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A B S T R A C T

We briefly review the 𝛤 -convergence of phase-field fracture to Griffith fracture, and describe how softening
and nucleation occur when implementing phase-field models. An example is given of how this softening and
nucleation can be completely stopped, while preserving crack growth and 𝛤 -convergence. We then show how
nucleation can locally be turned back on, based on any criterion, such as a stress threshold. Again, these
modifications preserve 𝛤 -convergence, and they can be applied to static, quasi-static, and dynamic models.
Additionally, we describe why these modifications can be expected to improve the convergence of phase-field
models.

1. Introduction

Certain phase-field models for fracture have been shown to con-
verge, in a variational sense, to models for Griffith fracture [1] (see [2];
see also [3] and references therein). These variational phase-field mod-
els have a mathematical parameter 𝜀, and the convergence to the
Griffith model occurs as 𝜀 tends to zero. Computing using these phase-
field models has become common, and one aspect we see is that
nucleation of cracks is related to the parameter 𝜀. This is considered
to be undesirable, since 𝜀 is not a physical parameter, but is chosen
primarily based on the desired computational cost (related to mesh
size, on the scale of 𝜀) and desired accuracy (which improves as 𝜀 gets
smaller).

Recently, [4] raised the interesting question of modifying the usual
phase-field models to include a separate criterion for nucleation. They
viewed such a modification as incompatible with a variational, or
energy minimizing, formulation, and proposed instead a PDE-based
approach. Here, after briefly explaining the variational convergence
(𝛤 -convergence) of the phase-field models and how energy descents
can lead to softening and nucleation, we show that both softening
and nucleation can be completely turned off while maintaining 𝛤 -
convergence, independently of the phase-field surface energy (e.g., us-
ing AT1 or AT2). We then describe how the possibility of nucleating
can be locally switched back on, based on any local condition desired.
We illustrate this using a stress threshold.

A natural question is, if the proposed variational formulations and
the original ones both 𝛤 -converge to the same Griffith energy, how can
the behavior of solutions be so different? The reason is, in practice,
the phase-field energies are not actually minimized, but certain energy
descents are performed computationally. It is these descents that can
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behave very differently with different variational formulations, even if
they have the same 𝛤 -limit.

2. Phase-field fracture and 𝜞 -convergence

We now describe the key elements behind the 𝛤 -convergence of
Ambrosio–Tortorelli functionals 𝐸𝜀 to the Griffith fracture energy 𝐸,
proved in [2]. While 𝛤 -convergence is not necessarily the relevant
convergence for certain evolution problems, it does give some rigorous
connection between the energies 𝐸𝜀 and 𝐸. Our main point is that
understanding how this convergence works can lead to flexibility in
designing phase-field models and algorithms.

For a given Griffith toughness 𝐺𝑐 and given domain 𝛺 ⊂ R
𝑁 , we

consider the energy

𝐸(𝑢) ∶=
1

2 ∫𝛺 |∇𝑢|2𝑑𝑥 + 𝐺𝑐𝑁−1(𝑆𝑢),

defined for 𝑢 ∈ 𝑆𝐵𝑉 (𝛺), a space that allows only smooth and discon-
tinuous variation; 𝑆𝑢 is the discontinuity set of 𝑢, and 𝑁−1(𝑆𝑢) is its
𝑁 − 1-dimensional surface area. For simplicity, we consider the elastic
energy density 1

2
|∇𝑢|2, which can be replaced with 𝑊 (∇𝑢) for a large

class of elastic energy densities 𝑊 , without significantly changing the
analysis. Also, the surface energy 𝐺𝑐𝑁−1(𝑆𝑢) can be replaced when
there is a spatially-varying toughness: the new surface energy would
be

