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Abstract

White box adversarial perturbations are generated via iterative optimization algorithms most often by minimizing an adver-
sarial loss on a £, neighborhood of the original image, the so-called distortion set. Constraining the adversarial search with
different norms results in disparately structured adversarial examples. Here we explore several distortion sets with structure-
enhancing algorithms. These new structures for adversarial examples might provide challenges for provable and empirical
robust mechanisms. Because adversarial robustness is still an empirical field, defense mechanisms should also reasonably
be evaluated against differently structured attacks. Besides, these structured adversarial perturbations may allow for larger
distortions size than their £, counterpart while remaining imperceptible or perceptible as natural distortions of the image. We
will demonstrate in this work that the proposed structured adversarial examples can significantly bring down the classification
accuracy of adversarially trained classifiers while showing a low £, distortion rate. For instance, on ImagNet dataset the struc-
tured attacks drop the accuracy of the adversarial model to near zero with only 50% of ¢, distortion generated using white-box
attacks like PGD. As a byproduct, our findings on structured adversarial examples can be used for adversarial regularization
of models to make models more robust or improve their generalization performance on datasets that are structurally different.

Keywords Adversarial attacks - Blurriness - Group norm - Image classification

1 Introduction

Adversarial examples are inputs to machine learning clas-
sifiers designed to cause the model to misclassify the input
images. These samples are searched in the vicinity of some
samples in the test set, and typically in their norm-ball neigh-
borhoods, the so-called distortion set. When replacing every
test set sample with their corresponding adversarial exam-
ples, the accuracy of standardly trained classifiers drops to
zero in the inverse correlation with the considered norm-ball
radius. Thus, the lack of robustness of classifiers to adver-
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sarial samples challenges the security of some real-world
systems and poses questions regarding the generalizing prop-
erties of neural classifiers (Schmidt et al., 2018; Stutz et al.,
2019).

Thus far, there have been some successful studies on
defense strategies against adversarial examples, though most
of the attack and defense mechanisms considered £, neigh-
borhoods. In particular, existing approaches for learning
adversarially robust networks include methods that are both
empirically robust via adversarial training (Goodfellow et al.,
2015; Kurakin et al., 2016; Madry et al., 2017) and also cer-
tifiably robust with certified bounds (Wong & Kolter, 2017;
Raghunathanetal.,2018; Zhang et al., 2019) and randomized
smoothing (Cohen et al., 2019; Yang et al., 2020). Recently,
there were some studies that outlined the inherent limita-
tions of the £, balls (Sharif et al., 2018; Sen et al., 2019).
While some recent papers (Xu et al., 2018; Wong et al.,
2019) pointed out the benefits of other families of distor-
tions sets, many classical norm families remained mostly
unexplored in the adversarial setting. In this work, we con-
sider white-box adversarial attacks on neural networks. In the
white-box framework, the model and the in-place defenses
are known to the attacker. Adversarial examples in this frame-
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work are typically crafted using optimization algorithms
aiming to minimize constrained adversarial losses. In black-
box attacks, the attacker can only make queries and observe
the response of the model.

Although norms are equivalent in the image finite-
dimensional space, the type of norm-ball influences the
structure of the optimization algorithm iterations and the
(local) minima to which they converge. As the studies on
the robustness of neural model still remained empirical, it is
hence necessary to explore the effect of particular structures
in adversarial perturbation besides £, balls. For instance,
Fig. 1 shows that the perturbation generated by the pro-
posed attack (FWnucl) is more structured and targeted to
the main objective in the image. Relatedly, important secu-
rity concerns can be raised when some empirical defense
mechanisms are vulnerable to certain patterns in the adver-
sarial examples. Thus, providing a catalog of many structured
attacks would cause the rapid development of robust machine
learning algorithms due to an arms race between attack and
defense mechanisms and can greatly expand the scope of
adversarial defenses to new contexts. For instance, in Car-
lini et al. (2019), it is shown many defense mechanisms can
be broken by stronger attacks while exhibiting robustness
to the weaker attacks. Thus, finding more diverse attacks
is important for evaluating defense strategies. In addition, as
adversarial training uses attack methods as a form of regular-
ization for training neural networks, the training process can
be performed on the newly proposed adversaries to robustify
models against discovered structured semantic perturbations.
These sorts of training processes can better flatten the cur-
vature of decision boundaries which can be potentially an
important parameter to improve generalization performance
in non-adversarial settings (Keskar et al. 2016).

Regarding generating the white-box adversarial samples,
the radius of the convex balls is often considered sufficiently
small to ensure that the added perturbations to the original
samples are imperceptible. This imperceptibility requirement
is pervasive in the literature, although it is not the only stud-
ied regime for adversarial examples (Gilmer et al. 2018).
Arguably, the imperceptibility of the distortion does not play
a crucial role in crafting adversaries, in particular when the
ideal level of perturbation is aligned with the human percep-
tion in the sense that the perturbed image is labeled as the
original image for a human observer. In fact, the impercepti-
ble deformation regime of non-robust classifiers has received
much attention because it highlights the gap between human
perception and the processing done by machine learning
systems to classify the non-perceptible class of perturbed
samples (Gilmer et al. 2018).

In this work, we do not limit ourselves to the imperceptible
regime of perturbation. Instead, we explore adversarial exam-
ples’ structure leading to possibly perceptible deformations
that would yet be considered as non-suspicious alteration

(a) FGSM

FWnucl Perturbed FWnucl Perturbation

(b) FW with nuclear ball (FWnucl )

Fig. 1 The images correspond to two types of targeted attacks. Pro-
jected Gradient Descent (PGD) solve (1) constrained by a £, ball while
FWhnucl solves (1) constrained with a nuclear ball. The type of adver-
sarial perturbations differs significantly in structure

of the image. In particular, we consider the trace norm ball
(the nuclear ball), which is the convex relaxation of rank-1
matrices. Qualitatively, adding perturbation in this distor-
tion set leads to blurring effects on the original image. This
blurring effect could be further localized in a controlled
way to specific semantic areas in the image by considering
the group-nuclear ball distortion set, where the groups are
defined on the specific semantic area of interest.

In the sequel, for the sake of simplicity of the presentation
we focus on untargeted adversarial examples. Our approach
is to use an auxiliary optimization problem to craft the adver-
sarial perturbations. The optimization problem to generate
untargeted adversarial attack for the original sample x°" is
formulated by

minimize £(x) = —L(f(x), y)
(D

1 S €

subject to Hx —x

where L is an adversarial loss (e.g., cross entropy loss), f
is the neural classifier and y is the label of the original sam-
ple x°. In this formulation, € constrains the perturbation
magnitude in particular norms.

Related Work.

Several recent research studies question the underlying rea-
son for considering £, neighborhood as distortion sets and
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propose alternative adversarial models. For instance, (Sharif
etal., 2018) suggests that £,, norms are neither the right met-
ric for perceptually nor even content-preserving adversarial
examples. In Sen et al. (2019) a behavioral study is conducted
which shows that £, norms and some other metrics do not
align with the human perception.

