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Contrastive JS: A Novel Scheme for Enhancing the
Accuracy and Robustness of Deep Models

Weiwei Xing, Jie Yao, Zixia Liu, Weibin Liu, Shunli Zhang, Liqiang Wang

Abstract—Deep learning technologies have been applied in
various computer vision tasks in recent years. However, deep
models suffer performance decay when some unforeseen data
are contained in the testing dataset. Although data enhancement
techniques can alleviate this dilemma, the diversity of real data
is too tremendous to simulate. To tackle this challenge, we study
a scheme for improving the robustness and efficiency of the deep
network training process in visual tasks. Specifically, first, we
build positive and negative sample pairs based on a class-sensitive
strategy. Then, we construct a feature-consistent learning strategy
based on contrastive learning to constrain the representations
of interclass features while paying attention to the intraclass
features. To extend the effect of the consistent strategy, we pro-
pose a novel contrastive Jensen–Shannon divergence consistency
loss (JS loss) to restrict the probability distributions of different
sample pairs. The proposed scheme successfully enhances the
robustness and accuracy of the utilized model. We validated our
approach by conducting extensive experiments in the domains
of model robustness and few-shot object detection (FSOD). The
results showed that the proposed method achieved remarkable
gains over state-of-the-art (SOTA) methods. We obtained a 3.2%
average improvement over the best-performing FSOD method.

Index Terms—Contrastive Learning, Deep Model Robustness,
Few-Shot Object Detection, Image Augmentation

I. INTRODUCTION

In recent years, due to the rapid development of technology,
various forms of data have emerged. The analysis these
data can serve diverse applications and enhance our lives.
Among them, image-based and video-based data analysis and
processing are some of the most popular research topics [1].
Furthermore, deep learning techniques have been successfully
used across a wide spectrum of vision tasks, such as object
tracking [2] and person re-identification [3]. Such complex
scenarios usually involve the design of specific network mod-
ules to extract features from multimedia data and process the
extracted features through a designated algorithm to obtain
the final results. Although these modules are diverse, most of
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them rely on some widely used convolutional neural networks.
Hence, the stability levels and feature extraction abilities of
deep networks become factors that affect the performance of
these modules.

Obtaining a well-trained deep network usually requires
abundant training data. Additionally, deep networks are frag-
ile, as some tiny distortions can cause their performance to
crash [4]. Therefore, a reliable and robust deep visual percep-
tion system becomes of vital importance. To solve the stability
and efficiency problems of deep models, an increasing number
of data sources are being used to accomplish the training
process. It is generally believed that machine learning models
can learn the distribution characteristics of the input data in
this way. However, the learning process is quite complicated,
and some mistaken attention paid to minute details is more
likely to lead to high sensitivity and instability for the deep
learning classifier. It is difficult to ensure that the distribution
of the utilized training data is appropriately in line with
reality. In practice, the distributions of the training set and the
testing set may be biased [5]. At the same time, during the
actual testing process, the quality of the testing images can be
interfered with by a variety of factors, such as weather, blur,
or other factors that are considered uncontrollable. In such
circumstances, the data acquisition program may only capture
a small part of the underlying data distribution. Due to this
weakness, mismatches between the training and testing data
are commonplace, and the obtained classifier may be easily
fooled by some tiny imperceptible perturbations or corruptions
within the query image. This requires a model that is able to
generalize robustly across data distribution shifts.

Considering the fragility of deep models, many researchers
have begun to challenge the robustness of deep learning clas-
sifiers and proposed a variety of training schemes to improve
their robustness. The addition of some small corruptions to the
data is a typical kind of distortion and is sufficient for sub-
verting existing classifiers. Although techniques for improving
corruption robustness remain few, an increasing number of
researchers have begun to study this issue. Hendrycks et al. [6]
established a new benchmark for evaluating the performance
achieved on some common corruptions and found that some
models that perform well on clean datasets cannot be used
directly on corrupted datasets, as they cannot maintain their
performance. Then, they [7] proposed a data processing tech-
nique to improve the robustness and uncertainty estimates of
image classifiers. This method is effective because it extends
the distribution of the training dataset and helps models resist
unforeseen corruptions. However, this method pays too much
attention to data enhancement and the prediction distributions
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among inputs from the same category and fails to learn the
differences between objects from different categories. On the
other hand, while increasing the scale of the training data
benefits the performance of the utilized model, it incurs a large
extra cost during the training process. Moreover, in the data
collection process, there may be a situation where the data of
some specific objects cannot be obtained in large quantities.
This requires the employed model to have the ability to
adequately learn object features from a limited dataset.

To address these issues, we investigate and propose a
novel training scheme for deep visual recognition models to
provide them with strong robustness and high accuracy in
the face of unseen testing data. In addition to the regular
optimization process in the network, we employ the con-
trastive learning technique to learn to distinguish features
from different classes. Specifically, we build positive sample
pairs using clean samples and their corrupted variants, and
we build negative sample pairs using clean samples and
samples from different categories. Then, we simultaneously
input these sample pairs into the network and construct a
feature-consistent learning strategy based on contrastive learn-
ing to guide the feature extraction process. Furthermore, we
broaden the effect of the contrastive strategy and propose the
contrastive Jensen–Shannon divergence consistency loss (JS
loss) to restrict the prediction distributions of different sample
pairs.

To the best of our knowledge, this is the first study to use
contrastive learning for enhancing the robustness and accuracy
of a model. We verify the effectiveness of the proposed method
in two applications: model robustness and few-shot object
detection (FSOD). For the deep model robustness task, we
select Augmix [7] as our strong baseline, which achieves
state-of-the-art (SOTA) performance on the robustness bench-
mark [6]. Moreover, we carry out comprehensive ablation
studies to investigate the characteristics of our method. For
FSOD, we choose few-shot object detection via contrastive
proposal encoding (FSCE) [8] as our strong baseline. The
comparison results demonstrate that the proposed scheme
achieves robustness improvements and has superior object
detection performance. In summary, this paper proposes a
novel scheme for enhancing the stability and efficiency of
deep models, and the major contributions of this paper are
summarized as follows.

