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Abstract—Intelligent false data injection on load measurements
can trigger false relay operation (FRO) of frequency-based
protection relays, affecting the power system frequency and
thus threatening the security of power systems. In this paper,
we propose an optimization-based formal model to find the
optimal false data injection attack (OFDIA) with the minimum
required time leading to an FRO. The proposed model considers
the dynamic behavior of the power system in an optimization
framework to find the optimal size of attacks over multiple
generators’ dispatching cycles to minimize the attack launch
time. Using the proposed formal modeling, we study the impact
of power system parameters, including inertia, governor’s droop
and time constant, and the attacker’s accessibility to loads on
the attack success and launch time. The results demonstrate that
systems with low inertia are more vulnerable to FDIAs while
systems with higher inertia are more secure as fewer generator
protection relays are impacted by FRO. In addition, we show that
securing more load meters can increase the time for launching
an attack in the system. Moreover, our studies show that a
combination of large values of the governor’s time constants
and small values of the governor’s droops can raise the time
of successful attacks, making the system more secure against
FDIAs.

Index Terms—False data injection attack, load-frequency con-
trol, frequency stability, optimization, protection relays.

I. INTRODUCTION

ITH the adoption of advanced information and com-

munication technologies, the traditional power grids
are transforming into smart cyber-physical systems [1]. Al-
though this transition to smart grids brings several benefits
to system operations [2], [3], it also makes power grids
vulnerable to cyber threats due to their increased dependency
on communication and measurement technologies. Among
the various types of cyberattacks, false data injection attack
(FDIA) represents a major class of cyberattacks that have
been extensively investigated recently in the literature [4]—
[7]. In FDIA, an attacker sends wrong data into the existing
measurement/communication systems in the power grids so
that it can mislead the control center/controllers to make wrong
control decisions. There are several real-world instances in
that FDIA has been devised by the attackers to cause damage
to the power grids. For example, FDIA on distribution grids
in Ukraine in 2015 left more than 200 thousand customers
without electricity for a few hours [5]. Besides, there are
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some attacks such as the Stuxnet [8] and Dragonfly [9] in
which the attacker needed to have full knowledge about the
system and full access to the real-time data in the control
centers. The developed Stuxnet worm injected false data into
control signals and attacked nuclear centrifuges. Despite the
fact that these attacks were not launched in power systems,
it is possible that such complicated attacks with full access
to data easily target power systems as well. Access to such a
high level of data can also be provided by insider attackers
[10] via social engineering against employees in the control
center [11]. Considering all of the abovementioned, in this
paper, we study FDIAs on power systems while the attacker
has full access to the power system data.

Grid frequency is one of the indicators of the normal
operation of power systems. Any major fluctuations in the
frequency need to be corrected so that it remains within the
acceptable range; otherwise, there could be serious conse-
quences, including blackouts. For example, the 2019 blackout
in England and Wales was caused by the decline in the
grid frequency that left around one million customers without
electricity [12]. Following any disturbance in the power grids,
the primary frequency response, which includes automatic
decentralized control action of generators’ active power output,
instantaneously determines the grid frequency. However, in
a bit slower time scale compared to the primary frequency
response, the grid frequency is maintained by re-dispatching
the generators. If the frequency fluctuates from the nominal
value, re-dispatching the generators adjusts the reference set-
points of the generators equipped with governors to bring the
frequency back within the acceptable range.

Since the dispatching process relies on measurements and
communication (see Fig. 1), any FDI in the closed-loop
dispatching process may impact the frequency stability of
the power system leading to false tripping of relays and
system-wide consequences [13]. Among the several protection
relays that could be impacted by FDI, the rate-of-change-
of-frequency (RoCoF) relays, under-/over- frequency relays,
and Load shedding relays are the ones directly impacted by
FDI on the closed-loop control of the dispatching process.
These relays are responsible for assisting in load-generation
balance by disconnecting generators/loads at pre-defined lo-
cations as needed [14], [15], tripping the generators during
excessive frequency excursion to protecting the system from
frequency instability, and preventing synchronous generators
from damage. Though most of the protection relays operate
based on local measurements as shown in Fig. 1, the FDIA on
the closed-loop control of the dispatching process can cause



TABLE I
SUMMARY OF NOTATIONS
[ Symbol [ Definition [ Symbol | Definition ]
() Parameter value after attack z7 Slack term for upper RoCoF threshold
) Parameter value from control center’s e’ Slack term for lower RoCoF threshold
viewpoint
A Set of accessible loads to the attacker At Simulation time step
] Bus indices AP Governor reference set-point change
in two subsequent time steps
k Discrete step a Number of random sets of accessible
loads
C Set of  discrete steps of B; ¥ Imaginary part of line admittance be-
generators dispatching cycles tween bus Z and bus j
{igtc th}
AL AL AL
F Set of dispatchable generators C Number of dispatch cycles
g Set of buses with generators C Maximum number of dispatch cycles
L Set of buses with loads fo Nominal frequency
N Set of buses H Synchronous generators’ inertia con-
stant
[@] Set of non-dispatchable generators Kp Generator’s damping factor
T Set of simulation discrete steps n Number of simulation discretized
2.9 3 steps
a8,y Weighting factors P Attack success possibility
UES
Pl Load measurement attack value Pl Load measurement attack valuc
5 Generator's rotor angle and buses’ | PU Load measurement attack value
voltage angle
$ Rate of change of generator’s rotor Pl Load measurement attack value
angle
w Instantaneous angular frequency PI Generator’s active power output
w Rate of change of instantaneous angu- PYI The upper limit of generator active
lar frequency power
Wo Nominal angular frequency PY Lower limit of generator active power
o7 RoCoF pl Load active power
k2 Over frequency threshold P Generator's mechanical input power
B2 Under frequency threshold PS Governor’s reference set-point
79 Bad data detection threshold for gen- T Number of cycles in RoCoF calcula-
erator power output changes in two tion
subsequent discrete steps
-l Bad data detection threshold for load R Governors™ droop
measurements changes in two subse-
quent time steps
ol RoCoF threshold S Generator’s apparent power
Aw Angular frequency deviation sb Base MVA
Ef Slack term for over-frequency thresh- t Average time minimally required for
old a successful attack
e Slack term for underfrequency | t© Time interval between two subsequent
threshold dispatch cycles
T Governors’ time constant x Attaker’s accessibility to load mea-
surements