There are some recent works that consider adversarial per-
turbations beyond the £, distortion sets. In Engstrom et al.
(2017) it is shown that simple rotation and translation can
create efficient adversarial examples. Xu et al. (2018) con-
sider group-lasso distortion sets which are optimized based
on methods like ADMM. Liu et al. (2018) generate adversar-
ial examples based on the geometry and physical rendering
of the image. They notably suggest that large pixel perturba-
tions can be realistic if the perturbation is conducted in the
physical parameter space (e.g., lighting). Wong et al. (2019)
recently argue that robustness to Wasserstein perturbations
of the original image is essentially an invariant that should
typically existin classifiers. Recently, (Wong & Kolter, 2020)
investigate learning perturbation sets without optimization-
based approaches and via applying conditional generative
models.

There exist some methods which solve the adversarial
optimization problem on specific subspaces, which might
lead to specifically structured adversarial examples. While
a random subspace (Yan et al., 2019) does not necessarily
induce a specific perturbation structure, projection on low-
frequency domain (Guo et al., 2018) or onto the subspace
generated by the top few singular vectors of the image (Yang
et al., 2019, §3.4.) will induce structured adversarial exam-
ples. These approaches are leveraged to reduce the search
space of adversarial perturbation for more efficient compu-
tational complexity. Finally, one can consider the problem
of adversarial attack generation as an image processing task.
A recent trend to various types of such algorithms are for
instance conditional or unconditional generative models,
style transfer algorithms, or image translation algorithms
(Reed et al., 2016; Gatys et al., 2017; Risser et al., 2017;
Luetal., 2017).

In this paper, we particularly apply Frank—Wolfe meth-
ods to solve the adversarial optimization problem. These
algorithms have shown a recent revival in constrained opti-
mization problems for machine learning, where their success
is notably due to their low-cost computational cost per iter-
ation (Jaggi, 2013). It is known that Frank—Wolfe method
exhibits linear convergence on polytopes (Guélat & Mar-
cotte, 1986; Garber & Hazan, 2013a,b; Lacoste-Julien &
Jaggi, 2013, 2015), on strongly convex set (Levitin & Polyak,
1966; Demyanov & Rubinov, 1970; Dunn, 1979; Garber
& Hazan, 2015) or uniformly convex sets (Kerdreux &
d’ Aspremont, 2020). Frank—Wolfe algorithm has been exten-
sively studied in convex setting for large scale nuclear norm
regularization (Jaggi & Sulovsky, 2010) (Lee et al., 2010;
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Shalev-Shwartz et al., 2011; Harchaoui et al., 2012; Dudik et
al.,2012; Allen-Zhu et al., 2017; Garberet al., 2018). Further-
more, many variations of Frank—Wolfe method exist (Freund
etal.,2017; Cheung & Li, 2017) that leverage the facial prop-
erties to preserve structured solutions for non-polytope or
strongly convex domains. A closer approach to this work is
Chen et al. (2018), where the authors apply the zero-order
Frank—Wolfe algorithm for solving adversarial problems in
the black-box setting.

This work exploits an optimization method to gener-
ate adversarial attacks by imposing blurriness on the target
images. Currently, the commonly-used packages for craft-
ing adversarial samples, e.g., Foolbox (Rauber et al., 2017)
apply spatial filters aiming to craft adversaries via blurring.
In Guo et al. (2020) a method for forging visually natural
motion-blurred adversarial examples is introduced where the
misclassification capability is achieved by tuning the kernel
weights. Their work is mainly inspired by the Gaussian blur-
ring kernel, though using a learnable kernel. Nevertheless,
to craft visually natural and plausible examples, the authors
introduced a paradigm for the saliency-regularized adversar-
ial kernel prediction and the predicted kernel is regularized
to achieve natural visual effects. However, in our approach,
the blurriness is generated using additive random noise-like
perturbations.

Contribution.

Currently, the defense techniques and in particular the mech-
anisms which provide theoretical guaranties are designed
for non-structured norms while structured norms are largely
overlooked in the literature. This shortcoming may render
previous defense algorithms less appealing when exposed
to structured adversaries. We study some families of struc-
tured norms in the adversarial example setting. This is a
pretense to more generally motivate the relevance of struc-
tured attacks (i.e. besides the £, distortion set), which are
largely unexplored. It is also a versatile approach to pro-
ducing specific modifications of the adversarial images, like
(local) blurriness. We demonstrate in the experiments that the
proposed structured adversaries generate samples that target
the important parts of the image resulting in a lower number
of perturbed elements from the original image, and therefore
providing a lower perturbation magnitude which makes them
undetectable (see Fig. 1). We also demonstrate an algorithm
for the localized perturbations (blurriness) of the region of
interest in the image using group norms.

2 Structured Distortion Sets

Here we describe some structured families of norms that to
the best of our knowledge have not so far been explored in the
context of adversarial attacks. To be more specific, we gener-
ate some specifically structured perturbations by solving the
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adversarial problem (1), which provides the potential attacker
a framework to derive adversarial alternation of the original
test samples. In the sequel, we set the trace norm ball as the
distortion set and design a framework to solve the optimiza-
tion problem (1) based on conditional gradient algorithms. In
the conditional gradient algorithm, in each iteration a Linear
Minimization Oracle (LMO) is solved. More technically, for
adirection d and a convex set C, the LMO problem is defined
as

LMO¢(d) € argmin d” v. )
veC

The iterations of conditional gradient algorithms are then
constructed as a (sparse) convex combination of the solu-
tions to (2). These solution points can always be chosen as
the vertices of C. Hence, the specific structure of the solu-
tions of the LMO is applied in the early iterations of the
optimization problem. In the following section, we provide
the mathematical formulation of the optimization problem.

2.1 Low-Rank Perturbation

We let ||-|| ¢; denote the nuclear norm which is the sum of the
matrix singular value, a.k.a. the trace norm or the 1-Schatten
norm. The nuclear norm has been classically used to find
low-rank solutions of convex optimization problems (Fazel
et al., 2001; Candes & Recht, 2009) such as matrix comple-
tion. Here, we propose to simply consider nuclear balls as
distortion sets when searching for adversarial examples in
problem (1). We later explain the various potential benefits
of using this structural distortion set. To our knowledge, the
low-rank structure is leveraged in different aspects of some
defense techniques (Yang et al., 2019) but it has never been
acquired to craft adversarial attacks. As an empirical defense
mechanism, (Langeberg etal., 2019) add a penalization in the
training loss to enhance the low-rank structure of the con-
volutional layer filters. Yang et al. (2019) notably propose
a pre-processing of the classifier outputs, which randomly
removes some input pixels and further reconstructs them via
matrix completion for denoising purposes.

