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Abstract

White box adversarial perturbations are generated via iterative optimization algorithms most often by minimizing an adver-

sarial loss on a �p neighborhood of the original image, the so-called distortion set. Constraining the adversarial search with

different norms results in disparately structured adversarial examples. Here we explore several distortion sets with structure-

enhancing algorithms. These new structures for adversarial examples might provide challenges for provable and empirical

robust mechanisms. Because adversarial robustness is still an empirical field, defense mechanisms should also reasonably

be evaluated against differently structured attacks. Besides, these structured adversarial perturbations may allow for larger

distortions size than their �p counterpart while remaining imperceptible or perceptible as natural distortions of the image. We

will demonstrate in this work that the proposed structured adversarial examples can significantly bring down the classification

accuracy of adversarially trained classifiers while showing a low �2 distortion rate. For instance, on ImagNet dataset the struc-

tured attacks drop the accuracy of the adversarial model to near zero with only 50% of �2 distortion generated using white-box

attacks like PGD. As a byproduct, our findings on structured adversarial examples can be used for adversarial regularization

of models to make models more robust or improve their generalization performance on datasets that are structurally different.

Keywords Adversarial attacks · Blurriness · Group norm · Image classification

1 Introduction

Adversarial examples are inputs to machine learning clas-

sifiers designed to cause the model to misclassify the input

images. These samples are searched in the vicinity of some

samples in the test set, and typically in their norm-ball neigh-

borhoods, the so-called distortion set. When replacing every

test set sample with their corresponding adversarial exam-

ples, the accuracy of standardly trained classifiers drops to

zero in the inverse correlation with the considered norm-ball

radius. Thus, the lack of robustness of classifiers to adver-
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sarial samples challenges the security of some real-world

systems and poses questions regarding the generalizing prop-

erties of neural classifiers (Schmidt et al., 2018; Stutz et al.,

2019).

Thus far, there have been some successful studies on

defense strategies against adversarial examples, though most

of the attack and defense mechanisms considered �p neigh-

borhoods. In particular, existing approaches for learning

adversarially robust networks include methods that are both

empirically robust via adversarial training (Goodfellow et al.,

2015; Kurakin et al., 2016; Madry et al., 2017) and also cer-

tifiably robust with certified bounds (Wong & Kolter, 2017;

Raghunathan et al., 2018; Zhang et al., 2019) and randomized

smoothing (Cohen et al., 2019; Yang et al., 2020). Recently,

there were some studies that outlined the inherent limita-

tions of the �p balls (Sharif et al., 2018; Sen et al., 2019).

While some recent papers (Xu et al., 2018; Wong et al.,

2019) pointed out the benefits of other families of distor-

tions sets, many classical norm families remained mostly

unexplored in the adversarial setting. In this work, we con-

sider white-box adversarial attacks on neural networks. In the

white-box framework, the model and the in-place defenses

are known to the attacker. Adversarial examples in this frame-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-022-01701-w&domain=pdf
http://orcid.org/0000-0003-4866-7245


International Journal of Computer Vision (2023) 131:160–176 161

work are typically crafted using optimization algorithms

aiming to minimize constrained adversarial losses. In black-

box attacks, the attacker can only make queries and observe

the response of the model.

Although norms are equivalent in the image finite-

dimensional space, the type of norm-ball influences the

structure of the optimization algorithm iterations and the

(local) minima to which they converge. As the studies on

the robustness of neural model still remained empirical, it is

hence necessary to explore the effect of particular structures

in adversarial perturbation besides �p balls. For instance,

Fig. 1 shows that the perturbation generated by the pro-

posed attack (FWnucl) is more structured and targeted to

the main objective in the image. Relatedly, important secu-

rity concerns can be raised when some empirical defense

mechanisms are vulnerable to certain patterns in the adver-

sarial examples. Thus, providing a catalog of many structured

attacks would cause the rapid development of robust machine

learning algorithms due to an arms race between attack and

defense mechanisms and can greatly expand the scope of

adversarial defenses to new contexts. For instance, in Car-

lini et al. (2019), it is shown many defense mechanisms can

be broken by stronger attacks while exhibiting robustness

to the weaker attacks. Thus, finding more diverse attacks

is important for evaluating defense strategies. In addition, as

adversarial training uses attack methods as a form of regular-

ization for training neural networks, the training process can

be performed on the newly proposed adversaries to robustify

models against discovered structured semantic perturbations.

These sorts of training processes can better flatten the cur-

vature of decision boundaries which can be potentially an

important parameter to improve generalization performance

in non-adversarial settings (Keskar et al. 2016).

Regarding generating the white-box adversarial samples,

the radius of the convex balls is often considered sufficiently

small to ensure that the added perturbations to the original

samples are imperceptible. This imperceptibility requirement

is pervasive in the literature, although it is not the only stud-

ied regime for adversarial examples (Gilmer et al. 2018).

Arguably, the imperceptibility of the distortion does not play

a crucial role in crafting adversaries, in particular when the

ideal level of perturbation is aligned with the human percep-

tion in the sense that the perturbed image is labeled as the

original image for a human observer. In fact, the impercepti-

ble deformation regime of non-robust classifiers has received

much attention because it highlights the gap between human

perception and the processing done by machine learning

systems to classify the non-perceptible class of perturbed

samples (Gilmer et al. 2018).

In this work, we do not limit ourselves to the imperceptible

regime of perturbation. Instead, we explore adversarial exam-

ples’ structure leading to possibly perceptible deformations

that would yet be considered as non-suspicious alteration

Fig. 1 The images correspond to two types of targeted attacks. Pro-

jected Gradient Descent (PGD) solve (1) constrained by a �∞ ball while

FWnucl solves (1) constrained with a nuclear ball. The type of adver-

sarial perturbations differs significantly in structure

of the image. In particular, we consider the trace norm ball

(the nuclear ball), which is the convex relaxation of rank-1

matrices. Qualitatively, adding perturbation in this distor-

tion set leads to blurring effects on the original image. This

blurring effect could be further localized in a controlled

way to specific semantic areas in the image by considering

the group-nuclear ball distortion set, where the groups are

defined on the specific semantic area of interest.

In the sequel, for the sake of simplicity of the presentation

we focus on untargeted adversarial examples. Our approach

is to use an auxiliary optimization problem to craft the adver-

sarial perturbations. The optimization problem to generate

untargeted adversarial attack for the original sample xori is

formulated by

minimize L(x) = −L( f (x), y)

subject to

∥

∥

∥
x − xori

∥

∥

∥
≤ ε

(1)

where L is an adversarial loss (e.g., cross entropy loss), f

is the neural classifier and y is the label of the original sam-

ple xori . In this formulation, ε constrains the perturbation

magnitude in particular norms.

Related Work.

Several recent research studies question the underlying rea-

son for considering �p neighborhood as distortion sets and
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propose alternative adversarial models. For instance, (Sharif

et al., 2018) suggests that �p norms are neither the right met-

ric for perceptually nor even content-preserving adversarial

examples. In Sen et al. (2019) a behavioral study is conducted

which shows that �p norms and some other metrics do not

align with the human perception.

There are some recent works that consider adversarial per-

turbations beyond the �p distortion sets. In Engstrom et al.

