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AnoTAlisg. B pobori aHamizyeTbest 361KHICTD aIrOpUTMy HAa OCHOBL CIPSI)KEHOTO T'DAJIEHTA st
GYHKITIOHATBHOI JIHIAHOI MO/Iesi B CHCTEMI BiITBOPIOIOYOTrO sI/Ipa riabbePTOBOTO TPOCTOPY, BUKOPHUCTO-
BYIOUM De3yJIbTATH PAHHBOI 3YIIMHKH B PEryJIAPHU3AIil IIPOTH HAAMIPHOI MiArOHKU. MM BCTAHOBIIOEMO
mBHIKOCTI 361KHOCTI 3a/I€3KHO BiJ yMOBH peryasgpHOCTI (yHKHil HaXWiIy Ta IIBHUIKOCTI CIIAJaHHI
BJIACHUX 3HAYEHb OIEePaTOPHOI KOMITO3UINi KoBapiarmii Ta onmeparopa aapa. Hamri mBumgkocTi 36i:KHOCTI
BLAIOBLIAIOTE MiHIMAKCHIN MBUAKOCTL, JOCTYIHIM y jiTepaTypi.

ABsTRACT. In this paper, we discuss the convergence analysis of the conjugate gradient-based algo-
rithm for the functional linear model in the reproducing kernel Hilbert space framework, utilizing early
stopping results in regularization against over-fitting. We establish the convergence rates depending
on the regularity condition of the slope function and the decay rate of the eigenvalues of the operator
composition of covariance and kernel operator. Our convergence rates match the minimax rate available
from the literature.

1 INTRODUCTION

The functional linear regression (FLR) model is one of the fundamental tools for analyzing
functional data, introduced by Ramsay and Dalzell [22]. The model gained popularity due to
its simplicity in dealing with high-dimensional functional data. For example, it is widely used in
medicine, chemometrics, and economics [11,12,21,23]. Mathematically, the FLR model is stated as

Y:LX@W@ﬁ+Q

where Y is a real-valued random variable, (X(¢);¢t € S) is a continuous time process, 5* is an
unknown slope function and € is a zero mean random noise, independent of X, with finite variance
o2. Throughout the paper, we assume that X and 3* are in L? (S), and S is a compact subset of
R?. In the context of the slope function, it is evident that

= in E[Y —(X,5)]?.
B argﬁenng?S)[ (X, 5)]

The goal is to construct an estimator B to approximate the slope function 8* using observed empirical
data {(X1,Y1),(X2,Y2), -+, (Xn,Yn)}, where X;’s arei.i.d. copies of random function X. The main
approach in estimating the slope function 5* is based on the representation of the estimator function
and functional data in terms of certain basis functions. In this paper, we utilize the framework of
reproducing kernel Hilbert space (RKHS) to construct an estimator function B using the conjugate
gradient method.

In [7], the authors used penalized B-spline basis functions to represent the estimator function
and also introduced an alternate smooth version of functional principal component analysis (FPCA)
to construct B A Fourier basis approach was explored in [17] and the FPCA-based approach is
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investigated in [5,14,19]. One of the profound choices for the basis functions in the FPCA method
is to use the eigenfunctions obtained from the covariance operator of the given data. However, Cai
and Yuan [6] demonstrated that this choice may not be suitable for all cases, as shown with the
example of Canadian weather data. This observation strongly motivated the researchers to explore
alternative choices of basis functions.

It is well-known in learning theory that kernel methods represent predictor functions using
data-driven kernel functions, resulting in good generalization error (see [3,9,10,20]). Cai and
Yuan [26] proposed utilizing the kernel method approach, wherein the estimator is expressed as a
linear combination of kernel functions. The method achieves optimal rates under the assumption
that the slope function 5* belongs to the RKHS. Later in [6], they used the regularization technique
to achieve optimal rates without the Sacks Ylvisaker condition, which was a necessary assumption
in [26]. Further analysis of the FLR model within the framework of RKHS has been studied and
discussed in [2,24,25,27|. Since the computational complexity of these techniques is O(n?), they
incur high computational costs when dealing with large datasets.

