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Abstract—Intelligent false data injection on load measurements
can trigger false relay operation (FRO) of frequency-based
protection relays, affecting the power system frequency and
thus threatening the security of power systems. In this paper,
we propose an optimization-based formal model to find the
optimal false data injection attack (OFDIA) with the minimum
required time leading to an FRO. The proposed model considers
the dynamic behavior of the power system in an optimization
framework to find the optimal size of attacks over multiple
generators’ dispatching cycles to minimize the attack launch
time. Using the proposed formal modeling, we study the impact
of power system parameters, including inertia, governor’s droop
and time constant, and the attacker’s accessibility to loads on
the attack success and launch time. The results demonstrate that
systems with low inertia are more vulnerable to FDIAs while
systems with higher inertia are more secure as fewer generator
protection relays are impacted by FRO. In addition, we show that
securing more load meters can increase the time for launching
an attack in the system. Moreover, our studies show that a
combination of large values of the governor’s time constants
and small values of the governor’s droops can raise the time
of successful attacks, making the system more secure against
FDIAs.

Index Terms—False data injection attack, load-frequency con-
trol, frequency stability, optimization, protection relays.

I. INTRODUCTION

W ITH the adoption of advanced information and com-

munication technologies, the traditional power grids

are transforming into smart cyber-physical systems [1]. Al-

though this transition to smart grids brings several benefits

to system operations [2], [3], it also makes power grids

vulnerable to cyber threats due to their increased dependency

on communication and measurement technologies. Among

the various types of cyberattacks, false data injection attack

(FDIA) represents a major class of cyberattacks that have

been extensively investigated recently in the literature [4]–

[7]. In FDIA, an attacker sends wrong data into the existing

measurement/communication systems in the power grids so

that it can mislead the control center/controllers to make wrong

control decisions. There are several real-world instances in

that FDIA has been devised by the attackers to cause damage

to the power grids. For example, FDIA on distribution grids

in Ukraine in 2015 left more than 200 thousand customers

without electricity for a few hours [5]. Besides, there are
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some attacks such as the Stuxnet [8] and Dragonfly [9] in

which the attacker needed to have full knowledge about the

system and full access to the real-time data in the control

centers. The developed Stuxnet worm injected false data into

control signals and attacked nuclear centrifuges. Despite the

fact that these attacks were not launched in power systems,

it is possible that such complicated attacks with full access

to data easily target power systems as well. Access to such a

high level of data can also be provided by insider attackers

[10] via social engineering against employees in the control

center [11]. Considering all of the abovementioned, in this

paper, we study FDIAs on power systems while the attacker

has full access to the power system data.

Grid frequency is one of the indicators of the normal

operation of power systems. Any major fluctuations in the

frequency need to be corrected so that it remains within the

acceptable range; otherwise, there could be serious conse-

quences, including blackouts. For example, the 2019 blackout

in England and Wales was caused by the decline in the

grid frequency that left around one million customers without

electricity [12]. Following any disturbance in the power grids,

the primary frequency response, which includes automatic

decentralized control action of generators’ active power output,

instantaneously determines the grid frequency. However, in

a bit slower time scale compared to the primary frequency

response, the grid frequency is maintained by re-dispatching

the generators. If the frequency fluctuates from the nominal

value, re-dispatching the generators adjusts the reference set-

points of the generators equipped with governors to bring the

frequency back within the acceptable range.

Since the dispatching process relies on measurements and

communication (see Fig. 1), any FDI in the closed-loop

dispatching process may impact the frequency stability of

the power system leading to false tripping of relays and

system-wide consequences [13]. Among the several protection

relays that could be impacted by FDI, the rate-of-change-

of-frequency (RoCoF) relays, under-/over- frequency relays,

and Load shedding relays are the ones directly impacted by

FDI on the closed-loop control of the dispatching process.

These relays are responsible for assisting in load-generation

balance by disconnecting generators/loads at pre-defined lo-

cations as needed [14], [15], tripping the generators during

excessive frequency excursion to protecting the system from

frequency instability, and preventing synchronous generators

from damage. Though most of the protection relays operate

based on local measurements as shown in Fig. 1, the FDIA on

the closed-loop control of the dispatching process can cause
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TABLE I
SUMMARY OF NOTATIONS

Symbol Definition Symbol Definition

( .̂ ) Parameter value after attack εr Slack term for upper RoCoF threshold

( .́ ) Parameter value from control center’s

viewpoint

εr Slack term for lower RoCoF threshold

A Set of accessible loads to the attacker ∆t Simulation time step

i,j Bus indices ∆Ps Governor reference set-point change

in two subsequent time steps

k Discrete step a Number of random sets of accessible

loads

C Set of discrete steps of

generators dispatching cycles

{ tc

∆t
, 2t

c

∆t
,..., Ctc

∆t
}

Bi,j Imaginary part of line admittance be-

tween bus i and bus j

F Set of dispatchable generators C Number of dispatch cycles

G Set of buses with generators C Maximum number of dispatch cycles

L Set of buses with loads fo Nominal frequency

N Set of buses H Synchronous generators’ inertia con-

stant

O Set of non-dispatchable generators KD Generator’s damping factor

T Set of simulation discrete steps

{1,2,..., Ctc

∆t
}

n Number of simulation discretized

steps

α,β,γ, Weighting factors P Attack success possibility

η,ζ

P̃ l Load measurement attack value P̃ l Load measurement attack value

δ Generator’s rotor angle and buses’