(2017) it is shown that simple rotation and translation can

create efficient adversarial examples. Xu et al. (2018) con-

sider group-lasso distortion sets which are optimized based

on methods like ADMM. Liu et al. (2018) generate adversar-

ial examples based on the geometry and physical rendering

of the image. They notably suggest that large pixel perturba-

tions can be realistic if the perturbation is conducted in the

physical parameter space (e.g., lighting). Wong et al. (2019)

recently argue that robustness to Wasserstein perturbations

of the original image is essentially an invariant that should

typically exist in classifiers. Recently, (Wong & Kolter, 2020)

investigate learning perturbation sets without optimization-

based approaches and via applying conditional generative

models.

There exist some methods which solve the adversarial

optimization problem on specific subspaces, which might

lead to specifically structured adversarial examples. While

a random subspace (Yan et al., 2019) does not necessarily

induce a specific perturbation structure, projection on low-

frequency domain (Guo et al., 2018) or onto the subspace

generated by the top few singular vectors of the image (Yang

et al., 2019, §3.4.) will induce structured adversarial exam-

ples. These approaches are leveraged to reduce the search

space of adversarial perturbation for more efficient compu-

tational complexity. Finally, one can consider the problem

of adversarial attack generation as an image processing task.

A recent trend to various types of such algorithms are for

instance conditional or unconditional generative models,

style transfer algorithms, or image translation algorithms

(Reed et al., 2016; Gatys et al., 2017; Risser et al., 2017;

Lu et al., 2017).

In this paper, we particularly apply Frank–Wolfe meth-

ods to solve the adversarial optimization problem. These

algorithms have shown a recent revival in constrained opti-

mization problems for machine learning, where their success

is notably due to their low-cost computational cost per iter-

ation (Jaggi, 2013). It is known that Frank–Wolfe method

exhibits linear convergence on polytopes (Guélat & Mar-

cotte, 1986; Garber & Hazan, 2013a, b; Lacoste-Julien &

Jaggi, 2013, 2015), on strongly convex set (Levitin & Polyak,

1966; Demyanov & Rubinov, 1970; Dunn, 1979; Garber

& Hazan, 2015) or uniformly convex sets (Kerdreux &

d’Aspremont, 2020). Frank–Wolfe algorithm has been exten-

sively studied in convex setting for large scale nuclear norm

regularization (Jaggi & Sulovskỳ, 2010) (Lee et al., 2010;

Shalev-Shwartz et al., 2011; Harchaoui et al., 2012; Dudik et

al., 2012; Allen-Zhu et al., 2017; Garber et al., 2018). Further-

more, many variations of Frank–Wolfe method exist (Freund

et al., 2017; Cheung & Li, 2017) that leverage the facial prop-

erties to preserve structured solutions for non-polytope or

strongly convex domains. A closer approach to this work is

Chen et al. (2018), where the authors apply the zero-order

Frank–Wolfe algorithm for solving adversarial problems in

the black-box setting.

This work exploits an optimization method to gener-

ate adversarial attacks by imposing blurriness on the target

images. Currently, the commonly-used packages for craft-

ing adversarial samples, e.g., Foolbox (Rauber et al., 2017)

apply spatial filters aiming to craft adversaries via blurring.

In Guo et al. (2020) a method for forging visually natural

motion-blurred adversarial examples is introduced where the

misclassification capability is achieved by tuning the kernel

weights. Their work is mainly inspired by the Gaussian blur-

ring kernel, though using a learnable kernel. Nevertheless,

to craft visually natural and plausible examples, the authors

introduced a paradigm for the saliency-regularized adversar-

ial kernel prediction and the predicted kernel is regularized

to achieve natural visual effects. However, in our approach,

the blurriness is generated using additive random noise-like

perturbations.

Contribution.

Currently, the defense techniques and in particular the mech-

anisms which provide theoretical guaranties are designed

for non-structured norms while structured norms are largely

overlooked in the literature. This shortcoming may render

previous defense algorithms less appealing when exposed

to structured adversaries. We study some families of struc-

tured norms in the adversarial example setting. This is a

pretense to more generally motivate the relevance of struc-

tured attacks (i.e. besides the �p distortion set), which are

largely unexplored. It is also a versatile approach to pro-

ducing specific modifications of the adversarial images, like

(local) blurriness. We demonstrate in the experiments that the

proposed structured adversaries generate samples that target

the important parts of the image resulting in a lower number

of perturbed elements from the original image, and therefore

providing a lower perturbation magnitude which makes them

undetectable (see Fig. 1). We also demonstrate an algorithm

for the localized perturbations (blurriness) of the region of

interest in the image using group norms.

2 Structured Distortion Sets

Here we describe some structured families of norms that to

the best of our knowledge have not so far been explored in the

context of adversarial attacks. To be more specific, we gener-

ate some specifically structured perturbations by solving the

123



International Journal of Computer Vision (2023) 131:160–176 163

adversarial problem (1), which provides the potential attacker

a framework to derive adversarial alternation of the original

test samples. In the sequel, we set the trace norm ball as the

distortion set and design a framework to solve the optimiza-

tion problem (1) based on conditional gradient algorithms. In

the conditional gradient algorithm, in each iteration a Linear

Minimization Oracle (LMO) is solved. More technically, for

a direction d and a convex set C, the LMO problem is defined

as

LMOC(d) ∈ argmin
v∈C

dT v. (2)

The iterations of conditional gradient algorithms are then

constructed as a (sparse) convex combination of the solu-

tions to (2). These solution points can always be chosen as

the vertices of C. Hence, the specific structure of the solu-

tions of the LMO is applied in the early iterations of the

optimization problem. In the following section, we provide

the mathematical formulation of the optimization problem.

2.1 Low-Rank Perturbation

We let ‖·‖S1 denote the nuclear norm which is the sum of the

matrix singular value, a.k.a. the trace norm or the 1-Schatten

norm. The nuclear norm has been classically used to find

low-rank solutions of convex optimization problems (Fazel

et al., 2001; Candès & Recht, 2009) such as matrix comple-

tion. Here, we propose to simply consider nuclear balls as

distortion sets when searching for adversarial examples in

problem (1). We later explain the various potential benefits

of using this structural distortion set. To our knowledge, the

low-rank structure is leveraged in different aspects of some

defense techniques (Yang et al., 2019) but it has never been

acquired to craft adversarial attacks. As an empirical defense

mechanism, (Langeberg et al., 2019) add a penalization in the

training loss to enhance the low-rank structure of the con-

volutional layer filters. Yang et al. (2019) notably propose

a pre-processing of the classifier outputs, which randomly

removes some input pixels and further reconstructs them via

matrix completion for denoising purposes.

More formally, with nuclear ball as a distortion set, the

adversarial optimization problem (1) is reformulated as

argmin
‖x−xori‖S1≤ε

L(x) = −L( f (x), y). (3)

This formulation is a particular example of the family of

p-Schatten norms ‖·‖Sp, i.e., the p-norm of the singular

value vector with p = 1. These structured norms lead to dif-

ferently structured adversarial examples. Given the lack of

explicit mathematical translation across norms, these adver-

saries may end up defeating certified approaches in terms

of �p neighborhoods. At this point, we solve the adversarial

Fig. 2 For a test image of CIFAR-10, we computed the various adver-

sarial examples stemming from solving (1) on the nuclear ball with

Frank–Wolfe algorithm. From left to right: original image, adversarial

example with a nuclear radius of εS1 = 5, 10, 20, 30. Note that the

adversarial examples are already miss-classified with εS1 = 3; here we

increase the radius purposely to observe the perturbation on the initial

image

problem (3) in the framework of conditional gradient meth-

ods. The analytical solution of LMO (2) for a nuclear ball of

radius ρ is given by

LMO‖·‖S1≤ρ(M) � ρ U1V T
1 , (4)

where U1, V1 are the first columns of matrices U and V

in the SVD decomposition of matrix M given by U SV T .