To address this shortcoming, Blanchard and Kramer [4] employed the conjugate gradient method
in the kernel ridge regression method, by utilizing an early stopping rule that also serves as a
form of regularization. This reduces the computational complexity to O (nzm) for m number of
iterations [18]. Inspired by their work, in this paper, we propose an estimator B for the FLR model
by employing the conjugate gradient (CG) approach with an early stopping rule. We specifically
focus on the CG method due to its outstanding computational characteristics, setting it apart from
other approaches. Since it aggressively targets the reduction of residual errors, it is commonly
observed in practical applications that the CG method achieves convergence in significantly fewer
iterations compared to other gradient descent techniques, as discussed in the context of kernel
learning by [13] and [8]. We obtain a convergence rate for || — B*|lz2(sy and show it to align with
the minimax rates of the FLR model [6,27], thereby establishing the minimax optimality of our
estimator.

The paper is organized as follows. In Section 2, we present the necessary background for the
conjugate gradient method for the FLR model in the RKHS setting and explain some important
properties of certain orthogonal polynomials. In Section 3, we discuss our assumptions and provide
convergence rates of the CG method. We present the supplementary results, which will be used to
prove the main theorem, in the final section, Section 4.

2 PRELIMINARIES AND NOTATIONS

Let H be a Hilbert space of real-valued functions on a compact subset S of RY. We say that
‘H is RKHS if for every x € S, the pointwise evaluation map f +— f(z) is continuous on H. As a
consequence of the Riesz representation theorem, there is a unique kernel function k£ : S x S — R,
called the reproducing kernel such that k (s,-) € H for any s € S satisfies the reproducing property:

f(s) = <k(8a ')7f>7.¢7 VfeH.

It is easy to see that the associated kernel function k is symmetric and positive definite. Conversely,
for a given symmetric and positive definite function k, we can construct a unique RKHS with k as
the reproducing kernel. For a detailed study of RKHS, we refer the reader to [1].

We assume that k is continuous; then the associated RKHS H is separable and the embedding
operator (inclusion operator) J : # — L? (S), which is defined as (J f)(z) = (k(z,"), f)y is compact.
The adjoint operator J* : L2 (S) — H is given by

(Tg)(x) = /S Kz, )g(t) dt.

We denote the integral operator, T := JJ* : L?(S) — L?(S) and the covariance operator C' :=
E[X ® X]: L?(S) — L?(S), where ® is the L? (S) tensor product.
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Given (X;, Y;)l i.i.d. copies of (X,Y’), our estimator is defined as

. 1< 5

B =argmin ; [Yi — (8, Xi) 2]

= argminlzn:[Y' — (JB, Xi) 2)?
BEH N 7 s X)L

1=

n

1 )
- SN - (B, T X
argmin -~ > [Vi = (8, J X))

i=1
A solution for this optimization problem can be obtained by solving
J*CnJpB = JR, (2.1)

where

R 1 R 1
Ch :nngl(g)Xz and RZ?’LElY;XZ
1= 1=

We denote A := T2CT and A, = T%C’TLT%.
The fundamental idea behind the conjugate gradient method is to restrict the optimization
problem to a set of subspaces (data dependent), known as Krylov subspaces, defined as

Ko (J*R, J*C‘nJ) . — span {J*ﬁ:, JCJJ*R, (J*C}J)Q JR,... <J*an>m_1 J*R}

A~

- {p (J*énj) JR : pe Pm,l} :

where P,,—1 is a set of real polynomials of degree at most m — 1. Then the CG solution after m
iterations is

Bm = arg min HJ*R — J*C’njﬁH . (2.2)
BEKm (J*R,J*Cp ) H

The iterated solution, because the problem is restricted to the Krylov subspaces, will take the form
Bm = Qm (J*C’nJ) J*R with gm being a polynomial of degree at most m — 1. Associated with each
iterated polynomial g,,,, we have a residual polynomial defined as p,, (z) = 1 —2q, () € P9, where
PV is a set of real polynomials of degree at most m and having constant term equal to 1.

Since the construction of the estimator involves forward multiplication through the residual
polynomial p,,, it is essential to understand certain fundamental characteristics of these polynomials.