∫𝑆𝑢

𝐺𝑐 (𝑥)𝑑𝑁−1(𝑥),

but for simplicity here we consider 𝐺𝑐 to be constant. For future brevity,
we will refer to the first term in 𝐸, the elastic potential energy, as 𝑃 (𝑢)
and the second, the surface energy, as 𝑆(𝑢).
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Each 𝐸𝜀 is defined on pairs of functions in 𝐻1(𝛺), and is given by

𝐸𝜀(𝑢, 𝑣) ∶=
1

2 ∫𝛺(𝜂𝜀+𝑣
2)|∇𝑢|2𝑑𝑥+𝐺𝑐

(
1

4𝜀 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝜀∫𝛺 |∇𝑣|2𝑑𝑥
)
,

(2.1)

where 𝜂𝜀 tends to zero faster than 𝜀 (the details are explained below).
As above, we will refer to the first term in (2.1), the approximate elastic
potential energy, as 𝑃𝜀(𝑢, 𝑣), and the second, the approximate surface
energy, as 𝑆𝜀(𝑣).

𝛤 -convergence concerns relationships between the energies 𝐸𝜀(𝑢𝜀,

𝑣𝜀) and 𝐸(𝑢) as {𝑢𝜀} converges to some 𝑢 (and {𝑣𝜀} converges to 1). In
particular, two conditions must be satisfied: first, whenever 𝑢𝜀 → 𝑢 in
𝐿1 and 𝑣𝜀 → 1 in 𝐿1, it must be that

lim inf
𝜀→0

𝐸𝜀(𝑢𝜀, 𝑣𝜀) ≥ 𝐸(𝑢). (2.2)

Second, for every 𝑢 ∈ 𝑆𝐵𝑉 (𝛺), there must exist {𝑢𝜀}, {𝑣𝜀} such that
𝑢𝜀 → 𝑢 in 𝐿1 and 𝑣𝜀 → 1 in 𝐿1, and

lim sup
𝜀→0

𝐸𝜀(𝑢𝜀, 𝑣𝜀) ≤ 𝐸(𝑢), (2.3)

which, with (2.2), implies

lim
𝜀→0

𝐸𝜀(𝑢𝜀, 𝑣𝜀) = 𝐸(𝑢). (2.4)

In the above, convergence in 𝐿1 can be replaced by convergence with
respect to other norms.

Practically, there are two important issues regarding the conver-
gence of these phase-field models. The first is, is 𝜀 small enough that
we get a good approximation of minimizers of the limit energy, and of
this energy? Here, 𝜀 plays at least two roles: it sets the width of the
smeared crack approximation, and it needs to be small enough that 𝑣
is close to 1 except near cracks. Often, this second role is not satisfied,
and we see significant softening of the material away from the crack
(throughout, by ‘‘softening’’, we mean that 𝑣 is not close to 1 in some
region). Sometimes this softening leads to nucleation, i.e., 𝑣 continues
to decrease until it is close to zero, and sometimes it does not, but still
is significant in its effect on the stresses away from the crack, as well
as affecting how irreversibility can be implemented.

The second issue comes from the fact that 𝑢𝜀 and 𝑣𝜀 come not from
directly minimizing, but from following certain energy descents. As we
will see below, this can be a plus, as certain behavior along energy
descents seen as undesirable, such as softening, can be blocked without
affecting the 𝛤 -convergence.

We also note that the energy convergence (2.4) is merely a possibil-
ity, and generally holds only if 𝑢𝜀, 𝑣𝜀 are obtained by minimizing 𝐸𝜀. As
we discuss in more detail below, alternate minimization, or any energy
descent, for this phase-field energy 𝐸𝜀 does not necessarily result in
energy minimizers.

We now sketch how this convergence of 𝐸𝜀 to 𝐸 works, so we can
see what modifications to 𝐸𝜀 leave the 𝛤 -convergence unchanged.