For q-Schatten norm (with q > 1) the LMO has also a

closed-form solution involving the full singular decompo-

sition (see e.g., Garber & Hazan, 2015, Lemma 7). Solving

LMO involves computing the right and left singular vectors

U1 and V1 which are associated with the largest singular value

ρ. Lanczos algorithm can be used to calculate singular vec-

tors corresponding to the largest singular value, where the

solution is found using the Krylov subspace formed by the

columns of matrix M . This demonstrates the computational

efficiency of Frank–Wolfe methods as opposed to the other

optimization approaches such as projected gradient descent,

which requires the full SVD computation in each iteration.

Qualitatively, adversarial perturbations in nuclear norm add

a blurring effect to the original images, as for instance is

depicted in Fig. 2. Thus, this can potentially pose a risk in

some security scenarios, when such perturbations could be

perceived as simple alterations of the image rather than a

malware deformation of it, e.g., see Gilmer et al. (2018) for

real-world scenarios.

2.2 Group Constraints

In this section, we demonstrate how to leverage weighted

group norms in order to localize the low-rank perturbations.

Group-norms are defined by a partition of the pixels’ coor-

dinates into groups. For instance, such a partition can be

adapted from a segmentation of the sample image. These

group-norms are a combination of two norms: a local one

applied on vectors formed by each group of pixel values, and

a global one applied on the vectors of the norms of all the

groups. Here, we consider the nuclear norm as the local norm

and the global �1 norm to induce sparsity at the group level.
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Considering such norms provides some tools to substantially

control the perturbations restricted to desirable parts to craft

adversarially perturbed images.

Nuclear Group Norm.

Let G be an ensemble of groups of pixels’ coordinates of the

tensor image of (c, h, w), where each element g ∈ G is a

set of pixel coordinates’. Then for x ∈ R
c×h×w we define

G-nuclear group-norm as

‖x‖G,1,p =
∥

∥ ‖x[g]‖S(1),g∈G

∥

∥

p
, (5)

with p ∈ [1,∞[∪{∞} (see for instance Tomioka & Suzuki,

2013). When G is a partition of the pixels, ‖·‖G,1,S(1) is a

norm. The nuclear group-norm allows to localize the blurring

effect of the nuclear norm. Indeed, the LMO of G-nuclear

group-norm is given by

LMO‖·‖G,1,S1≤ρ(M) �

{

ρ U
(g)

1

(

V
(g)

1

)T

0 otherwise
, (6)

where g∗ = argmax
g∈G

‖M[g]‖S1 and the singular value

decomposition of M[g] for each group g is given by

U (g)S(g)
(

V (g)
)T

. When solving (1) with such norms, each

iteration of the conditional gradient will add to the adver-

sarial perturbation a vertex of the form described by (6), i.e.

a matrix of rank-one on the rectangle defined by the group

of pixels in g ∈ G. Note that the only modification for the

approximate solution of group nuclear ball versus nuclear

ball is the solution to LMO problem, and the rest of the con-

ditional gradient method for both of the distortion sets is

similar.

Different Distortion Radius per Group.

When perturbing an image, modification in the pixel regions

with high variance are typically harder to perceive than pixel

modification in low variance regions. This knowledge was

leveraged in Luo et al. (2018) or in the σ -map of (Croce &

Hein, 2019, §2.2.) to craft more imperceptible adversaries.

Weighted nuclear group norms allow to search adversar-

ial perturbations with different distortion radius across the

image. With some wg > 0, the weighted nuclear group norm

is defined as

‖x‖G,1,S(1),w =
∑

g∈G

wg ‖x[g]‖S(1), (7)

and the LMO for weighted nuclear group-norm is then

obtained as

LMO‖·‖G,1,S1≤ρ(M) �
{

ρ
wg∗

U
(g∗)

1

(

V
(g∗)

1

)T
on group of pixels g∗

0 otherwise

(8)

where g∗ = argmax
g∈G

1
wg

‖M[g]‖S1 and the singular value

decomposition of M[g] for each group g is given by

U (g)S(g)
(

V (g)
)T

. In particular, this means that the solution

corresponding to the group associated with g have a nuclear

radius of
ρ
wg

and the weights wg which allows to control the

distortion in each group of pixels. The weights can be cus-

tomized by the attacker to impose perturbation in desirable

regions of the image. For instance, the weights can be cho-

sen in inverse correlation with the variance of pixel regions

to make the perturbations more targeted.

2.3 Structure Enhancing Algorithm for Adversarial
Examples

We apply Frank–Wolfe algorithms (Frank & Wolfe, 1956),

a.k.a. conditional gradient algorithms (Levitin & Polyak,

1966), for problem (1). Given the conditional gradient opti-

mization framework, the algorithm 1 can iteratively find the

adversarial perturbation to fool the network. For specific con-

straint structures such as the distortion set introduced earlier,

conditional gradient algorithms naturally trade-off between

the convergence accuracy and the structured solutions in the

early iterations.

Algorithm 1 Vanilla Frank-Wolfe

Input: Original image x0

for t = 0, · · · , T do

st = LMOC

(

− ∇L(xt )
)

.

γt = LineSearch(xt , st − xt )

xt+1 = (1 − γt )xt + γt st

end for

For almost all the distortion sets which we consider in

this work, LMO has a closed-form solution. Note that the

LMO has a low computational requirement as opposed to

the projection-based approaches. In particular, LMO requires

only computing the first singular vectors, while compara-

bly projection steps demand the full SVD matrix to find

the solution in each iteration. Provided the upper-bound for

the Lipschitz constant L of the adversarial loss is known,

we apply the short step size γt = clip[0,1](〈−∇ f (xt ), st −

xt 〉/L ‖st − xt‖
2) for the optimization method. These are the

only parameters that should be tuned in the algorithm, which

makes the method more versatile for many models as com-

pared to attacks that require hyperparameter tuning such as

CW attacks (Carlini & Wagner, 2017).

It is well-known that for non-convex, objective functions

e.g. the adversarial losses, injecting noise might be useful

to escape from local optimums. This noise could be added

either via random starts or via randomized block-coordinate

methods. Under some additional conditions, Kerdreux et al.

