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We briefly review the I'-convergence of phase-field fracture to Griffith fracture, and describe how softening
and nucleation occur when implementing phase-field models. An example is given of how this softening and
nucleation can be completely stopped, while preserving crack growth and I'-convergence. We then show how
nucleation can locally be turned back on, based on any criterion, such as a stress threshold. Again, these

modifications preserve I'-convergence, and they can be applied to static, quasi-static, and dynamic models.
Additionally, we describe why these modifications can be expected to improve the convergence of phase-field

models.

1. Introduction

Certain phase-field models for fracture have been shown to con-
verge, in a variational sense, to models for Griffith fracture [1] (see [2];
see also [3] and references therein). These variational phase-field mod-
els have a mathematical parameter ¢, and the convergence to the
Griffith model occurs as ¢ tends to zero. Computing using these phase-
field models has become common, and one aspect we see is that
nucleation of cracks is related to the parameter . This is considered
to be undesirable, since ¢ is not a physical parameter, but is chosen
primarily based on the desired computational cost (related to mesh
size, on the scale of ¢) and desired accuracy (which improves as ¢ gets
smaller).

Recently, [4] raised the interesting question of modifying the usual
phase-field models to include a separate criterion for nucleation. They
viewed such a modification as incompatible with a variational, or
energy minimizing, formulation, and proposed instead a PDE-based
approach. Here, after briefly explaining the variational convergence
(I'-convergence) of the phase-field models and how energy descents
can lead to softening and nucleation, we show that both softening
and nucleation can be completely turned off while maintaining I'-
convergence, independently of the phase-field surface energy (e.g., us-
ing AT1 or AT2). We then describe how the possibility of nucleating
can be locally switched back on, based on any local condition desired.
We illustrate this using a stress threshold.

A natural question is, if the proposed variational formulations and
the original ones both I'-converge to the same Griffith energy, how can
the behavior of solutions be so different? The reason is, in practice,
the phase-field energies are not actually minimized, but certain energy
descents are performed computationally. It is these descents that can
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behave very differently with different variational formulations, even if
they have the same I'-limit.

2. Phase-field fracture and I'-convergence

We now describe the key elements behind the I'-convergence of
Ambrosio-Tortorelli functionals E, to the Griffith fracture energy E,
proved in [2]. While I'-convergence is not necessarily the relevant
convergence for certain evolution problems, it does give some rigorous
connection between the energies E, and E. Our main point is that
understanding how this convergence works can lead to flexibility in
designing phase-field models and algorithms.

For a given Griffith toughness G, and given domain @ c RN, we
consider the energy

E(u) = %/ [VulPdx + G, HN-I(S,),
Q

defined for u € SBV(£2), a space that allows only smooth and discon-
tinuous variation; S, is the discontinuity set of u, and HN~1(S,) is its
N — 1-dimensional surface area. For simplicity, we consider the elastic
energy density %qu|2, which can be replaced with W (Vu) for a large
class of elastic energy densities W, without significantly changing the
analysis. Also, the surface energy G,HV~!(S,) can be replaced when
there is a spatially-varying toughness: the new surface energy would
be

/ G (x)dHN1(x),

SM

but for simplicity here we consider G, to be constant. For future brevity,
we will refer to the first term in E, the elastic potential energy, as P(u)
and the second, the surface energy, as S(u).
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Each E, is defined on pairs of functions in H!(£2), and is given by

E (u,v) := %</(;1£+U2)|Vu|zdx+(;C <4ie/(l —v)zdx+g/ |Vu|2dx> s
Q Q Q

(2.1)

where 7, tends to zero faster than ¢ (the details are explained below).
As above, we will refer to the first term in (2.1), the approximate elastic
potential energy, as P,(u,v), and the second, the approximate surface
energy, as S, (v).

I'-convergence concerns relationships between the energies E, (u,,
v,) and E(u) as {u,} converges to some u (and {v,} converges to 1). In
particular, two conditions must be satisfied: first, whenever u, — u in
L' and v, — 1 in L', it must be that

liminf E, (. v.) > E(w). 2.2)

Second, for every u € SBV(L), there must exist {u,},{v,} such that
u, »uin L' and v, —» 1 in L', and

limsup E, (u,,v,) < E(u), (2.3)

£=0

which, with (2.2), implies

lim E, (1., v,) = Ew). (2.4)

In the above, convergence in L' can be replaced by convergence with
respect to other norms.