Suppose (§n,is €n,i);cp i an eigenvalue-eigenfunction pair for the operator A, with &niin [0, KA,
i € I, where {e,; : i € I} is an orthonormal system in L? (S) and rp is a constant that bounds the
kernel function of the integral operator A. For u > 0, denote Fy, = 1jg,,) ([\n) as the orthogonal
projector onto the space spanned by {e,; : i € I, &,; < u}. For each integer I > 0, we will introduce
measure ug) which is defined as

O ._ Lo /rks o\

=36 (T Rens) O,

el

where &, is Dirac measure centered at z. In particular, for [ = 0 we use the convention 00 = 1.



36 GuptaN., Sivananthan S., Sriperumbudur B.K.

Associated to each measure ,ug), I > 0, we define the scalar product of two polynomials as

= [ PO 0

=D (&) a(Eni) ()’ <T% R, en>

el
For [ = 0, we see that
[, Q](o) = <p ([\n> T%R, q (An> T%R>L2 .

Since A, is a finite rank operator, it has only a finite number of non-zero eigenvalues. Consequently,
we observe that the measure ug ) has finite support of cardinality, independent of . Indeed, if §, ; =0
for some j € I, then we have

Now we see that

14 1 o 1
(T*R, en,j>L2 =->v <T2Xi,en,j>L2 —0.

=1

This concludes that ,ug) has finite support of cardinality (independent of 1), let’s say n, < n. It is
clear from (2.2) that ¢, minimizes

HJ*R — J*CJq <J*CnJ) J*RHH _ HT%R T3¢, Tig (T%CnT%) TsR

L2

over q € Pp,—1. Equivalently, consider p (z) = 1 — xzq (z), then p,,, minimizes

12 = [pap] (0) (2.3)

over p € 7321. In other words, we can say that p,, is the orthogonal projection of origin onto the
affine subspace PV C Py, for the scalar product [-, -](0). We take go = 0,pg = 1 for m = 0. Because
of the properties of projections, py, is orthogonal to PY. Since P, = 1+ 7P,,_1 is parallel to
TPm—1, where (7(q)) (z) = zq(x) is a shift operator. So we have 0 = [pm, 7q] ) = [pm, q](y) for any
q € Pp—1 which concludes that po,...,pn,_, is an orthogonal sequence of polynomials with respect
to [, -](1). For m = n,, we can see that [, "] is semidefinite product on Py, and py, is unique
element of ng satisfying [pnw, pnﬁ/] 0 = 0. Hence, for m = n,, unicity of the solution holds and

(Pr s Pm] 1= 0 for all m < n,. By applying the representer theorem to (2.1),

3€span{/ k() X;(t)dt:i= 1,...,n},
S
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i,e., there exists a a := (ay,...,a,) € R" such that § = iy i [ok (-, t) X (t) dt. Using this in
(2.1), we can solve Ko =y to get a solution of (2.1), where

K € R™" with [K]ij: = / / k;(s,t)Xi(t)Xj(S) dtds
SJS

and y = (Y1,... ,YH)T € R™. We refer the reader to [15] for the iterative methodology to create the
CG estimator of 5 in (2.1).

The following lemma, which lists several properties of orthogonal polynomials, is proven in [4].
It will be used frequently throughout the remainder of the paper.
Lemma 2.1. (Lemma 5.2 in [4]) Let m be any integer satisfying 1 < m < n,.

1. The polynomial p,, has exactly m distinct roots belonging to (0, kA], denoted by (zj m)

1<k<m
1 1ncreas1ng order.

2. pm Is positive, decreasing and convex on the interval [0, z1 ).