• A novel and class-sensitive sample pair building strategy
is proposed to guarantee that the pairwise information
is object-sensitive for positive sample pairs and border-
sensitive for negative sample pairs.

• A feature-consistent learning strategy is constructed to
constrain the representations of interclass features while
paying attention to the intraclass features.

• A novel probability distribution consistency constraint,
the contrastive JS loss, is proposed to broaden the effect
of the contrastive strategy and restrict the prediction
distributions of different sample pairs.

• Extensive experiments are conducted to evaluate the
applicability and performance of the proposed scheme in
terms of improving the robustness and data effectiveness
of the given model.

The rest of this paper is organized as follows. We review
the relevant literature in Section II, and then the proposed
scheme is elaborated in Section III. Section IV demonstrates
the experimental results. Section V discusses the limitations
of this study and future work. Section VI draws conclusions
about the proposed scheme.

II. RELATED WORK

A. Deep Model Robustness

Convolutional neural networks can better simulate the hu-
man visual system than other methods. However, these mech-
anisms are complicated and different from the traditional
human visual system, which can lead to high vulnerability
problems [9]. In terms of this issue, a series of studies have
focused on using various methods to challenge the robustness
of deep neural networks. Some of the research on visual
robustness has focused on the main challenge of adversarial
samples [4]. Adversarial samples are machine learning model
inputs that are deliberately designed by the attacker [10]; these
samples lead to model errors by adding some invisible distur-
bances. Most of these approaches generate adversarial samples
by using gradient-based methods. The way that adversarial
samples are generated determines that they can only represent
limited testing data distributions.

In addition to imperceptible perturbations, small corrup-
tions in the data distribution are sufficient to subvert ex-
isting classifiers as well [11]. Vasiljevic et al. [12] found
that a model trained from high-quality images would suffer
significant performance degradation when applied to images
degraded by some blur augmentations due to the mismatches
between the training and testing datasets. Lakshminarayanan
et al. [13] found that training probabilistic networks by ensem-
bling classifier predictions can improve the resulting prediction
performance and achieve higher performance on test examples
from known and unknown distributions. Recently, Hendrycks
et al. [6] investigated the differences between problems of
robustness against adversarial perturbations and corruptions,
integrated multiple corruption methods, and proposed a novel
benchmark to measure the robustness of models to unseen
corruptions. Our work mainly revolves around this benchmark,
as it comprehensively includes a variety of corruption styles,
such as Gaussian noise, frost, and glass blur.

Data augmentation techniques can yield improved general-
ization performance because the augmented data they generate
can be used as complementary data for model training. Several
data augmentation techniques, such as random flipping and
cropping, have already been applied to many commonly used
deep learning frameworks. Numerous data augmentation meth-
ods have been proposed in recent years [14]–[16]. Recently,
Ekin et al. [17] proposed a simplified search space to reduce
the computational expense of automated augmentation and
permitted the removal of a separate proxy task. Hendrycks
et al. [7] focused on the situation where the distributions of
the training and testing sets are mismatched and proposed a
data augmentation technique called Augmix, which utilizes the
combinations of different augmentation operations in concert
with a consistency loss. Yulin et al. [18] proposed implicit
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semantic data augmentation (ISDA) to complement traditional
augmentation schemes.

However, most of these methods pay exorbitant attention to
data augmentation and fail to distinguish between the features
of different categories. If the differences among categories
are tiny, the differences among their augmented variants may
be even smaller. In this case, focusing solely on the features
within classes may not satisfy the model training requirements.
Therefore, we need to constrain the interclass features while
paying attention to the intraclass features.

B. FSOD

Few-shot learning is the problem of making predictions
based on a limited number of samples. Few-shot learning is
different from standard supervised learning. It is difficult to
obtain comprehensive object features from limited data. There-
fore, one of the most important ideas of few-shot learning
is “learning to learn” [19]. FSOD helps detectors adapt to
unseen classes with few training instances and is useful when
manual annotation is time-consuming or when data acquisition
is limited [20]. An increasing number of research works have
been published to solve this problem.

Chen et al. [21] proposed a low-shot transfer detec-
tor (LSTD) that integrates the advantages of both the single-
shot detector (SSD) [22] and the Faster region-based con-
volutional neural network (RCNN) [23] into a unified deep
framework. Karlinsky et al. [24] proposed a distance metric
learning method that simultaneously learns the backbone net-
work parameters, the embedding space, and the multimodal
distribution of each training category. Yang et al. [25] pro-
posed a flexible module called the context transformer, which
leverages source-domain object knowledge as guidance and
exploits the contexts derived from the target training images.
Then, it integrates this relational information to enhance the
discriminative ability of the detector. Fan et al. [26] proposed
an attention-based region proposal network (RPN) and a multi-
relation detector to exploit the similarity between the few-shot
support set and query set. Wu et al. [20] proposed a multiscale
positive sample refinement (MPSR) approach to generate
multiscale positive samples and refine the prediction process at
various scales. Karlinsky et al. [27] proposed a differentiable
nonparametric star model detection and classification head,
named StarNet. Zhu et al. [28] utilized the semantic relational
consistency between novel classes and the base classes and
introduced explicit relation reasoning to the learning process
for novel object detection. These methods take full advantage
of the input training data from different perspectives and
achieve competitive performance. However, some of them are
complicated and difficult to apply to other problems.

Recently, Sun et al. [8] indicated that object proposals with
different intersection-of-union (IoU) scores are augmented
variants of ground-truth (GT) objects and proposed FSCE to
learn contrastive-aware object proposal encodings. This work
presented a novel approach for solving the FSOD problem, but
their method introduces additional parameters and puts extra
pressure on the model training procedure.