Practically, there are two important issues regarding the conver-
gence of these phase-field models. The first is, is ¢ small enough that
we get a good approximation of minimizers of the limit energy, and of
this energy? Here, ¢ plays at least two roles: it sets the width of the
smeared crack approximation, and it needs to be small enough that v
is close to 1 except near cracks. Often, this second role is not satisfied,
and we see significant softening of the material away from the crack
(throughout, by “softening”, we mean that v is not close to 1 in some
region). Sometimes this softening leads to nucleation, i.e., v continues
to decrease until it is close to zero, and sometimes it does not, but still
is significant in its effect on the stresses away from the crack, as well
as affecting how irreversibility can be implemented.

The second issue comes from the fact that u, and v, come not from
directly minimizing, but from following certain energy descents. As we
will see below, this can be a plus, as certain behavior along energy
descents seen as undesirable, such as softening, can be blocked without
affecting the I'-convergence.

We also note that the energy convergence (2.4) is merely a possibil-
ity, and generally holds only if u,, v, are obtained by minimizing E,. As
we discuss in more detail below, alternate minimization, or any energy
descent, for this phase-field energy E, does not necessarily result in
energy minimizers.

We now sketch how this convergence of E, to E works, so we can
see what modifications to E, leave the I'-convergence unchanged.

2.1. The first term: P.(u,v) = %fg(m +0?)|Vul*dx

The role of #, is explained separately below, and for now we take
n, = 0 for simplicity. We are left with just %vleulz, and the idea
is very simple: where v = 0, this energy density is zero, and Vu can
concentrate there for free. Where v is close to 1, which is everywhere
except for a small set due to the S, energy, we just get %IVulz, the
elastic energy density, and (2.2) (for P, and P) just follows from lower
semicontinuity. (2.3) (for P, and P) follows by considering u, = u away
from the discontinuity set. An important point for later is, where v
transitions from near 0 to near 1, the only role [ 0%|Vu|? plays in the
I'-convergence is to be small.
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2.2, The second term: S,(v) = G (l [o(1=v0)dx +€ |, |Vv|2dx)
e 3 c\4e /2 Q

The analysis of this term involves two parts. The first is technical,
and consists of a slicing argument, showing the problem reduces to the
one dimensional case. The second part is treating that one dimensional
case, and that is what we focus on here.

The basic idea is this: if we consider functions v on R satisfying
v(0) = 0, and v(x) — 1 as |x| goes to infinity, a calculation shows that
the minimum of S, (v) is G.. When ¢ is small, this energy over R is a
good approximation of .S, on a finite interval. If u, is converging to a u
with a discontinuity, for E,(u,,v,) to remain bounded, it must be that
v, = 0 near a discontinuity point, so Vu, can concentrate for free. The
cost of this discontinuity comes from S,(v,), and is G, if v, optimally
transitions from 1 to 0 back to 1, minimizing .S,.

It should be noted that the term (1 — v)? in S, (often referred
to as AT2) can be replaced with other penalties on |1 —v|, such as
|1 —v| itself (AT1), with appropriate adjustment of coefficients so the
minimum for the new S, is also G..

2.3. The role of n,

Without #,, E, would not have a minimum (which actually does
not matter for I'-convergence). For numerics, #, is typically very small,
something like 10~°. Exactly how small it needs to be, we will return to
shortly. The point of 7, is to make sure |Vu|? is never multiplied by zero,
but it must be small enough that it has a vanishing effect on the energy.
A side effect of this term is a limit on how much |Vu| concentrates.

Returning to the 1-D case, if Vu concentrates in an interval I of
length A, with v = 0 on I, then by convexity the cheapest way to do
that is to have |Vu| « % on I. Then fl 11E|Vu|2 o '77‘ This creates an
extra contribution to .S, (v), namely, 4% f ;1= v)? ~ 4%, since v must be
close to zero on I, where Vu concentrates.

So, both % and ﬁ must go to zero as ¢ goes to zero. That is, A is
small compared to ¢, and 7, is small compared to 4. Now, mathemat-
ically, only ¢ and #, are specified — & is a result of minimizing E,. If
1, = o(¢), e.g., n, = €2, then the h selected by minimization will be such
that both ”7* and 4% go to zero, such as h = 5%.

However, computationally, a lower bound for 4 is set by the mesh
size. This is fine for %, but typically it means g is not very small, giving

h
an extra contribution of G, ﬁ to the fracture toughness, for an overall

toughness of G.(1 + i). AT1 has a similar extra contribution.
2.4. Summary

The role of v in P, is only to provide a place for Vu to concentrate
essentially for free, by v being small on some small set. The price for
this concentration is paid only by v in the surface energy .S, in the cost
of making transitions from 1 to 0, and back to 1.