2.1. The first term: 𝑃𝜀(𝑢, 𝑣) =
1

2
∫
𝛺
(𝜂𝜀 + 𝑣2)|∇𝑢|2𝑑𝑥

The role of 𝜂𝜀 is explained separately below, and for now we take
𝜂𝜀 = 0 for simplicity. We are left with just 1

2
𝑣2|∇𝑢|2, and the idea

is very simple: where 𝑣 = 0, this energy density is zero, and ∇𝑢 can
concentrate there for free. Where 𝑣 is close to 1, which is everywhere
except for a small set due to the 𝑆𝜀 energy, we just get

1

2
|∇𝑢|2, the

elastic energy density, and (2.2) (for 𝑃𝜀 and 𝑃 ) just follows from lower
semicontinuity. (2.3) (for 𝑃𝜀 and 𝑃 ) follows by considering 𝑢𝜀 = 𝑢 away
from the discontinuity set. An important point for later is, where 𝑣

transitions from near 0 to near 1, the only role ∫ 𝑣2|∇𝑢|2 plays in the
𝛤 -convergence is to be small.

2.2. The second term: 𝑆𝜀(𝑣) = 𝐺𝑐

(
1

4𝜀
∫
𝛺
(1 − 𝑣)2𝑑𝑥 + 𝜀 ∫

𝛺
|∇𝑣|2𝑑𝑥

)

The analysis of this term involves two parts. The first is technical,
and consists of a slicing argument, showing the problem reduces to the
one dimensional case. The second part is treating that one dimensional
case, and that is what we focus on here.

The basic idea is this: if we consider functions 𝑣 on R satisfying
𝑣(0) = 0, and 𝑣(𝑥) → 1 as |𝑥| goes to infinity, a calculation shows that
the minimum of 𝑆𝜀(𝑣) is 𝐺𝑐 . When 𝜀 is small, this energy over R is a
good approximation of 𝑆𝜀 on a finite interval. If 𝑢𝜀 is converging to a 𝑢

with a discontinuity, for 𝐸𝜀(𝑢𝜀, 𝑣𝜀) to remain bounded, it must be that
𝑣𝜀 = 0 near a discontinuity point, so ∇𝑢𝜀 can concentrate for free. The
cost of this discontinuity comes from 𝑆𝜀(𝑣𝜀), and is 𝐺𝑐 if 𝑣𝜀 optimally
transitions from 1 to 0 back to 1, minimizing 𝑆𝜀.

It should be noted that the term (1 − 𝑣)2 in 𝑆𝜀 (often referred
to as AT2) can be replaced with other penalties on |1 − 𝑣|, such as
|1 − 𝑣| itself (AT1), with appropriate adjustment of coefficients so the
minimum for the new 𝑆𝜀 is also 𝐺𝑐 .

2.3. The role of 𝜂𝜀

Without 𝜂𝜀, 𝐸𝜀 would not have a minimum (which actually does
not matter for 𝛤 -convergence). For numerics, 𝜂𝜀 is typically very small,
something like 10−6. Exactly how small it needs to be, we will return to
shortly. The point of 𝜂𝜀 is to make sure |∇𝑢|2 is never multiplied by zero,
but it must be small enough that it has a vanishing effect on the energy.
A side effect of this term is a limit on how much |∇𝑢| concentrates.

Returning to the 1-D case, if ∇𝑢 concentrates in an interval 𝐼 of
length ℎ, with 𝑣 = 0 on 𝐼 , then by convexity the cheapest way to do
that is to have |∇𝑢| ∝

1

ℎ
on 𝐼 . Then ∫

𝐼
𝜂𝜀|∇𝑢|2 ∝

𝜂𝜀

ℎ
. This creates an

extra contribution to 𝑆𝜀(𝑣), namely,
1

4𝜀
∫
𝐼
(1 − 𝑣)2 ≈

ℎ

4𝜀
, since 𝑣 must be

close to zero on 𝐼 , where ∇𝑢 concentrates.
So, both 𝜂𝜀

ℎ
and ℎ

4𝜀
must go to zero as 𝜀 goes to zero. That is, ℎ is

small compared to 𝜀, and 𝜂𝜀 is small compared to ℎ. Now, mathemat-
ically, only 𝜀 and 𝜂𝜀 are specified – ℎ is a result of minimizing 𝐸𝜀. If
𝜂𝜀 = 𝑜(𝜀), e.g., 𝜂𝜀 = 𝜀2, then the ℎ selected by minimization will be such