3. Define the function ¢, on the interval [0, z1,,) as

Then it holds

1 . .
ity = [ (32) 48], < [ (30) 2,
and furthermore, for any v > 0,
’ —v
sup 2"y, (2) < v |y, (0) (2.4)
z€[0,21,m]
4. Denote p(()Q),P?), .. ,py(i),l the unique sequence of orthogonal polynomial with respect to [-, -],

and with constant term equal to 1. This sequence enjoys properties (1) and (2) above with
<$§“2’)”>1<k< denoting the distinct roots of p%) in increasing order. Then it holds that
’ <k<m

(2)

$17m S xl,m'

Finally, the following holds:

[pm—lvpm—l](o) - [pmypm—l](g) [pm—lvpm—l](o)

< / Y _ .
0 > Pm—1 (0) Pm (0) (2) (2) —= (2) (2)
Pm—1,Pm—1 (1) Pm—1:Pm—1 (1)

3 THE MAIN RESULT

In this section, we present the convergence rate of the conjugate gradient method in functional
linear regression. Our proofs are inspired by the ideas of [4]. The analysis depends on the eigenvalue
behaviour of the operator A =T 2CT? which indicates the behaviour of eigenvalues of the kernel
operator T' and the covariance operator C. First, we begin with a list of assumptions that are
required for our convergence rate analysis.

Assumption 3.1. (Source Condition) There exists g € L? such that f* = T3 (T%CT%)ag,
where o is any positive real number.

Note that the assumption implies f* € H with additional smoothness. In [27], the authors

use this source condition to derive the minimax and faster convergence rate for the Tikhonov
regularization with 0 < a < %
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Assumption 3.2. (Decay Condition) For some s € (0,1),
TS SEs Y el

where (&, €;);¢y Is the eigenvalue-eigenvector pair of operator A and the symbol < means that there

exist constants b, B > 0 such that bi_é <& < Bi_% foralli e 1.

This decay of eigenvalues is related to the effective dimensionality because under this assumption
we have that N(A) := trace(A (A + X)) < D2 (kpX\)"* for all A € (0,1] and an appropriate
choice of D > 0.

Assumption 3.3. (Fourth Moment Condition) For any f € L?(S),

2
E (X, f>Ai2 <c¢p (E (X, f>%2> for some constant cy > 0.

We define the early stopping rule to stop the CG method at an early stage m* < n. This is
mainly used for its implicit regularization property. The early stopping, defined as m*, is the first
iteration for which the residual term is less than some predefined threshold. Now we state and prove
our main theorem.

Theorem 3.1. Let a > 0, 7 > 0 and E || X||* < co. Suppose Assumptions 3.1-3.3 hold, and
stopping rule holds with threshold

Q=02+71) n” e
Then for large enough n and A\ = ¢(«, 0) n_1+sl+2a, it holds with probability at least 1 — § that

— o
fs n 1+s+2a7

o -

L2
where ¢ (o, 0) is a constant that depends only on o and 0.

Proof. Let A > (ﬁ

n

1
) ' and define F:= (I — F,). We start by considering the error term:

|8 = 87|, =|78m - 8"

L2

A
E‘H

N
Q
3

=
3

IN
<
/N N /N
g
/N /N
:)>>

I
.

|

£ (i () i )
Term—2
FE (i () T 1)

Term—3

L2

|

L2’
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In the third step we have used that Jgq,, <J*C’nJ) J* = T%qm (T%C'nJ> T% which can be derived
easily using spectral representation. Further, we will estimate each term separately using Lemma
4.1 and Lemma 4.2.

Estimation of Term-1:

S ‘

D=

Futm (An> (An + Mr)é (An + AI) (A4 AD)

op

X H(A + M) 2T (R . Cm*)

L2
o2
S\ N ‘ uQm A + AI) (by Lemmas 4.1,4.2)
op
2
no z€[0,u] z€[0,u]
; ;
2 /
</ XA sup 4 @) sup g (x) |+ A2 |pry (0)’
no z€[0,u] z€[0,u]
a2 N ()\) / % 1]

Following argument ensures the last inequality: If m = 0, we use p,, = 1 and ¢, = 0, so the
inequality follows for any u > 0. If m > 1, we use p, is decreasing and convex in [0, u], ¢, () <

. (O)‘ for all z € [0,u) and z¢y, (z) <1 for all x € [0,u) as u < X1 .