There are two key points here. First, looking only at P., u, can
converge to a discontinuous function, with zero cost here. The cost
comes completely from S, — v, must make a transition from being
(close to) 1, going down to zero, and then back up to 1. .S, penalizes
this double transition, and the coefficients in S, are chosen so that the
optimal way of making these transitions has cost 1. These transitions
occur on the scale of ¢, so in the limit £ — 0 they, but not their effect,
disappear.

Again, our main observation is the following: the role of v in the
first term in E, is to be very small somewhere, providing a place for u
to concentrate its gradient at no cost. The cost is paid only by v in S,
for providing such a location for Vu to concentrate. Here is the key:
where v makes the transition from near 0 to near 1, the term v?|Vu|?
plays no important role in the I'-convergence. In fact, it is unnecessary
to even consider v?|Vu|? in this region. Yet this product, in this region,
is what produces both softening and nucleation. Any modification of
P, that removes the interaction between v and u where v is not very
small has no effect on the I'-convergence, but it will stop softening and
nucleation.
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3. Energy descents: softening and nucleation

In practice, the energies E, are not actually minimized. For static
and quasi-static fracture, alternate minimization of E, is used (subject
to some irreversibility condition), repeatedly minimizing in « and then
v until some criterion is met. E, is not convex, but it is separately
convex, that is, if u is fixed, the map v —» E,(u,v) is convex, and if
v is fixed, u —» E_(u,v) is convex. So the natural way to attempt to
minimize E, is alternate minimization: fix, say, an initial u;, minimize
v~ E_(uy,v), obtaining v,. Then minimize u — E_(u, v,), obtaining u,,
etc. We can at most expect this to converge to something stationary
(see, e.g., [5,6]).

In dynamics, v ~ E_(u,v) is minimized at each time step, and
updates to u come from elastodynamics, with stiffness #, +v2. Therefore,
there is no alternate minimization — there is one minimization in v,
and one time step in u. Much of the modifications we discuss below
apply equally to dynamics.

3.1. Static and quasi-static evolution: energy descents

The interaction between u and v in E, is only in the product v?|Vu|?
in the first part of the energy, P.(u,v). Since this is minimized over v,
as |Vu| gets large, v will decrease to lower this product (no matter how
u is evolving). |Vu| will then tend to increase where v has decreased,
thus driving v to decrease even more. This is behind both nucleation of
fracture and softening.

Our main point is that this interaction is actually unnecessary for
(and even unrelated to) the I'-convergence. The product uz|Vu|2 mat-
ters for I'-convergence only where v is very small, allowing u to vary
essentially for free there, and v pays the price in the other term, S, (v).
But the softening caused by this interaction can be significant, both by
altering the distribution of |Vu|, increasing it where the material has
softened, and therefore tending to decrease its concentration at crack
tips, resulting in v decreasing less at crack tips, which means the crack
does not grow as fast.

On the other hand, the interaction term v?|Vu|? is important for
energy descents leading to crack growth. Near crack tips, |Vu| will be
large because of the geometry of the domain near the crack tip. On top
of that, it will be even larger where v is less than 1 near the tip. If these
effects combine to drive v to zero in front of a pre-existing crack tip, the
crack grows. Note that this should only happen if the decrease in the
interaction term, i.e., the elastic energy % fg(’lg +02)|Vul?, is enough to
offset the increase in S,, i.e., G, times the length of the crack increment,
measured in S, by the energy of cross-sections of v across this crack
increment. We return to these descents in more detail later, but we
note for now that these energy descents at crack tips are desirable for
allowing crack growth at crack tips.

3.2. Dynamics

The Ambrosio-Tortorelli approximation can also be used for dy-
namic fracture, as shown in [7]. Here, v follows the same minimiza-
tion as above, namely, at each time ¢, v(r) minimizes E, (u(r),-) (sub-
ject to some irreversibility condition). Instead of being obtained by
minimization, u is obtained by solving

uy, — div([n, + v*1Vu) = 0.