unnecessary changes in frequency that ultimately leads to false
relay operations (FRO) [16]. As a simple example of how
FRO attacks can arise in power systems, assume an attacker
injecting false data into the load measurements at dispatching
cycle n to mislead the control center of a reduction in load
consumption. This faulty data makes the control center have
a wrong dispatch of power in the system and determines
wrong reference set-points for the governors. Comparing the
frequency deviation Aw and P?®, the governor changes the
mechanical input power of the generators, and consequently,
the total power generation in the grid alters while the actual
load in the grid is still the same as the pre-attack value
(remember that the attacker just injects false data into the load
measurements and does not alter the actual load consumption).
This load-generation imbalance causes some fluctuations in the
frequency. If the fluctuations are large enough so that at least
one of the RoCoF and under-/over- frequency thresholds are
met, FRO is considered as successful. Otherwise, the attacker
needs to launch another attack at the subsequent dispatching
cycle n + 1. The summary of the notations used in this paper
can be found in Table I.

A. Related Work

The impact of FDIAs on the frequency behavior of power
grids and protection relay operation is studied in the literature.
The effect of FDIAs on the generators’ dispatching process
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Fig. 1. An example of generators dispatching process in power grids to
regulate grid frequency.

is studied in [17]-[19] while investigating different FDIA
templates such as signal scaling, ramps, surges, and random
noises. In [20], authors showed the impact of an attack on
local controllers of loads (that emulate inertia) in power grid
frequency. In [21], the authors showed that FDIAs could lead
to unnecessary grid frequency deviation, which eventually
triggers load shedding. The authors of [22] demonstrated the
effect of random FDIA directed at loads to trigger RoCoF
relays. The impact of some limited predefined templates of
FDIA, such as constant or random packet delays, have also
been investigated in [23], [24].

Detection and mitigation of FDIAs on load-frequency con-
trol of power systems also have been widely investigated in
the literature. An automatic generation control (AGC) targeted
FDIA detection and defense mechanism is proposed in [25]
based on the generative adversarial network. The forecasted
area control error (ACE) is utilized in [26] to identify and
mitigate FDIA on AGC. Reference [27] considers FDIAs as
unknown inputs and uses the estimated value of FDIAs to
compensate for the associated impacts on AGC. A control
mechanism is presented in [28] based on a Kalman filter and
artificial neural network to detect and mitigate the impact of
FDIAs. However, the FDIA model considered in [17]-[28]
are based on random attacks or limited pre-defined attack
templates which might not be of interest of attackers in real
word.

Despite [19], [21], [22], [25]-[28], there are other relevant
FDIA works, though not in the context of generators dis-
patching process, developing optimal attack in their studies. A
mechanism to find the optimal attack to cause transmission line
outages is proposed in [29], [30]. However, the scope of these
papers (to cause overload in transmission lines) is different
from the scope of this work (attack on load-frequency control).
In [31], the authors present a Laplace-domain optimization
framework to investigate the vulnerability and impact of
AC/HVDC load frequency control on FDIAs. The authors in
[11] and [32] aim at finding the optimal attack within a min-
imum amount of time. However, these works consider multi-
area interconnected power systems wherein all the generators
within one area are replaced with a single equivalent generator



whiles focusing on tie-line sensor measurements compromise.
In addition, [11] is missing the operation of generator RoCoF
relays as well as load shedding under-frequency relays.

An intelligent FDIA may defeat the control center’s defense
mechanism as it ensures stealthiness [33], [34]. Launching a
successful arbitrary FDIA could be possible, but to ensure
stealthiness, the arbitrary attack takes a substantial amount
of launch time to be successful [35], [36]. Such an attack
might not be of interest to the attackers. However, an optimal
false data injection attack (OFDIA), as proposed in this work,
that minimizes the number of compromised measurements and
launch time can leave a very short time for remedial actions
to the control centers [37]. Therefore, control centers should
consider possible OFDIA in the defense mechanism to ensure
power grids’ secure operations.

B. Contributions

The contributions of this paper are as follows:

o« We propose time-domain formal modeling to find the
OFDIA while minimizing the time for a successful attack.
We use an optimizer to find the optimal size of the
load attack while implementing a sequential process to
find the minimum time for a successful attack. However,
due to the non-convexity of the problem, the proposed
method might not return the global optimal. Moreover,
the optimization model is formulated based on weighted
objective functions; thus, the approach is sensitive to the
selection of the weight.

o Unlike most literature, focusing on compromising tie-
line sensor measurements, our proposed formal modeling
aims at compromising the load measurements across the
power grid. In other words, most of the current papers
focus on control areas, while we consider the FDIA
on load measurements within those control areas. This
scenario seems more realistic since the number of load
meters in a power grid is way more than the number
of tie-line sensor measurements. Therefore, it is more
probable to have unsecured load meters than unsecured
tie-line sensor measurements.

o Thereafter, leveraging the proposed formal modeling, we
analyze and present a comprehensive study of the impact
of power system parameters, such as the generator’s
inertia, the governor’s droop and time constant, and the
attacker’s accessibility to loads on the possibility of a
successful attack and the minimum required time.

