault. Here,
all loads are assumed to be equally critical for restoration. Table 6.1
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Table 6.1: Restoration strategy for the four-feeder 1069-bus test case with and
without DGs, (Poudel et al., 2022).

Event Detail Case 1: Switching Schemes without DGs Restored
Open Close Load (kW)

F: 253-181 (F-c)
T: 267-1 (F-c)
I: 259-182 (F-c)
Loss: 4366.95 kW

219-74 (F-a)
222-75 (F-b)
185-250 (F-b)

248-254 (F-a and F-d)
75-252 (F-b and F-c)
236-256 (F-b and F-c)
261-263 (F-a and F-b)

3904.56

F: 187-50 (F-b)
T: 185-250 (F-b)
I: 188-252 (F-b) &
186-263 (F-b)
Loss: 3564.73 kW

195-256 (F-c) 236-256 (F-b and F-c)
75-252 (F-b and F-c) 3548.32

F: 135-132 (F-d)
T: 136-245 (F-d)
I: 128-73 (F-d)
Loss: 4102.80 kW

220-254 (F-d)
5-237 (F-b)
195-256 (F-c)

248-254 (F-a and F-d)

2984.16266-252 (F-c and F-d)
75-252 (F-b and F-c)
236-256 (F-b and F-c)

Table 6.2: Restoration strategy for the four-feeder 1069-bus test case with and
without DGs (Poudel et al., 2022).

Event Detail Case 2: Switching Schemes with DGs Restored
Open Close load (kW)

F: 253-181 (F-c)
T: 267-1 (F-c)
I: 259-182 (F-c)
Loss: 4366.95 kW

219-74 (F-b)
220-77 (F-c)
220-254 (F-c)
223-261 (F-c)
220-254(F-d)

DG-248 (F-b)

4197.55

DG-75 (F-c)
248-254 (F-a and F-d)
236-256 (F-b and F-c)
266-252 (F-c and F-d)
244-257 (F-c and F-c)

F: 187-50 (F-b)
T: 185-250 (F-b)
I: 188-252 (F-b) &
186-263 (F-b)
Loss: 3564.73 kW

195-256 (F-c) 236-256 (F-b and F-c)
75-252 (F-b and F-c) 3548.32

F: 135-132 (F-d)
T: 136-245 (F-d)
I: 128-73 (F-d)
Loss: 4102.80 kW

220-254 (F-d)
220-254 (F-c)
195-256 (F-c)

248-254 (F-a and F-d)

3465.16266-252 (F-c and F-d)
DG-75 (F-c)

DG-266 (F-d)

and Table 6.2 demonstrate the effectiveness of the proposed approach
using multiple fault cases. We compare the restoration results for two
different cases: Case I assumes restoration without using DG-assisted
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intentional islanding; Case II assumes restoration with DG-assisted
intentional islanding. The notation F, T, and I denote faulted line,
tripped switch and isolation candidate, respectively, for a particular
event.

In Scenario-1, a fault is simulated near feeder F-c (Line 253-181).
This results in the tripping of the upstream switch, 267-1. Fault isolation
is initiated to isolate the faulty part of the feeder. In this case, an
additional switch in F-c is opened (259-183) to isolate the faulted
zone. As a result of this outage, a total of 4366.95 kW of the load is
under outage. After fault isolation, the optimization-based restoration
algorithm is run to generate a switching scheme to restore the outaged
load. The optimal restoration plan includes opening three sectionalizing
switches and closing 4 tie switches resulting in the restoration of 3904.56
kW (see Table 6.1). Next, we simulate the same outage scenario allowing
for intentional islanding using grid-forming DGs. Unlike the previous
case, the resulting optimal restoration plan restores 4197.55 kW of the
outaged loads requiring 11 switching operations and the formation of
two DG-supplied islands (See Table 6.2). Note that in this case, the
DGs located in F-b and F-c form intentional islands. This frees some
capacity for the feeder-head transformer allowing it to restore additional
loads.