voltage angle

P̃ l Load measurement attack value

δ̇ Rate of change of generator’s rotor

angle

P̃ l Load measurement attack value

ω Instantaneous angular frequency Pg Generator’s active power output

ω̇ Rate of change of instantaneous angu-

lar frequency

Pg The upper limit of generator active

power

ωo Nominal angular frequency Pg Lower limit of generator active power

ω̇r RoCoF Pl Load active power

τf Over frequency threshold Pm Generator’s mechanical input power

τf Under frequency threshold Ps Governor’s reference set-point

τg Bad data detection threshold for gen-

erator power output changes in two

subsequent discrete steps

r Number of cycles in RoCoF calcula-

tion

τl Bad data detection threshold for load

measurements changes in two subse-

quent time steps

R Governors’ droop

τr RoCoF threshold S Generator’s apparent power

∆ω Angular frequency deviation Sb Base MVA

εf Slack term for over-frequency thresh-

old

ta Average time minimally required for

a successful attack

εf Slack term for under-frequency

threshold

tc Time interval between two subsequent

dispatch cycles

T Governors’ time constant x Attaker’s accessibility to load mea-

surements

unnecessary changes in frequency that ultimately leads to false

relay operations (FRO) [16]. As a simple example of how

FRO attacks can arise in power systems, assume an attacker

injecting false data into the load measurements at dispatching

cycle n to mislead the control center of a reduction in load

consumption. This faulty data makes the control center have

a wrong dispatch of power in the system and determines

wrong reference set-points for the governors. Comparing the

frequency deviation ∆ω and P s, the governor changes the

mechanical input power of the generators, and consequently,

the total power generation in the grid alters while the actual

load in the grid is still the same as the pre-attack value

(remember that the attacker just injects false data into the load

measurements and does not alter the actual load consumption).

This load-generation imbalance causes some fluctuations in the

frequency. If the fluctuations are large enough so that at least

one of the RoCoF and under-/over- frequency thresholds are

met, FRO is considered as successful. Otherwise, the attacker

needs to launch another attack at the subsequent dispatching

cycle n+1. The summary of the notations used in this paper

can be found in Table I.

A. Related Work

The impact of FDIAs on the frequency behavior of power

grids and protection relay operation is studied in the literature.

The effect of FDIAs on the generators’ dispatching process

1
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Fig. 1. An example of generators dispatching process in power grids to
regulate grid frequency.

is studied in [17]–[19] while investigating different FDIA

templates such as signal scaling, ramps, surges, and random

noises. In [20], authors showed the impact of an attack on

local controllers of loads (that emulate inertia) in power grid

frequency. In [21], the authors showed that FDIAs could lead

to unnecessary grid frequency deviation, which eventually

triggers load shedding. The authors of [22] demonstrated the

effect of random FDIA directed at loads to trigger RoCoF

relays. The impact of some limited predefined templates of

FDIA, such as constant or random packet delays, have also

been investigated in [23], [24].

Detection and mitigation of FDIAs on load-frequency con-

trol of power systems also have been widely investigated in

the literature. An automatic generation control (AGC) targeted

FDIA detection and defense mechanism is proposed in [25]

based on the generative adversarial network. The forecasted

area control error (ACE) is utilized in [26] to identify and

mitigate FDIA on AGC. Reference [27] considers FDIAs as

unknown inputs and uses the estimated value of FDIAs to

compensate for the associated impacts on AGC. A control

mechanism is presented in [28] based on a Kalman filter and

artificial neural network to detect and mitigate the impact of

FDIAs. However, the FDIA model considered in [17]–[28]

are based on random attacks or limited pre-defined attack

templates which might not be of interest of attackers in real

word.

Despite [19], [21], [22], [25]–[28], there are other relevant

FDIA works, though not in the context of generators dis-

patching process, developing optimal attack in their studies. A

mechanism to find the optimal attack to cause transmission line

outages is proposed in [29], [30]. However, the scope of these

papers (to cause overload in transmission lines) is different

from the scope of this work (attack on load-frequency control).

In [31], the authors present a Laplace-domain optimization

framework to investigate the vulnerability and impact of

AC/HVDC load frequency control on FDIAs. The authors in

[11] and [32] aim at finding the optimal attack within a min-

imum amount of time. However, these works consider multi-

area interconnected power systems wherein all the generators

within one area are replaced with a single equivalent generator
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whiles focusing on tie-line sensor measurements compromise.

In addition, [11] is missing the operation of generator RoCoF

relays as well as load shedding under-frequency relays.

An intelligent FDIA may defeat the control center’s defense

mechanism as it ensures stealthiness [33], [34]. Launching a

successful arbitrary FDIA could be possible, but to ensure

stealthiness, the arbitrary attack takes a substantial amount

of launch time to be successful [35], [36]. Such an attack

might not be of interest to the attackers. However, an optimal

false data injection attack (OFDIA), as proposed in this work,

that minimizes the number of compromised measurements and

launch time can leave a very short time for remedial actions

to the control centers [37]. Therefore, control centers should

consider possible OFDIA in the defense mechanism to ensure

power grids’ secure operations.

B. Contributions

The contributions of this paper are as follows:

• We propose time-domain formal modeling to find the

OFDIA while minimizing the time for a successful attack.

We use an optimizer to find the optimal size of the

load attack while implementing a sequential process to

find the minimum time for a successful attack. However,

due to the non-convexity of the problem, the proposed

method might not return the global optimal. Moreover,

the optimization model is formulated based on weighted

objective functions; thus, the approach is sensitive to the

selection of the weight.

• Unlike most literature, focusing on compromising tie-

line sensor measurements, our proposed formal modeling

aims at compromising the load measurements across the

power grid. In other words, most of the current papers

focus on control areas, while we consider the FDIA

on load measurements within those control areas. This

scenario seems more realistic since the number of load

meters in a power grid is way more than the number

of tie-line sensor measurements. Therefore, it is more

probable to have unsecured load meters than unsecured

tie-line sensor measurements.

• Thereafter, leveraging the proposed formal modeling, we

analyze and present a comprehensive study of the impact

of power system parameters, such as the generator’s

inertia, the governor’s droop and time constant, and the

attacker’s accessibility to loads on the possibility of a

successful attack and the minimum required time.

The rest of the paper is organized as follows: the load-

frequency model of power grids is given in section II. In

section V, we present the test system and the case studies. In

section VI, we discuss the result of simulations, and ultimately,

we conclude our work in section VII.