(2018) proposes a version of Frank–Wolfe that solves linear
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Table 1 MNIST and CIFAR-10

extensive white-box attack

results

Network Training model Clean Accuracy under attack

FWnucl 20 ∗ FWnucl 20 + PGD 20 FGSM

MNIST

LeNET Madry 98.38 95.26 92.76 95.79 96.59

ME-Net 99.24 97.63 75.41 74.88 46.18

SmallCNN Madry 99.12 98.19 96.66 95.77 97.95

ME-Net 99.42 89.56 78.65 76.84 54.09

CIFAR-10

ResNet-18 Madry 81.25 44.28 3.06 49.95 55.91

ME-Net 93.45 29.66 4.01 4.99 44.80

WideResNet Madry 85.1 43.16 2.82 52.49 59.06

ME-Net 95.27 40.09 16.04 12.73 59.33

ResNet-50 Madry 87.03 40.97 2.64 53.01 61.44

ME-Net 92.09 47.66 17.81 9.14 58.51

FWnucl 20 ∗: FWnucl with εS1 = 1. FWnucl 20 +: FWnucl with εS1 = 3. On MNIST (resp. CIFAR-10)

PGD and FGSM have a total perturbation scale of 76.5/255 (0.3) (resp. 8/255 (0.031)), and step size 2.55/255

(0.01) (resp. 2/255 (0.01)). PGD runs for 20 iterations. We reproduce the ME-Net and Madry defense with

same training hyper-parameters

Table 2 ImageNet extensive white-box attack results on 4000 randomly selected images from validation dataset of ImageNet

Network Training model Clean FWnucl PGD

εS1 = 1 εS1 = 3 εS1 = 5 ε = 2/255 ε = 4/255 ε = 8/255

Acc �2 Acc �2 Acc �2 Acc �2 Acc �2 Acc �2

ResNet-50 Standard 80.55 19.67 0.69 1.62 1.27 0.17 1.68 0.2 2.53 0.0 4.55 0.0 8.53

Madry 50.02 38.3 1.45 16.8 3.82 6.62 5.80 42.07 2.97 34.52 5.90 18.9 11.69

FWnucl and PGD runs for 100 iterations. We reproduce Madry defense in �∞ norm with ε = 8/255. In the table we report accuracy (Acc) versus

the average of generated �2 distortion for each attack

Fig. 3 Accuracy of standard model (left) and robust model of Madry

(right) on ResNet-18 for CIFAR-10, versus the nuclear ball radius when

varying the number of steps

minimization oracles on random subsets of the constraint

sets. Here we consider subsampling the image channels, i.e.,

‖x‖color ,S1 =
∑3

c=1 ‖xc‖S1 where xc is one of the image

channels. Note that we did not impose the box constraints

which demonstrate that the values of image elements should

be inside the interval [0, 1]d . To impose this restriction, we

clamp the last iteration of the optimization process to satisfy

box constraints. Although this approach does not guarantee

the convergence to a saddle point but removes the need to

compute the LMO over the intersection of two sets, which is

non-trivial.

3 Numerical Experiments

This section aims at evaluating the adversarial accuracy of

adversarial examples using Frank–Wolfe algorithms for the

adversarial problem (1) with nuclear balls as distortion sets,

which we refer to as FWnucl. The complementary results for

Frank–Wolfe with group norms and random initialization are

provided in the appendix.

Experiments Goal.

We tested the FWnucl white-box attack against two base-

lines of defenses for untargeted attacks. The first is Madry

et al. (2017), the state-of-the-art defense against white-box

attacks. It uses the training images augmented with adver-

sarial perturbations to train the network. The second one

(Yang et al., 2019) leverages matrix estimation techniques

as a pre-processing step; each image is altered by randomly

masking various proportions of the image pixels’ and then
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reconstructed using matrix estimation by the nuclear norm.

For a given training image, this approach produces a group

of images that are used during training, see Yang et al. (2019)

for more details. This provides a non-differentiable defense

technique, i.e. a method that cannot be straightforwardly opti-

mized via back-propagation algorithms, and was reported to

be robust against methods in Athalye et al. (2018) by circum-

venting the obfuscated gradients defenses. Qualitatively it

leverages a structural difference between the low-rank struc-

ture of natural images and the adversarial perturbations that

are not specifically designed to share the same structures. In

addition, we evaluate our proposed attacks over more recently

introduced robust models such as Adversarial Weight Per-

turbation (AWP) (Wu et al., 2020) and Learnable Boundary

Guided Adversarial Training (LBGAT) (Cui et al., 2021). We

also evaluate our method against a provably robust model

trained with randomized smoothing (Cohen et al., 2019). In

the randomized smoothing, a provably robust classifier is

derived from the convolution of the base classifier with the

isotropic Gaussian distribution of variance σ 2. This approach

provides provable certified bounds in the L2 norm for the

smoothed classifier. We show that the structured attacks can

bring down the accuracy of the model to the certified accuracy

in almost all the smoothed models. Overall, a key motiva-

tion of our experiments is to propose adversarial examples

with specific structures, serving at least as a sanity check for

defense approaches.

Experiment Settings.

We assess the accuracy of networks in different scenarios

over MNIST and CIFAR-10 testsets. For ImageNet we exam-

ine the neural models over randomly selected images from

the ImageNet validation set that are correctly classified. For

defense evaluation, for MNIST we use the LeNet model with

two convolutional layers similar to Madry et al. (2017) and

SmallCNN with four convolutional layers followed by three

fully connected layers as in Carlini and Wagner (2017). For

CIFAR-10 dataset we use ResNet-18 and its wide version

WideResNet and ResNet-50. For the ImageNet dataset, we

use ResNet-50 architecture.

We report the adversarial accuracy of FWnucl along with

those of classical attack methods like Fast Gradient Sign

Method (FGSM) (Goodfellow et al., 2015), and Projected

Gradient Descent (PGD) (Madry et al., 2017) to solve adver-

sarial problem (1) using �∞ ball as the distortion set. FGSM

generates adversarial examples with a single gradient step,

while PGD is a more powerful adversary that performs a

multi-step variant of FGSM. In addition, we compare our

attacks with the adversarial attack Auto-attack (Croce &

Hein, 2020) which is an ensemble of parameter-free attacks

consisting of a stepsize free version of PGD (APGD-CE),

a stepsize free PGD with a novel loss (APGD-DLR), Fast

Adaptive Boundary Attack (FAB) with the goal of finding

minimal �p norm perturbations, and Square Attack which

is a query-efficient black-box attack. While this ensemble

of attacks leverage non-standard mechanisms to optimize

the threat model, our goal is to compare the proposed

approach with the fundamental basic blocks of optimization

approaches in adversarial attacks to show that the proposed

method is introducing novel adversarial structures which are

structurally different from the �p norm structures.

Empirical Results.

In Table 1 we report accuracy as the percentage of adver-

sarial examples that are classified correctly. We repeated the

experiments several times to insure the results are general.

These numerical experiments demonstrate that the attack

success rates for FWnucl are comparable to the classical ones

in an imperceptibility regime while also retaining specific

structures in the perturbation. Note that FGSM for ME-Net

provides a better success rate (lower adversarial accuracy)

compared to PGD which indicates the gradient masking gen-

erated by ME-Net over MNIST dataset. Table 1 also shows

that FWnucl with ε = 3 significantly performs better than

other attacks. We attribute this difference to the fact that

FWnucl has a tendency to induce low-rank solutions, lead-

ing to global structure perturbation in images without any �p

norm restrictions. This key characteristic of FWnucl makes

it orthogonal to the existing adversarial attacks. FWnucl is

specifically designed to iterate over solutions that lie on low-

dimensional faces of the feasible set, as low-dimensional

faces of the feasible region contain desirable well-structured

low-rank matrices.