In Scenario-2, we simulate a mid-feeder fault in F-b. The fault results
in the opening of Switch 185-250. Two additional sectionalizing switches
(188-252 and 186-263) are opened to isolate the faulted section to ensure
that the fault is not fed during the restoration process. This outage
leads to a total loss of 3564.3 kW of load. The optimal restoration plan
for this scenario entails opening one sectionalizing switch and closing
two sectionalizing switches (see Table 6.1). In this case, the optimal
restoration plan is able to pick up all outage loads except the one on
the faulted section. Thus, this case does not require any additional DG
support to restore loads resulting in the same optimal solutions for both
cases (see Table 6.2).

In Scenario-3, we simulate a fault in F-d. The corresponding switches
that tripped off for protection and fault isolation are shown in Table 6.1.
This event leads to an outage of 4102.80 kW. The optimal restoration
plan for this case includes load transfer between F-b and F-c with the
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help of tie-switches. The restoration plan (without DG islanding) can
pick 2984.16 kW of loads (see Table 6.1). When DG islanding is allowed,
the optimal restoration plan is able to pick up additional loads restoring
a total of 3465 kW. In this case, the optimal restoration plan includes
island formation using DGs in feeders F-c and F-d (see Table 6.2).

6.3.2 Restoration During an Extreme Event

In this section, we demonstrate the effectiveness of the proposed ap-
proach during extreme event scenarios. Multiple case studies discussed
below demonstrate the applicability of the proposed optimization-based
restoration algorithm in supplying critical loads using all available feeder
resources, including grid-forming DGs.
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Figure 6.4: Test distribution system after a major disaster. The substation is at
fault and multiple distribution system components are damaged (Poudel et al., 2022).

DG Islanding and Impact of Tie Switches

We simulate an extreme event scenario resulting in a substation fault
that disconnects all feeders from the main grid. Thus, all customers
within the test system experience a loss of electric power supply. Besides,
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Figure 6.5: Total load picked up by each DG in different feeders for a given disaster
scenario in Fig. 6.4. In case II, DG at a particular feeder restores loads in another
feeder by increasing its operational boundary using tie switches (Poudel et al., 2022).

we also assume that multiple distribution lines are damaged due to
the extreme event scenario (see Fig. 6.4). In this case, the goal is to
optimally utilize the DGs to restore the power supply for the critical
loads. Here, due to capacity limits of DGs, we have prioritized the
restoration of critical loads over non-critical loads. The critical load
zones are represented by green patches in Fig. 6.4. Using the proposed
approach, the available DGs form a self-sustained islands by picking
up the critical loads with higher priority. Four different islands are
formed where each DG picks up the priority loads based on respective
operational and connectivity constraints (see Fig. 6.4). On average, it
takes 12.23 seconds to obtain a feasible restoration plan.

To demonstrate the performance of the proposed restoration ap-
proach, we further perform the following case studies: Case I with no tie
switches and Case II with all seven tie switches available for restoration.
The results for both cases are shown in Fig. 6.5. For the case without
engaging tie-switches, each DG only restores the critical loads in their
own feeders. A total weighted load of 6734.265 kW is restored in the
network. Note that the critical loads in F-a and F-d are not restored as
paths between the respective DGs and loads are disrupted due to faults
within the distribution system (see Fig. 6.4). Also, due to the limited
capacity of DG, the critical load in F-c is only partially restored. On the



110 Resilient Distribution Systems Operations

5 10 15 20 25

Number of Faults

6000

7000

8000

9000

10000

T
o
ta

l 
lo

a
d
 r

e
st

o
re

d
 (

k
W

) with tie switches

without tie switches

Figure 6.6: Impact of damages on restoration plan (random faults simulated with
and without considering tie switches) (Poudel et al., 2022).

contrary, DG-264 in F-a has unused excess capacity. In this case, the
unavailability of the paths from DGs to critical loads makes it impossible
to supply all critical loads. In Case II, all seven tie switches are engaged
in the restoration process. Unlike the previous case, the DGs are able
to expand their electrical boundaries forming larger islanded networks
with the help of tie switches (see Fig 6.5). In this case, the total amount
of restored load increases to 9130.11 kW. Thus, tie switches help better
restore critical services by providing added operational flexibility.