C. Contrastive Learning

To avoid the extensive cost of collecting and annotat-
ing large-scale datasets, as a subset of unsupervised learn-
ing methods, self-supervised learning (SSL) methods have
been proposed to learn general image features from large-
scale unlabeled data without using any human-annotated la-
bels [29]. SSL includes two main strategies: generative and
contrastive methods [30]. Generative methods, including au-
toencoding (AE) models [31], and hybrid generative mod-
els [32], mainly focus on the reconstruction error in the pixel
space to learn representations.

Contrastive techniques build representations by learning
to encode what makes two things similar or different. For
example, Hjelm et al. [33] proposed Deep InfoMax, which
maximizes the mutual information between local features
and global features. Tian et al. [34] constructed positive and
negative sample pairs through multimodal information. He et
al. [35] built a dynamic dictionary with a queue and a moving
average-based encoder. Chen et al. [36] simplified recently
proposed contrastive self-supervised learning algorithms and
proposed a simple framework called SimCLR for conducting
contrastive learning on visual representations. To address the
abovementioned stability and efficiency issues, we need to
construct distance metrics on the feature space and appropri-
ately form positive and negative sample pairs.

III. METHODOLOGY

In this section, we present the details of our approach.
As shown in Fig. 1, we introduce the derivation of our
method in the following ways: 1) introducing how to construct
the positive and negative sample pairs; 2) constraining the
feature representations during the training process using the
contrastive loss; 3) developing the contrastive JS loss based on
the idea of the contrastive loss to further control the prediction
distributions.

A. Positive and Negative Sample Pairs

Data augmentation techniques can improve the generaliza-
tion performance of the utilized model. For images that have
little differences among themselves, the differences between
their augmented variants can be even smaller, bringing an ad-
ditional burden to the model in terms of accurately identifying
objects from different classes. To eliminate this issue, the basic
idea of our approach is to constrain the interclass features
while paying attention to the intraclass features.

To do so, we construct positive and negative sample pairs.
Suppose that fs is the feature extraction subnetwork and
fc is the classifier subnetwork, so the whole model can be
defined as f = fs ∪ fc. Analogously, θs is the parameter
of fs, and θc is the parameter of fc. Therefore, the whole
model parameter set can be defined as θf = θs ∪ θc. θs
and θc are updated by the backpropagation algorithm and
the chain rule. We input x and its label y sampled from
dataset D, and aug(input = x, augmented = True) is the
augmentation operation function ,where the first variable is
the input image, and the second variable is the control signal
for indicating whether the input image will be augmented (the
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Fig. 1. The process flow of our method. Our method consists of three steps. For step 1, we build positive sample pairs based on a class-sensitive strategy. For
step 2, we input these sample pairs into the network simultaneously and construct a feature-consistent learning strategy to guide the feature extraction process.
In step 3, we broaden the effect of the contrastive strategy and propose the contrastive JS loss to restrict the prediction distributions of different sample pairs.

default value is True). Therefore, a positive pair can be defined
as Equation 1.

ap = (xori, xaug) (1)

where xaug = aug(xori, augmented = True). Correspond-
ingly, the negative pair is defined as Equation 2.

an = (xori, xfalse) (2)

where xfalse = aug(xfalse, augmented = aug flag).
xfalse is a input image sampled from other categories of D
and aug flag is the random choice from {True, F lase}.

Different from construction methods [37] that build pairs
based on the instance level and potentially define different
images from the same category as negative sample pairs, our
method focuses on the category level and ensures that xfalse is
sampled from a different category. After building positive and
negative pairs, the Siamese network [38] is used to carry out
the training process. Apart from the constructed pairs, we keep
the original images as clean features and use them to generate
prediction distributions as the inputs of the cross-entropy (CE)
loss function.

B. Constraint Imposed on Feature Representations

As shown in step 2 in Fig. 1, after constructing the positive
and negative pairs, we input these pairs into the Siamese
network to fulfill the training process. As we aim to minimize
the differences between positive samples and enlarge the
differences between negative samples, the contrastive loss [39]
is used to control the feature extraction process and is defined
as Equation 3.

LContrastive(Fa, ya) =
1

2
(1− ya) DF

+
1

2
ya max {0,m−DF }

(3)

DF (Fa[0], Fa[1]) = ||Fa[0]− Fa[1]||2

= (

n−1∑︂
i=0

((Fa[0])i − (Fa[1])i)
2)

1
2

(4)

where Fa is the feature generated by the feature extraction
subnetwork fs. Therefore, Fa = fs(a; θs). As features are the
main objects that we constrain in this section and features can
exhibit patterns similar to that of the input image, we use the
Euclidean distance measure to quantify the representations of
features in sample pairs a (ap or an) and DF is defined as
Equation 4. At the same time, during the experiment, it can
be found that using the Euclidean distance to calculate the
feature consistency does not lead to the gradient explosion
phenomenon caused by some overly large calculation results.
The model parameters can be stably optimized. Fa[0] and
Fa[1] are the features of the inputs in the sample pairs.
ya ∈ {0, 1} is the annotation of the corresponding pair. When
a represents the positive pair ap, ya equals to 0, and vice
versa. m is the margin that decides the upper bound of the
pair distances.

C. Contrastive JS Loss

As we construct several sample pairs in a single iteration, to
achieve a stronger restraining effect, in addition to constraining
the feature learning process using a contrastive loss function,
we should also set up a loss function that can provide guidance
to constrain the prediction distributions. Inspired by [7], we
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propose the contrastive JS consistency loss to constrain the
prediction distributions generated by positive and negative
pairs, as illustrated in step 3 in Fig. 1. The formula is shown
as follows.