II. LOAD-FREQUENCY MODEL OF POWER GRIDS

Load-frequency dynamics of power grids can be modeled

using the swing equation of generators, power grid model,

actions of controllers (i.e., governors), and operations of relays

(i.e., RoCoF and under-/over- frequency relays). Fig. 1 shows

typical power grid components, controllers, and relays that

determine frequency dynamics in power systems. In the actual

operation of power grids, the inertia of synchronous genera-

tors and governor actions continuously impact the frequency

dynamics (i.e., primary frequency response), and at a regular

interval (e.g., 2-4 s), grid measurements are obtained (e.g.,

grid frequency, tie line flow), and generators updated dispatch

signals are sent to dispatchable generators to maintain the

frequency (i.e., secondary frequency control) [38].

A. Primary Frequency Response

In this section, we model the dynamic behavior of power

systems in a time-domain optimization framework. To do

so, we consider the differential equations of synchronous

generators and governors along with DC power flow to model

the changes in rotor angles. DC power flow returns the new

values of rotor angles for any changes in power systems,

such as load fluctuations, that help us in the evaluation

of the system’s frequency behavior. Thereafter, in order to

model these continuous-format questions in an optimization

environment, we discretize them using the Backward Euler

method [39]. Power system dynamics are represented by non-

linear differential-algebraic equations (DAE), which can’t be

solved analytically. Thus, the equations need to be discretized

for solving using numerical methods. Moreover, the Backward

Euler method yields a linear model of the dynamics after

the discretization, and hence the model exhibits scalability

compared to a non-linear discretized model. However, the

focus of the paper is not on the computational gain due to

discretization, we used off-the-shelf solvers available in Julia

to solve the model.

The frequency behavior of a multi-machine power system

can be expressed using the Swing equation as [38],

δ̇i = ωi − ωo = ∆ωi, ∀i ∈ N , (1)

ω̇i =
1

2Hi

(
Pm
i − P g

i −KDi
∆ωi

)
, ∀i ∈ G. (2)

All the notations used in the mathematical formulation are

provided in Section I. For brevity, we dropped the time index.

Without loss of generality, the governor is represented as the

TGOV1 model, which is a simplified representation of steam

turbine governors as [40],

Pm
i =

1

Ti

∫ (
P s
i −∆ωi

Ri

− Pm
i

)
, ∀i ∈ O. (3)

With the classical representation of a synchronous generator,

its terminal voltage angle can be approximated by the rotor

angles, and using the DC power flow formulations, the power

grid model becomes,

P g
i − P l

i =
∑

j∈N

Bi,j (δi − δj), ∀i ∈ N . (4)

The dynamic model (1)-(4) determines the primary fre-

quency response of power grids.
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B. Secondary Frequency Control

For secondary frequency control, the control center may run

the DC power flow (4) based on measurements (e.g., P l, as

shown in Fig. 1), and obtain steady-state reference set-points

(dispatch signals) P s as,

P s
i = Ri P

g
i , ∀i ∈ F . (5)

C. Operation of Frequency-based Relays

Generators are typically equipped with RoCoF and

over-frequency relays, and the loads (at bulk level) are

equipped with under-frequency (or load shedding) relays to

keep the load/generation balance by disconnecting excess

loads/generation in case of large-frequency oscillations out-

side the pre-defined range. Under/over-frequency relays are

triggered based on frequency measurements ω, and RoCoF

relays are triggered based on the average rate of change of

frequency ω̇r at the relay locations.

III. FALSE DATA INJECTION ATTACK

The false data injection attack (FDIA) model is developed

considering the dynamics of the power grid and actions

of the control center in case of any compromise made on

the load measurements, as shown in Fig. 2. Consider that

P̃ l
i , ∀i ∈ A denotes the magnitude of the injected false data

into the load measurements. We use ( .̂ ) to represent param-

eters/measurements after FDIA. Therefore, the compromised

load measurements that the control center uses to update the

dispatch signals are P̂ l
i = P l

i + P̃ l
i , ∀i ∈ A. The outcome of

the control center running dispatching process routine based

on compromised load measurements P̂ l is the compromised

reference set-points for the governors, i.e., P̂ s
i , ∀i ∈ F .

When these compromised reference set-points are sent to

the governors, it causes load-generation imbalance leading to

frequency dynamics that possibly result in frequency instabil-

ity. Therefore, the control center unknowingly participates in

the attacker’s goal of attacking the load-frequency control in

power grids.

We use the Backward Euler method to discretize the con-

tinuous form of the power system dynamic model and control

center actions described in Section III as,

Load Measurement Attack:

෩l ෡
෡�l ෝ� ෡ሶ��

Fig. 2. A schematic of false data injection attack and its impacts on power
grid’s behavior.

P̃ l
i [k] =





0 ∀i /∈ A, ∀k ∈ T ,

P̃ l
i [ C[z − 1] ] ∀i ∈ A, C[z − 1] ≤ k < C[z],

∀z ∈ {2, 3, ..., C},

(6)

Power Grid Frequency Dynamics:

δ̂i[k + 1] = δ̂i[k] + ∆t
(
ω̂i[k + 1]− ωo

)
, (7)

∀i ∈ N , ∀k ∈ T ,

ω̂i[k + 1] = ω̂i[k] +
∆t

2Hi

(
P̂m
i [k + 1]− P̂ g

i [k + 1] (8)

−KDi
(ω̂i[k + 1]− ωo)

)
, ∀i ∈ G, ∀k ∈ T , (9)

P̂m
i [k + 1] = P̂m

i [k]−
∆t

Ti

(
P̂m
i [k + 1]

−
P̂ s
i [k + 1]− (ω̂i[k + 1]− ωo)

Ri

)
, ∀i ∈ F , ∀k ∈ T , (10)

P g
i [k]− P l

i [k] =
∑

j∈N

Bi,j

(
δ̂i[k]− δ̂j [k]

)
,

∀i ∈ {O − F}, ∀k ∈ T , (11)

P̂ g
i [k]− P l

i [k] =
∑

j∈N

Bi,j

(
δ̂i[k]− δ̂j [k]

)
,

∀i ∈ F , ∀k ∈ T . (12)

Control Center Actions:

Ṕ g
i [k]− (P l

i [k] + P̃ l
i [k]) =

∑

j∈N

Bi,j

(
δ́i[k]− δ́j [k]

)
,

∀i ∈ F , ∀k ∈ C, (13)

P s
i [k] = Ri Ṕ

g
i [k], ∀i ∈ F , ∀k ∈ C. (14)

Equation (6) shows the load measurement attack where it

is zero for measurements not included in accessible loads (A)

and remains constant within a dispatching cycle. Note that

in (7)-(12), the grid dynamics are modeled based on actual

loads and compromised set-points of governors obtained from

the control center, which leads to compromised power sys-

tem variables/parameters. In (13) and (14), the compromised

dispatch signals are obtained based on the compromised load

measurements. Note that in (13), P̂ l = P l + P̃ l includes the

amount of false data injection on the load measurements.