The rest of the paper is organized as follows: the load-
frequency model of power grids is given in section II. In
section V, we present the test system and the case studies. In
section VI, we discuss the result of simulations, and ultimately,
we conclude our work in section VIIL.

II. LOAD-FREQUENCY MODEL OF POWER GRIDS

Load-frequency dynamics of power grids can be modeled
using the swing equation of generators, power grid model,
actions of controllers (i.e., governors), and operations of relays
(i.e., RoCoF and under-/over- frequency relays). Fig. 1 shows
typical power grid components, controllers, and relays that

determine frequency dynamics in power systems. In the actual
operation of power grids, the inertia of synchronous genera-
tors and governor actions continuously impact the frequency
dynamics (i.e., primary frequency response), and at a regular
interval (e.g., 2-4s), grid measurements are obtained (e.g.,
grid frequency, tie line flow), and generators updated dispatch
signals are sent to dispatchable generators to maintain the
frequency (i.e., secondary frequency control) [38].

A. Primary Frequency Response

In this section, we model the dynamic behavior of power
systems in a time-domain optimization framework. To do
so, we consider the differential equations of synchronous
generators and governors along with DC power flow to model
the changes in rotor angles. DC power flow returns the new
values of rotor angles for any changes in power systems,
such as load fluctuations, that help us in the evaluation
of the system’s frequency behavior. Thereafter, in order to
model these continuous-format questions in an optimization
environment, we discretize them using the Backward Euler
method [39]. Power system dynamics are represented by non-
linear differential-algebraic equations (DAE), which can’t be
solved analytically. Thus, the equations need to be discretized
for solving using numerical methods. Moreover, the Backward
Euler method yields a linear model of the dynamics after
the discretization, and hence the model exhibits scalability
compared to a non-linear discretized model. However, the
focus of the paper is not on the computational gain due to
discretization, we used off-the-shelf solvers available in Julia
to solve the model.

The frequency behavior of a multi-machine power system
can be expressed using the Swing equation as [38],

Vie N, (1)

0; = w; — wo = Awj,

1
T 2H;

(Pm —Pl?q _KDi Awi)7

W; g Vieg. 2)
All the notations used in the mathematical formulation are
provided in Section I. For brevity, we dropped the time index.
Without loss of generality, the governor is represented as the
TGOV1 model, which is a simplified representation of steam

turbine governors as [40],

S| Ps—Aw, .
Pi_Ti/<&—Pi), VieO. (3)

With the classical representation of a synchronous generator,
its terminal voltage angle can be approximated by the rotor
angles, and using the DC power flow formulations, the power
grid model becomes,

PS—P/=> Bi;(6;—6;), VieN. (4)
JEN

The dynamic model (1)-(4) determines the primary fre-
quency response of power grids.



B. Secondary Frequency Control

For secondary frequency control, the control center may run
the DC power flow (4) based on measurements (e.g., P!, as
shown in Fig. 1), and obtain steady-state reference set-points
(dispatch signals) P?° as,

PP =R, P!, VieF. (5)

C. Operation of Frequency-based Relays

Generators are typically equipped with RoCoF and
over-frequency relays, and the loads (at bulk level) are
equipped with under-frequency (or load shedding) relays to
keep the load/generation balance by disconnecting excess
loads/generation in case of large-frequency oscillations out-
side the pre-defined range. Under/over-frequency relays are
triggered based on frequency measurements w, and RoCoF
relays are triggered based on the average rate of change of
frequency w" at the relay locations.

III. FALSE DATA INJECTION ATTACK

The false data injection attack (FDIA) model is developed
considering the dynamics of the power grid and actions
of the control center in case of any compromise made on
the load measurements, as shown in Fig. 2. Consider that
P!,Vi € A denotes the magnitude of the injected false data
into the load measurements. We use () to represent param-
eters/measurements after FDIA. Therefore, the compromised
load measurements that the control center uses to update the
dispatch signals are P} = P! + P! Vi € A. The outcome of
the control center running dispatching process routine based
on compromised load measurements P' is the _compromised
reference set-points for the governors, ie., P’,Vi € F.
When these compromised reference set-points are sent to
the governors, it causes load-generation imbalance leading to
frequency dynamics that possibly result in frequency instabil-
ity. Therefore, the control center unknowingly participates in
the attacker’s goal of attacking the load-frequency control in
power grids.

We use the Backward Euler method to discretize the con-
tinuous form of the power system dynamic model and control
center actions described in Section III as,

Load Measurement Attack:

FDIA on Load Compromised Load
Measurement (Pl) Measurement (pl) Control
Center
Compromised
’ Reference Set-point (PS)
Load Attacked
Measurement (pl) Frequency (®) Attacked
System

Fig. 2. A schematic of false data injection attack and its impacts on power
grid’s behavior.