that both 𝜂𝜀

ℎ
and ℎ

4𝜀
go to zero, such as ℎ = 𝜀

3

2 .
However, computationally, a lower bound for ℎ is set by the mesh

size. This is fine for 𝜂𝜀

ℎ
, but typically it means ℎ

𝜀
is not very small, giving

an extra contribution of 𝐺𝑐
ℎ

4𝜀
to the fracture toughness, for an overall

toughness of 𝐺𝑐 (1 +
ℎ

4𝜀
). AT1 has a similar extra contribution.

2.4. Summary

The role of 𝑣 in 𝑃𝜀 is only to provide a place for ∇𝑢 to concentrate
essentially for free, by 𝑣 being small on some small set. The price for
this concentration is paid only by 𝑣 in the surface energy 𝑆𝜀, in the cost
of making transitions from 1 to 0, and back to 1.

There are two key points here. First, looking only at 𝑃𝜀, 𝑢𝜀 can
converge to a discontinuous function, with zero cost here. The cost
comes completely from 𝑆𝜀 – 𝑣𝜀 must make a transition from being
(close to) 1, going down to zero, and then back up to 1. 𝑆𝜀 penalizes
this double transition, and the coefficients in 𝑆𝜀 are chosen so that the
optimal way of making these transitions has cost 1. These transitions
occur on the scale of 𝜀, so in the limit 𝜀 → 0 they, but not their effect,
disappear.

Again, our main observation is the following: the role of 𝑣 in the
first term in 𝐸𝜀 is to be very small somewhere, providing a place for 𝑢
to concentrate its gradient at no cost. The cost is paid only by 𝑣 in 𝑆𝜀,
for providing such a location for ∇𝑢 to concentrate. Here is the key:
where 𝑣 makes the transition from near 0 to near 1, the term 𝑣2|∇𝑢|2
plays no important role in the 𝛤 -convergence. In fact, it is unnecessary
to even consider 𝑣2|∇𝑢|2 in this region. Yet this product, in this region,
is what produces both softening and nucleation. Any modification of
𝑃𝜀 that removes the interaction between 𝑣 and 𝑢 where 𝑣 is not very
small has no effect on the 𝛤 -convergence, but it will stop softening and
nucleation.
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3. Energy descents: softening and nucleation

In practice, the energies 𝐸𝜀 are not actually minimized. For static
and quasi-static fracture, alternate minimization of 𝐸𝜀 is used (subject
to some irreversibility condition), repeatedly minimizing in 𝑢 and then
𝑣 until some criterion is met. 𝐸𝜀 is not convex, but it is separately
convex, that is, if 𝑢 is fixed, the map 𝑣 ↦ 𝐸𝜀(𝑢, 𝑣) is convex, and if
𝑣 is fixed, 𝑢 ↦ 𝐸𝜀(𝑢, 𝑣) is convex. So the natural way to attempt to
minimize 𝐸𝜀 is alternate minimization: fix, say, an initial 𝑢0, minimize
𝑣 ↦ 𝐸𝜀(𝑢0, 𝑣), obtaining 𝑣0. Then minimize 𝑢 ↦ 𝐸𝜀(𝑢, 𝑣0), obtaining 𝑢1,
etc. We can at most expect this to converge to something stationary
(see, e.g., [5,6]).

In dynamics, 𝑣 ↦ 𝐸𝜀(𝑢, 𝑣) is minimized at each time step, and
updates to 𝑢 come from elastodynamics, with stiffness 𝜂𝜀+𝑣

2. Therefore,
there is no alternate minimization — there is one minimization in 𝑣,
and one time step in 𝑢. Much of the modifications we discuss below
apply equally to dynamics.