To model the operations of RoCoF relays, we compute ω̇r

at relay location as following [41],

ω̇r
i =

1

r∆t

k−1∑

j=k−r

(
ωi[k + 1]− ωi[k]

)
, ∀i ∈ G (15)

Then, the FRO decision is made based on pre-defined thresh-

olds for frequency and RoCoF as,

FRO =





1
(̂̇ωr

i [k] ≥ τ r
)
∨
(̂̇ωr

i [k] ≤ −τ r
)
, ∀i ∈ G,

1 ω̂i[k] ≥ τf , ∀i ∈ G,

1 ω̂i[k] ≤ τf , ∀i ∈ L,

0 otherwise.
(16)
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IV. OPTIMAL FALSE DATA INJECTION ATTACK MODEL

In this section, we propose the OFDIA model, which opti-

mizes the amount of the load attack in launching a RoCoF or

frequency violations. The relay operation logics, as defined in

(16) are non-smooth functions, which complicates the problem

formulation as it requires integer variables to model. Using

slack variables, we reformulate the OFDIA as follows, which

makes the problem linear programming in nature; and, hence

yields a tractable formulation. OFDIA optimizes the size of

load attack, i.e.,
∑

k∈C
i∈A

(P̃ l
i [k])

2, subject to the constraints (7)-

(16) for given dispatching cycle C.

OFDIA:

Minimize ζ
∑

k∈C
i∈A

(P̃ l
i [k])

2 + η
∑

k∈T
i∈L

εfi [k]

+
∑

k∈T
i∈G

(α εri [k] + β εri [k] + γ εfi [k]) (17)

S. t.: Constraints (7)− (15),

̂̇ωr

i [k] + εri [k] ≥ τ r, ∀i ∈ G, ∀k ∈ T , (18)

̂̇ωr

i [k]− εri [k] ≤ −τ r, ∀i ∈ G, ∀k ∈ T , (19)

ω̂i[k] + εfi [k] ≥ τf , ∀i ∈ G, ∀k ∈ T , (20)

ω̂i[k]− εfi [k] ≤ τf , ∀i ∈ L, ∀k ∈ T , (21)

εr[k], εr[k], εf [k], εf [k] ≥ 0, ∀k ∈ T , (22)

− τ l P l
i ≤ P̃ l

i [k] ≤ τ l P l
i , ∀i ∈ A, ∀k ∈ C, (23)

P g
i ≤ P g

i [k] ≤ P
g

i , ∀i ∈ G, ∀k ∈ T , (24)

P g
i ≤ P̂ g

i [k] ≤ P
g

i , ∀i ∈ G, ∀k ∈ T , (25)

− τg P s
i [k] ≤ P̂ s

i [k + 1]− P̂ s
i [k] ≤ τg P s

i [k],

∀i ∈ F , ∀k ∈ C,
(26)

where constraints (7)-(12) represent dynamic model of power

grids, (13)-(14) represent action of control center, and (15)

represents RoCoF calculation. Equations (18) and (19) imple-

ment the RoCoF relay operational logic as described in (16).

Similarly, (20) and (21) model the operation of frequency

relays defined in (16). Equation (22) ensures positive slack

variables. In (23), we try to keep the load attack within

[−τ l, τ l]% of the actual load at bus i. The main purpose of

adding this constraint is to prevent OFDIA from attacking

some of the load measurements only and leaving the rest

unchanged. This might be mathematically possible and bring

a minimum OFDIA value; however, this would not be a

realistic attack scenario to have a large difference between

subsequent time steps. The commonly employed bad data

detection algorithms are the residue-based ones which deploy

state estimate methods to find the operational state of the

power system. When the residual exceeds the allowed range,

the data is classified as bad data [42]. Conventionally, an attack

is stealthy when the changes in (one or more) measurements

keep the difference between the reported measurements and

estimated measurements within a threshold value [43]. When

this difference is zero, the stealthiness is at the best possible

case. Therefore, in this paper, we consider an attack scenario

in which the grid is fully visible. This means that there are

enough measurements across the grid, and the control center

does not need to perform any state estimation to obtain the

visibility of the grid. Hence, any attack on the measurements

by the attacker is directly transferred to the control center

and affects the generators’ dispatching process. Besides, we

consider some thresholds in our attack modeling that help

us to represent an attack with no observable changes. This

ensures the stealthiness of the attack so that no bad data

detection and FDIA detection algorithms detect the OFDIA.

Equations (24)-(25) maintain the true and attacked values of

the generator’s active power within the permissible range,

respectively. Equation (26) limits the generator power output

changes in two subsequent dispatching cycles within the

[−τg, τg]% of the generator’s output power. α, β, η, ζ, and

γ are weighting factors tuned so that each of the OFDIA

components does not overweight the rest. This helps OFDIA to

return the optimal attacks in the system regardless of their type

(RoCoF/frequency). The objective function (17) optimizes the

attack vector along with the slack variables to ensure the

frequency/RoCoF is pushed towards the upper/lower threshold

for relay operations. Note that, given the stealthiness constraint

(23), generators’ inertia, and time constant of equipment and

controllers, the above model may not yield an optimal attack

vector in one dispatching cycle; thus, the OFDIA models may

need to be run for multiple dispatching cycles [37].