Estimation of Term-2: Using Lemma 4.4, and the fact that |p,, (x)| < 1 for all x € [0,u), we
get

o) -

<2| sup t%pm (t) + max{a, 1} Zs (A) sup pp (1)
te[0,u] t€[0,u]

Fue (1) %]

L2

<2 (u* +max {a, 1} Z, (V).

Estimation of Term-3:

£ (1 ()T,
=B (8) 7 A (g (B) THR - %)
.2
<||Ft ([\n>_1 (Anqm <n) TiR-T3R+T3R— AnAO‘g>
1
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e rE (&) (18R - Aua%)

L2

Sl‘f&
u

The last inequality follows from Lemmas 4.1, 4.2.

(w+N? (202N (\)
+ .
L2 U no
So by combining all three terms, we get

2N (V) (@ + )

~ no U

nGm (An) T%R — T%R

SIS

o

L2 + (u” + max {a, 1} Zy (M)

Anqm (f\n> T%R %R

1
1 ,
U L2

, —1
where @ = min {u, )pm (O)} } Now we define our stopping rule as

m*:inf{mZO :‘

. ([\ ) TR — %fz\

<0},

L2
Then

2N () (i + A)2

o + (u® + max {a, 1} Z,, ()\))—l—%ﬂ (3.1)

|

We still have to bound ‘p;ﬂ* (0)‘ and for that we will use Lemma 4.5. First we will bound ‘p;n*_l (0) ’

We assume that 0 < u < 21,1 < xfr)nfl (see Lemma 2.1). Consider

[pm 1, Pm 1](0)
A l A
= (|Pm—1 (An> T>R 2
< pgll <An> TR (As pm, minimizes (2.3) over p € 730)
@ (i )7 L@ (i \hi
<|Fp®, (An TR L2+‘Fu 2, (An) iR
. N A
<|[FT:R| +uz|p?, (An) AZT:R
L2 L2
SR_T3C 5 _1| (@ A\ Al A
< n
| (ria-mics)] e, (1) st
1
<||Fu (A + 1) H H (Ao +21) (A0 H(A+M)—% (13 R -T4¢,5") p
X SN | C) AN NN S S
+‘ Ll (An) ARTH R "

For the third last inequality, we have used the fact that ‘pg)_l (x)‘ < lforallz e [O,x(2) } as
@)

pg) 1(0) =1 and p,,” ; is non-increasing on [O,xf,)n_l}.
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From Lemma 4.1, Lemma 4.2 and Lemma 4.4, we get

1
2

[pmfbpm*l](ﬂ)
- A 1 X " AL ~
_ 2?N () ‘ Fu(hunt)? ||+ |mdoncg| +ut o2, (A) AdTiR
no op v o
2 A Az A
< 20°N () (u+ )7 +2¢ (@) u (u® + Zo (V) lgll 2 +u2 [0, <A”> ARTER
nd o
202N (A 1 a 2 ;
2 ) 2w Za () gl [0

where ¢ (o) is a constant depending on . Here we have used that ‘pgll (ZL‘)‘ <lforx e [O, 33521)1171} )

Using Assumption 3 and with the choice of A = ¢ (o, 0)n™ 1+Sl+2a, we get that % < A%*t3 and
Zao (A) < A

A~

From Lemma 4.5 and the stopping rule ‘ Anqm*,l (An) T%R — T%R , > Q, we get
(2 4+ 1) Az A2t
2U2N ()\) / 7% 1
. 0‘ A
n(s Pmx—1 ( ) + A2

@ za

Lo ((p;n*_l (0)

, -1
pea O ) gl

_1
<Varrte ( P (0)] * ﬁ)

’

2 (s @ e @) 20 ) [ O ) gl

Therefore, we have

I

() M)

)
g1l 22

TAZAZTY < ¢ (o) max {)\é-&-a

Za (M)

, —1
2 O]l

Following the steps from [4], we see that if the first term attains the maximum

et < c(a) A+s plm*,l (0)‘ P =

P2 (0)] < ea, ) A7

if the second term attains the maximum

—(a+1

!/

N )
P < e(@) |1 O gl =

P2 (0)] < ¢ (0, 1) AT,
if the third term attains the maximum

AT < () Zo (V) ‘P;n*—1 (0)‘_1 lgll2 =

P (0)] < ¢ (0, 1) A7,

as Zo (A) S A%
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From all three cases, we will get that

P2 (0)] < €2 (0, 1) A,

for some constant ¢z (o, 7) > 0.