0 Vig A, VkeT,
Pkl =S PlC[z—1]] Vie A, Clz—1] <k <[],
vz € {2,3,...,C},

(6)
Power Grid Frequency Dynamics:
Silk +1) = &ilk] + At (Gilk +1] —w,), (D)
Vie N,VkeT,
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JEN
Vie F,VkeT. (12)
Control Center Actions:
POIK] = (PIK] + PLK) = 3 Biy (8i0k] = 6541 .
JEN
Vie F,Vk eC, (13)

P?[k] = R; PY[k], Vie F¥keC. (14)

Equation (6) shows the load measurement attack where it
is zero for measurements not included in accessible loads (A)
and remains constant within a dispatching cycle. Note that
in (7)-(12), the grid dynamics are modeled based on actual
loads and compromised set-points of governors obtained from
the control center, which leads to compromised power sys-
tem variables/parameters. In (13) and (14), the compromised
dispatch signals are obtained based on the compromised load
measurements. Note that in (13), P! = P! + P! includes the
amount of false data injection on the load measurements.

To model the operations of RoCoF relays, we compute w”
at relay location as following [41],

1 ket
= ‘Z (wilk +1] — wilk]), Vieg
j=k—r
Then, the FRO decision is made based on pre-defined thresh-
olds for frequency and RoCoF as,

5)

T

1 (@K >77) V(@0 [K] < —77), Vieg,
FRO — 1 Ojl[]{]ZT, Vieg,

1 Ok <1f, Viecl,

0 otherwise.

(16)



IV. OPTIMAL FALSE DATA INJECTION ATTACK MODEL

In this section, we propose the OFDIA model, which opti-
mizes the amount of the load attack in launching a RoCoF or
frequency violations. The relay operation logics, as defined in
(16) are non-smooth functions, which complicates the problem
formulation as it requires integer variables to model. Using
slack variables, we reformulate the OFDIA as follows, which
makes the problem linear programming in nature; and, hence
yields a tractable formulation. OFDIA optimizes the size of
load attack, i.e., Zkeﬁ(Pil[k])?, subject to the constraints (7)-

(16) for given dispé%ching cycle C.

OFDIA:
Minimize ¢ (P/[k])* +n Y _ £][k]
keC keT
€A €L
+ > (k] + Bl k] +vE][K]) (17)
keT
i€G
S. t.: Constraints (7) — (15),
o, [k] + 2k > 1", VieGVkeT, (18)
O [k] — €k < =77, VieGNkeT,  (19)
Gilk] +el k) >7/, Vieg,VkeT, (20)
Gik] -l k] <7/, VieLVkeT, 21)
(k). e"[k],E (K], e [K] >0, VkeT,  (22)
— P < Pkl <7 P!, Vie AVkecC, (23)
PI< Pk <PJ, VieGVkeT, (24)
PI<PIk| <P, VieGVkeT, (25)
— 9 PA[k] < PPk +1] — PP [k] < 19 P[K],
Vi e F,Vk € C,
(26)

where constraints (7)-(12) represent dynamic model of power
grids, (13)-(14) represent action of control center, and (15)
represents RoCoF calculation. Equations (18) and (19) imple-
ment the RoCoF relay operational logic as described in (16).
Similarly, (20) and (21) model the operation of frequency
relays defined in (16). Equation (22) ensures positive slack
variables. In (23), we try to keep the load attack within
[—7!,7!]% of the actual load at bus 7. The main purpose of
adding this constraint is to prevent OFDIA from attacking
some of the load measurements only and leaving the rest
unchanged. This might be mathematically possible and bring
a minimum OFDIA value; however, this would not be a
realistic attack scenario to have a large difference between
subsequent time steps. The commonly employed bad data
detection algorithms are the residue-based ones which deploy
state estimate methods to find the operational state of the
power system. When the residual exceeds the allowed range,
the data is classified as bad data [42]. Conventionally, an attack
is stealthy when the changes in (one or more) measurements
keep the difference between the reported measurements and
estimated measurements within a threshold value [43]. When
this difference is zero, the stealthiness is at the best possible
case. Therefore, in this paper, we consider an attack scenario

in which the grid is fully visible. This means that there are
enough measurements across the grid, and the control center
does not need to perform any state estimation to obtain the
visibility of the grid. Hence, any attack on the measurements
by the attacker is directly transferred to the control center
and affects the generators’ dispatching process. Besides, we
consider some thresholds in our attack modeling that help
us to represent an attack with no observable changes. This
ensures the stealthiness of the attack so that no bad data
detection and FDIA detection algorithms detect the OFDIA.
Equations (24)-(25) maintain the true and attacked values of
the generator’s active power within the permissible range,
respectively. Equation (26) limits the generator power output
changes in two subsequent dispatching cycles within the
[—79,79)% of the generator’s output power. «, 5, 1, ¢, and
v are weighting factors tuned so that each of the OFDIA
components does not overweight the rest. This helps OFDIA to
return the optimal attacks in the system regardless of their type
(RoCoF/frequency). The objective function (17) optimizes the
attack vector along with the slack variables to ensure the
frequency/RoCoF is pushed towards the upper/lower threshold
for relay operations. Note that, given the stealthiness constraint
(23), generators’ inertia, and time constant of equipment and
controllers, the above model may not yield an optimal attack
vector in one dispatching cycle; thus, the OFDIA models may
need to be run for multiple dispatching cycles [37].