To run OFDIA in multiple dispatching cycles, we start the

optimization with C = 1, run OFDIA, and check if there is a

feasible attack that triggers FRO defined in (15). If so, the loop

terminates, and the results are considered optimal. Otherwise,

C is increased, and the process continues until we either find a

successful attack or we reach C = C that indicates FRO is not

feasible even in multiple dispatching cycles. The flowchart of

this process is shown in Fig. 3. There is no limit on choosing

the maximum number of dispatching cycles (C). The proposed

OFDIA in this paper can take any C and try to find the optimal

attack within the desired time. However, if the C is not large

enough, the solver might not be able to find a successful

attack. Basically, the suitable C can vary for different power

grids. For instance, if a power grid mostly contains generators

with large inertia, the frequency in such a grid would take

longer to oscillate. Therefore, a frequency/RoCoF attack takes

a longer time to be successfully launched in such grids; that

is, it requires a larger C.

V. NUMERICAL STUDIES

In this section, we present numerical case studies of our

proposed FDIA model based on an IEEE test system. These

studies are performed based on the attacker’s accessibility to

load measurements since the assumption of the attacker having

access to all the load measurements across the power system

is not realistic. Besides, when the attacker has access to all the

loads, no matter how different the power system parameters

are, the solver can find a feasible solution. Therefore, in our

numerical studies, we consider that the attacker has limited

access to a subset of loads (e.g., x% of all the loads). We will

use A to denote this accessible set.
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?

Fig. 3. Flowchart to run OFDIA in multiple dispatching cycles.

A. Test System

We consider the IEEE 39 bus system [38] shown in Fig. 4 as

the case study to test the proposed formal attack model. This

system has 10 synchronous generators where Si = 1000MVA

for ∀i ∈ G. For simplicity, for all the generators, we consider

KD = 0. Moreover, we ignore the sub-transient reactances of

the generators; therefore, the angle of bus voltages is equal to

the generator rotor angles. All the generators are assumed to

have over-frequency and RoCoF relays, and all the loads have

Under frequency relay

​RoCoF & Over frequency relay
Generator eqquiped with governor

Generator without governor

Fig. 4. IEEE 39 bus system.

TABLE II
SYSTEM’S LOAD INFORMATION.

Bus P l Ql Bus P l Ql

(MW) (MVAR) (MW) (MVAR)

3 322.0 2.4 21 274.0 115.0

4 500.0 84.0 23 247.5 84.6

5 0 -200.0 24 308.6 -92.2

7 233.8 840.0 25 224.0 47.2

8 522.0 176.0 26 139.0 17.0

15 320.0 153.0 27 281.0 75.5

16 329.4 323.0 28 206.0 27.6

18 158.0 30.0 29 283.5 126.9

20 680.0 103.0 31 9.2 4.6

39 1104.0 250.0

TABLE III
SIMULATION PARAMETERS.

Parameter Value Parameter Value

fo(Hz) 60 τ l(%) 30.0

∆t(s) 1/60 τg(%) 40.0

tc(s) 2 τf (Hz) 60.8

C 30 τf (Hz) 59.2

r 12 τr(Hz/s) 1.5

Sb(MVA) 100 a 30.0

under-frequency relays. The generators connected to buses 30

through 35 are considered to be equipped with governors

participating in the frequency regulation in the dispatching

process, i.e., O = F , and the remaining generators have a fixed

mechanical input power. We assume that the actual values

of the loads in the grid, i.e., P l
i , ∀i ∈ L, remain constant

throughout the simulation (which is ≤ 60 s). However, our

proposed formal model can capture the actual changes in loads

along with the compromised measurements. The information

on the loads and the simulation parameters used in the entire

paper is given in Tables II and III, respectively.

The OFDIA is implemented in Julia for Mathematical

Programming (JuMP), which is a domain-specific modeling

language for mathematical optimization [44] and is solved

using Gurobi [45].

B. Model Validation

In this section, we aim to validate the modeling accuracy

of the power system dynamics adopted in this paper. To this

end, we need to make sure that the dynamic behavior of

the test system is only due to the power system modeling

represented in (7) through (15). Therefore, we put all the

load measurement attack values in (17) equal to zero i. e.,

P̃ l
i [k] = 0, ∀i ∈ A, ∀k ∈ C, and disable constraints (18)

through (26). Thereafter, we run (17) for a load disturbance

of 500 MW (25 MW at each load bus). This disturbance is

8.13% of the total load 6,150 MW in the system which lasts

for 2 s (from t = 1 s to t = 3 s). The generator and governor

parameters used in this validation process are given in Table

IV.

Due to space considerations, we only demonstrate the

comparison of the frequency and rotor angle behavior of the

generators at buses 33 and 35 obtained in Fig. 5. It can be
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TABLE IV
GENERATOR AND GOVERNOR PARAMETERS IN MODEL VALIDATION AND

OPTIMALITY VALIDATION STUDIES.

Bus No. Generator Governor
H(s) R(p.u.) T (s)

30 4.20 0.05 0.50

31 3.03 0.05 0.50

32 3.58 0.05 0.50

33 2.86 0.05 0.50

34 2.60 0.05 0.50

35 3.48 0.05 0.50

36 2.64 - -

37 2.43 - -

38 3.45 - -

39 50.00 - -

(a)

(b)

(c)

(d)

Fig. 5. Comparison of the adopted model accuracy and the developed test
system in ePHASORSIM for rotor angle of a) generator 33, b) generator 35,
and frequency behavior of c) generator 33, and d) generator 35.

seen that the dynamic responses of the adopted model in this

paper are sufficiently able to capture the actual dynamic of

the test system developed in ePHASORSIM. Note that the

adopted method utilizes the DC power flow to increase the

scalability of the optimization model. This is while ePHA-

SORSIM applies AC power flow in modeling the power

systems’ dynamics. The little-observed discrepancy in the

results is due to the difference in utilized power flow methods.