Next, to further assess the performance of the proposed approach,
we simulate several random faults within the distribution network and
obtain optimal restoration plans. The simulated scenarios mimic the
varying damage severity in the distribution system during the disaster
condition. Specifically, five different scenarios are simulated where,
randomly, the following number of lines are assumed to be damaged in
the distribution system: 5, 10, 15, 20, and 25. The total load restored
based on the optimal restoration plan for each case and with and
without tie switches are shown in Fig. 6.6. It is observed that DGs
prove to be less effective in restoring critical loads as the physical
damage in the distribution system increases. This is because damage
in the distribution system renders the priority loads unreachable by
DGs, reducing the restoration performance. As expected, well-placed tie
switches are able to increase the restored loads by leveraging alternate
restoration paths (See Fig. 6.6). These simulation results validate that
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the restoration performance is improved in post-disaster conditions
using active islanding methods and with the help of tie switches.

6.4 GridAPPS-D Integration of FLISR Application

The acceptance of advanced applications by the utility companies re-
quires a rigorous proof-of-concept regarding the ease of integration
within the Advanced Distribution Management System (ADMS) envi-
ronment and their benefits to the industry (Dubey et al., 2020). In what
follows, we demonstrate the development and integration of a model-
based FLISR with the proposed DG-assisted Restoration algorithm
within an ADMS environment (Poudel et al., 2020b). The proposed
application is implemented on the GridAPPS-D platform – an open-
source, standards-based platform designed to support the development
of advanced distribution systems applications developed by the Pacific
Northwest National Laboratory (PNNL) (Melton et al., 2018). The
GridAPPS-D platform provides a control and communication-rich en-
vironment to develop and demonstrate advanced distribution systems
applications that integrate DGs, microgrids, alternate control strategies,
and diverse model-based and data-driven algorithms.

Figure 6.7: GridAPPS-D Platform, (Melton et al., 2018)
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Fig. 2 depicts the logical functionality and conceptual architecture
of the GridAPPS-D platform in relation to the application developer
and commercial tools. The platform utilizes two different classes of
data flow; 1) “Control” and configuration data enabling the application
developer to manage the platform (dashed line) and 2) network and
real-time measurement data specific to an application (solid line). Here,
“Data Ingest” module provides the ability to exchange data with the
existing sub-systems such as energy management systems (EMS), OMS,
GIS, data historians, and so forth. The key feature of this framework
is standards-based data representation using a common information
model (CIM) thus providing application developers with a standardized
approach to data. With these functionalities, GridAPPS-D supports
the full suite of distribution management applications, such as voltage
and reactive power optimization, fault location isolation and service
restoration, economic dispatches, and optimization routines.

The platform currently runs in a Linux virtual machine through
docker containers (Docker, 2018). The application is started and run
through the browser interface. Fig. 6.8 shows the visualization of the test
feeder currently running on the platform. Additionally, to visualize the
topology of the feeder, the platform also allows the user to plot complex
power flow in all AC line segments (VA), phase to neutral voltage (PNV)
at each node, and regulator tap or switch status (Pos). The tabs show
different functionalities of the platform such as simulation, events, and
application. The “Events” tab shows if any event is currently active
in the test system and the “Applications” tab shows the name of the
application currently running on the platform. The alarm tab shows
if any action has taken place to toggle the devices such as a switch,
capacitor, and regulator taps. Simulation status allows the operator to
see whether the actions are well carried out and verify if the application
is running smoothly.