LContrastive−JS(pa, ya) =

1

2
(1− ya)

(︄
b∑︂

i=0

KL [pa [i] ||M]

)︄
+

1

2
ya max

⎧⎨⎩0,m′ −

⎛⎝ b∑︂
j=0

KL [pa [j] ||M]

⎞⎠⎫⎬⎭
(5)

where pa is the prediction distribution of sample group
a (ap or an), and ya ∈ {0, 1} is the annotation of this pair. b
is the number of samples in the sample group. In this paper,
b is set to 1 as there are two samples in a single pair and b
counts from 0. pa is the prediction distribution generated by
the classifier subnetwork fc and pa = fc(Fa; θc). pa [0] and
pa [1] are the first and second prediction distribution of input
in the pair a respectively. M = 1

2 (pa [0] + pa [1]) and KL is
the Kullback–Leibler divergence. m′ is the margin that shares
the same meaning as m in Equation 3.

According to this formula, we can clearly determine that
when ya = 0, the model updates to minimize the distance
between the clean image xori and its augmented variant xaug .
In contrast, when ya = 1 and the distance between xori the
loss value equals 0, which means that the model is not updated;
otherwise, the model is updated until the distance between
the negative pairs reaches m′. This characteristic satisfies
our requirement. First, the proposed scheme saves computing
resources and time, as the model is not updated when the
distance between negative samples is larger than m′. Second,
the proposed method has no additional model parameters,
as we use features to diametrically compute the contrastive
value without any fully connected layers. Then, based on these
characteristics, this loss function can theoretically be placed
behind any convolution layer. Various combinations of the
locations of the contrastive loss function and the other loss
function may achieve different performances, and we study
this in the ablation part.

IV. EXPERIMENTS

A model trained from limited data can generalize well to a
wider range of testing data, which is an important measure of
the model’s stability and efficiency. In this section, to demon-
strate the universality of the proposed scheme, we choose
model robustness against corruption and FSOD to evaluate the
performance of our method. The former application uses clean
data as the training set and evaluates the model performance
on datasets that are distorted by various corruptions. The latter
application utilizes several images, e.g., 1, 2, 3, 5, or 10, as
the training set and then tests the performance of the model
on the whole testing set.

A. Deep Model Robustness

In this section, we design various experiments to justify our
approach, including both comparison experiments with SOTA

methods and ablation studies concerning the characteristics of
the proposed method.

1) Experimental Settings:
a) Datasets: Our experiments are conducted on CIFAR-

10 and CIFAR-100. Both are widely used benchmarks for clas-
sification performance evaluations and contain 60,000 (50,000
for training and 10,000 for testing) 32×32×3 color images in
10 and 100 different classes, respectively.

In addition to verifying the standard classification accuracy
of the model on the clean testing set, we measure the ro-
bustness of the model to data corruptions based on two other
datasets, CIFAR-10-C and CIFAR-100-C [6]. These datasets
are constructed by corrupting the original CIFAR testing sets,
and there are a total of 15 kinds of noise in each dataset.

b) Metrics: For the robustness evaluation, given a cor-
ruption type, the corruption classification error is calculated in
the same way as the standard classification error. We compute
the mean corruption error (mCE) of all corruptions based on
Equation 6.

Ec∼C

[︁
P(x,y)∼D(f(c(x)) = y)

]︁
(6)

where C is the corruption operation set and f is the classifier.
This equation measures the classifier’s average-case perfor-
mance on corruptions C. When C is set to the empty set, this
formula represents the standard classification performance on
the clean testing dataset.

c) Training Setting: We select several commonly used
networks to carry out comparison experiments with some
SOTA methods, namely, the All Convolutional Network [41],
DenseNet [42], Wide ResNet [43] and ResNeXt [44]. For
the ablation studies, we use another highly used network,
ResNet [45]. The learning rate is initialized to 0.1 and adjusted
according to the cosine annealing schedule. Stochastic gradient
descent (SGD) is used as the optimizer, and the total number
of training epochs is 100 for all experiments. The batch size
is set to 128 for all experiments. All the results are averaged
from three independent experiments with the same settings.
Furthermore, our experiments are based on PyTorch-1.1.0 and
CUDA-10.0.

2) Quantitative Results: We select Augmix [7], which
achieves SOTA model robustness [6], as our main comparison
method. In addition to Augmix, we also select some other
SOTA data augmentation methods as our comparison methods,
such as ISDA [18], RandAugment [17], CutMix [15], etc.
As introduced in Section III, the proposed method uses clean
samples and their augmented variants to form positive pairs.
We adopt the augmentation operations in Augmix to generate
augmented inputs. We generate two augmented variants and
select two false inputs for each experiment, and all the results
are averaged over three independent experiments conducted
with the same settings.

In the robustness performance evaluation, as shown in
Table I, our method outperforms other methods. Specifically,
our method achieves 1.3%, 0.5%, 0.3%, and 0.6% improve-
ments over Augmix on AllConvNet, DenseNet, WideResNet,
and ResNeXt on the CIFAR-10-C dataset, respectively. Apart
from this, on the CIFAR-100-C dataset, our method achieves
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TABLE I
MEAN CORRUPTION ERROR (MCE) ON CIFAR-10-C AND CIFAR-100-C DATASETS.

Method AllConv DenseNet WRN ResNeXt AllConv DenseNet WRN ResNeXt
Task CIFAR-10-C CIFAR-100-C

Standard 31.6 30.7 27.5 29.1 56.2 58.1 53.1 53.4
Cutout [40] 30.7 32.1 26.8 28.9 56.8 59.6 53.5 54.6
Mixup [14] 24.6 24.6 22.3 22.6 53.4 55.4 50.4 51.4
CutMix [15] 31.3 33.5 27.1 29.5 56.0 59.2 52.9 54.1

AdvTraining [10] 28.1 27.6 26.2 27.0 56.0 55.2 55.1 54.4
AutoAugment [16] 29.2 26.6 23.9 24.2 55.1 53.9 49.6 51.3
RandAugment [17] 22.8 20.1 17.8 18.4 51.2 51.6 46.3 46.0

ISDA [18] 24.2 19.3 14.3 14.5 46.6 50.5 40.8 37.1
Augmix [7] 15.4 12.7 11.0 11.8 42.7 39.3 35.8 34.8

Ours 14.1 12.2 10.7 11.2 39.7 38.4 35.4 34.6

TABLE II
STANDARD CLASSIFICATION PERFORMANCE ON CIFAR-10 DATASET.