More formally, with nuclear ball as a distortion set, the
adversarial optimization problem (1) is reformulated as

argmin  L(x) = —L(f(x), y). 3

[[x—xeril sy <e

This formulation is a particular example of the family of
p-Schatten norms ||-|[s,, i.e., the p-norm of the singular
value vector with p = 1. These structured norms lead to dif-
ferently structured adversarial examples. Given the lack of
explicit mathematical translation across norms, these adver-
saries may end up defeating certified approaches in terms
of £, neighborhoods. At this point, we solve the adversarial

Original

€51 = 5 €51 = 10 €51 = 20 €S1 — 30

Fig.2 For a test image of CIFAR-10, we computed the various adver-
sarial examples stemming from solving (1) on the nuclear ball with
Frank—Wolfe algorithm. From left to right: original image, adversarial
example with a nuclear radius of €51 = 5, 10, 20, 30. Note that the
adversarial examples are already miss-classified with eg; = 3; here we
increase the radius purposely to observe the perturbation on the initial
image

problem (3) in the framework of conditional gradient meth-
ods. The analytical solution of LMO (2) for a nuclear ball of
radius p is given by

LMOJ.j5, <o (M) £ p Ut VY, )

where Uy, V| are the first columns of matrices U and V
in the SVD decomposition of matrix M given by USVT.
For g-Schatten norm (with ¢ > 1) the LMO has also a
closed-form solution involving the full singular decompo-
sition (see e.g., Garber & Hazan, 2015, Lemma 7). Solving
LMO involves computing the right and left singular vectors
U, and V| which are associated with the largest singular value
p. Lanczos algorithm can be used to calculate singular vec-
tors corresponding to the largest singular value, where the
solution is found using the Krylov subspace formed by the
columns of matrix M. This demonstrates the computational
efficiency of Frank—Wolfe methods as opposed to the other
optimization approaches such as projected gradient descent,
which requires the full SVD computation in each iteration.
Qualitatively, adversarial perturbations in nuclear norm add
a blurring effect to the original images, as for instance is
depicted in Fig. 2. Thus, this can potentially pose a risk in
some security scenarios, when such perturbations could be
perceived as simple alterations of the image rather than a
malware deformation of it, e.g., see Gilmer et al. (2018) for
real-world scenarios.

2.2 Group Constraints

In this section, we demonstrate how to leverage weighted
group norms in order to localize the low-rank perturbations.
Group-norms are defined by a partition of the pixels’ coor-
dinates into groups. For instance, such a partition can be
adapted from a segmentation of the sample image. These
group-norms are a combination of two norms: a local one
applied on vectors formed by each group of pixel values, and
a global one applied on the vectors of the norms of all the
groups. Here, we consider the nuclear norm as the local norm
and the global £; norm to induce sparsity at the group level.

@ Springer
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Considering such norms provides some tools to substantially
control the perturbations restricted to desirable parts to craft
adversarially perturbed images.

Nuclear Group Norm.

Let G be an ensemble of groups of pixels’ coordinates of the
tensor image of (c, h, w), where each element g € G is a
set of pixel coordinates’. Then for x € R°*/"*¥ we define
G-nuclear group-norm as

Ixligp = [ Ixlgllsqy.geq |, - ®)

with p € [1, oo[U{oo} (see for instance Tomioka & Suzuki,
2013). When G is a partition of the pixels, ||-llg 1 s is a
norm. The nuclear group-norm allows to localize the blurring
effect of the nuclear norm. Indeed, the LMO of G-nuclear
group-norm is given by

0 Ul(g) (Vl(g))T

0 otherwise

LMOj.jg , 5=p(M) = : (6)

where g* = argmax |M[g]lls; and the singular value

g€y
decomposition of M[g] for each group g is given by

U(g)S<g)(V(g))T. When solving (1) with such norms, each
iteration of the conditional gradient will add to the adver-
sarial perturbation a vertex of the form described by (6), i.e.
a matrix of rank-one on the rectangle defined by the group
of pixels in g € G. Note that the only modification for the
approximate solution of group nuclear ball versus nuclear
ball is the solution to LMO problem, and the rest of the con-
ditional gradient method for both of the distortion sets is
similar.

Different Distortion Radius per Group.

When perturbing an image, modification in the pixel regions
with high variance are typically harder to perceive than pixel
modification in low variance regions. This knowledge was
leveraged in Luo et al. (2018) or in the o-map of (Croce &
Hein, 2019, §2.2.) to craft more imperceptible adversaries.
Weighted nuclear group norms allow to search adversar-
ial perturbations with different distortion radius across the
image. With some w, > 0, the weighted nuclear group norm
is defined as

Ixlg. 1,50 = Y we lx[elllscr)- @)
geg

and the LMO for weighted nuclear group-norm is then
obtained as
LMOJ. g, 5 <p(M) £
&") (v &NT
ae U (M)

wg*

on group of pixels g* (8)

0 otherwise

@ Springer

where g* = argmax ng IM[g]lllg; and the singular value
8Y
decomposition of M[g] for each group g is given by

U®s (g)(V(g))T. In particular, this means that the solution
corresponding to the group associated with g have a nuclear
radius of w% and the weights w, which allows to control the
distortion in each group of pixels. The weights can be cus-
tomized by the attacker to impose perturbation in desirable
regions of the image. For instance, the weights can be cho-
sen in inverse correlation with the variance of pixel regions
to make the perturbations more targeted.

2.3 Structure Enhancing Algorithm for Adversarial
Examples

We apply Frank—Wolfe algorithms (Frank & Wolfe, 1956),
a.k.a. conditional gradient algorithms (Levitin & Polyak,
1966), for problem (1). Given the conditional gradient opti-
mization framework, the algorithm 1 can iteratively find the
adversarial perturbation to fool the network. For specific con-
straint structures such as the distortion set introduced earlier,
conditional gradient algorithms naturally trade-off between
the convergence accuracy and the structured solutions in the
early iterations.

Algorithm 1 Vanilla Frank-Wolfe
Input: Original image x
fort =0,---,T do
s, = LMO¢( — VL(x)).
y; = LineSearch(x;, s; — x;)
Xep1 = (L= y)xe + vest
end for

For almost all the distortion sets which we consider in
this work, LMO has a closed-form solution. Note that the
LMO has a low computational requirement as opposed to
the projection-based approaches. In particular, LMO requires
only computing the first singular vectors, while compara-
bly projection steps demand the full SVD matrix to find
the solution in each iteration. Provided the upper-bound for
the Lipschitz constant L of the adversarial loss is known,
we apply the short step size y; = clipyg 1 ((—V f(x1), 5 —
x:)/L |Is; — x;]|%) for the optimization method. These are the
only parameters that should be tuned in the algorithm, which
makes the method more versatile for many models as com-
pared to attacks that require hyperparameter tuning such as
CW attacks (Carlini & Wagner, 2017).