To run OFDIA in multiple dispatching cycles, we start the
optimization with C' = 1, run OFDIA, and check if there is a
feasible attack that triggers FRO defined in (15). If so, the loop
terminates, and the results are considered optimal. Otherwise,
C is increased, and the process continues until we either find a
successful attack or we reach C' = C'that indicates FRO is not
feasible even in multiple dispatching cycles. The flowchart of
this process is shown in Fig. 3. There is no limit on choosing
the maximum number of dispatching cycles (C'). The proposed
OFDIA in this paper can take any C and try to find the optimal
attack within the desired time. However, if the C' is not large
enough, the solver might not be able to find a successful
attack. Basically, the suitable C' can vary for different power
grids. For instance, if a power grid mostly contains generators
with large inertia, the frequency in such a grid would take
longer to oscillate. Therefore, a frequency/RoCoF attack takes
a longer time to be successfully launched in such grids; that
is, it requires a larger C.

V. NUMERICAL STUDIES

In this section, we present numerical case studies of our
proposed FDIA model based on an IEEE test system. These
studies are performed based on the attacker’s accessibility to
load measurements since the assumption of the attacker having
access to all the load measurements across the power system
is not realistic. Besides, when the attacker has access to all the
loads, no matter how different the power system parameters
are, the solver can find a feasible solution. Therefore, in our
numerical studies, we consider that the attacker has limited
access to a subset of loads (e.g., x% of all the loads). We will
use A to denote this accessible set.
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Fig. 3. Flowchart to run OFDIA in multiple dispatching cycles.

A. Test System

We consider the IEEE 39 bus system [38] shown in Fig. 4 as
the case study to test the proposed formal attack model. This
system has 10 synchronous generators where S; = 1000MVA
for Vi € G. For simplicity, for all the generators, we consider
Kp = 0. Moreover, we ignore the sub-transient reactances of
the generators; therefore, the angle of bus voltages is equal to
the generator rotor angles. All the generators are assumed to
have over-frequency and RoCoF relays, and all the loads have

38
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@ Generator eqquiped with governor
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Fig. 4. IEEE 39 bus system.

TABLE 11

SYSTEM’S LOAD INFORMATION.
Bus p! Q! Bus p! Q!

(MW)  (MVAR) (MW)  (MVAR)
3 322.0 24 21 2740 115.0
4 500.0 84.0 23 2475 84.6
5 0 -200.0 24 3086 922
7 2338 840.0 25 2240 472
8 522.0 176.0 26 139.0 17.0
15 3200 153.0 27 281.0 75.5
16 3294 323.0 28 206.0 27.6
18 158.0 30.0 29 2835 126.9
20 630.0 103.0 31 92 46
39 1104.0 250.0

TABLE III

SIMULATION PARAMETERS.

Parameter  Value  Parameter  Value

fo(Hz) 60 (%) 30.0

At(s) 1/60 79(%) 40.0

te(s) 2 7f (Hz) 60.8

c 30 7f(Hz) 59.2

r 12 77 (Hz/s) 15

SP(MVA) 100 a 30.0

under-frequency relays. The generators connected to buses 30
through 35 are considered to be equipped with governors
participating in the frequency regulation in the dispatching
process, i.e., O = F, and the remaining generators have a fixed
mechanical input power. We assume that the actual values
of the loads in the grid, i.e., Pil, Vi € L, remain constant
throughout the simulation (which is < 60 s). However, our
proposed formal model can capture the actual changes in loads
along with the compromised measurements. The information
on the loads and the simulation parameters used in the entire
paper is given in Tables II and III, respectively.

The OFDIA is implemented in Julia for Mathematical
Programming (JuMP), which is a domain-specific modeling
language for mathematical optimization [44] and is solved
using Gurobi [45].

B. Model Validation

In this section, we aim to validate the modeling accuracy
of the power system dynamics adopted in this paper. To this
end, we need to make sure that the dynamic behavior of
the test system is only due to the power system modeling
represented in (7) through (15). Therefore, we put all the
load measurement attack values in (17) equal to zero i. e,
Pl[k] =0, Vi € AVk € C, and disable constraints (18)
through (26). Thereafter, we run (17) for a load disturbance
of 500 MW (25 MW at each load bus). This disturbance is
8.13% of the total load 6,150 MW in the system which lasts
for 2s (from ¢t = 1s to t = 3s). The generator and governor
parameters used in this validation process are given in Table
IV.

Due to space considerations, we only demonstrate the
comparison of the frequency and rotor angle behavior of the
generators at buses 33 and 35 obtained in Fig. 5. It can be



TABLE IV
GENERATOR AND GOVERNOR PARAMETERS IN MODEL VALIDATION AND
OPTIMALITY VALIDATION STUDIES.

Bus No.  Generator Governor
H(s) Rpu) T(s)
30 4.20 0.05 0.50
31 3.03 0.05 0.50
32 3.58 0.05 0.50
33 2.86 0.05 0.50
34 2.60 0.05 0.50
35 3.48 0.05 0.50
36 2.64 - -
37 243 - -
38 3.45 - -
39 50.00 - -
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Fig. 5. Comparison of the adopted model accuracy and the developed test
system in ePHASORSIM for rotor angle of a) generator 33, b) generator 35,
and frequency behavior of c¢) generator 33, and d) generator 35.

seen that the dynamic responses of the adopted model in this
paper are sufficiently able to capture the actual dynamic of
the test system developed in ePHASORSIM. Note that the
adopted method utilizes the DC power flow to increase the
scalability of the optimization model. This is while ePHA-
SORSIM applies AC power flow in modeling the power
systems’ dynamics. The little-observed discrepancy in the
results is due to the difference in utilized power flow methods.