In the next step we get an bound on ’p/m* (O)‘ From Lemma 2.1, we know that

[pmfl ; pmfl](o)

],

Pn1 (0) =Py, (0)] <

Define u := a (a, 7) A, where a (o, T7) is a constant. Using this choice we get

202N ()
no

=

(w4 A)Z +2¢ (@) u (u® + Zo (V) lgll 2 < c3 (@, 7) AZAYT3,
From the stopping rule, we know that

w1 (M) TH - TR

>0 =(247) A2\,
L2

So now we can see that using all these inequalities we have that

P (0)] < ea (@) A7, (3.2)
Using (3.2), the choice of a («, 7) can be made accordingly such that

—1
’ < T1m-

w < | (0)
With this inequality, we can choose @ = u. Now with this choice of @ = a (a,7) A, where a (a,7)

has been taken to satisfy all the conditions on 4, we will further bound (3.1). Therefore, we get
that

5 202N (A
[ =), % Gfxs()ﬂl (A+@)7 +2(u® + max {a, 1} Zo (1))
0 R (R0) TER-THR]| <
u L2
Now by using A = ¢ («, ) n‘%, the result follows. O

In the RKHS framework, the first minimax convergence rate was established by Cai and Yuan
[6,26] for the Tikhonov regularization method with the source condition 5* € H. Later in [27],
the results were extended, and the minimax convergence rates derived with the source condition

[0
B*eR (T% (T%CT%) ) for0 < a < % Our convergence rates for the conjugate gradient method

match the minimax rates of [27] and also match with the convergence of rates of [13].

4 SUPPLEMENTARY RESULTS

Technical details in the paper depend on the estimation of the residual term as the CG method
works to reduce the residual term as the number of iterations progresses. To simplify the technical

part we use the fact that “J*énJBm — J*RHH = HAnqm (An> T%R—T%RHH. We introduce

several lemmas that aid us to estimate the residual term and to prove the main theorem.
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Lemma 4.1. Under Assumptions 3.2 and 3.3 we get

H ([\n - A) (A+AD)

_1
< (n/\1+s) 3
op
for some constant c¢; > 0.

We skip the proof of this lemma as it follows from the similar steps of Lemma 2 in [6]

1
From Lemma 4.1 and for A > (4cl> T we get

H (An - A) (A+AD)~"

1
< —.
op ~ 2
As a consequence, we get

-1 -1

H(A+ D) ([\n + )J)

~ (3= a) @+ an 1]

1
1 H (An - A) (A+AD)~"

1
+1
<2, v/\>(461> .
n

Using Corde’s inequality, (HA”B”H < ||ABJ.
tive operators, we get

op op

IN

op

op> 0<r< 1), where A and B are self-adjoint posi-

H(A A (An + M) -

op n

l
<2, WweS Az (401> . (4.1)

We will follow the similar ideas from |2, 25] to prove the following lemma.
Lemma 4.2. For § > 0, with at least probability 1 — §, we have that

H(A+AI)—%T% (- Cup) \B < "2/:;(”

Proof. Define Z; := (A +\I)"2 T3 [Y:X; — (X; ® X;) 5]
X1,

. Since the slope function B* satisfies
the operator equation C* = E[Y

we get that the mean of random variable Z; is zero, i.e

E[Z]=(A+A\) 2Tz [E[YX]—CB]=0
By Markov’s inequality, for any ¢ > 0

1 n
]P)<
ni

= Z Z;
i=1

t2

2
. t) ElEEi Zi.
L2

Note that

1 < ?
027

E|Zz
n2ZE ZiyZ) 12 = QZE Zi, Zj) 2 + QZEHZHH—TL
L2 i,j=1 i#j

E|Z1l7

and by taking t = 5, with at least probability 1 — 4, we have

E [H(A FADTETE(YX — (X ® X) 6%) ;]
= — . (42

M\H
to\»—t

H(A+/\I)

(1-¢.)
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Consider

[NIES

E _H(A FAD) T (VX — (X ® X) 89 i]

—F -H(A FADTETE(Y = (X, 12) X ;]

el - ool

—E [¢2 <(A FA)TITEX, (A + M) "2 Téx>L2]

—E [trace ((A + D)7 T3 (X ®X) T%)}
=E [¢?] trace ((A + ) T%CT%)

—c2trace ((A + ) A) = N (N).