3.1. Static and quasi-static evolution: energy descents

The interaction between 𝑢 and 𝑣 in 𝐸𝜀 is only in the product 𝑣
2|∇𝑢|2

in the first part of the energy, 𝑃𝜀(𝑢, 𝑣). Since this is minimized over 𝑣,
as |∇𝑢| gets large, 𝑣 will decrease to lower this product (no matter how
𝑢 is evolving). |∇𝑢| will then tend to increase where 𝑣 has decreased,
thus driving 𝑣 to decrease even more. This is behind both nucleation of
fracture and softening.

Our main point is that this interaction is actually unnecessary for
(and even unrelated to) the 𝛤 -convergence. The product 𝑣2|∇𝑢|2 mat-
ters for 𝛤 -convergence only where 𝑣 is very small, allowing 𝑢 to vary
essentially for free there, and 𝑣 pays the price in the other term, 𝑆𝜀(𝑣).
But the softening caused by this interaction can be significant, both by
altering the distribution of |∇𝑢|, increasing it where the material has
softened, and therefore tending to decrease its concentration at crack
tips, resulting in 𝑣 decreasing less at crack tips, which means the crack
does not grow as fast.

On the other hand, the interaction term 𝑣2|∇𝑢|2 is important for
energy descents leading to crack growth. Near crack tips, |∇𝑢| will be
large because of the geometry of the domain near the crack tip. On top
of that, it will be even larger where 𝑣 is less than 1 near the tip. If these
effects combine to drive 𝑣 to zero in front of a pre-existing crack tip, the
crack grows. Note that this should only happen if the decrease in the
interaction term, i.e., the elastic energy 1

2
∫
𝛺
(𝜂𝜀+𝑣2)|∇𝑢|2, is enough to

offset the increase in 𝑆𝜀, i.e., 𝐺𝑐 times the length of the crack increment,
measured in 𝑆𝜀 by the energy of cross-sections of 𝑣 across this crack
increment. We return to these descents in more detail later, but we
note for now that these energy descents at crack tips are desirable for
allowing crack growth at crack tips.

3.2. Dynamics

The Ambrosio–Tortorelli approximation can also be used for dy-
namic fracture, as shown in [7]. Here, 𝑣 follows the same minimiza-
tion as above, namely, at each time 𝑡, 𝑣(𝑡) minimizes 𝐸𝜀(𝑢(𝑡), ⋅) (sub-
ject to some irreversibility condition). Instead of being obtained by
minimization, 𝑢 is obtained by solving

𝑢𝑡𝑡 − div([𝜂𝜀 + 𝑣2]∇𝑢) = 0.

Here, softening and nucleation are more subtle than for pure minimiza-
tion problems. As before, if |∇𝑢| gets large somewhere, 𝑣 will decrease,
which means the material gets softer. Then two things occur: the wave
speed decreases in this region, and |∇𝑢| tends to increase. This last
feature can be temporary, since it might be that a wave travels through
this region, and afterwords the displacement is close to constant there.
Of course, this also depends on how irreversibility is implemented. We
just note that softening is problematic here too, just as it is in static and
quasi-static settings.

3.3. Softening and the approximate surface energy

The approximate surface energy

𝑆𝜀(𝑣) = 𝐺𝑐

(
1

4𝜀 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝜀∫𝛺 |∇𝑣|2𝑑𝑥
)

approximates the limit surface energy

𝐺𝑐𝑁−1(𝑆𝑢)

only when 𝑣 minimizes 𝑆𝜀, subject to 𝑣 being close to zero where 𝑢

wants to jump, and 𝑣 being close to 1 away from that set. That is, 𝑣
needs to make the optimal transition, in the sense of minimizing 𝑆𝜀,
between the sets where 𝑣 is close to zero, and where it is close to 1.
To the extent the term 𝑣2|∇𝑢|2 in 𝑃𝜀 is neither close to zero (where 𝑣 is
very close to zero) nor close to |∇𝑢|2 (where 𝑣 is close to 1), it interferes
with 𝑣 minimizing 𝑆𝜀, and artificially adds to the surface energy 𝑆𝜀.
This holds also for other surface energies, such as AT1.