6.4.1 Fault Location Isolation and Service Restoration (FLISR)

A FLISR application performs three related actions to restore the power
supply after an outage: locate the fault using triggered protection devices
and smart meter pings or customer calls, isolate the fault by opening
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Figure 6.8: Modified IEEE 8500-node running in the platform, (Poudel et al.,
2020b)

.

the appropriate switching devices, and restore the power supply to the
healthy feeders using feeder reconfiguration and intentional islanding
using DERs. The overall architecture of the proposed FLISR application
is shown in Fig. 6.9. Kindly refer to (Poudel et al., 2020b) for additional
details on each module.

The realization of an autonomous FLISR application requires mea-
surement and control-rich environment that provides post-fault sit-
uational awareness and the ability to remotely deploy the decisions
for restoration. A successful deployment relies on the ADMS that en-
ables real-time communication and data exchange between the several
sub-systems employed by the distribution companies to 1) provide
distribution system condition monitoring during normal and outaged
conditions, 2) obtain the statuses of available network components and
grid resources, and 3) estimate the load demand and their priorities.
The figure depicts a schematic for the interactions among the distri-
bution system’s operational sub-system to enable the proposed FLISR
application.

The FLISR architecture is deployed in GridAPPS-D platform. This
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Figure 6.9: FLISR architecture on the GridAPPS-D platform and integration of
proposed application to the GridAPPS-D platform. GOSS/FNCS is the PNNL’s
platform for data exchange among subsystems. GOSS: GridOPTICS Software System;
FNCS: Framework for network simulation, (Poudel et al., 2020b).

requires integrating other related data and decision-support systems
such as DERMS, SCADA, OMS, GIS, AMI, CIS. In the GridAPPS-
D platform, a “Data Ingest” provides the ability to exchange data
with the existing systems/sub-systems. The information required by an
application is obtained via executing relevant queries on the GridAPPS-
D platform. Here, the Grid Optics Software System (GOSS) is used to
manage the platform data and the message bus, while the Framework
for Network Co-simulation (FNCS) handles the time clock and the
message traffic between platform and application (Gorton et al., 2013;
Ciraci et al., 2014; GridOPTICS Software System (GOSS), n.d.). In
the GridAPPS-D platform, the network data originates from a three-
phase unbalanced distributor simulator driven by GridLAB-D. The
information collection and processing is done with a relevant query from
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Figure 6.10: IEEE 9500-node test case. Different color lines indicate part of three
different feeders (s1, s2, and s3), (Poudel et al., 2020b)

.

the platform. For sending control signals, JSON files are created based
on the attributes and device types. Kindly refer to () for additional
details regarding the information collection and dispatch of the control
commands in the GridAPPS-D platform.

6.4.2 GridAPPS-D Integration and Case Studies

The proposed FLISR application is tested on the modified IEEE 8500-
node test system (GridAPPS-D, 2021) (See Fig. 6.10). The D-Net
library (Poudel, 2019b) allows modeling power distribution networks
and constructing an optimization problem as described in Section III.
The simulation is carried out on a PC of Intel Core i7-6700 @ 3.4 GHz
processor with 16 GB RAM. The FLISR application is developed in a
python programming language where optimization for service restoration
is modeled and solved using PuLP’s modeling functions, which will then
call a solver (Poudel, 2019a; Poudel, 2019c).

The performance of the application is tested using multiple test
scenarios. Here, we demonstrate one specific scenario with multiple faults
including a substation outage requiring intentional islanding using grid-
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Figure 6.11: Simulation of an example event. The colored segments represent the
substation they belong to. (a) Fault at several lines, (b) Isolated area because of
fault, and (c) Isolated area supplied by closing two tie switches from s2 and s3 and
islanding of two DGs (Poudel et al., 2020b).