In Table 2 we provided the adversarial accuracy for

standardly and adversarially trained models over ImageNet

dataset. The results show that the attacks created by PGD

show at least 50% increase in �2 norm distortion compared

with FWnucl. Note that enlarging the radius of the norm ball

for PGD attack significantly increases the distortion while

for FWnucl the increase in distortion rate is not fierce per

increasing the nuclear ball radius. It confirms our earlier intu-

ition that FWnucl is designed to selectively add distortion to

pixels which are important for the label predictions. For the

adversarially trained model, the robust accuracy for FWnucl

is significantly lower that the counterparts from PGD. It indi-

cates that FWnucl generates patterns that the robust models

may not be robust to them.

Figure 3 summarizes the results for FWnucl with varying

εS1 for standard and robust model on CIFAR-10. The figure

shows FWnucl algorithm noticeably drops the accuracy rate

by increasing the radius εS1. The performance of different

FWnucl methods is slightly different, as the higher number

of FWnucl steps may gain better performance.

We also extend our evaluations to models trained adver-

sarially using PGD2 method, i.e., PGD with �2 norm, for

MNIST, CIFAR-10 and ImageNet datasets in Table 3. The
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Table 3 MNIST, CIFAR-10 and ImageNet extensive white-box attack results for models adversarially trained with PGD2

Network Clean FWnucl 20 PGD2 20 Auto-attack-�2

εS1 = 0.5 εS1 = 1.0 εS1 = 1.5 ε = 0.5 ε = 1.0 ε = 1.5 ε = 0.5 ε = 1.0 ε = 1.5

MNIST

LeNET 99.31 98.65 97.64 94.39 98.35 96.41 91.45 98.24 95.68 87.14

SmallCNN 99.19 98.57 97.4 94.61 98.37 96.53 92.57 98.16 95.46 87.44

CIFAR-10

ResNet-18 89.97 67.22 33.31 11.54 69.38 41.01 18.86 66.63 33.37 9.57

WideResNet 90.64 68.21 34.54 11.78 70.6 43.02 19.46 68.27 35.18 9.83

ResNet-50 90.83 68.95 35.55 12.8 71.78 44.77 21.36 69.24 36.16 11.17

ImageNet

ResNet-50 63.68 60.91 54.24 57.9 61.01 57.99 54.97 58.89 53.74 49.33

The radius for adversarial examples for training in �2-norm for MNIST is 1.5 and for CIFAR-10 and ImageNet is 0.5. The results for ImageNet is

for 10,000 randomly selected images from validation dataset of ImageNet

Table 4 Adversarial accuracy on CIFAR-10 and CIFAR-100 datasets using WideResNet (WRN-34-10) under nuclear norm threat model with

FWnucl and �∞ threat models with Auto-attack for adversarially trained models using AWP (Wu et al., 2020) and LBGAT (Cui et al., 2021)

Network Training model Clean FWnucl Auto-attack-�∞

εS1 = 1 εS1 = 3 εS1 = 5 ε = 2/255 ε = 4/255 ε = 8/255

Acc �2 Acc �2 Acc �2 Acc �2 Acc �2 Acc �2

CIFAR-10

WRN-34-10 AT-AWP 85.57 36.46 1.49 1.68 3.54 0.14 5.14 79.41 0.03 72.12 0.11 53.90 0.54

TRADES-AWP 85.36 38.90 1.48 2.98 3.67 0.32 5.48 79.65 0.02 72.74 0.11 56.19 0.49

LBGAT 88.22 33.94 1.43 2.01 3.40 0.26 5.00 81.72 0.03 73.31 0.14 52.21 0.61

CIFAR-100

WRN-34-10 AT-AWP 60.38 42.67 0.93 13.57 2.52 4.99 3.84 51.73 0.04 43.58 0.14 28.84 0.53

TRADES-AWP 60.17 42.16 0.94 15.98 2.53 6.63 3.78 50.82 0.04 42.50 0.15 28.79 0.53

LBGAT 70.25 44.50 0.90 12.23 2.17 4.91 3.04 58.53 0.05 46.78 0.20 26.72 0.73

Table 5 Adversarial accuracy and the average norm of generated

perturbations on CIFAR-10 dataset using WideResNet (WRN-34-10)

under nuclear norm threat model with FWnucl and �∞ threat model

with Auto-attack for robust models AWP (Wu et al., 2020) and LBGAT

(Cui et al., 2021)

Training model Metric FWnucl Auto-attack-�∞

εS1 = 1 εS1 = 3 εS1 = 5 ε = 4/255 ε = 8/255 ε = 16/255 ε = 32/255

CIFAR-10-WRN-34-10

Clean Acc 85.7 Acc 36.46 1.68 0.14 72.12 53.90 16.29 0.32

AT-AWP �2 1.49 3.54 5.14 0.11 0.54 2.32 5.49

‖·‖S1 1.00 2.93 4.79 0.26 1.22 5.21 12.41

SSIM 0.9732 0.8925 0.8078 0.9977 0.9819 0.8836 0.6740

Clean Acc 88.22 Acc 33.94 2.01 0.26 73.31 52.21 13.81 0.25

LBGAT �2 1.43 3.40 5.00 0.13 0.61 2.47 5.58

‖·‖S1 1.00 2.91 4.73 0.30 1.40 5.57 12.51

SSIM 0.9739 0.8982 0.8174 0.9972 0.9781 0.8754 0.6766
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results show that these models fail when they are attacked

by the FWnucl attack. This demonstrates that FWnucl could

symmetrically fail the �∞ and �2 adversarially trained mod-

els.

We also examine our proposed method over the recently

introduced robust models AWP (Wu et al., 2020) and LBGAT

(Cui et al., 2021) over CIFAR-10 and CIFAR-100 datasets.

In Table 4 we compare our attacks versus more novel adver-

sarial training approaches and compare the performance with

more powerful attacks such as Auto-attack. The results show

that the robust models are vulnerable to the plausible modifi-

cations to the images which are generated using FWnucl and

can provide a better success rate compared to Auto-attack.

Auto-attack produces the adversarial with a lower �2 norm

as it always exploits a budget for the pixel-wise modifica-

tion. The results show that the generated adversarial attacks

with a bounded nuclear norm distortion within the percep-

tual ball can easily fail the recent robust model though with

a higher distortion in the �p norm compared to Auto-attack.

Our attacks, while might not satisfy the �∞ threshold for the

pixel-wise modifications, introduce perturbations that are not

perceptible and can change the classifier decision.

Imperceptibility nuclear threshold.

The attacks such as FWnucl, PGD, and Auto-attack are con-

strained with perturbation limitation on particular norms

which characterize the distortion set for each adversarial

attack. FWnucl is constrained to the nuclear ball with a

given radius and therefore it might increase beyond the stan-

dard perturbation limit used to craft adversaries with PGD or

Auto-attack constrained over �∞ or �2 distortion sets. Con-

versely, as PGD or Auto-attack are constrained over either �2

or �∞ balls, the forged adversaries with these threat models

may increase beyond the limitation for the perturbation limit

for the nuclear norm in FWnucl.