C. Model optimality validation

To demonstrate the optimality of the proposed OFDIA, we

compare the results of a successful non-optimal FDIA (NOF-

DIA), which is a random feasible solution, and the proposed

OFDIA on load measurements and show their impacts on the

frequency behavior of the power system. The information of

this study is given in Tables II, III, and IV.

Fig. 6(a) shows the load attack values on all of the load

measurements in the test system. For the OFDIA, it can be

seen that all the attack values have small magnitudes with

small changes in two successive cycles. This is due to the

stealthiness constraints (18) to (25) in (17), which keeps the

amount of attack within a permissible range. However, from

the figure, it’s clear that at least one of the NOFDIA attack

values has a very large amount with big changes between

two successive cycles. Although such an attack can cause

protection-relay operations in the power system, it is most

likely to be detected by attack detection methods in the

control center before causing any issues due to the unstealthy

manipulations in measurements. Fig. 6(b) also shows the fre-

quency behavior of the system for these two types of attacks.

According to this figure, both OFDIA and NOFDIA can create

an over frequency (f >61.8 Hz) in the system within the same

timeframe (12 seconds). While the operation of even one of

the protection relays in the system is considered a successful

attack, the NOFDIA causes an over-frequency in all of the

generators, which is due to the non-optimal injections in load

measurements. Nevertheless, OFDIA causes only some of the

generators to experience over-frequency, which manifests the

optimality of the proposed OFDIA method.

We agree that the problem could be formulated as mixed

integer linear programming (MILP) to include ‘either ROCOF

or frequency’ related constraints in the problem formulation.

The MILP type of model would not scale up for the larger

system; hence, we combined the constraints through slack

variables that avoid the use of integer variables. However,

we have carried out an additional simulation that shows two

scenarios: a) with only ROCOF-related constraints ((18)-(19))

b) frequency-related constraints ((20)-(21)), and presented the

results in Fig. 7. Figure 7(a) demonstrates the amount of

the launched attack on load measurements (P̃ l) for opti-

mal frequency-targeted (F-OFDIA) and RoCoF-targeted (R-

OFDIA) attacks. Activation of different constraints (frequency

or RoCoF) in OFDIA results in distinct P̃ ls, which can be seen

in this figure. Fig. 7(b) also demonstrates that the frequency

oscillations in F-OFDIA cross the threshold (60.8 Hz) while

these oscillations in R-OFDIA stay less than the threshold.

This is because the primary focus of R-OFDIA is to find
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(a)

(b)

Fig. 6. Comparison of optimal attack (OFDIA) and non-optimal attack
(NOFDIA) a) load measurement attacks b) frequency dynamic.

(a)

(b)

Fig. 7. Comparison of OFDIA with frequency constraints (F-OFDIA) only
vs. ROCOF constraints (R-OFDIA) only.

optimal P̃ ls to cause a RoCoF attack in the system regardless

of frequency values and its behavior. A closer look at Fig. 6(b)

and Fig. 7(b) shows that frequency oscillations of OFDIA

and F-OFDIA are similar. This clarifies that regardless of

frequency constraints and RoCoF constraints being activated

at the same time or separately, the proposed OFDIA objective

function returns optimal attack on load measurements with the

possibility of constraint violation.

TABLE V
POWER SYSTEM PARAMETERS USED IN CASE STUDIES.

Case H R T x Accessible Accessible Loads
No. (s) (p.u.) (s) (%) Loads Total Size (%)

C1 0.30 0.07 0.50 15.0 [3, 12, 24] 10.39

C2 1.80 0.07 0.50 15.0 [15, 16, 31] 10.71

C3 2.10 0.07 0.50 15.0 [3, 25, 39] 26.83

D. Case Studies

We study three different case studies to show the system’s

dynamic behavior once the attacker launches OFDIA on A.

The power system parameters of these case studies are shown

in Table V. In all the case studies, the simulation starts at t =

0 s and stops at the end of each dispatching cycle. If OFDIA

is not successful, then it runs for one more cycle. This process

continues until a successful OFDIA or the maximum number

of dispatching cycles C reaches. Table III shows the simulation

parameters used in these case studies.

Figures 8, 9, and 10 show the dynamic behavior of P̃ l
i , i ∈

A, P̂ s
i , i ∈ F , f̂i , i ∈ N , and ḟi , i ∈ G for the case studies

where different attacks exist. The attack is launched at t = 2 s

in all the case studies. Before applying the attack, we have P̃ l

= 0 p.u., P̂ s at the initial values, ω = ωo and ω̇r = 0 Hz/s. The

values of P̃ l and P̂ s remain constant within one dispatching

cycle. Another attack, if needed, can be launched at the

beginning of the following dispatching cycles. The control

center receives the attacked load measurements from the power

system and simultaneously sends P̂ s to the governors. As

it can be seen, these values create some fluctuations in the

frequency (Figures 8(c), 9(c), 10(c)) that consequently makes

ω̇r fluctuate as well (Figures 8(d), 9(d), 10(d)). Below, we

discuss these behaviors in detail.

Case Study 1 (C1): In this case, we demonstrate the FDIAs

on load measurements, as shown in Fig. 8(a), for which the

system undergoes only RoCoF attack. As shown in Fig. 8(d),

the RoCoF of all the generator buses crosses the threshold

except one. This fact shows that the system with small inertia

might experience sharp frequency fluctuations when subject

to any load-generation imbalance, even though the frequency

remains within the permissible range.

Case Study 2 (C2): In this scenario, due to the OFDIAs

on load measurements depicted in Fig. 9(a), we observe only

under-frequency attacks in the second case. Here, we change

the value of H while the rest of the power system parameters

remains the same as C1. It can be seen that an increase in H
left no RoCoF attacks in this scenario. However, this increase

introduces the under-frequency attack, in which one or more

loads get disconnected from the grid.

Case Study 3 (C3): In the third case study, the system

experiences both under-frequency and RoCoF attacks (Fig. 10)

as it experiences the OFDIAs on load measurements shown in

Fig. 10(a). One might expect not to have any RoCoF attack

in C3 since we have the largest H compared to C1 and C2.