It is well-known that for non-convex, objective functions
e.g. the adversarial losses, injecting noise might be useful
to escape from local optimums. This noise could be added
either via random starts or via randomized block-coordinate
methods. Under some additional conditions, Kerdreux et al.
(2018) proposes a version of Frank—Wolfe that solves linear
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Z::Jelr?s}vel\fvlﬁiltseszidaigﬁl{_1 0 Network Training model Clean Accuracy under attack
results FWnucl 20 * FWnucl 20 © PGD 20 FGSM
MNIST
LeNET Madry 98.38 95.26 92.76 95.79 96.59
ME-Net 99.24 97.63 75.41 74.88 46.18
SmallCNN Madry 99.12 98.19 96.66 95.77 97.95
ME-Net 99.42 89.56 78.65 76.84 54.09
CIFAR-10
ResNet-18 Madry 81.25 44.28 3.06 49.95 55.91
ME-Net 93.45 29.66 4.01 4.99 44.80
WideResNet Madry 85.1 43.16 2.82 52.49 59.06
ME-Net 95.27 40.09 16.04 12.73 59.33
ResNet-50 Madry 87.03 40.97 2.64 53.01 61.44
ME-Net 92.09 47.66 17.81 9.14 58.51

FWnucl 20 *: FWnucl with eg; = 1. FWnucl 20 : FWnucl with eg; = 3. On MNIST (resp. CIFAR-10)
PGD and FGSM have a total perturbation scale of 76.5/255 (0.3) (resp. 8/255 (0.031)), and step size 2.55/255
(0.01) (resp. 2/255 (0.01)). PGD runs for 20 iterations. We reproduce the ME-Net and Madry defense with

same training hyper-parameters

Table 2 ImageNet extensive white-box attack results on 4000 randomly selected images from validation dataset of ImageNet

Network Training model  Clean = FWnucl PGD
€s1 =1 €s1 =3 €s1 =15 € =2/255 e =4/255 € = 8/255
Acc 12 Acc 12 Acc ly Acc ly Acc 12 Acc 1%
ResNet-50  Standard 80.55 1967 069 1.62 127 0.17 168 0.2 2.53 0.0 4.55 0.0 8.53
Madry 50.02 383 145 168 382 6.62 580 4207 297 3452 590 189 11.69

FWnucl and PGD runs for 100 iterations. We reproduce Madry defense in £, norm with € = 8/255. In the table we report accuracy (Acc) versus

the average of generated ¢, distortion for each attack

—e— FWnucl 10 & -} —e— FWnucl 10
8 -==-_ FWnucl 20 0 \ ~-—=- FWnucl 20
—— FWnucl 50 & \ —— FWnucl 50
L —-+—- FWnucl 100 ;\350 \ —+—- FWnucl 100
g g
=) =
8 8 w
< <
20

7
53

0 e 0
[ 1 2 3 4 5 0 1 2 3 4 5
£s1 €51
(a) (b)

Fig. 3 Accuracy of standard model (left) and robust model of Madry
(right) on ResNet-18 for CIFAR-10, versus the nuclear ball radius when
varying the number of steps

minimization oracles on random subsets of the constraint
sets. Here we consider subsampling the image channels, i.e.,
X1l cotor.s1 = 23:1 llxclls; where x. is one of the image
channels. Note that we did not impose the box constraints
which demonstrate that the values of image elements should
be inside the interval [0, 1]" . To impose this restriction, we
clamp the last iteration of the optimization process to satisfy
box constraints. Although this approach does not guarantee

the convergence to a saddle point but removes the need to
compute the LMO over the intersection of two sets, which is
non-trivial.

3 Numerical Experiments

This section aims at evaluating the adversarial accuracy of
adversarial examples using Frank—Wolfe algorithms for the
adversarial problem (1) with nuclear balls as distortion sets,
which we refer to as FWnucl. The complementary results for
Frank—Wolfe with group norms and random initialization are
provided in the appendix.

Experiments Goal.

We tested the FWnucl white-box attack against two base-
lines of defenses for untargeted attacks. The first is Madry
et al. (2017), the state-of-the-art defense against white-box
attacks. It uses the training images augmented with adver-
sarial perturbations to train the network. The second one
(Yang et al., 2019) leverages matrix estimation techniques
as a pre-processing step; each image is altered by randomly
masking various proportions of the image pixels’ and then
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reconstructed using matrix estimation by the nuclear norm.
For a given training image, this approach produces a group
of images that are used during training, see Yang et al. (2019)
for more details. This provides a non-differentiable defense
technique, i.e. amethod that cannot be straightforwardly opti-
mized via back-propagation algorithms, and was reported to
be robust against methods in Athalye et al. (2018) by circum-
venting the obfuscated gradients defenses. Qualitatively it
leverages a structural difference between the low-rank struc-
ture of natural images and the adversarial perturbations that
are not specifically designed to share the same structures. In
addition, we evaluate our proposed attacks over more recently
introduced robust models such as Adversarial Weight Per-
turbation (AWP) (Wu et al., 2020) and Learnable Boundary
Guided Adversarial Training (LBGAT) (Cuietal.,2021). We
also evaluate our method against a provably robust model
trained with randomized smoothing (Cohen et al., 2019). In
the randomized smoothing, a provably robust classifier is
derived from the convolution of the base classifier with the
isotropic Gaussian distribution of variance 2. This approach
provides provable certified bounds in the L, norm for the
smoothed classifier. We show that the structured attacks can
bring down the accuracy of the model to the certified accuracy
in almost all the smoothed models. Overall, a key motiva-
tion of our experiments is to propose adversarial examples
with specific structures, serving at least as a sanity check for
defense approaches.

Experiment Settings.

We assess the accuracy of networks in different scenarios
over MNIST and CIFAR-10 testsets. For ImageNet we exam-
ine the neural models over randomly selected images from
the ImageNet validation set that are correctly classified. For
defense evaluation, for MNIST we use the LeNet model with
two convolutional layers similar to Madry et al. (2017) and
SmallCNN with four convolutional layers followed by three
fully connected layers as in Carlini and Wagner (2017). For
CIFAR-10 dataset we use ResNet-18 and its wide version
WideResNet and ResNet-50. For the ImageNet dataset, we
use ResNet-50 architecture.

We report the adversarial accuracy of FWnucl along with
those of classical attack methods like Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015), and Projected
Gradient Descent (PGD) (Madry et al., 2017) to solve adver-
sarial problem (1) using £, ball as the distortion set. FGSM
generates adversarial examples with a single gradient step,
while PGD is a more powerful adversary that performs a
multi-step variant of FGSM. In addition, we compare our
attacks with the adversarial attack Auto-attack (Croce &
Hein, 2020) which is an ensemble of parameter-free attacks
consisting of a stepsize free version of PGD (APGD-CE),
a stepsize free PGD with a novel loss (APGD-DLR), Fast
Adaptive Boundary Attack (FAB) with the goal of finding
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minimal £, norm perturbations, and Square Attack which
is a query-efficient black-box attack. While this ensemble
of attacks leverage non-standard mechanisms to optimize
the threat model, our goal is to compare the proposed
approach with the fundamental basic blocks of optimization
approaches in adversarial attacks to show that the proposed
method is introducing novel adversarial structures which are
structurally different from the £, norm structures.

Empirical Results.

In Table 1 we report accuracy as the percentage of adver-
sarial examples that are classified correctly. We repeated the
experiments several times to insure the results are general.
These numerical experiments demonstrate that the attack
success rates for FWnucl are comparable to the classical ones
in an imperceptibility regime while also retaining specific
structures in the perturbation. Note that FGSM for ME-Net
provides a better success rate (lower adversarial accuracy)
compared to PGD which indicates the gradient masking gen-
erated by ME-Net over MNIST dataset. Table 1 also shows
that FWnucl with € = 3 significantly performs better than
other attacks. We attribute this difference to the fact that
FWhnucl has a tendency to induce low-rank solutions, lead-
ing to global structure perturbation in images without any £,
norm restrictions. This key characteristic of FWnucl makes
it orthogonal to the existing adversarial attacks. FWnucl is
specifically designed to iterate over solutions that lie on low-
dimensional faces of the feasible set, as low-dimensional
faces of the feasible region contain desirable well-structured
low-rank matrices.