As demonstrated in Sharif et al. (2018), �p norms do not

capture the perceptual quality of images and are unsuitable to

assess the quality of adversarial images. Therefore, we com-

pute the structural similarity index (SSIM) measure (Wang et

al., 2004) as advocated in the literature (Hameed & Gyorgy,

2021; Gragnaniello et al., 2021) to measure the perceptual

similarity between the original image and the adversarial

images. In Table 5 we listed the achieved adversarial accu-

racy, the average norm of generated distortions, and SSIM

values for AT-AWP and LBGAT models in Table 4 over

CIFAR-10 dataset. The results for Table 5 are also visual-

ized in Fig. 4.

Table 5 shows that the images generated by FWnucl

and Auto-attack with different perturbation limits exclud-

ing Auto-attack with ε = 32/255 are equally good when

the requirement is to achieve a minimum SSIM value up

to 0.8, which guarantees high-quality images. The results

also show that FWnucl with εS1 = 3 generated adversarial

Fig. 4 Performance of adversarial attacks on CIFAR-10 with adversar-

ial training, listed in Table 5

images of better perceptual quality compared with Auto-

attack with ε = 16/256 whereas providing lower adversarial

accuracy. It is noted from Table 5 that the nuclear norm for

Auto-attack with the perturbation limits ε = 16/255 and

ε = 32/255 for AWP model are 5.21 and 12.41, respec-

tively, which are significantly beyond the perturbation limit

of nuclear norm used for FWnucl with εS1 = 3. This indicates

that the images crafted with Auto-attack using ε = 16/256

and ε = 32/255 are heavily distorted in the nuclear norm.

This also shows that FWnucl crafts adversarial perturbations

which are structurally different from adversaries generated

based on �p-norm constraints.
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Table 6 Adversarial accuracy and the average norm of generated perturbations of successful adversaries on 1000 randomly selected images from ImageNet validation dataset using ResNet-50

under nuclear norm threat model with FWnucl and �∞ threat models with PGD and Auto-attack for �∞ adversarially trained model

Network Metric FWnucl PGD Auto-attack-�∞

εS1 = 1 εS1 = 3 εS1 = 5 ε = 4/255 ε = 8/255 ε = 16/255 ε = 32/255 ε = 4/255 ε = 8/255 ε = 16/255 ε = 32/255

ImageNet-Clean Acc 66.66

ResNet-50 Acc 51.58 24.90 11.01 50.00 30.65 8.03 1.19 46.23 25.19 2.87 0.10

�2 1.45 3.62 5.31 5.89 11.57 21.42 35.49 5.94 11.76 23.11 44.27

‖·‖S1 1.0 2.91 4.86 30.56 59.07 109.17 214.02 31.05 60.95 120.40 237.50

SSIM 0.99 0.99 0.98 0.96 0.90 0.75 0.46 0.96 0.89 0.72 0.46

1
23
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Fig. 5 FWnucl adversarial examples for the CIFAR-10 dataset for dif-

ferent radii. The fooling label is shown on the image

In Table 6 we also compare our approach with �∞ threat

models for successful adversaries over distortion sets with

large radii on 1000 randomly selected images from ImageNet

validation dataset. We see from Table 6 that for FWnucl with

εS1 = 3 the adversarial accuracy is 23% lower than the adver-

sarial accuracy for Auto-attack with ε = 8/256 while the

corresponding SSIM value is 9% higher for FWnucl with

εS1 = 3. In addition, this table again shows that the per-

turbation generated by �∞ attack models over ImageNet are

highly distorted in the nuclear norm level providing an aver-

age nuclear norm of 60.95 for Auto-attack with ε = 8/255,

which is by orders of magnitude larger than the maximum

nuclear norm used for FWnucl with εS1 = 5. The results

indicate that our FWnucl is able to make the most trade-offs

between the SSIM value and the distortion rate in nuclear

norm level with the adversarial accuracy.

We illustrate in Fig. 5 some adversarial examples gen-

erated by FWnucl, for three different values of εS1. On

CIFAR-10, we qualitatively observed that with εS1 = 1, all

adversarial examples are perceptually identical to the original

images. The imperceptibility threshold exclusively depends

on the dataset as the dataset becomes more complex, the

tolerance of imperceptibility to nuclear ball radius values

εS1 increases; on ImageNet we realized the imperceptibility

threshold is εS1 = 10.

We interpret the adversarial perturbations using class acti-

vation maps (CAM) (Zhou et al., 2016) which localizes

class-specific discriminate semantics in the input images to

the neural model. Adversarial images are generated to sup-

press the most discriminative regions related to the original

labels and promote the discriminatory semantics in regard to

the adversarial labels. We have shown the heat-map for per-

turbation and the CAM visualization for the corresponding

images in Fig. 6. The figure shows that the perturbations are

tightly projected to the most discriminatory image regions

(i.e., body, head), which are localized by CAM with respect

to the original label. While the noise generated by PGD attack

exhibits abrupt changes in pixel intensities (see Fig. 1), the

perturbation from FWnucl has continuous variations in pixel

values. It is seen from the same figure that the conventional �p

Fig. 6 The images display some structural pattern of FWnucl perturba-

tions for the ImageNet dataset on DenseNet121 architecture, standardly

trained. Observe that the adversarial perturbed pixels are accumulated

on the areas containing semantic information about the image. FWnucl

is conducted with εS1 = 5 and 20 iterations

norm constrained methods e.g., FGSM, PGD do not encour-

age any structure and tends to generate perturbations even for

pixels that might not be crucial for the label predictions, e.g.,

the background. However, FWnucl only focuses on impor-

tant regions of the image which might induce a dramatic

shift in the predictions. Therefore, the FWnucl attack sig-

nificantly reduces the number of perturbed elements in the

image. For instance, the number of non-zero pixel coordi-

nates for PGD and FGSM on ImageNet is respectively almost

11x and 14x larger than the number of non-zero pixel inten-

sities for FWnucl with εS1 = 1.

Adversaries with Group Nuclear Norm—FWnucl-group.

In FWnucl-group we deal with sparse attacks and we want

to modify the smallest number of pixels to change the model

decision on the class label. We compare FWnucl-group with

state-of-the-art sparse attacks Structured Attack (StrAttack)

(Xu et al., 2018), Coordinate Search (CS) (Croce & Hein,

2019) with �0 + σ version and Auto-attack with �2 and �∞

norms. The attack StrAttack uses group lasso and it is shown

that the generated attacks enjoy localized sparse patterns.