4. Modifications preventing softening and nucleation: stopping
and controlling certain energy descents

4.1. Stopping softening and nucleation

We describe one simple modification based on preserving
𝛤 -convergence while altering softening and nucleation. We leave 𝑆𝜀

unchanged, and alter only the function that multiplies |∇𝑢|2 in 𝑃𝜀:
replace 𝐸𝜀 with

𝐸𝛽
𝜀
(𝑢, 𝑣) ∶=

1

2 ∫𝛺(𝜂𝜀+𝑣
2
𝛽
)|∇𝑢|2𝑑𝑥+𝐺𝑐

(
1

4𝜀 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝜀∫𝛺 |∇𝑣|2𝑑𝑥
)
,

where 𝛽 ∈ (0, 1) is fixed and

𝑣𝛽 (𝑥) ∶=

{
1 if 𝑣(𝑥) ≥ 𝛽

𝑣(𝑥) if 𝑣(𝑥) < 𝛽.

There are two points to introducing this 𝛽. First, if 𝛽 is small, only small
values of 𝑣 interact with ∇𝑢 in the 𝑣2

𝛽
|∇𝑢|2 term, which is all that is

necessary for the 𝛤 -convergence. The profile of 𝑣 is therefore relatively
unaffected when it makes the transitions between 0 and 1, since it is
essentially just trying to minimize 𝑆𝜀, and so the cost is closer to the
minimum of 𝑆𝜀, which is 𝐺𝑐 . Second, perturbing 𝑣 a little below 1 does
not affect 𝑣𝛽 , and therefore does not affect 𝑣

2
𝛽
|∇𝑢|2, so that

𝜕

𝜕𝑣

(
1

2
(𝜂𝜀 + 𝑣2

𝛽
)|∇𝑢|2

)
= 0

wherever 𝑣 is 1 (and where it is more than 𝛽). These perturbations only
cause an increase in the surface energy 𝑆𝜀, and so they will not occur
in energy descents. Softening and nucleation are thereby prevented for
any numerical scheme based on the gradient of the energy, and even
for methods that consider discrete but small changes in 𝑣.

4.2. Locally switching nucleation back on

Further modifications are possible for models intended to allow
nucleation, for example if nucleation occurs if 𝑢(𝑥), 𝑣(𝑥) satisfy some
condition 𝐶(𝑢(𝑥), 𝑣(𝑥)). At such points, we want to return to the original
formulation that allows softening and nucleation. One possibility is to
have the 𝛽 above be a function of 𝑥 (and, we will see, possibly 𝑡), for
example, for a static problem,

𝑣𝛽 (𝑥) ∶=

{
1 if 𝑣(𝑥) ≥ 𝛽(𝑥)

𝑣(𝑥) if 𝑣(𝑥) < 𝛽(𝑥),

where

𝛽(𝑥) ∶=

{
1 if 𝐶(𝑢(𝑥), 𝑣(𝑥)) holds
𝛾 otherwise.

The idea is, 𝛾 somewhat plays the role of 𝛽 before, and if after
minimizing 𝐸

𝛽
𝜀 in 𝑢 the condition 𝐶(𝑢(𝑥), 𝑣(𝑥)) is nowhere satisfied,
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then there can be no softening or nucleation (if 𝛾 < 1), and 𝑣(𝑥) = 1

(approximately) everywhere away from the crack.
On the other hand, if when first minimizing 𝐸

𝛽
𝜀 in 𝑢 it happens that

𝐶(𝑢(𝑥), 𝑣(𝑥)) is satisfied on some set 𝑆, then 𝑣𝛽 = 𝑣 on 𝑆, and alternate
minimization will allow 𝑣 to decrease there, allowing softening and
nucleation. This would initiate in 𝑆, but could end up outside 𝑆 at the
end of alternate minimization.