In Table 2 we provided the adversarial accuracy for
standardly and adversarially trained models over ImageNet
dataset. The results show that the attacks created by PGD
show at least 50% increase in £> norm distortion compared
with FWnucl. Note that enlarging the radius of the norm ball
for PGD attack significantly increases the distortion while
for FWnucl the increase in distortion rate is not fierce per
increasing the nuclear ball radius. It confirms our earlier intu-
ition that FWnucl is designed to selectively add distortion to
pixels which are important for the label predictions. For the
adversarially trained model, the robust accuracy for FWnucl
is significantly lower that the counterparts from PGD. It indi-
cates that FWnucl generates patterns that the robust models
may not be robust to them.

Figure 3 summarizes the results for FWnucl with varying
€51 for standard and robust model on CIFAR-10. The figure
shows FWnucl algorithm noticeably drops the accuracy rate
by increasing the radius €g;. The performance of different
FWnucl methods is slightly different, as the higher number
of FWnucl steps may gain better performance.

We also extend our evaluations to models trained adver-
sarially using PGD;, method, i.e., PGD with > norm, for
MNIST, CIFAR-10 and ImageNet datasets in Table 3. The
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Table 3 MNIST, CIFAR-10 and ImageNet extensive white-box attack results for models adversarially trained with PGD;

Network Clean FWnucl 20 PGD, 20 Auto-attack-£»

es1 =0.5 es; = 1.0 es1 = 1.5 €e=0.5 e=1.0 e=1.5 e=0.5 e=1.0 e=1.5
MNIST
LeNET 99.31 98.65 97.64 94.39 98.35 96.41 91.45 98.24 95.68 87.14
SmallCNN 99.19 98.57 97.4 94.61 98.37 96.53 92.57 98.16 95.46 87.44
CIFAR-10
ResNet-18 89.97 67.22 33.31 11.54 69.38 41.01 18.86 66.63 33.37 9.57
WideResNet 90.64 68.21 34.54 11.78 70.6 43.02 19.46 68.27 35.18 9.83
ResNet-50 90.83 68.95 35.55 12.8 71.78 44.77 21.36 69.24 36.16 11.17
ImageNet
ResNet-50 63.68 60.91 54.24 57.9 61.01 57.99 54.97 58.89 53.74 49.33

The radius for adversarial examples for training in £;-norm for MNIST is 1.5 and for CIFAR-10 and ImageNet is 0.5. The results for ImageNet is
for 10,000 randomly selected images from validation dataset of ImageNet

Table 4 Adversarial accuracy on CIFAR-10 and CIFAR-100 datasets using WideResNet (WRN-34-10) under nuclear norm threat model with
FWhnucl and £, threat models with Auto-attack for adversarially trained models using AWP (Wu et al., 2020) and LBGAT (Cui et al., 2021)

Network Training model  Clean  FWnucl Auto-attack-£ o
€S] = 1 €S] = 3 €51 = 5 € = 2/255 € = 4/255 € = 8/255
Acc [ Acc [ Acc 0 Acc [ Acc [ Acc 2
CIFAR-10
WRN-34-10 AT-AWP 8557 3646 149 1.68 354 014 514 7941 003 7212 0.11 53.90 0.54
TRADES-AWP 8536 3890 148 298 367 032 548 79.65 002 7274 0.11 56.19  0.49
LBGAT 8822 3394 143 201 340 026 500 8172 003 7331 0.14 5221 0.61
CIFAR-100
WRN-34-10  AT-AWP 60.38 4267 093 1357 252 499 384 5173 004 4358 0.14 2884 0.53
TRADES-AWP  60.17 4216 094 1598 253 6.63 378 5082 0.04 4250 0.15 2879 0.53
LBGAT 7025 4450 090 1223 217 491 3.04 5853 005 4678 020 2672 0.73

Table 5 Adversarial accuracy and the average norm of generated with Auto-attack for robust models AWP (Wu et al., 2020) and LBGAT
perturbations on CIFAR-10 dataset using WideResNet (WRN-34-10) (Cui et al., 2021)
under nuclear norm threat model with FWnucl and £, threat model

Training model Metric FWnucl Auto-attack-£
€s) =1 €s1 =3 €s1 =5 € =4/255 € = 8/255 € = 16/255 € = 32/255

CIFAR-10-WRN-34-10

Clean Acc 85.7 Acc 36.46 1.68 0.14 72.12 53.90 16.29 0.32
AT-AWP 12 1.49 3.54 5.14 0.11 0.54 232 5.49
II-1l's1 1.00 293 4.79 0.26 1.22 5.21 12.41
SSIM 0.9732 0.8925 0.8078 0.9977 0.9819 0.8836 0.6740
Clean Acc 88.22 Acc 33.94 2.01 0.26 73.31 5221 13.81 0.25
LBGAT %) 1.43 3.40 5.00 0.13 0.61 2.47 5.58
[I-ls1 1.00 291 4.73 0.30 1.40 5.57 12.51
SSIM 0.9739 0.8982 0.8174 0.9972 0.9781 0.8754 0.6766
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results show that these models fail when they are attacked
by the FWnucl attack. This demonstrates that FWnucl could
symmetrically fail the £, and £, adversarially trained mod-
els.

We also examine our proposed method over the recently
introduced robust models AWP (Wu et al., 2020) and LBGAT
(Cui et al., 2021) over CIFAR-10 and CIFAR-100 datasets.
In Table 4 we compare our attacks versus more novel adver-
sarial training approaches and compare the performance with
more powerful attacks such as Auto-attack. The results show
that the robust models are vulnerable to the plausible modifi-
cations to the images which are generated using FWnucl and
can provide a better success rate compared to Auto-attack.
Auto-attack produces the adversarial with a lower ¢, norm
as it always exploits a budget for the pixel-wise modifica-
tion. The results show that the generated adversarial attacks
with a bounded nuclear norm distortion within the percep-
tual ball can easily fail the recent robust model though with
a higher distortion in the £, norm compared to Auto-attack.
Our attacks, while might not satisfy the £, threshold for the
pixel-wise modifications, introduce perturbations that are not
perceptible and can change the classifier decision.

Imperceptibility nuclear threshold.

The attacks such as FWnucl, PGD, and Auto-attack are con-
strained with perturbation limitation on particular norms
which characterize the distortion set for each adversarial
attack. FWnucl is constrained to the nuclear ball with a
given radius and therefore it might increase beyond the stan-
dard perturbation limit used to craft adversaries with PGD or
Auto-attack constrained over £ or £, distortion sets. Con-
versely, as PGD or Auto-attack are constrained over either £,
or £ balls, the forged adversaries with these threat models
may increase beyond the limitation for the perturbation limit
for the nuclear norm in FWnucl.