Method AllConv DenseNet WRN ResNeXt Mean
Standard 6.3 5.9 5.4 4.8 5.6

Cutout [40] 6.1 4.8 4.4 4.4 4.9
Mixup [14] 6.3 5.5 4.9 4.2 5.2
CutMix [15] 6.4 5.3 4.6 3.9 5.0

AdvTraining [10] 18.9 17.9 17.1 15.4 17.3
AutoAugment [16] 6.6 4.8 4.8 3.8 5.0
RandAugment [17] 6.4 4.6 4.7 4.3 5.0

ISDA [18] 9.8 6.8 5.2 4.2 6.5
Augmix [7] 6.4 5.1 4.8 4.7 5.3

Ours 5.4 5.1 4.3 4.3 4.8

more significant increases over Augmix, which are 3%, 0.9%,
0.4%, and 0.2% on AllConvNet, DenseNet, WideResNet, and
ResNeXt, respectively.

In addition to robustness, we also carry out comparison
experiments on the clean dataset. As shown in Table II, we
conduct experiments involving the backbones used in the
robustness evaluation on the CIFAR-10 dataset. According to
the results, we accomplish a 0.5% improvement on average
over Augmix. We attain the best classification performance
on average compared to other data augmentation methods.

TABLE III
PERFORMANCE EVALUATION BASED ON DIFFERENT SCHEMATA. THE

MCE (MEAN CORRUPTION ERROR) VALUE IS COMPUTED BY AVERAGING
ACROSS ALL 15 CORRUPTION ERROR VALUES.

Schema CIFAR-10-C CIFAR-100-C
Clean Error mCE Clean Error mCE

Augmix 4.62 11.40 23.44 35.11
Contrastive-Only 4.51 10.79 22.67 34.09

Contrastive-JS-Only 4.56 10.84 22.69 34.86
Both 4.43 10.34 22.43 33.56

3) Ablation Study: In this section, we carry out ablation
studies based on the contrastive consistency constraint and the
contrastive JS consistency constraint. We select Augmix as our
comparison method in the following comparison experiments.
We use ResNet [45] as the backbone network. Our ablation
studies are conducted according to the following aspects.

a Comparing the effect of each constraint.
b Investigating the best position to apply this contrastive

constraint.

c Exploring the relationship between the performance and the
depth of the network.

d Analyzing the proportional relationship between positive
and negative samples.

• Contrastive VS Contrastive JS

In this part, we evaluate the performances achieved based
on different schemes, as shown in Table III. First, we run
Augmix using ResNet-18 as the baseline performance. Then,
we adopt the augmentation operation of Augmix and use either
the contrastive loss or the contrastive JS loss to carry out
the constraint separation experiments. Finally, we execute the
experiment using the integral method. It is worth noting that
the contrastive JS loss handles the probability distributions
that are processed by the softmax function and contain the
meanings corresponding to the category level. The contrastive
loss constrains the feature representations whose meanings
correspond to the image level. Therefore, this is different from
the position study. Furthermore, to conduct a better compari-
son with Augmix, for the second scheme, we use not only the
contrastive loss to constrain the feature representations but also
the JS loss and CE loss to provide guidance for the training
process.

The results are shown in Table III. The complete scheme
presented in this paper obtains the highest performance among
these four cases. Compared with the baseline, our scheme
achieves 0.19% and 1.01% clean error improvement and
additional 1.06% and 1.55% mean corruption error improve-
ments. Additionally, both the contrastive-only scheme and
the contrastive JS-only scheme outperform Augmix, which
illustrates that the contrastive strategy is effective in boosting
the robustness of the deep model. More specifically, when
we put the consistency constraint on the feature level, the
difference between the clean object and its variant decreases,
and the difference between the clean object and the false
object increases. Distinct feature expressions generate distinct
prediction distributions, so it is easier for the classifier to
distinguish the object. On the other hand, when we put the
consistency constraint on the prediction level, the distance
behavior of the prediction distribution is similar to the feature
level. However, unlike directly constraining the feature consis-
tency, to obtain a more distinguishable prediction distribution,
the model generates more inconsistent feature representations
during the training process.
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TABLE IV
CORRUPTION ERRORS OVER 15 CORRUPTION TYPES OF CIFAR-10-C DATASET BASED ON DIFFERENT SCHEMATA.

Schema Weather Digital
Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Augmix 10.52 10.88 8.37 5.66 9.47 9.14 11.83 11.86
Contrastive-Only 10.20 10.42 8.15 5.54 9.18 9.25 11.80 11.81

Contrastive-JS-Only 10.10 10.39 8.40 5.59 9.35 9.13 11.28 11.67
Both 9.90 9.83 8.28 5.57 8.96 8.95 11.24 11.24

Schema Blur Noise MeanDefocus Glass Motion Zoom Gauss. Shot Impulse
Augmix 5.69 20.53 7.37 6.61 21.79 15.64 15.70 11.40

Contrastive Only 5.64 18.91 7.28 6.60 18.94 14.02 14.06 10.79
Contrastive-JS Only 5.80 19.44 7.09 6.71 19.27 14.37 13.97 10.84

Both 5.71 18.01 7.15 6.58 18.86 13.82 11.05 10.34

(a) Clean Error on CIFAR-10 (b) mCE on CIFAR-10-C (c) Clean Error on CIFAR-100 (d) mCE on CIFAR-100-C

Fig. 2. Position study on ResNet-18 and ResNet-34. We employ the contrastive-JS loss behind the classification layer group of ResNets and employ the
contrastive loss behind each major feature extraction layer group separately.