With this bound and (4.2), the result follows. O
Lemma 4.3. Assuming E | X||* < oo, with at least probability 1 — 8, we get

E|x|*

= A.
no

[€n=clls <
Proof. From Chebyshev’s inequality, we have that
p(jea-cf > < E|c.
" HS - £2 '
Using Theorem 2.5 [16], we get

R 4
¢l »6) < B1

P(
Taking & = 4/ E”)f;H4

= — will conclude the result. O
The bound in the Hilbert-Schmidt is stronger than the operator norm. So the above lemma
provides a stronger estimation compared to the estimation in terms of operator norm. The next
lemma explains a technical bound involving operator A and A,, which will be used repeatedly in
our analysis.
Lemma 4.4. For any v > 0, and measurable ¢ : [0, k5] — R, it holds with probability greater
than 1 — ¢ that

o (3) &

S osup e (t) +max{v,1} Z, (A) sup ¢(¢),
op te[0,r4] te[0,54]

where

P Lo T2
A P N A

Proof. Proof of this result follows the similar steps of Lemma 5.3 [4]. For v < 1, we have
i (Aa) 2], = [l (3) (B - 21)°
op

S( sup "¢ (t) + A" sup @(t))-

te[0,54] tel0,kA]

(An + )\I>_V A+ MDY [[(A+2an)™ A%

op

op
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For last inequality, we used (4.1) and the fact that H (A+ M)~ A”H < 1. For v > 1,

[+ (3n) 2], < o (B, (& = 82, + flo (Aa) 8],
< (A” - AZ) oo P ]w(t) + Sup }t”w (t)
KA SKA
S|A - A, P ]w( Ht:{(?p ]t”tp(t)-
KA SKA

Here we used that for v > 1, 2 is Vﬁfl— Lipschitz over [0,kA] and by Lemma 4.3 we get our
result. O
In the following lemma, we will discuss the bound of the residual term that will be used later

to bound ‘p;n (0)‘
o
Lemma 4.5. Under Assumptions 3.1-3.3, E || X||* < oo and A > <461> "' we have that

. 2022(/5 ) (

v2(p O ) gl

Proof. For bounding the residual term, we use Lemma 2.1 at the initial stage to conclude that

' (0)‘% + /\5>

Angm ([Xn) T>R—T3R

L2

=)
WO (@) Za )

T ( ( L2
—||F,, <<pm (An> (TR -T3C,8" + T3C, 8" ))‘LQ
<[P (o () 7 (), e (5 () i)

Term—A Term—B

We will take help from Lemma 4.1 and Lemma 4.2 for the estimation of both terms.
Estimation of Term-A:

Fon (0 (1) T8 (R= ) )|

Frym®m (An) ([\n + AI)

L2

N

< ‘ (4.3)

op

(An + )\I>_; (A + AI)?

/ 202/\/ ‘

202N (N)
- no

‘(A M)z (T%R —T3

op

o (Aa) (A 21)

op

1 1
sup 2@, () + A2 sup o, (2)
z€[0,21,m] z€[0,21,m]

_1/2(72/\/(‘13”1 )_é+/\§>.
no
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For the last inequality, we use (2.4) for v =0, 1.

Estimation of Term-B:

<2 ( sup  t*p,, () +c(a) Zo (A)  sup t@nz@)) lgll 2
tE[O,me} tE[OJJI,m}
< (

Fuv (o (M) i)

L2

Fyp om (An) AnAa

llgll 2
op

\_(QH) +e(a)Za ()

i (0 o )] ) ol

where we used Lemma 4.4 and (2.4) in the last inequality. From (4.3) and (4.4), we obtain the
result. g
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