forming DGs. Three different faults are simulated including one near
S1 (See Fig. 6.11a). In response, three nearest upstream switches are
tripped. Additionally, the DGs in the isolated area are switched off. All
the customers supplied by S1 and a few by S2 are out of service as
shown in Fig. 6.11b. With these actions, there is an outage area that
consists of 316 customers. Upon triggering the FLISR application, the
three faults are isolated by opening 4 different switches. Once isolation
is done, restoration algorithm finds the candidate switches to operate
in order to restore service in the outage area. Three tie switches are
closed such that a portion of S1 is supplied from S3 and S2 whereas
the outage section of S2 is restored by itself. In addition to the feeder
reconfiguration, two intentional islands are formed supplied by two DGs
with the grid-forming capability to restore the critical loads in their
neighborhood (See Fig. 6.11c). Diesel generator restores 10 customers
including one big critical load at node “L3234149”. Similarly, the LNG
engine restores 9 customers by forming an island. With these switching
actions and DG control signals, 166 out of 316 customers are restored.
166 customers observe an outage for around 4 minutes only while the
remaining 150 customers are not supplied until the faults are repaired.
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6.5 Summary and Discussions

Distribution system restoration (DSR) is a critical application to ensure
the growing service reliability and resilience expectations from the
increasingly complex power distribution systems. In this chapter, we
introduced an D-OPF formulation for the restoration of a large-scale
three-phase unbalanced power. The approach actively integrates DGs
into restoration to support intentional islands and improve resilience
during extreme event scenarios. It is demonstrated that the proposed
optimization-based DSR module can effectively maximize the total
load restored using all available resources, including DGs. Additionally,
the formulation can handle multiple sources (feeders or DGs) without
significantly increasing the computational complexity. A DG-supplied
intentional island that is formed in the aforementioned restoration
approach can be thought of as a small single-source microgrid employed
to restore additional critical loads during an extreme event. In this
case, a single grid-forming resource operates in isochronous mode and
maintains a stable islanded operation. The DG used for restoration can
be clean or fossil-fuel-based generators as long as they can operate in
isochronous mode.

The emerging smart grid technologies, such as remote-controlled
switches and DG islanding, pose additional complexity to the service
restoration problem, especially under cold load pick-up (CLPU) con-
ditions. Thus, the sequence of operation for the complete restoration
and recovery process needs to be studied to better execute these ad-
vanced algorithms with due consideration to DG energization and
CLPU events. Additional work is needed to synchronize multiple DG-
assisted islands and connect those to the grid. Such advanced restoration
mechanisms require managing intentional island supplied by multiple
grid-forming/grid-supporting DGs. Possible solutions include using dis-
tributed/decentralized secondary controller that is collocated with the
grid-forming DGs and used for voltage and frequency restoration to
enable the formation and operation of such multi-source dynamically
formed islands. These and associated concerns have been addressed in
some recent work. Kindly refer to (Poudel and Dubey, 2021; Sadnan
et al., 2022) for additional details.



7
Conclusions and Future Directions

With the advancement in smart grid technology and increasing pene-
trations of distributed generators (DGs), the electric power distribution
system is rapidly transforming into an active and bidirectional network.
Massive penetrations of uncertain, variable, and DGs at the grid-edge
(medium and low voltage power distribution systems) greatly threaten
the power grid’s reliability and resilience. Maintaining the integrity of
the power grid under adverse and highly uncertain operating conditions
requires novel grid management and response strategies. Consequently,
power grid optimization has drawn significant attention both at the bulk
transmission and distribution levels. The literature on OPF formulations
from the bulk power grid/transmission systems is not directly applicable
to the distribution systems because of radial feeders, high R/X ratio,
and large variations in bus voltage magnitudes. Consequently, several re-
searchers have proposed distribution OPF (D-OPF) formulations. This
monograph introduced multiple D-OPF formulations and the approach
to cast distribution systems applications as D-OPF problem. The mono-
graph also discussed D-OPF formulations, for example, applications
where DGs/DERs are used for provisioning grid services.

Although significant efforts have been made, a combination of fun-
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damental challenges needs addressing to optimally manage distribution-
connected millions of controllable grid-edge resources. In what follows,
we summarize some emerging topics and future research directions.