TABLE V
PROPORTION STUDY OF POSITIVE AND NEGATIVE PAIRS BASED ON

RESNET18.

Dataset Porprotion Clean Error mean Corruption Error

CIFAR-10-C

Augmix 4.62 11.40
2:1 4.43 10.33
2:2 4.33 10.22
2:4 4.58 10.40
2:6 4.79 11.02

CIFAR-100-C

Augmix 23.44 35.11
2:1 22.75 33.82
2:2 22.69 33.32
2:4 22.92 34.02
2:6 23.07 34.43

Furthermore, the contrastive-only scheme obtains better
results than the contrastive JS-only scheme. We envision that
the cause of this phenomenon may be the following: the
contrastive strategy is effective in improving the robustness
of the model. Apart from learning the information within the
input image, the model obtains the interclass information by
using the constructed image pairs. In this way, the model
gains a stronger ability to identify the category information
to which the input image belongs. Additionally, as mentioned
before, the contrastive JS loss handles the probability infor-
mation, which contains the predicted probabilities across all
classes. For the feature level, the valid information includes
the activated features, and the contrastive information is either
true or false regardless of the GT value of the input image. In
this sense, the contrastive-only scheme is more straightforward
than the contrastive JS-only scheme when addressing this

issue. Moreover, this performance difference suggests that
adding an extra constraint on the feature level is slightly
more effective than doing so on the probability level. The
last scheme, which is the proposed method, shows that the
effects of both constraints can be superimposed so that these
constraints focus on different contents.

To obtain an overall comprehension of the robustness per-
formance of the model, we enumerate the corruption errors
induced over 15 corruptions of the CIFAR-10-C dataset, as
shown in Table IV. According to these results, we find that
our method achieves stable improvements on digital and noise
corruptions and fluctuates under the other two corruptions.
We speculate that the reason for this phenomenon may be
the following. The images processed by the digital and noise
corruptions become complex, and the differences between
adjacent pixels are increased. The differences between these
images and their original counterparts increase accordingly.
Hence, during the training stage, the contrastive strategy can
have a more obvious effect. While the images are affected
by the other two corruptions, the boundary between the core
object and the background is smoother, which may cause the
model to pay too much attention to the wrong details, and the
recognition results fluctuate. Moreover, among all kinds of cor-
ruption, the proposed method achieves the best improvement
on the noise type. This indicates that the proposed method has
the potential to be applied to the area of denoising.

• Position Study

As discussed before, the effects of extra constraints can be
superimposed. The position where the contrastive loss should
be placed is undetermined. In this part, we address this issue
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by employing the contrastive loss in different locations of the
network. Most of ResNets, such as ResNet-18 and ResNet-
34, consist of two main components: a feature extraction layer
group and a classification layer group. The feature extraction
layer group consists of four major layers, each of which is
composed of a different number of basic blocks or bottlenecks.
We employ the contrastive JS loss behind the classification
layer group, which is the same location as that of the CE loss,
and employ the contrastive loss behind each major feature
extraction layer group separately and compare the performance
gain from each case.

As shown in Fig. 2, every piece of equipment attains a
performance gain over Augmix. Specifically, for ResNet-18,
the proposed method yields the best standard classification
and robustness performance improvements on the CIFAR-10-
C dataset when we place the contrastive loss behind the third
major layer group. For the CIFAR-100-C dataset, the best
performance gain occurs when we place the contrastive loss
behind the third and last major layer groups. We speculate
that the reason for this phenomenon may be the following: the
contrastive loss handles features directly, and the sizes of the
feature maps processed after each major layer are dissimilar.
As the number of convolutional layers for processing features
increases, the size of the feature map gradually decreases,
and the information within each image becomes more ab-
stract, which means that the proportion of valid information
increases. Therefore, the loss function is more efficient when
performing comparative analysis, as it does not focus too
much on other invalid information. On the other hand, the
best improvement appears in the third layer, indicating that the
size of the feature map to be processed by the contrastive loss
should not be as small as possible. The information contained
in a feature map that is too small may be too abstract to affect
the comparison results. In summary, it is suggested to place
the contrastive loss behind the high-level convolutional layers
and place the contrastive JS loss behind the classification layer.

• Depth Study

The above analysis notes that the degree of feature ab-
straction and the feature size may affect the performance of
the proposed method. Furthermore, networks with different
depths contain different numbers of convolutional layers. The
deeper the network is, the higher the feature abstraction
degree. To explore whether the proposed method has a similar
characteristic under a deeper backbone network, we carry out
experiments based on ResNet-34.

Similarly, we employ the contrastive JS loss at the end
of the classification module and employ the contrastive loss
at the end of each major feature extraction layer separately.
As shown in Fig. 2, on the whole, the experimental results
of ResNet-34 are superior to those of ResNet-18, which
demonstrates that ResNet-34 has a stronger feature extraction
capability. The more refined feature extraction ability brought
about by increasing the network depth helps to stabilize
the experimental results. Moreover, in addition to achiev-
ing performance increases over Augmix across all constraint
combinations, the best standard classification and robustness
improvements on CIFAR-10-C and CIFAR-100-C datasets

are achieved concomitantly at the third combination. This
phenomenon supports our previous analysis. According to
this observation, the features from the fourth layer group
are slightly over abstracted compared to those from the third
layer group for the contrastive loss. Combining the results of
previous experiments, it is recommended to put the contrastive
loss behind some high-level convolutional layers while leaving
some higher layers for the subsequent training process.

• Proportion Study
In this work, we utilize positive and negative sample pairs.

In theory, the sampling space of negative sample pairs is much
larger than that of positive sample pairs. Models trained with
unbalanced data suffer from serious deviations. Therefore,
many works [37] have focused on the issue of unbalanced
sampling. To determine if our method has such a burden, in
this part, we construct experiments concerning the proportions
of positive and negative sample pairs. To better compare our
approach with the baseline method, for each clean image, we
generate two augmented variants to construct positive pairs.
We sample one false image for each anchor image from the
dataset to build negative pairs as our basic situation. Then, we
gradually increase the ratio of negative pairs while maintaining
the ratio of positive pairs.