The attack CS computes the perturbations in direct corre-

lation to the variance of neighboring pixels. We conduct the

experiments using the open-source codes from the papers. We

run the attacks on 1000 samples of the test sets for �2-norm

robust models. In Tables 7 and 8 we report the test accuracy

of each method for MNIST and CIFAR-10 datasets, respec-

tively. The test accuracy is the fraction of classified samples

that can correctly be classified, and we listed the value of

perturbation in different norms. We report the statistics of

the attacks in Tables 7 and 8 only for successful attacks. The

tables also report the number of pixel changes for each image
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Table 7 Comparison of the FWnucl and FWnucl-group with sparse attacks Coordinate Search (CS) and Structured Attack (StrAttack) and with

Auto-attack with �2 and �∞ norms for 1000 randomly selected examples of MNIST dataset on �2 adversarially trained models

Metric FWnucl FWnucl-group StrAttack CS Auto-attack-�2 Auto-attack-�∞

εS1 = 1 εS1 = 1 εS1 = 3 εS1 = 5 ε = 0.5 ε = 1.0 ε = 0.1 ε = 0.2

Net-Clean Acc 99.5

Acc 96.3 97 77 44 98 90.7 97.7 94.4 94.7 43.7

�2 0.90 0.88 2.34 3.08 0.28 1.79 0.5 1.0 2.08 3.98

‖·‖S1 1.26 1.07 3.01 4.63 0.76 5.20 1.32 2.55 7.60 14.30

�∞ 0.37 0.43 0.91 0.97 0.09 0.48 0.16 0.32 0.1 0.2

pixels 465.6 54.76 70.8 90.2 462.2 32.03 320.3 326.7 560 556.4

IS 0.94 0.9339 0.9134 0.9492 0.9076 0.8682 0.9182 0.9127 0.9287 0.9810

SmallCNN-Clean Acc 99.4

Acc 96 96.9 84.8 72.7 98.8 91.1 97.1 93.6 94.6 46.2

�2 0.91 0.86 2.19 2.80 0.14 1.70 0.5 1.0 2.03 4.14

‖·‖S1 1.27 1.09 2.95 4.29 0.36 4.81 1.30 2.47 14.26 7.50

�∞ 0.36 0.41 0.86 0.94 0.05 0.48 0.17 0.34 0.1 0.2

pixels 458.08 60 79.02 94.23 334.33 29.93 224.4 230.5 587.8 696.2

IS 0.9422 0.9633 0.9048 0.9302 0.9642 0.9120 0.9577 0.9074 0.9553 0.9886

Table 8 Comparison of the FWnucl and FWnucl-group with sparse attacks Coordinate Search (CS) and Structured Attack (StrAttack) and with

Auto-attack with �2 and �∞ norms for 1000 randomly selected samples of CIFAR-10 dataset on �2 adversarially trained models

Metric FWnucl FWnucl-group StrAttack CS Auto-attack-�2 Auto-attack-�∞

εS1 = 1 εS1 = 1 εS1 = 3 εS1 = 5 ε = 0.5 ε = 1.0 ε = 4/255 ε = 8/255

ResNet-18-Clean Acc 90

Acc 32.6 74.5 34.6 17.6 57.8 47.9 65.7 33.7 60.1 24.2

�2 1.64 0.82 2.02 2.70 44.87 52.49 0.5 1.0 0.85 1.68

‖·‖S1 1.01 0.56 1.61 2.58 60.61 71.23 1.05 2.09 2.09 4.10

�∞ 0.24 0.20 0.42 0.49 2.05 2.17 0.05 0.12 0.015 0.031

pixels 1022.5 148.2 225.44 297.46 1011.11 906.26 1022.46 1022.12 1022.56 1022.08

IS 0.9983 0.9653 0.9978 0.9992 0.9955 0.9932 0.9843 0.9976 0.9864 0.9982

ResNet-50-Clean Acc 91.5

Acc 35.8 77 37.3 19.6 56.0 49.9 70.3 36.8 66.2 29.6

�2 1.64 0.85 2.02 2.72 44.31 52.90 0.5 1.0 0.85 1.69

‖·‖S1 1.01 0.57 1.65 2.57 59.66 71.95 1.05 2.07 2.07 4.08

�∞ 0.24 0.21 0.41 0.50 2.02 2.17 0.06 0.14 0.015 0.031

pixels 1022.72 137.91 214.62 282.03 1011.65 908.60 1021.44 1022.35 1022.45 1022.77

IS 0.9976 0.9684 0.9972 0.9990 0.9949 0.9919 0.9812 0.9972 0.9827 0.9980

WideResNet-Clean Acc 91.3

Acc 35 75.62 38.19 18.3 54.3 49.7 67.9 36.3 62.9 28.5

�2 1.65 0.86 2.03 2.73 44.12 52.73 0.5 1.0 0.85 1.69

‖·‖S1 1.01 0.56 1.63 2.57 58.97 71.23 1.06 2.08 2.09 4.12

�∞ 0.25 0.21 0.41 0.50 2.00 2.17 0.06 0.12 0.015 0.031

pixels 1022.63 136.75 204.02 271.92 1007.25 905.05 1022.76 1022.1 1023.02 1022.31

IS 0.9975 0.9737 0.9977 0.9990 0.9948 0.9930 0.9817 0.9976 0.9872 0.9983
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where MNIST samples have 784 pixels and CIFAR-10 sam-

ples have 1024 pixels. FWnucl-group significantly reduces

the number of pixel changes for FWnucl, while showing a

higher success rate compared to the other sparse attacks. It

is shown that FWnucl-group can produce sparse attacks that

outperform the other attacks in terms of sparsity. For instance,

for MNIST dataset the group norm reduces the number of pix-

els for FWnucl-group to the 8th fraction of that of FWnucl

while decreasing the rate of success only by 0.7%. The results

from these tables show that Auto-attack perturbs almost all

the pixels for the successful adversaries and generates large

distortion in terms of nuclear norm for Auto-attack-�∞.

We leverage the adversarial saliency map (ASM) (Paper-

not et al., 2016) to evaluate the effect of structured adversarial

perturbation generated by FWnucl on image classification.

For this purpose, we introduce the IS metric based on

ASM score. For any d-dimensional image x ∈ R
d , we

let ASM(x, t) ∈ R
d denote the adversarial saliency score

corresponding to label t . In particular, the i-th element of

ASM(x, t) shows how much the classification score with

respect to label t increases and how much with respect to the

original label decreases if a modification is applied to the i-th

pixel value. We define a Boolean map BASM corresponding

to ASM score by

BASM[i] =

{

1 if ASM(x, t)[i] ≥ ν

0 otherwise

where ν is the threshold on the pixel value. We then define

the IS metric using IS(δ) = B◦δ
‖δ‖

where ◦ is the element-

wise product. The logic behind this definition is that if IS(δ)

is close to 1 then the perturbation is applied mostly for the

pixels which are critical for class prediction by the model, and

by contrast the IS scores close to zero can not be interpreted

based on ASM scores. We also listed IS scores in in Tables 7

and 8 where ν equals to the 30 percentile of ASM scores

across the entire samples. In Fig. 7 we have shown the IS

metric for the attacks in Table 8 versus ν, being different

percentiles of ASM score across the samples of CIFAR-10

dataset. The figure shows that FWnucl-group has higher IS

scores compared to the other sparse attacks and compared to

FWnucl.

In Fig. 8 we display the adversarial images and the corre-

sponding perturbation generated by the nuclear norm versus

group nuclear norm ‖·‖G,1,S(1),w, where the weights w are

calculated based on the local variance of each group. The fig-

ures show that FWnucl-group creates perturbations that are

more targeted and are localized to groups of pixels around

the objects which are important for the classifier to make the

prediction.