An example of such a condition is if nucleation occurs if the stress
exceeds some specified value 𝑐𝑟. We then have

𝑣𝛽 (𝑥) ∶=

{
1 if 𝑣(𝑥) ≥ 𝛽(𝑥)

𝑣(𝑥) if 𝑣(𝑥) < 𝛽(𝑥),

where

𝛽(𝑥) ∶=

{
1 if 𝑣(𝑥)2|∇𝑢|(𝑥) > 𝑐𝑟
𝛾 otherwise.

Put another way,

𝑣𝛽 (𝑥) ∶=

{
𝑣(𝑥) if 𝑣(𝑥) < 𝛾 or 𝑣(𝑥)2|∇𝑢|(𝑥) > 𝑐𝑟
1 otherwise.

For time evolutions, either quasi-static or dynamic, we would have
𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡). We could consider

𝑣𝛽 (𝑥, 𝑡) ∶=

{
1 if 𝑣(𝑥, 𝑡) ≥ 𝛽(𝑥, 𝑡)

𝑣(𝑥, 𝑡) if 𝑣(𝑥, 𝑡) < 𝛽(𝑥, 𝑡),

where

𝛽(𝑥, 𝑡) ∶=

{
𝛾 if 𝑣(𝑥)2|∇𝑢|(𝑥, 𝑡) ≤ 𝑐𝑟
1 otherwise.

Another option is to have a model such that once the 𝑐𝑟 threshold is
crossed, the material is permanently open to softening and nucleation
there. A corresponding 𝛽 would be

𝛽(𝑥, 𝑡) ∶=

{
𝛾 if 𝑣(𝑥)2|∇𝑢|(𝑥, 𝜏) ≤ 𝑐𝑟 for all 𝜏 ≤ 𝑡

1 otherwise.

4.3. Effect on crack growth

𝑣 is less than 1 near the crack tip generally for two reasons. First,
because it is zero in the crack, and must make a continuous transition
to 1 away from the crack. Second, because |∇𝑢| is large there, and so
the term 𝑣2|∇𝑢|2 prefers 𝑣 to be small. It is this second reason that is
also behind crack growth, as discussed above.

If we imagine largely removing this interaction, e.g., the interaction
term 𝑣2|∇𝑢|2 is restricted to where 𝑣 is very small:

𝐸𝛽
𝜀
(𝑢, 𝑣) ∶= ∫𝛺(𝜂𝜀 + 𝑣2

𝛽
)|∇𝑢|2𝑑𝑥 + 𝐺𝑐

(
1

4𝜀 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝜀∫𝛺 |∇𝑣|2𝑑𝑥
)
,

𝑣𝛽 (𝑥) ∶=

{
1 if 𝑣(𝑥) ≥ 𝛽

𝑣(𝑥) if 𝑣(𝑥) < 𝛽

where now 𝛽 ≪ 1, then the benefit of reducing 𝑣 is very small and
can only occur in a small region. Nevertheless, it seems plausible that
crack growth could still occur, unless 𝛽 is so close to 0 that 𝑣 cannot
effectively decrease where it is already less than 𝛽.

Potentially depending on exactly how gradient descents are im-
plemented, any 𝛽 < 1 should be enough to prevent softening and
nucleation away from the crack. However, because 𝑣 will necessarily
be below 1 close to the crack, there is potential for unwanted softening
there, too. Numerical experiments are needed to determine values of 𝛽
that sufficiently restrict softening, while allowing crack growth.

Finally, it is important when implementing phase-field models to
numerically calculate the surface energy 𝑆𝜀(𝑣), and compare it with
estimates of the computed crack length. Softening will tend to create
errors in the surface energy, artificially increasing it, and we pre-
dict that with the modifications described here, the surface energy
approximations will improve.
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