The experimental results are shown in Table V. When we
increase the proportion of negative pairs, both the standard
classification and robustness performances are improved. As
we continue to increase the proportion of negative pairs, these
indicators begin to decline. The best performance occurs when
the numbers of positive and negative sample pairs are the
same. Based on this inspection, the most suitable proportion
for our method is to maintain the same number of positive
and negative sample pairs. We speculate that the reason for
such a phenomenon may be the following: the main concern
regarding sampling imbalance is that it makes the model have
a very serious bias. However, as we use the data enhancement
method to create augmented data, our positive sampling space
is enhanced as well. In this sense, the positive sample pairs
have sufficient capacity to fulfill the learning requirements of
the model.

B. FSOD

In this section, we demonstrate that the proposed scheme
is not only suitable for improving model robustness but also
available for enhancing data efficiency. More specifically,
FSOD helps detectors adapt to unseen classes with few
training instances and is useful when manual annotation is
time-consuming or when data acquisition is limited. This task
is carried out to evaluate the performance of the proposed
scheme. We show that the proposed scheme can constantly
yield better results than those of some other SOTA methods
with no extra costs.

1) Detection Architecture: Inspired by the few-shot image
classification task [52], earlier FSOD works mostly utilized
meta-learning strategies [53]. Recently, it was revealed that
two-stage fine-tuning-based approaches (TFAs) [49] have more
potential to achieve improved FSOD performance. The basic
idea of a TFA is freezing all base class model parameters
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Fig. 3. The process flow of FSOD. The features of the GT object and the same object with the highest IoU score are constructed as positive sample pairs.
The features of the GT object and the object from a different category are constructed as negative sample pairs.

TABLE VI
PERFORMANCE EVALUATION (NAP 50) OF EXISTING FEW-SHOT DETECTION METHODS ON THREE PASCAL VOC NOVEL SPLIT SETS. ALL RESULTS

ARE AVERAGED BY OVER 5 RANDOM SEEDS.

Method / Shot Backbone Novel Split 1 Novel Split 2 Novel Split 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD [46] VGG-16 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3
YOLOv2-ft [47]

YOLO V2
6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4

FSRW [48] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet [48] 17.1 19.1 28.9 35.0 48.8 18.2 20.6 25.9 30.6 41.5 20.1 22.3 27.9 41.9 42.9
RepMet [24] InceptionV3 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2
FRCN-ft [48]

FRCN-R101

13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
FRCN+FPN-ft [49] 8.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1

MetaDet [48] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN [50] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA [49] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
FSIW [51] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
FSCE [8] 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0

Ours 36.0 47.0 47.8 55.6 60.8 24.1 33.1 41.5 45.0 50.3 29.6 41.4 46.0 51.1 55.9

trained using abundant data and only fine-tuning the box
classifier and box regressor with novel data. FSCE [8] presents
a novel perspective in which proposals with various IoU scores
can be regarded as augmented variants of the GT object.
Following this, the proposed scheme in this paper is employed
to solve this dilemma, and a novel FSOD architecture is
presented.

The overall process consists of two stages: a data-abundant
base training stage and a novel fine-tuning stage. The first
stage is similar to most of TFAs [8], [49]. The process flow
of the fine-tuning stage is shown in Fig. 3. The parameters
of the backbone network are frozen first. Then, we employ
the feature consistency constraint at the end of the region
of interest (RoI) pooling operation, where S is the feature
corresponding to the GT object, S+ is the feature of the
same object with the highest IoU score and is regarded as
the positive sample and S− is the feature of the object from
a different category and is regarded as the negative sample.
We utilize such samples to construct the sample pairs and
maintain these pairwise relationships after they pass through
the subsequent network module. At the end of the classifier,

we use the predictions of the sample pairs as the inputs of
the contrastive JS constraint to further control the prediction
representations of proposals.

2) Experimental Settings:

a) Dataset: Extensive experiments are performed on the
PASCAL VOC [54] benchmark. There are 20 categories in this
dataset, which are divided into 15 base categories and 5 novel
categories. All base category data from the PASCAL VOC
2007+2012 trainval sets are considered available, and K shots
of novel instances are randomly sampled from the previously
unseen novel classes for K = 1, 2, 3, 5 and 10. Following the
existing work [8], we adopt the same three random partitions
of the base and novel categories and the samplings introduced
in [48], referred to as novel splits 1, 2, and 3. Furthermore,
we report the average precision at 50 (AP50) for the novel
predictions (nAP50) on the PASCAL VOC 2007 test set as
the model performance evaluation indicator. It is worth noting
that there might be very large variances between the different
training set selections. Our results are consequently averaged
over 5 random seeds.
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Fig. 4. Visualization of the detection results. The first column represents the original image and its GT bounding boxes, and the remaining columns are the
detection results obtained under different shots. The odd rows are the results of FSCE, and the even rows are those of the proposed scheme.

b) Training Setting: For the detection model, we use
Faster RCNN [23] with ResNet-101 and a feature pyramid
network [55]. All experiments are run on 4 TITAN RTX
GPUs with a standard batch size of 16. The solver is standard
SGD with a momentum of 0.9 and a weight decay of 1e-
4. For the data-abundant base training stage, we use all base
category data from PASCAL VOC 2007+2012 as the training
dataset. For the novel fine-tuning stage, we use the model
parameters trained from the previous stage to initialize the
network and fix the backbone. We basically follow the protocol
in FSCE [8] and use various training steps and learning rates
for different numbers of training shots. We set the margin in
Equation 3 to 1 and set the margin in Equation 5 to 0.1 in most
experiments. Moreover, every detail will be open-sourced in a
self-contained codebase to facilitate future research. Similar to
the previous section, our experiments are based on PyTorch-
1.1.0 and CUDA-10.0.