7.1 Algorithmic Challenges with Grid-Edge Optimization

The grid-edge optimization problem, which requires real-time control
and coordination of numerous DERs/DGs, is not amenable to the cur-
rent optimization algorithms. To make matters even more difficult, the
problem’s nonconvexity, heterogeneity, and variety of control modes
make it even more difficult to develop scalable optimization models for
grid-edge optimization. Additional challenges arise when incorporating
various grid-edge technologies, such as smart inverters, battery energy
storage systems, secondary voltage controllers, and so on, that introduce
integer variables into the underlying optimization problem. Furthermore,
grid-edge resources introduce uncertainties as a result of a lack of ap-
propriate models and data or limited forecasting capability (solar/wind
generation), which should be systematically incorporated into the opti-
mization framework. This calls for computationally tractable models
for large-scale optimization under uncertainty. The intertemporal con-
straints resulting from the optimization of battery energy resources
require a multi-time period formulation, further increasing the problem
scale, especially under uncertainty. Given the size and complexity of
the grid-edge optimization problem, it may be prudent to divide it
into smaller subproblems and employ reasonable approximations. It
may also be beneficial to use distributed or hierarchical optimization to
reduce the computing requirements on the central agent.

7.1.1 Scalable D-OPF Models

D-OPF models have been based mainly on two power flow formulations:
the bus injection model (BIM) and the branch flow model (BFM). Al-
though the bus injection model applies to general radial/mesh feeders,
the branch flow model is more suitable for modeling radial distribution
feeders. Both BIM and BFM-based D-OPF models in their original
form are non-convex and non-linear programming problems (NLP); they
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are, therefore difficult to solve. To address this concern, several relaxed
models have been proposed in the literature that tackle the problem
of non-convexity using convex relaxation techniques or linear approx-
imation methods. The convex relaxations result in an SDP or SOCP
formulation that is of reduced complexity compared to the non-linear
D-OPF model. However, the conditions for the exactness of the solution
obtained from the relaxed models warrant further analysis. Specifically,
the relaxed D-OPF model (SDP or SOCP) may yield AC-infeasible
solutions. This motivates the evaluation of the existing formulations
for AC feasibility using standard distribution feeders for different ob-
jective functions and operational scenarios. A recent work presents the
numerical evaluation of the performance of these formulations with
different choices of objective functions and network sizes (Jha et al.,
2022). This paper also provides interesting visualization to understand
the solution space for different approximate/relaxed D-OPF models.
Finally, as most of the relaxed problems for unbalanced D-OPF were
found to be AC-infeasible, several iterative algorithms have also been
proposed to obtain AC-feasible solutions, for example, (Jha and Dubey,
2019; Jha and Dubey, 2021).

Conventionally, Volt/VAr regulation is achieved through control
of legacy grid devices such as on-load tap changers (OLTCs), voltage
regulators (VRs), and switched capacitors. However, with the inclusion
of legacy devices, the DOPF problem renders a mixed-integer non-
linear programming (MINLP); therefore, it is not scalable (Wang et al.,
2014). The computational complexity of MINLP Volt/VAr optimization
problems is reduced in several ways. For example, in (Li et al., 2020)
only one LTC at the substation transformer is considered; however, this
is valid only for European systems as multiple LTCs are common in
North American feeders. Integer variables are relaxed in (Paudyal et al.,
2011a; Robbins et al., 2016; Bazrafshan et al., 2019; Daratha et al., 2014)
and rounding heuristics are used in (Paudyal et al., 2011a; Daratha
et al., 2014) to obtain discrete settings of the LTCs and CAPs. However,
rounding heuristics are combinatorial in nature that prohibit scalability.
A linear grid model is used in (Nazir and Almassalkhi, 2018b) to reduce
computational complexity, which renders the Volt/VAr optimization
as a MILP problem. In (Li et al., 2020; Shukla et al., 2019; Wu et al.,
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2017a), computational efficiency of second-order cone programming
(SOCP) is leveraged along with integer control of LTCs, which makes
the resulting mixed-integer SOCP (MISOCP) Volt/VAr optimization
problem better tractable than the MINLP counterpart (Shukla et al.,
2019). Similarly, in (Alsaleh et al., 2019) integer LTC variables are added
to a Semi-definite Programming (SDP) OPF which makes the resulting
problem mixed-integer SDP (MISDP). However, the state-of-the-art
methods (Li et al., 2020; Shukla et al., 2019; Nazir and Almassalkhi,
2018b; Paudyal et al., 2011a; Robbins et al., 2016; Alsaleh et al., 2019)
on the optimal dispatch of discrete LTCs and CAPs are demonstrated
using small feeders only.