As demonstrated in Sharif et al. (2018), £, norms do not
capture the perceptual quality of images and are unsuitable to
assess the quality of adversarial images. Therefore, we com-
pute the structural similarity index (SSIM) measure (Wang et
al., 2004) as advocated in the literature (Hameed & Gyorgy,
2021; Gragnaniello et al., 2021) to measure the perceptual
similarity between the original image and the adversarial
images. In Table 5 we listed the achieved adversarial accu-
racy, the average norm of generated distortions, and SSIM
values for AT-AWP and LBGAT models in Table 4 over
CIFAR-10 dataset. The results for Table 5 are also visual-
ized in Fig. 4.

Table 5 shows that the images generated by FWnucl
and Auto-attack with different perturbation limits exclud-
ing Auto-attack with € = 32/255 are equally good when
the requirement is to achieve a minimum SSIM value up
to 0.8, which guarantees high-quality images. The results
also show that FWnucl with eg; = 3 generated adversarial
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Fig.4 Performance of adversarial attacks on CIFAR-10 with adversar-
ial training, listed in Table 5

images of better perceptual quality compared with Auto-
attack with e = 16/256 whereas providing lower adversarial
accuracy. It is noted from Table 5 that the nuclear norm for
Auto-attack with the perturbation limits € = 16/255 and
€ = 32/255 for AWP model are 5.21 and 12.41, respec-
tively, which are significantly beyond the perturbation limit
of nuclear norm used for FWnucl with €g; = 3. This indicates
that the images crafted with Auto-attack using € = 16/256
and € = 32/255 are heavily distorted in the nuclear norm.
This also shows that FWnucl crafts adversarial perturbations
which are structurally different from adversaries generated
based on £,-norm constraints.
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Table 6 Adversarial accuracy and the average norm of generated perturbations of successful adversaries on 1000 randomly selected images from ImageNet validation dataset using ResNet-50
under nuclear norm threat model with FWnucl and £, threat models with PGD and Auto-attack for £+, adversarially trained model

Network Metric FWnucl PGD Auto-attack-£ o
es; =1 €s1 =3 €s1 =35 e =4/255 € = 8/255 e =16/255 € = 32/255 e =4/255 € = 8/255 e =16/255 € = 32/255

ImageNet-Clean Acc 66.66

ResNet-50 Acc 51.58 24.90 11.01 50.00 30.65 8.03 1.19 46.23 25.19 2.87 0.10
12 1.45 3.62 5.31 5.89 11.57 21.42 35.49 5.94 11.76 23.11 44.27
II-Il's1 1.0 291 4.86 30.56 59.07 109.17 214.02 31.05 60.95 120.40 237.50
SSIM 0.99 0.99 0.98 0.96 0.90 0.75 0.46 0.96 0.89 0.72 0.46

9/1-09L:LEL (£207) UOISIA JINdWO? JO [RUINOY [RUOLIRUIRIY|
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Fig.5 FWnucl adversarial examples for the CIFAR-10 dataset for dif-
ferent radii. The fooling label is shown on the image

In Table 6 we also compare our approach with £, threat
models for successful adversaries over distortion sets with
large radii on 1000 randomly selected images from ImageNet
validation dataset. We see from Table 6 that for FWnucl with
€s1 = 3the adversarial accuracy is 23% lower than the adver-
sarial accuracy for Auto-attack with ¢ = 8/256 while the
corresponding SSIM value is 9% higher for FWnucl with
€s1 = 3. In addition, this table again shows that the per-
turbation generated by £, attack models over ImageNet are
highly distorted in the nuclear norm level providing an aver-
age nuclear norm of 60.95 for Auto-attack with e = §/255,
which is by orders of magnitude larger than the maximum
nuclear norm used for FWnucl with €g; = 5. The results
indicate that our FWnucl is able to make the most trade-offs
between the SSIM value and the distortion rate in nuclear
norm level with the adversarial accuracy.

We illustrate in Fig. 5 some adversarial examples gen-
erated by FWnucl, for three different values of e€g;. On
CIFAR-10, we qualitatively observed that with €g; = 1, all
adversarial examples are perceptually identical to the original
images. The imperceptibility threshold exclusively depends
on the dataset as the dataset becomes more complex, the
tolerance of imperceptibility to nuclear ball radius values
€s1 increases; on ImageNet we realized the imperceptibility
threshold is €51 = 10.

We interpret the adversarial perturbations using class acti-
vation maps (CAM) (Zhou et al., 2016) which localizes
class-specific discriminate semantics in the input images to
the neural model. Adversarial images are generated to sup-
press the most discriminative regions related to the original
labels and promote the discriminatory semantics in regard to
the adversarial labels. We have shown the heat-map for per-
turbation and the CAM visualization for the corresponding
images in Fig. 6. The figure shows that the perturbations are
tightly projected to the most discriminatory image regions
(i.e., body, head), which are localized by CAM with respect
to the original label. While the noise generated by PGD attack
exhibits abrupt changes in pixel intensities (see Fig. 1), the
perturbation from FWnucl has continuous variations in pixel
values. Itis seen from the same figure that the conventional £,
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Fig.6 The images display some structural pattern of FWnucl perturba-
tions for the ImageNet dataset on DenseNet121 architecture, standardly
trained. Observe that the adversarial perturbed pixels are accumulated
on the areas containing semantic information about the image. FWnucl
is conducted with €g; = 5 and 20 iterations

norm constrained methods e.g., FGSM, PGD do not encour-
age any structure and tends to generate perturbations even for
pixels that might not be crucial for the label predictions, e.g.,
the background. However, FWnucl only focuses on impor-
tant regions of the image which might induce a dramatic
shift in the predictions. Therefore, the FWnucl attack sig-
nificantly reduces the number of perturbed elements in the
image. For instance, the number of non-zero pixel coordi-
nates for PGD and FGSM on ImageNet is respectively almost
11x and 14x larger than the number of non-zero pixel inten-
sities for FWnucl with eg; = 1.

Adbversaries with Group Nuclear Norm—F Wnucl-group.

In FWnucl-group we deal with sparse attacks and we want
to modify the smallest number of pixels to change the model
decision on the class label. We compare FWnucl-group with
state-of-the-art sparse attacks Structured Attack (StrAttack)
(Xu et al., 2018), Coordinate Search (CS) (Croce & Hein,
2019) with £y 4+ o version and Auto-attack with £, and £,
norms. The attack StrAttack uses group lasso and it is shown
that the generated attacks enjoy localized sparse patterns.
The attack CS computes the perturbations in direct corre-
lation to the variance of neighboring pixels. We conduct the
experiments using the open-source codes from the papers. We
run the attacks on 1000 samples of the test sets for £,-norm
robust models. In Tables 7 and 8 we report the test accuracy
of each method for MNIST and CIFAR-10 datasets, respec-
tively. The test accuracy is the fraction of classified samples
that can correctly be classified, and we listed the value of
perturbation in different norms. We report the statistics of
the attacks in Tables 7 and 8 only for successful attacks. The
tables also report the number of pixel changes for each image
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Table 7 Comparison of the FWnucl and FWnucl-group with sparse attacks Coordinate Search (CS) and Structured Attack (StrAttack) and with
Auto-attack with ¢ and €+, norms for 1000 randomly selected examples of MNIST dataset on ¢, adversarially trained models