It is important to characterize the type of deformation that

arise with radii above the applied thresholds as the imper-

Fig. 7 IS metric vs ν, computed from the 30th percentile to the 90th

percentile of ASM scores for CIFAR-10 dataset

Fig. 8 The images display some structural patterns of FWnucl (left)

versus FWnucl-group (right) perturbations for the ImageNet dataset on

DenseNet121 architecture for the nuclear ball of radius 5. Observe that

the blurriness effect and perturbed pixels for images crafted by FWnucl-

group are localized and restricted to some specific groups of pixels

Table 9 Evaluation of FWnucl against certifiably robust classifiers

trained by randomized smoothing over CIFAR-10 dataset

Network Certified-l2 radius 0.25 0.5 0.75

FWnucl-lS1 radius 0.25 0.5 0.75

ResNet-18 Certified 52.26 39.94 27.49

Adversarial 48.66 38.37 28.28

WideResNet Certified 55.9 28.97 16.83

Adversarial 53.89 41.65 30.75

ResNet-50 Certified 50.04 37.11 24.77

Adversarial 49.77 38.38 27.95

Certified (accuracy) denotes the certifiable accuracy of smoothed clas-

sifier (Cohen et al., 2019). Adversarial (accuracy) is the accuracy under

FWnucl attack with the perturbation specified in the table
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Table 10 Fooling rates of

FWnucl adversarial

perturbations between several

models for 4000 samples from

ImageNet

Source model/target model ResNet-18 DenseNet121 GoogLeNet

ResNet-18 100 18.15 12.91

DenseNet121 16.56 99.30 11.74

GoogLeNet 15.03 12.37 99.40

The row indicates the source model and the column indicates the target model

Fig. 9 General layout of the FWnucl perturbations for ImageNet across three different architectures

Table 11 Adversarial training using FWnucl norm for the MNIST dataset

Clean FWnucl PGD2 Auto-attack-�2 PGD Auto-attack-�∞

εS1 = 1 εS1 = 3 ε = 0.5 ε = 1 ε = 0.5 ε = 1 ε = 0.1 ε = 0.2 ε = 0.1 ε = 0.2

LeNet—FWnucl εS1 = 1.5

99.20 96.85 74.82 97.33 93.76 96.99 90.76 94.08 79.85 90.82 22.97

LeNet—FWnucl εS1 = 3

99.1 97.26 77.5 97.54 93.94 96.77 92.24 95.15 74.01 92.77 46.96

LeNet—PGD2 ε = 1.5

99.31 97.64 55.68 98.35 96.41 98.24 95.68 96.7 64.66 95.95 50.48

LeNet—PGD ε = 0.3

98.38 95.08 86.04 95.16 93.38 93.91 82.94 97.41 95.96 96.91 93.67

SmallCNN—FWnucl εS1 = 1.5

99.23 97.84 90.57 98.21 96.82 97.19 92.68 97.12 94.06 95.23 55.79

SmallCNN—FWnucl εS1 = 3

98.81 97.32 83.22 97.6 94.66 97.19 89.84 95.49 73.99 92.88 47.15

SmallCNN—PGD2 ε = 1.5

99.19 97.4 71.2 98.37 96.53 98.16 95.46 96.83 69.24 96.09 52.05

SmallCNN—PGD ε = 0.3

99.12 98.09 93.73 98.1 97.24 97.62 91.92 98.57 97.6 98.3 96.51

We used 20 iterations for adversarial training with FWnucl and the threat models FWnucl, PGD, PGD2 are using 20 iterations with random

initialization to converge

Table 12 Adversarial training using FWnucl norm for the CIFAR-10 dataset

Clean FWnucl PGD2 Auto-attack-�2 PGD Auto-attack-�∞

εS1 = 1 εS1 = 1.5 ε = 0.5 ε = 1 ε = 0.5 ε = 1 ε = 2/255 ε = 4/255 ε = 2/255 ε = 4/255

ResNet-18—FWnucl εS1 = 1.5

79.59 42.84 28.22 63.76 47.87 54.57 28.91 66.02 51.01 65.72 50.1

ResNet-18—PGD2 ε = 0.5

89.97 33.31 11.54 69.38 41.01 66.63 33.37 78.58 62.02 78.08 61.34

ResNet-18—PGD ε = 8/255

81.25 38.04 19.14 63.56 41.05 58.38 27.36 74.97 67.68 73.06 65.12

We used 10 iterations for adversarial training with FWnucl and the threat models FWnucl, PGD, PGD2 are using 10 iterations with random

initialization to converge
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ceptibility regimes are not the only restricted to the existing

scenarios for generating adversarial examples. In particu-

lar accuracy of robust networks quickly drops to zero in

the regimes above the seemingly imperceptible regions, see

Fig. 3 and appendix for adversarial accuracy with various val-

ues for εS1. In the nuclear ball case, as the radius εS1 of the

nuclear ball increases, the perturbation becomes perceptible

with a blurring effect. Structure in the adversarial examples

can be leveraged to create specific perceptible deformation

effects that look natural to humans.

Provably robust models with certifiable bounds.

We also evaluate the performance of the proposed adversary

against the robust models with provable certified bounds.

Table 9 shows that the accuracy of certified classifiers trained

with randomized smoothing with standard deviation σ =

0.5. The results show that FWnucl can bring down the accu-

racy of the certifiably robust classifier up to the certified

accuracy provided by provable defense methods for ResNet-

18 and ResNet-50 models. It is also observed from Table 9

that there exists a gap between the certified and adversarial

accuracy of WideResNet model.

Transferability.

In Table 10 we investigate the transferability of FWnucl

adversarial examples over different architectures for Ima-

geNet. This table shows that there should be some similar

structural patterns between independent architectures that

FWnucl employs, but the adversaries are mainly network

dependent. In Fig. 9, we illustrate how the adversarial nuclear

structure varies from one network to another for the same

image; in particular, the perturbation continuously concen-

trates around the important regions of the image with however

varying layouts and the patterns of perturbation for each net-

work.

Adversarial Training.

In order to enhance the robustness of neural models to struc-

tured attacks, we adopt adversarial training using FWnucl

adversarial attacks. We train models on MNIST and CIFAR-

10 datasets with the architectures detailed in Tables 11 and 12

for MNIST and CIFAR-10 datasets, respectively, and we

reported the robust accuracy with FWnucl and threat model

with �2 and �∞ norms and compare the results with �p norm

adversarially trained models for p = 2,∞. From the tables,

we see that the models adversarially trained with FWnucl

show better to competitive performance versus FWnucl threat

model compared with the other adversarially trained models,

but nevertheless, they show competitive performance ver-

sus �p norm threat models for p = 2,∞. The adversarial

accuracy of our model over CIFAR-10 is almost 2.5x and

1.5x higher compared to the model trained with respectively

�2 and �∞ norms against FWnucl adversarial attacks with

εS1 = 1.5. This shows that adversarial training using FWnucl

can reduce the success rate of our proposed nuclear attacks.

In addition, the clean accuracy of robust models in Table 11

is showing that training using the augmented examples gen-

erated by FWnucl does not decrease the clean accuracy of

the models significantly.

4 Conclusion

We consider adversarial attacks beyond the �p distortion

set. Our proposed structured attacks allow an attacker to

design imperceptible adversarial examples with specific

characteristics, like localized blurriness. Furthermore, in the

imperceptible regime, some defensive techniques may rely

on a lack of certain structured patterns in the adversarial per-

turbations. Evaluating robustness against various structured

adversarial examples then seems to be a reasonable defense

sanity check. Our method is a competitor to the methods

designed to craft sparse and targeted perturbations while

maintaining success rates similar to powerful attacks like

PGD.
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