7.1.2 Distributed Algorithms for Scalability

Another approach to scaling D-OPF problems for large feeders is to use
decomposition approaches such as the Augmented Lagrangian Method
(ALM) and its variant, the Alternating Direction Method of Multipli-
ers (ADMM) (Molzahn et al., 2017; Boyd et al., 2011). In a series of
early papers, Baldick et al. applied a linearized ALM to a regional
decomposition of ACOPF (Kim and Baldick, 1997; Baldick et al., 1999;
Kim and Baldick, 2000). Peng and Low applied ADMM to certain
convex relaxations of ACOPF on radial networks (Peng and Low, 2014;
Peng and Low, 2015; Peng and Low, 2018). Along with computational
advantages, the distributed methods can be used to coordinate the
decisions of physically distributed agents, provide added robustness to
single-point failure, and reduce communication overheads (Sadnan and
Dubey, 2021). The generic distributed optimization algorithms, such
as ADMM, do not guarantee convergence for a general nonconvex opti-
mization problem. Specific to the D-OPF problem, the existing methods
require a large number of message-passing rounds among the agents (on
the order of 102–103) to converge for a single-step optimization (Millar
and Jiang, 2016; Magnússon et al., 2015). When used for distributed
coordination, many communication rounds or message-passing events
among distributed agents increase the time of convergence (ToC) and
result in significant delays in decision-making. Some of these challenges
are mitigated using distributed online controllers; however, they also
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take several time steps to track the optimal decision (Bernstein and
Dall’Anese, 2019; Bastianello et al., 2020; Qu and Li, 2019; Hu et al.,
2019). To address these challenges, a recent work developed a distributed
algorithm for the optimization of radial distribution systems based on
the equivalence of networks principle (Sadnan and Dubey, 2020; Sadnan
and Dubey, 2021). The use of problem structure in our distributed algo-
rithm results in a significant reduction in the number of message-passing
rounds needed to converge to an optimal solution by orders of magni-
tude (∼ 102). This results in significant advantages over the generic
application of distributed optimization techniques for distributed com-
puting or distributed coordination in radial power distribution systems.
Additional work is needed on problem-specific decomposition for even
more difficult D-OPF problems, such as with multi-period optimization
and optimization under uncertainty.