Metric FWnucl FWnucl-group StrAttack CS Auto-attack-£ Auto-attack-£o
63121 65121 651:3 631:5 e =05 e=1.0 e=0.1 €e=0.2
Net-Clean Acc 99.5
Acc 96.3 97 77 44 98 90.7 97.7 94.4 94.7 43.7
%) 0.90 0.88 2.34 3.08 0.28 1.79 0.5 1.0 2.08 3.98
[I-IIs1 1.26 1.07 3.01 4.63 0.76 5.20 1.32 2.55 7.60 14.30
28 0.37 0.43 0.91 0.97 0.09 0.48 0.16 0.32 0.1 0.2
pixels 465.6 54.76 70.8 90.2 462.2 32.03 320.3 326.7 560 556.4
IS 0.94 0.9339 0.9134 0.9492 0.9076 0.8682 0.9182 0.9127 0.9287 0.9810
Small CNN-Clean Acc 99.4
Acc 96 96.9 84.8 72.7 98.8 91.1 97.1 93.6 94.6 46.2
12 0.91 0.86 2.19 2.80 0.14 1.70 0.5 1.0 2.03 4.14
[I-Ils1 1.27 1.09 2.95 4.29 0.36 4.81 1.30 2.47 14.26 7.50
loo 0.36 0.41 0.86 0.94 0.05 0.48 0.17 0.34 0.1 0.2
pixels 458.08 60 79.02 94.23 334.33 29.93 224.4 230.5 587.8 696.2
IS 0.9422 0.9633 0.9048 0.9302 0.9642 0.9120 0.9577 0.9074 0.9553 0.9886

Table 8 Comparison of the FWnucl and FWnucl-group with sparse attacks Coordinate Search (CS) and Structured Attack (StrAttack) and with
Auto-attack with £5 and €, norms for 1000 randomly selected samples of CIFAR-10 dataset on £, adversarially trained models

Metric FWnucl FWnucl-group StrAttack CS Auto-attack-£7 Auto-attack-£

es1 =1 es1 =1 €s1 =3 €s1 =95 e=0.5 e=1.0 € =4/255 € = 8/255
ResNet-18-Clean Acc 90
Acc 32.6 74.5 34.6 17.6 57.8 47.9 65.7 33.7 60.1 242
12 1.64 0.82 2.02 2.70 44.87 52.49 0.5 1.0 0.85 1.68
[I-Ils1 1.01 0.56 1.61 2.58 60.61 71.23 1.05 2.09 2.09 4.10
oo 0.24 0.20 0.42 0.49 2.05 2.17 0.05 0.12 0.015 0.031
pixels 1022.5 148.2 225.44 297.46 1011.11 906.26 1022.46 1022.12 1022.56 1022.08
IS 0.9983 0.9653 0.9978 0.9992 0.9955 0.9932 0.9843 0.9976 0.9864 0.9982
ResNet-50-Clean Acc 91.5
Acc 35.8 77 37.3 19.6 56.0 49.9 70.3 36.8 66.2 29.6
12 1.64 0.85 2.02 2.72 4431 52.90 0.5 1.0 0.85 1.69
[Ill's1 1.01 0.57 1.65 2.57 59.66 71.95 1.05 2.07 2.07 4.08
loo 0.24 0.21 0.41 0.50 2.02 2.17 0.06 0.14 0.015 0.031
pixels 1022.72 137.91 214.62 282.03 1011.65 908.60 1021.44 1022.35 1022.45 1022.77
IS 0.9976 0.9684 0.9972 0.9990 0.9949 0.9919 0.9812 0.9972 0.9827 0.9980
WideResNet-Clean Acc 91.3
Acc 35 75.62 38.19 18.3 54.3 49.7 67.9 36.3 62.9 28.5
12 1.65 0.86 2.03 2.73 44.12 52.73 0.5 1.0 0.85 1.69
[IIls1 1.01 0.56 1.63 2.57 58.97 71.23 1.06 2.08 2.09 4.12
loo 0.25 0.21 0.41 0.50 2.00 2.17 0.06 0.12 0.015 0.031
pixels 1022.63 136.75 204.02 271.92 1007.25 905.05 1022.76 1022.1 1023.02 1022.31
IS 0.9975 0.9737 0.9977 0.9990 0.9948 0.9930 0.9817 0.9976 0.9872 0.9983
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where MNIST samples have 784 pixels and CIFAR-10 sam-
ples have 1024 pixels. FWnucl-group significantly reduces
the number of pixel changes for FWnucl, while showing a
higher success rate compared to the other sparse attacks. It
is shown that FWnucl-group can produce sparse attacks that
outperform the other attacks in terms of sparsity. For instance,
for MNIST dataset the group norm reduces the number of pix-
els for FWnucl-group to the 8th fraction of that of FWnucl
while decreasing the rate of success only by 0.7%. The results
from these tables show that Auto-attack perturbs almost all
the pixels for the successful adversaries and generates large
distortion in terms of nuclear norm for Auto-attack-£.

We leverage the adversarial saliency map (ASM) (Paper-
not et al., 2016) to evaluate the effect of structured adversarial
perturbation generated by FWnucl on image classification.
For this purpose, we introduce the IS metric based on
ASM score. For any d-dimensional image x € R?, we
let ASM(x, 1) € R? denote the adversarial saliency score
corresponding to label 7. In particular, the i-th element of
ASM(x, t) shows how much the classification score with
respect to label ¢ increases and how much with respect to the
original label decreases if a modification is applied to the i -th
pixel value. We define a Boolean map Basy corresponding
to ASM score by

) 1 if ASM(x,D)[i]>v
Basmli] = )
0  otherwise

where v is the threshold on the pixel value. We then define
the IS metric using IS(§) = % where o is the element-
wise product. The logic behind this definition is that if IS(5)
is close to 1 then the perturbation is applied mostly for the
pixels which are critical for class prediction by the model, and
by contrast the IS scores close to zero can not be interpreted
based on ASM scores. We also listed IS scores in in Tables 7
and 8 where v equals to the 30 percentile of ASM scores
across the entire samples. In Fig. 7 we have shown the IS
metric for the attacks in Table 8 versus v, being different
percentiles of ASM score across the samples of CIFAR-10
dataset. The figure shows that FWnucl-group has higher IS
scores compared to the other sparse attacks and compared to
FWnucl.

In Fig. 8 we display the adversarial images and the corre-
sponding perturbation generated by the nuclear norm versus
group nuclear norm ||-llg 1 51y, Where the weights w are
calculated based on the local variance of each group. The fig-
ures show that FWnucl-group creates perturbations that are
more targeted and are localized to groups of pixels around
the objects which are important for the classifier to make the
prediction.