However, the difference in the total accessible load percentage

of C3 with C1 and C2 should be noticed. While the number of

accessible loads is the same in all the case studies, in C3, we

have access to the largest load of the system (bus 39). This
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accessibility gives an attacker the opportunity to launch an

FDIA on the system resulting in more variety of FRO. Hence,

we can premise that securing the meters of large loads can

make the system less vulnerable to FDIAs.

VI. EVALUATION

In this section, we perform a comprehensive study of the

impact of power system parameters on the vulnerability of

power grids against FDIAs. In particular, we discuss the

impact of power system parameters H , R, T , and x on ta

and P .

A. Methodology

Load distribution is usually variable across the power sys-

tem. This makes a randomly chosen load set often not a

good representative of the accessible loads. For example, let’s

consider a system with four load buses, and these buses have

loads [1 2 80 100] MW. We want to select a set of two loads

that are accessible to the attacker. It is obvious that if the

chosen set includes [1 2] MW, ta can be significantly different

from the case we select [80 100] MW as the accessible loads.

Larger accessible loads give the chance to the attacker to

inject larger false data into the measurements without being

detected by the bad data detection algorithms in the control

center. Larger false data can cause faster fluctuations in the

system leading to a faster FRO attack. Therefore, since we

do not know anything about the load distribution across the

power system, we consider a random sets of accessible loads

for each value of x and run the algorithm to make sure

the results of ta are accurate. Thus, in order to increase the

accuracy of the evaluation, in each case study, we randomly

pick a = 30 different accessible load sets (A) and consider ta

as the average time of successful attacks of these 30 random

load sets. For instance, given the total number of loads which

is 19 for the 39 bus test system, if x = 15%, 3 (19× 15% =

2.85 ≈ 3) of the loads are randomly selected as one accessible

load set A, and this process is repeated for 30 times to find

30 different accessible load sets. The distribution of the total

(a) (b)

(c) (d)

Fig. 8. Dynamic behavior of the system for case study C1 where only RoCoF

attack occurs within C = 3 a) attack values on load measurements (P̂ l) b)

changes in the governor reference set-points (P̂ s) c) frequency behavior d)
RoCoF behavior.

(a) (b)

(c) (d)

Fig. 9. Dynamic behavior of the system for case study C2 where only under-
frequency attack occurs within C = 5 a) attack values on load measurements

(P̂ l) b) changes in the governor reference set-points (P̂ s) c) frequency
behavior d) RoCoF behavior.

accessible load normalized with the total load in the system

is shown in Fig. 11 for different x.

To find ta, we run the OFDIA shown in Fig. 3 for a times

sequentially, each sequence for one of the accessible load sets.

If there is any successful attack among all the sequences, ta

is considered as the average of the time for these successful

attacks, and the simulation stops afterward. Otherwise, i.e.,

there is no successful attack among all the sequences, and no

(a) (b)

(c) (d)

Fig. 10. Dynamic behavior of the system for case study C3 where RoCoF
and under-frequency attacks happen within C = 3 a) attack values on load

measurements (P̂ l) b) changes in the governor reference set-points (P̂ s) c)
frequency behavior d) RoCoF behavior.

Fig. 11. Distribution of the total accessible load sets normalized with the
total grid’s load for different accessibilities (x) while a = 30.
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Fig. 12. Power grids inertia (H) vs. ta for different accessibility (x).

value is considered for ta.

B. Evaluation results

In this section, we discuss the simulation results of the

presented methodology.

Impacts of power system parameters on average time min-

imally required for a successful attack: Fig. 12 shows the

relation between H and ta. By ignoring the two outlier points

H = 3 s and 3.6 s, there can be seen an upward trend line

between H and ta for different values of x. Moreover, for all

values of x, ta is constant at the beginning, then starts rising

in different values of H . These rising points are H = 0.6, 0.9,

1.5 s for x = 5, 15, 30%, respectively. It can be seen that the

rising point increases when x increases.

Moreover, for a fixed value of H in Fig. 12, a decrease in

x causes ta to become larger. This clarifies that by decreasing

the number of accessible loads to the attacker, launching a

successful attack takes longer to take place.

The relation between ta and R for different values of H
is demonstrated in Fig. 13. There can be seen different start

points for the curves in this figure. This is due to the fact

that there is no successful attack for the values before the

start points. For example, there is no successful attack when

R = 0.03 p.u. and H = 0.3 s. Therefore, there is no point in

the graph for this case. Besides, there are three points in this

figure which are worth mentioning. The first point is that by

increasing H , the start point shifts to the right, although not

continuously. This can be interpreted as a decrease in P while

Fig. 13. Governor’s droop (R) vs. ta for different vales of inertia (H).

Fig. 14. Governor’s droop (R) vs. ta for different governor time constant
(T ).

H increases even though this is not always valid. The second

point is that there is always a peak value for ta on each of the

curves. Although there is not a clear pattern when this peak

shifts to the right and left, it always increases when H goes

up. The third point is that in all the curves ta starts declining

after the peak value. To have a more frequency-stable power

system against FDIAs, these points need to be considered

when designing the governor parameters. Fig. 13 also shows

an increase in ta for an increase in power grids’ inertia.

This phenomenon has a direct relationship with the frequency

robustness of power grids – the higher the generators’ inertia,

the more robust the frequency of power grids. This relationship

specifies that in power grids with higher inertia, more time is

needed for the attacker to achieve a frequency oscillation and

RoCoF violating the allowed thresholds.

Fig. 14 presents the behavior of ta versus R for different

values of T . The first point observable in this figure is that all

the curves start from R ≥ 0.03 p.u. meaning that there is no

successful attack while R < 0.03 p.u.. This suggests that for

R < 0.03 p.u., the system is secure against FDIAs, regardless

of how much T is. Another point is that there is a maximum

value for ta in each curve. For example, for T = 0.50 s this

maximum ta emerges at R = 0.07 p.u. while this happens at

R = 0.04 p.u. for T = 1.00 s. However, there can not be seen

any specific relation between these values and variation of R.