3) Quantitative Results: The comparison results obtained
for all three random novel splits from PASCAL VOC are
shown in Table VI. Our method significantly outperforms all
existing works with any number of shots and all splits. Thus,
the effectiveness of our method is fully demonstrated. In fact,

we are the first to achieve nAP50 results exceeding 60% on
novel split 1 and 50% on novel split 2. Moreover, the proposed
method obtains 2.18%, 1.96% and 5.24% improvements on
average over FSCE [8], which is the current SOTA approach.
More specifically, on novel split 1, our method obtains 3.1%,
3.0%, 1.0%, 2.7% and 1.1% improvements under the 1-,
2-, 3-, 5-, and 10-shot cases, respectively. On novel split
2, our method obtains 0.4%, 2.5%, 3.1%, 2.0% and 1.8%
improvements and achieves values of 7.0%, 8.0%, 5.5%, 3.8%
and 1.9% on novel split 3, respectively.

In addition to comparing the nAP50 performance with
that of existing works, we visualize the detection results of
our method and FSCE. As shown in Fig.4, the first column
represents the original image and its GT bounding boxes, and
the remaining columns are the detection results obtained under
different shots. The odd rows are the results of FSCE, and the
even rows are those of the proposed method. According to
the visualization results, as the number of shots increases,
the recognition scores of both methods gradually increase.
However, when the number of shots is low, FSCE causes
duplication detection problems or missed detection problems
for some images with complex contexts. Moreover, when the
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given image contains multiple objects, the detection stability
of our method is significantly better than that of FSCE. For ex-
ample, when the number of shots equals 5, FSCE successfully
detects the person in the second testing sample, but it misses
this person as the number of shots increases to 10. Not only
does our method precisely detect this person, but as the number
of shots increases, so does his confidence score provided by
the model. During the testing process, a large number of
detection areas are generated, these areas are filtered by an IoU
threshold, and the remaining regions are given a classification
score to produce the final detection result. According to this,
the appearance of the above detection problems means that the
detector does not rectify the deviated regions effectively during
the training process. Furthermore, when the number of images
used for training is low, the feature identification capability of
the model is limited. A model trained under such conditions
has difficulty producing precise activation responses for all
objects in an image. While our method can fully improve the
data utilization efficiency of the model during the training
process, our method outperforms FSCE. According to this,
it can be discerned that the model trained by our scheme is
more effective in making full use of the scant training data.
Moreover, our method does not introduce extra parameters.
In fact, from observation, the model size of FSCE is 235.66
MB, while our model is even smaller at only 231.07 MB.
This also illustrates that our method enhances the capacity
and effectiveness of the model.

TABLE VII
PERFORMANCE EVALUATION (BAP 50) ON PASCAL VOC BASE SPLIT 1.

Method / Shot 1 2 3 5 10
Baseline-FPN [20] 56.9 - 66.2 67.9 -

FRCN-ft [48] 68.9 69.4 66.1 66.7 66.0
FSCE [8] 78.9 74.3 74.1 76.6 77.5

Ours 77.1 74.7 75.5 76.8 78.5

Moreover, as we adopt the two-stage training strategy to
carry out the FSOD experiments, in addition to the novel split
data, we evaluate the performance of our model on the base
split data to verify the ability of our method to maintain the
properties of base datasets. As shown in Table VII, our method
achieves improvements over FSCE, which shows that our
scheme enables the detector to retain the lower base forgetting
property, as in FSCE.

V. LIMITATIONS AND FUTURE WORK

With the advancement of technology, various forms of data
have endlessly emerged, among which vision-based data are
representative. Deep learning techniques have been success-
fully used to solve various practical computer vision problems,
such as video segmentation. However, networks tend to memo-
rize the properties of certain data distributions [4]; hence, these
models are vulnerable when the testing set is more complicated
than the training set. To address this issue, we investigate
a training scheme for deep visual recognition models with
stronger robustness and effectiveness by utilizing contrastive
learning to enhance the consistency of the responses for the
same object in different scenarios.

Although most of our experimental results indicate that the
proposed method can continuously improve its performance
across multiple backbone networks and vision tasks, we also
observe a limitation that might be associated with the margin
in the consistency constraints. Margins are related to datasets
and tasks. Currently, the setting of the margin mainly relies on
experimental experience. Sometimes, finding a proper margin
is time-consuming. Thus, it becomes necessary to design an
end-to-end trainable framework that allows the network to
determine the value of the margin during the training process.

To the best of our knowledge, this is the first study that
integrates contrastive learning to focus on the robustness and
effectiveness of deep neural networks. Our method can boost
the robustness of the model and can be applied to other
multimedia-related works. We believe that further research in
this direction is valuable. For example, our method can be
applied to some more specific applications, such as multive-
hicle detection [56] and cross-dataset action recognition [57].
These complex decision systems typically perform multistage
analyses of multimedia data collected by sensors using dif-
ferent modules, and their testing scenarios are usually much
more intricate than the training scenarios. Our method has the
potential to be applied to these applications, as it can facilitate
the activation responses of features in the network.

VI. CONCLUSIONS

[58]
In this paper, we propose a training scheme to boost the

robustness and effectiveness of deep models by adopting
the contrastive learning technique. Specifically, we construct
positive and negative sample pairs using clean images with
either their augmented variants or false images sampled from
other classes. Then, we simultaneously input these pairs into
the network and use the contrastive loss to guide the feature
extraction process. Following this, we propose a contrastive
JS loss to restrict the probability distributions. According to
the experimental results, our method outperforms some typical
SOTA methods in the domains of both model robustness and
FSOD. Moreover, based on our ablation studies, to achieve
better performance, it is suggested to place the contrastive
loss behind the high-level convolutional layers and to place
the contrastive JS loss behind the classification layer.
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