It is important to characterize the type of deformation that
arise with radii above the applied thresholds as the imper-
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Fig. 8 The images display some structural patterns of FWnucl (left)
versus FWnucl-group (right) perturbations for the ImageNet dataset on
DenseNet121 architecture for the nuclear ball of radius 5. Observe that
the blurriness effect and perturbed pixels for images crafted by FWnucl-
group are localized and restricted to some specific groups of pixels

Table 9 Evaluation of FWnucl against certifiably robust classifiers
trained by randomized smoothing over CIFAR-10 dataset

Network Certified-/» radius 0.25 0.5 0.75
FWnucl-/g, radius 0.25 0.5 0.75
ResNet-18 Certified 52.26 39.94 27.49
Adversarial 48.66 38.37 28.28
WideResNet Certified 55.9 28.97 16.83
Adversarial 53.89 41.65 30.75
ResNet-50 Certified 50.04 37.11 24.77
Adversarial 49.77 38.38 27.95

Certified (accuracy) denotes the certifiable accuracy of smoothed clas-
sifier (Cohen et al., 2019). Adversarial (accuracy) is the accuracy under
FWnhnucl attack with the perturbation specified in the table
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Table 10 Foolmg rates of Source model/target model ResNet-18 DenseNet121 GoogleNet
FWnucl adversarial
perturbations between several ResNet-18 100 18.15 12.91
models for 4000 samples from ’ )
ImageNet DenseNet121 16.56 99.30 11.74
GoogLeNet 15.03 12.37 99.40
The row indicates the source model and the column indicates the target model
FWnucl Perturbed FWnucl Perturbation I FWnucl Perturbed FWnucl Perturbation . FWnucl Perturbed FWnucl Perturbation
(a) ResNet-18 (b) DenseNet121 (C) GoogLeNet

Fig.9 General layout of the FWnucl perturbations for ImageNet across three different architectures
Table 11 Adversarial training using FWnucl norm for the MNIST dataset
Clean FWnucl PGD, Auto-attack-£, PGD Auto-attack-£ o

es1 =1 es1 =3 e=0.5 e=1 e=0.5 e=1 e=0.1 e=0.2 e =0.1 e=0.2
LeNet—FWnucl €51 = 1.5
99.20 96.85 74.82 97.33 93.76 96.99 90.76 94.08 79.85 90.82 22.97
LeNet—FWnucl €51 = 3
99.1 97.26 77.5 97.54 93.94 96.77 92.24 95.15 74.01 92.77 46.96
LeNet—PGDy € = 1.5
99.31 97.64 55.68 98.35 96.41 98.24 95.68 96.7 64.66 95.95 50.48
LeNet—PGD € = 0.3
98.38 95.08 86.04 95.16 93.38 93.91 82.94 97.41 95.96 96.91 93.67
Small CNN—FWnucl €51 = 1.5
99.23 97.84 90.57 98.21 96.82 97.19 92.68 97.12 94.06 95.23 55.79
Small CNN—FWnucl €51 = 3
98.81 97.32 83.22 97.6 94.66 97.19 89.84 95.49 73.99 92.88 47.15
SmallCNN—PGD; € = 1.5
99.19 97.4 71.2 98.37 96.53 98.16 95.46 96.83 69.24 96.09 52.05
Small CNN—PGD € = 0.3
99.12 98.09 93.73 98.1 97.24 97.62 91.92 98.57 97.6 98.3 96.51

We used 20 iterations for adversarial training with FWnucl and the threat models FWnucl, PGD, PGD, are using 20 iterations with random

initialization to converge

Table 12 Adversarial training using FWnucl norm for the CIFAR-10 dataset

Clean FWnucl PGD, Auto-attack-£» PGD Auto-attack-£ o

es) =1 es; = 1.5 €e=0.5 e=1 €e=0.5 e=1 € =2/255 € =4/255 € =2/255 € =4/255
ResNet-18—FWnucl €51 = 1.5
79.59 42.84 28.22 63.76 47.87 54.57 28.91 66.02 51.01 65.72 50.1
ResNet-18—PGD;, € = 0.5
89.97 33.31 11.54 69.38 41.01 66.63 33.37 78.58 62.02 78.08 61.34
ResNet-18—PGD € = 8/255
81.25 38.04 19.14 63.56 41.05 58.38 27.36 74.97 67.68 73.06 65.12

We used 10 iterations for adversarial training with FWnucl and the threat models FWnucl, PGD, PGD, are using 10 iterations with random

initialization to converge
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ceptibility regimes are not the only restricted to the existing
scenarios for generating adversarial examples. In particu-
lar accuracy of robust networks quickly drops to zero in
the regimes above the seemingly imperceptible regions, see
Fig. 3 and appendix for adversarial accuracy with various val-
ues for €g1. In the nuclear ball case, as the radius €g; of the
nuclear ball increases, the perturbation becomes perceptible
with a blurring effect. Structure in the adversarial examples
can be leveraged to create specific perceptible deformation
effects that look natural to humans.

Provably robust models with certifiable bounds.

We also evaluate the performance of the proposed adversary
against the robust models with provable certified bounds.
Table 9 shows that the accuracy of certified classifiers trained
with randomized smoothing with standard deviation o =
0.5. The results show that FWnucl can bring down the accu-
racy of the certifiably robust classifier up to the certified
accuracy provided by provable defense methods for ResNet-
18 and ResNet-50 models. It is also observed from Table 9
that there exists a gap between the certified and adversarial
accuracy of WideResNet model.

Transferability.

In Table 10 we investigate the transferability of FWnucl
adversarial examples over different architectures for Ima-
geNet. This table shows that there should be some similar
structural patterns between independent architectures that
FWnucl employs, but the adversaries are mainly network
dependent. In Fig. 9, we illustrate how the adversarial nuclear
structure varies from one network to another for the same
image; in particular, the perturbation continuously concen-
trates around the important regions of the image with however
varying layouts and the patterns of perturbation for each net-
work.

Adversarial Training.

In order to enhance the robustness of neural models to struc-
tured attacks, we adopt adversarial training using FWnucl
adversarial attacks. We train models on MNIST and CIFAR-
10 datasets with the architectures detailed in Tables 11 and 12
for MNIST and CIFAR-10 datasets, respectively, and we
reported the robust accuracy with FWnucl and threat model
with £ and £+, norms and compare the results with £, norm
adversarially trained models for p = 2, co. From the tables,
we see that the models adversarially trained with FWnucl
show better to competitive performance versus FWnucl threat
model compared with the other adversarially trained models,
but nevertheless, they show competitive performance ver-
sus £, norm threat models for p = 2, co. The adversarial
accuracy of our model over CIFAR-10 is almost 2.5x and
1.5x higher compared to the model trained with respectively
£> and ¢4, norms against FWnucl adversarial attacks with
€s1 = 1.5.This shows that adversarial training using FWnucl
can reduce the success rate of our proposed nuclear attacks.

@ Springer

In addition, the clean accuracy of robust models in Table 11
is showing that training using the augmented examples gen-
erated by FWnucl does not decrease the clean accuracy of
the models significantly.

4 Conclusion

We consider adversarial attacks beyond the ¢, distortion
set. Our proposed structured attacks allow an attacker to
design imperceptible adversarial examples with specific
characteristics, like localized blurriness. Furthermore, in the
imperceptible regime, some defensive techniques may rely
on a lack of certain structured patterns in the adversarial per-
turbations. Evaluating robustness against various structured
adversarial examples then seems to be a reasonable defense
sanity check. Our method is a competitor to the methods
designed to craft sparse and targeted perturbations while
maintaining success rates similar to powerful attacks like
PGD.
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