7.2 Learning-for-Control for DGs/DERs Coordination

With the growing complexity and scale of grid-edge, the use of math-
ematical optimization approaches is inadequate as they are slow and
do not scale well especially when optimizing under uncertainty. An-
other major limitation of optimization-based approaches is the need
for the frequent state information for the entire distribution system,
which is cost-prohibitive. Given the challenges of purely model-based
optimization methods, data-driven model-free reinforcement learning
(RL) approaches have recently emerged as an attractive alternative to
solving distribution-level OPF problems. A detailed survey summarizing
the applications of RL methods in power grid operation and control
is provided in (Zhang et al., 2018; Gao and Yu, 2021). These methods
learn scalable operational strategies from interactions with a system-like
simulation model driven by a large amount of operating data that can be
further utilized for optimizing in new operating conditions. RL methods
present great improvements in solving complex multivariate systems
and have been employed in various power system optimization problems,
such as electricity market planning, household control, battery energy
arbitrage, and scheduling the charging of electric vehicles, emergency
control, demand control and system restoration (El Helou et al., 2021;
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Wang et al., 2020a). One of the applications of deep RL that has lately
gained a lot of interest is the voltage regulation of the distribution
systems (Diao et al., 2019; Yang et al., 2019; Cao et al., 2020; Wang
et al., 2020b; Zhang et al., 2020; Sun and Qiu, 2021; Cao et al., 2021;
Wang et al., 2019; Huang et al., 2020; Toubeau et al., 2020; Zhang et al.,
2021). Specifically, deep RL has been utilized to control capacitors,
voltage regulators, and smart inverters to regulate voltages and reduce
power losses. Unfortunately, existing model-free RL algorithms ignore
the crucial information embedded in the physics-based model of the
power distribution systems and may thus compromise the optimizer
performance and pose scalability challenges. In more recent works, in-
cluding power systems model information in neural networks has shown
to improve the performance of the OPF problems (Chen and Zhang,
2020; Lange et al., 2020). Another recent work uses imitation learning
algorithms to speed up the RL training using model-based approximate
D-OPF solutions (Krishnamoorthy and Dubey, 2021). The synergistic
integration of physics-based information into data-driven approaches is
an active area of research in power grid optimization.

7.3 Open-source Grid Optimization Packages/Simulator Interface

A significant gap exists between the theory and implementation of
power grid optimization techniques, which is exacerbated by the inte-
gration of grid-edge technologies. The lack of extensive benchmarking
of existing algorithms using real-world systems and scenarios poses a
major challenge to technology adoption, especially at the distribution
level. Addressing this challenge requires open-source grid optimization
packages and their seamless integration with open-source power grid
simulators and/or emulators. Recent work addressed these challenges by
developing libraries for common D-OPF algorithms using centralized op-
timization techniques on the Julia platform (Fobes et al., 2020). Parallel
and distributed computing architectures are more promising than cen-
tralized methods for scalable optimization. However, their adoption by
the power systems community requires appropriate open-source toolkits
that can demystify algorithm development in a high-performance com-
puting (HPC) environment. However, the ongoing efforts in this domain
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have been limited to bulk grid optimization. For example, the DOE-
funded initiative, ExaSGD, is developing highly parallel algorithms to
solve security-constrained OPF problems for the bulk transmission grid.
Likewise, the development of the Exascale Grid Optimization toolkit
(ExaGO) for solving large-scale transmission grid optimization problems
on parallel and distributed architectures is promising for scalable OPF
development and adoption. The existing literature, however, lacks open-
source toolkits for grid-edge optimization that can leverage emerging
massively parallel architecture such as GPUs.

Likewise, within the learning for control paradigm and the use of
RL for grid-edge control, the existing work includes specialized frame-
works to model the power system’s simulation environment and the
interface to the RL library. To this end, each RL implementation re-
quires specialized wrappers for the specific power grid environment
that are not available open-source. Thus, research in this domain is
hindered by the unavailability of a suitable open-source wrapper to
allow seamless integration of open-source RL libraries with open-source
distribution system simulators such as OpenDSS. Some recent efforts
have been made to address this challenge. For example, the work in
(Huang et al., 2019) from PNNL presents an open-source platform called
Reinforcement Learning for Grid Control (RLGC) for RL applications
in power system controls. This tool (RLGC) uses InterPSS as a power
system simulator and a Java program as a control module, and the RL
algorithms are from OpenAI Gym. Py4J works as a communication
between Python and Java. Another recent work develops an open-source
OpenDSS-RL wrapper that serves as a user-friendly and readily avail-
able tool with minimal customization for the researchers interested
in exploring the applications of RL algorithms for power distribution
systems (Krishnamoorthy et al., 2022). This open-source platform in-
terfaces the OpenAI gym environment (an open-source repository for
RL algorithms) with OpenDSS (an open-source distribution system
simulator), enabling the seamless application of reinforcement learning
(RL) algorithms for power distribution systems using a standardized
environment. Additional efforts are needed to seamlessly interface the
vast open-source library of machine learning algorithms to power grid
simulators.
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