Therefore, it is best to consider R < 0.03 p.u. to eliminate P
in this test system. Otherwise, the maximum ta needs to be

explored for each value of T .

Fig. 15. Governor’s time constant (T ) vs. ta inertia (H).
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Fig. 15 represents the relation between ta, T and H . At

first glance, what can be seen from this figure is that when

T increases, ta also increases, although not continuously.

This means that if studying the system behavior in detail for

different values of T is not possible, then consideration of

large values for T compared to small values has better results

in securing the system against attacks. For instance, when

H = 2.1 s, ta has a greater value for T = 1 s than T = 0.1

s. However, another point seen in the figure is the existence

of a peak value for ta in the curves. For example, when H
= 0.3 s, the peak arises at T = 1 s while for H = 1.8 s this

occurs at T = 0.6 s. However, these peak values do not show

a completely predictable pattern for variation of T . In other

words, in order to make the system as secure as possible, the

maximum value of ta needs to be explored for the system.

Impacts of power system parameters on attack success possi-

bility: As mentioned before, in each case study, we consider

30 different accessible load sets and implement the proposed

formal modeling to find successful attacks. This is why some

of these case studies do not return any successful attack. In

this subsection, we discuss this attack success possibility (P )

in Figures 16 and 17. The first point observable in Fig. 16 is

that for a small value of inertia (H = 0.3 s), P = 100% in

almost entire values of R. This fact clearly shows that systems

with low inertia lead to frequency instability against FDIAs

regardless of the value of R. Another significant observation

is that there is an increase in R in all the curves, along with

an increase in P . Moreover, for small values of R, there is no

successful attack if H is large enough. This fact declares that

small values of R are accompanied by a reduction of P and

an enhancement of power systems’ frequency stability against

FDIAs.

Fig. 17 also confirms the results shown in Fig. 16. It can

be seen that by increasing R, P grows as well. Moreover, it

shows that growth in T can significantly reduce P while R is

a small value (< 0.07 s). For higher values of R (≥ 0.07 s),

the impact of T on P becomes insignificant as all the curves

saturate to 100%.

C. Discussion

In this subsection, we propose some suggestions based on

the findings from case studies and evaluation results as pre-

Fig. 16. Impact of governor’s droop (R) on attack success possibility (P )
for different H .

Fig. 17. Impact of governor’s time constant (T ) on attack success possibility
(P ) for different H .

ventive measures to mitigate/eliminate the detrimental impacts

of FDIA leading to FRO in power systems.

Fig. 12 shows that although with an increment in the power

system’s inertia, there are some fluctuations in the average time

of a successful attack; in general, a growing trend in successful

attack time can be seen. This is due to the fact that for small

values of inertia, the frequency fluctuates more easily so as a

successful attack can be launched in a shorter time. Therefore,

when the power system’s inertia is low, for example, when

the penetration of renewable energy resources is high in the

system, lowering the number of accessible loads by securing

more load meters has a direct impact on the increment of the

minimum required time for a successful attack.

In Fig. 13, it can also be seen that the greater the inertia of

the power system, the larger the time for a successful attack.

As mentioned earlier, When the inertia is small in power

systems, frequency tends to fluctuate more easily. This might

lead to the triggering of RoCoF relays and the disconnection of

the generators from the power system. Therefore, low inertia

exposes the power system to more vulnerabilities against

FDIAs and shortens the time required for a successful attack.

Consideration of different set-points for RoCoF relays can help

the power system not experience triggering of all the RoCoF

relays at once time and a blackout ultimately. One of the cases

in which the power systems’ inertia becomes smaller is the

integration of renewable energy resources. Renewable energy

resources such as photovoltaic and wind turbines normally

have zero or negligible inertia. Increasing the penetration of

such resources into power systems requires fewer synchronous

generators, which are the major source of inertia in power

systems. This can significantly affect the frequency stability

of power systems against FDIAs. Therefore, consideration of

synchronous generators with larger inertia values can help

the power systems’ frequency stability enhancement against

FDIAs. If such generators are not available or are not enough

to enhance the power system’s frequency stability, securing

more load meters can be a doubled solution. Securing load

meters reduces the attacker’s accessibility to them and makes

it take longer to compromise the measurements.

Another approach to improve the power system’s stability,

based on Fig. 14, is to consider small values of governor

droop and large values of the governor’s time constant. A

power system equipped with such governors will encounter
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an increment of time required for a successful attack or even

an elimination of the attack success possibility. Figures 16 and

17 also suggest that an increase in the power system’s inertia,

as well as small values for governors’ droop, can significantly

lower the possibility of a successful attack in power systems.

VII. CONCLUSION

This paper targeted the analysis of an OFDIA on load-

frequency control in power systems, focusing on the false

operation of protection relays, including synchronous gener-

ator’s over-frequency and RoCoF relays as well as under-

frequency load shedding relays. We proposed a sequential

optimization-based formal method to optimize the size of

the attack leading to a FRO while minimizing the required

average time. We implemented the proposed method on the

IEEE 39 bus system and designed several case studies to

demonstrate the behavior of the power system under FRO

attacks. Thereafter, we ran an extensive number of simulations

using the proposed method with multiple values of power

system parameters such as inertia, governor’s time constant,

and droop to evaluate the impact of these parameters on

the vulnerability of the power systems’ frequency stability

against FDIAs. Ultimately, we presented a discussion on how

to increase the frequency stability of power grids against FRO

attacks by choosing the appropriate values of these power

system parameters. Our evaluation showed that matters such

as increasing the penetration of renewable energy resources

in power grids that results in decreasing the power system’s

inertia can make the power systems’ frequency stability more

vulnerable to FDIA. In contrast, a combination of large values

of governor time constant and small values of droop can

raise the required time for a successful attack, making the

power systems’ frequency more stable against attacks. This

paper intends to evaluate the feasibility of FRO of frequency-

based protection relays which can affect the power system’s

frequency security. To this end, we first proposed the OFDIA

model to observe the feasibility of such attacks in one-area

power grids, which mostly include load measurements. As

future work, we would consider multi-area power grids with

different sensors, including tie-line sensors.
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