C. Model optimality validation

To demonstrate the optimality of the proposed OFDIA, we
compare the results of a successful non-optimal FDIA (NOF-
DIA), which is a random feasible solution, and the proposed
OFDIA on load measurements and show their impacts on the
frequency behavior of the power system. The information of
this study is given in Tables II, III, and IV.

Fig. 6(a) shows the load attack values on all of the load
measurements in the test system. For the OFDIA, it can be
seen that all the attack values have small magnitudes with
small changes in two successive cycles. This is due to the
stealthiness constraints (18) to (25) in (17), which keeps the
amount of attack within a permissible range. However, from
the figure, it’s clear that at least one of the NOFDIA attack
values has a very large amount with big changes between
two successive cycles. Although such an attack can cause
protection-relay operations in the power system, it is most
likely to be detected by attack detection methods in the
control center before causing any issues due to the unstealthy
manipulations in measurements. Fig. 6(b) also shows the fre-
quency behavior of the system for these two types of attacks.
According to this figure, both OFDIA and NOFDIA can create
an over frequency (f >61.8 Hz) in the system within the same
timeframe (12 seconds). While the operation of even one of
the protection relays in the system is considered a successful
attack, the NOFDIA causes an over-frequency in all of the
generators, which is due to the non-optimal injections in load
measurements. Nevertheless, OFDIA causes only some of the
generators to experience over-frequency, which manifests the
optimality of the proposed OFDIA method.

We agree that the problem could be formulated as mixed
integer linear programming (MILP) to include ‘either ROCOF
or frequency’ related constraints in the problem formulation.
The MILP type of model would not scale up for the larger
system; hence, we combined the constraints through slack
variables that avoid the use of integer variables. However,
we have carried out an additional simulation that shows two
scenarios: a) with only ROCOF-related constraints ((18)-(19))
b) frequency-related constraints ((20)-(21)), and presented the
results in Fig. 7. Figure 7(a) demonstrates the amount of
the launched attack on load measurements (P') for opti-
mal frequency-targeted (F-OFDIA) and RoCoF-targeted (R-
OFDIA) attacks. Activation of different constraints (frequency
or RoCoF) in OFDIA results in distinct P's, which can be seen
in this figure. Fig. 7(b) also demonstrates that the frequency
oscillations in F-OFDIA cross the threshold (60.8 Hz) while
these oscillations in R-OFDIA stay less than the threshold.
This is because the primary focus of R-OFDIA is to find
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optimal P's to cause a RoCoF attack in the system regardless
of frequency values and its behavior. A closer look at Fig. 6(b)
and Fig. 7(b) shows that frequency oscillations of OFDIA
and F-OFDIA are similar. This clarifies that regardless of
frequency constraints and RoCoF constraints being activated
at the same time or separately, the proposed OFDIA objective
function returns optimal attack on load measurements with the
possibility of constraint violation.

TABLE V
POWER SYSTEM PARAMETERS USED IN CASE STUDIES.

Case H R T T Accessible Accessible Loads
No. (s) (p-u.) (s) (%) Loads Total Size (%)
Cl 0.30  0.07 0.50 15.0 [3, 12, 24] 10.39

Cc2 1.80  0.07 0.50 15.0 [I15, 16, 31] 10.71

C3 2.10  0.07 0.50 15.0 [3, 25, 39] 26.83

D. Case Studies

We study three different case studies to show the system’s
dynamic behavior once the attacker launches OFDIA on A.
The power system parameters of these case studies are shown
in Table V. In all the case studies, the simulation starts at ¢ =
0 s and stops at the end of each dispatching cycle. If OFDIA
is not successful, then it runs for one more cycle. This process
continues until a successful OFDIA or the maximum number
of dispatching cycles C reaches. Table III shows the simulation
parameters used in these case studies.

Figures 8, 9, and 10 show the dynamic behavior of Pl 1€
A, PS ,t € F, f7 ;i€ N, and f;,i € G for the case studles
where dlfferent attacks exist. The attack is launched at ¢t =2 s
in all the case studies. Before applying the attack we have P!
=0p.u, Ps at the initial values, w = w, and w" = 0 Hz/s. The
values of P! and P* remain constant within one dispatching
cycle. Another attack, if needed, can be launched at the
beginning of the following dispatching cycles. The control
center receives the attacked load measurements from the power
system and simultaneously sends P to the governors. As
it can be seen, these values create some fluctuations in the
frequency (Figures 8(c), 9(c), 10(c)) that consequently makes
w” fluctuate as well (Figures 8(d), 9(d), 10(d)). Below, we
discuss these behaviors in detail.

Case Study 1 (C1): In this case, we demonstrate the FDIAs
on load measurements, as shown in Fig. 8(a), for which the
system undergoes only RoCoF attack. As shown in Fig. 8(d),
the RoCoF of all the generator buses crosses the threshold
except one. This fact shows that the system with small inertia
might experience sharp frequency fluctuations when subject
to any load-generation imbalance, even though the frequency
remains within the permissible range.

Case Study 2 (C2): In this scenario, due to the OFDIAs
on load measurements depicted in Fig. 9(a), we observe only
under-frequency attacks in the second case. Here, we change
the value of H while the rest of the power system parameters
remains the same as CI1. It can be seen that an increase in I
left no RoCoF attacks in this scenario. However, this increase
introduces the under-frequency attack, in which one or more
loads get disconnected from the grid.

Case Study 3 (C3): In the third case study, the system
experiences both under-frequency and RoCoF attacks (Fig. 10)
as it experiences the OFDIAs on load measurements shown in
Fig. 10(a). One might expect not to have any RoCoF attack
in C3 since we have the largest H compared to C1 and C2.
However, the difference in the total accessible load percentage
of C3 with C1 and C2 should be noticed. While the number of
accessible loads is the same in all the case studies, in C3, we
have access to the largest load of the system (bus 39). This



accessibility gives an attacker the opportunity to launch an
FDIA on the system resulting in more variety of FRO. Hence,
we can premise that securing the meters of large loads can
make the system less vulnerable to FDIAs.

VI. EVALUATION

In this section, we perform a comprehensive study of the
impact of power system parameters on the vulnerability of
power grids against FDIAs. In particular, we discuss the
impact of power system parameters H, R, T, and = on t*
and P.

A. Methodology

Load distribution is usually variable across the power sys-
tem. This makes a randomly chosen load set often not a
good representative of the accessible loads. For example, let’s
consider a system with four load buses, and these buses have
loads [1 2 80 100] MW. We want to select a set of two loads
that are accessible to the attacker. It is obvious that if the
chosen set includes [1 2] MW, ¢ can be significantly different
from the case we select [80 100] MW as the accessible loads.
Larger accessible loads give the chance to the attacker to
inject larger false data into the measurements without being
detected by the bad data detection algorithms in the control
center. Larger false data can cause faster fluctuations in the
system leading to a faster FRO attack. Therefore, since we
do not know anything about the load distribution across the
power system, we consider a random sets of accessible loads
for each value of z and run the algorithm to make sure
the results of ¢* are accurate. Thus, in order to increase the
accuracy of the evaluation, in each case study, we randomly
pick a = 30 different accessible load sets (.4) and consider t*
as the average time of successful attacks of these 30 random
load sets. For instance, given the total number of loads which
is 19 for the 39 bus test system, if x = 15%, 3 (19x 15% =
2.85 = 3) of the loads are randomly selected as one accessible
load set A, and this process is repeated for 30 times to find
30 different accessible load sets. The distribution of the total
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accessible load normalized with the total load in the system
is shown in Fig. 11 for different x.

To find ¢, we run the OFDIA shown in Fig. 3 for a times
sequentially, each sequence for one of the accessible load sets.
If there is any successful attack among all the sequences, t*
is considered as the average of the time for these successful
attacks, and the simulation stops afterward. Otherwise, i.e.,
there is no successful attack among all the sequences, and no
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Fig. 10. Dynamic behavior of the system for case study C3 where RoCoF
and under-frequency attacks happen within C' = 3 a) attack values on load
measurements (Pl) b) changes in the governor reference set-points (PS) c)
frequency behavior d) RoCoF behavior.
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value is considered for t®.

B. Evaluation results

In this section, we discuss the simulation results of the
presented methodology.

Impacts of power system parameters on average time min-
imally required for a successful attack: Fig. 12 shows the
relation between H and ¢®. By ignoring the two outlier points
H =3 s and 3.6 s, there can be seen an upward trend line
between H and t® for different values of x. Moreover, for all
values of z, t® is constant at the beginning, then starts rising
in different values of H. These rising points are H = 0.6, 0.9,
1.5 s for z = 5, 15, 30%, respectively. It can be seen that the
rising point increases when x increases.

Moreover, for a fixed value of H in Fig. 12, a decrease in
x causes t* to become larger. This clarifies that by decreasing
the number of accessible loads to the attacker, launching a
successful attack takes longer to take place.

The relation between ¢t* and R for different values of H
is demonstrated in Fig. 13. There can be seen different start
points for the curves in this figure. This is due to the fact
that there is no successful attack for the values before the
start points. For example, there is no successful attack when
R =0.03 p.u. and H = 0.3 s. Therefore, there is no point in
the graph for this case. Besides, there are three points in this
figure which are worth mentioning. The first point is that by
increasing H, the start point shifts to the right, although not
continuously. This can be interpreted as a decrease in P while
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H increases even though this is not always valid. The second
point is that there is always a peak value for ¢* on each of the
curves. Although there is not a clear pattern when this peak
shifts to the right and left, it always increases when H goes
up. The third point is that in all the curves t* starts declining
after the peak value. To have a more frequency-stable power
system against FDIAs, these points need to be considered
when designing the governor parameters. Fig. 13 also shows
an increase in t* for an increase in power grids’ inertia.
This phenomenon has a direct relationship with the frequency
robustness of power grids — the higher the generators’ inertia,
the more robust the frequency of power grids. This relationship
specifies that in power grids with higher inertia, more time is
needed for the attacker to achieve a frequency oscillation and
RoCoF violating the allowed thresholds.

Fig. 14 presents the behavior of ¢* versus R for different
values of T'. The first point observable in this figure is that all
the curves start from R > 0.03 p.u. meaning that there is no
successful attack while R < 0.03 p.u.. This suggests that for
R < 0.03 p.u., the system is secure against FDIAs, regardless
of how much T is. Another point is that there is a maximum
value for t* in each curve. For example, for 7" = 0.50 s this
maximum t* emerges at R = 0.07 p.u. while this happens at
R =0.04 p.u. for T' = 1.00 s. However, there can not be seen
any specific relation between these values and variation of R.
Therefore, it is best to consider R < 0.03 p.u. to eliminate P
in this test system. Otherwise, the maximum ¢* needs to be
explored for each value of T'.
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Fig. 15 represents the relation between t®, T and H. At
first glance, what can be seen from this figure is that when
T increases, t* also increases, although not continuously.
This means that if studying the system behavior in detail for
different values of T is not possible, then consideration of
large values for 7' compared to small values has better results
in securing the system against attacks. For instance, when
H =2.1s, t* has a greater value for 7" = 1 s than 7' = 0.1
s. However, another point seen in the figure is the existence
of a peak value for t* in the curves. For example, when H
= 0.3 s, the peak arises at 7' = 1 s while for H = 1.8 s this
occurs at T' = 0.6 s. However, these peak values do not show
a completely predictable pattern for variation of 7. In other
words, in order to make the system as secure as possible, the
maximum value of ¢* needs to be explored for the system.

Impacts of power system parameters on attack success possi-
bility: As mentioned before, in each case study, we consider
30 different accessible load sets and implement the proposed
formal modeling to find successful attacks. This is why some
of these case studies do not return any successful attack. In
this subsection, we discuss this attack success possibility (P)
in Figures 16 and 17. The first point observable in Fig. 16 is
that for a small value of inertia (H = 0.3 s), P = 100% in
almost entire values of R. This fact clearly shows that systems
with low inertia lead to frequency instability against FDIAs
regardless of the value of R. Another significant observation
is that there is an increase in R in all the curves, along with
an increase in P. Moreover, for small values of R, there is no
successful attack if H is large enough. This fact declares that
small values of R are accompanied by a reduction of P and
an enhancement of power systems’ frequency stability against
FDIAs.

Fig. 17 also confirms the results shown in Fig. 16. It can
be seen that by increasing R, P grows as well. Moreover, it
shows that growth in 7" can significantly reduce P while R is
a small value (< 0.07 s). For higher values of R (> 0.07 s),
the impact of 7" on P becomes insignificant as all the curves
saturate to 100%.

C. Discussion

In this subsection, we propose some suggestions based on
the findings from case studies and evaluation results as pre-
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ventive measures to mitigate/eliminate the detrimental impacts
of FDIA leading to FRO in power systems.

Fig. 12 shows that although with an increment in the power
system’s inertia, there are some fluctuations in the average time
of a successful attack; in general, a growing trend in successful
attack time can be seen. This is due to the fact that for small
values of inertia, the frequency fluctuates more easily so as a
successful attack can be launched in a shorter time. Therefore,
when the power system’s inertia is low, for example, when
the penetration of renewable energy resources is high in the
system, lowering the number of accessible loads by securing
more load meters has a direct impact on the increment of the
minimum required time for a successful attack.

In Fig. 13, it can also be seen that the greater the inertia of
the power system, the larger the time for a successful attack.
As mentioned earlier, When the inertia is small in power
systems, frequency tends to fluctuate more easily. This might
lead to the triggering of RoCoF relays and the disconnection of
the generators from the power system. Therefore, low inertia
exposes the power system to more vulnerabilities against
FDIAs and shortens the time required for a successful attack.
Consideration of different set-points for RoCoF relays can help
the power system not experience triggering of all the RoCoF
relays at once time and a blackout ultimately. One of the cases
in which the power systems’ inertia becomes smaller is the
integration of renewable energy resources. Renewable energy
resources such as photovoltaic and wind turbines normally
have zero or negligible inertia. Increasing the penetration of
such resources into power systems requires fewer synchronous
generators, which are the major source of inertia in power
systems. This can significantly affect the frequency stability
of power systems against FDIAs. Therefore, consideration of
synchronous generators with larger inertia values can help
the power systems’ frequency stability enhancement against
FDIAs. If such generators are not available or are not enough
to enhance the power system’s frequency stability, securing
more load meters can be a doubled solution. Securing load
meters reduces the attacker’s accessibility to them and makes
it take longer to compromise the measurements.

Another approach to improve the power system’s stability,
based on Fig. 14, is to consider small values of governor
droop and large values of the governor’s time constant. A
power system equipped with such governors will encounter



an increment of time required for a successful attack or even
an elimination of the attack success possibility. Figures 16 and
17 also suggest that an increase in the power system’s inertia,
as well as small values for governors’ droop, can significantly
lower the possibility of a successful attack in power systems.

VII. CONCLUSION

This paper targeted the analysis of an OFDIA on load-
frequency control in power systems, focusing on the false
operation of protection relays, including synchronous gener-
ator’s over-frequency and RoCoF relays as well as under-
frequency load shedding relays. We proposed a sequential
optimization-based formal method to optimize the size of
the attack leading to a FRO while minimizing the required
average time. We implemented the proposed method on the
IEEE 39 bus system and designed several case studies to
demonstrate the behavior of the power system under FRO
attacks. Thereafter, we ran an extensive number of simulations
using the proposed method with multiple values of power
system parameters such as inertia, governor’s time constant,
and droop to evaluate the impact of these parameters on
the vulnerability of the power systems’ frequency stability
against FDIAs. Ultimately, we presented a discussion on how
to increase the frequency stability of power grids against FRO
attacks by choosing the appropriate values of these power
system parameters. Our evaluation showed that matters such
as increasing the penetration of renewable energy resources
in power grids that results in decreasing the power system’s
inertia can make the power systems’ frequency stability more
vulnerable to FDIA. In contrast, a combination of large values
of governor time constant and small values of droop can
raise the required time for a successful attack, making the
power systems’ frequency more stable against attacks. This
paper intends to evaluate the feasibility of FRO of frequency-
based protection relays which can affect the power system’s
frequency security. To this end, we first proposed the OFDIA
model to observe the feasibility of such attacks in one-area
power grids, which mostly include load measurements. As
future work, we would consider multi-area power grids with
different sensors, including tie-line sensors.
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