Here, softening and nucleation are more subtle than for pure minimiza-
tion problems. As before, if |Vu| gets large somewhere, v will decrease,
which means the material gets softer. Then two things occur: the wave
speed decreases in this region, and |Vu| tends to increase. This last
feature can be temporary, since it might be that a wave travels through
this region, and afterwords the displacement is close to constant there.
Of course, this also depends on how irreversibility is implemented. We
just note that softening is problematic here too, just as it is in static and
quasi-static settings.
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3.3. Softening and the approximate surface energy

The approximate surface energy

S.(v) =G, <i/(1—u)2dx+e/ |VU|2dx)
4e Q Q

approximates the limit surface energy
G.HNTI(S,)

only when v minimizes S,, subject to v being close to zero where u
wants to jump, and v being close to 1 away from that set. That is, v
needs to make the optimal transition, in the sense of minimizing .S,,
between the sets where v is close to zero, and where it is close to 1.
To the extent the term v?|Vu|? in P, is neither close to zero (where v is
very close to zero) nor close to |Vu|* (where v is close to 1), it interferes
with v minimizing S,, and artificially adds to the surface energy .S,.
This holds also for other surface energies, such as AT1.

4. Modifications preventing softening and nucleation: stopping
and controlling certain energy descents

4.1. Stopping softening and nucleation

We describe one simple modification based on preserving
I'-convergence while altering softening and nucleation. We leave S,
unchanged, and alter only the function that multiplies [Vul? in P.:
replace E, with

El(u,v) := % /Q(ng+ui)|Vu|2dx+Gc <$ /Q(l —v)dx+¢ /Q |VU|2dx> ,
where g € (0,1) is fixed and

L 1 if v(x) > p
vﬂ(x) = { o(x)

if v(x) < B.

There are two points to introducing this g. First, if g is small, only small
values of v interact with Vu in the v2|Vu|? term, which is all that is
necessary for the I'-convergence. The profile of v is therefore relatively
unaffected when it makes the transitions between 0 and 1, since it is
essentially just trying to minimize .S,, and so the cost is closer to the
minimum of .S,, which is G,. Second, perturbing v a little below 1 does
not affect v;, and therefore does not affect uﬁqulz, so that

2 (S + e)Ival?) =0
wherever v is 1 (and where it is more than f). These perturbations only
cause an increase in the surface energy .S,, and so they will not occur
in energy descents. Softening and nucleation are thereby prevented for
any numerical scheme based on the gradient of the energy, and even
for methods that consider discrete but small changes in v.

4.2. Locally switching nucleation back on

Further modifications are possible for models intended to allow
nucleation, for example if nucleation occurs if u(x), v(x) satisfy some
condition C(u(x), v(x)). At such points, we want to return to the original
formulation that allows softening and nucleation. One possibility is to
have the g above be a function of x (and, we will see, possibly #), for
example, for a static problem,

L 1
vp(x) 1= { ()

where

p(x) = { !
4

The idea is, y somewhat plays the role of p before, and if after
minimizing Ef in u the condition C(u(x),v(x)) is nowhere satisfied,

if v(x) > A(x)
if v(x) < p(x),

if C(u(x), v(x)) holds
otherwise.
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then there can be no softening or nucleation (if y < 1), and v(x) = 1
(approximately) everywhere away from the crack.

On the other hand, if when first minimizing Ef in u it happens that
C(u(x), v(x)) is satisfied on some set .S, then vg=vonsS, and alternate
minimization will allow v to decrease there, allowing softening and
nucleation. This would initiate in .S, but could end up outside .S at the
end of alternate minimization.

An example of such a condition is if nucleation occurs if the stress
exceeds some specified value c,. We then have

1
vﬂ(x) = { v(x)

where

p(x) = { !
Y

Put another way,

() = v(x) if v(x) <y or v(x)?|Vu|(x) > ¢,
bplx) == 1 otherwise.

if v(x) > A(x)
if v(x) < f(x),

if v(x)?|Vul(x) > ¢,
otherwise.

For time evolutions, either quasi-static or dynamic, we would have
u(x, 1) and v(x, ). We could consider

. 1
vp(x, 1) .—{ o(x. 1)

where

_ [ v ifu@?Vul(n < ¢,
A1) = { 1 otherwise.

if v(x, 1) > f(x,1)
if v(x, 1) < p(x, 1),

Another option is to have a model such that once the ¢, threshold is
crossed, the material is permanently open to softening and nucleation
there. A corresponding # would be

Bt = y if o(x)?|Vu|(x,7) < ¢, for all z < ¢
LU= otherwise.

4.3. Effect on crack growth

v is less than 1 near the crack tip generally for two reasons. First,
because it is zero in the crack, and must make a continuous transition
to 1 away from the crack. Second, because |Vu| is large there, and so
the term v?|Vu|? prefers v to be small. It is this second reason that is
also behind crack growth, as discussed above.

If we imagine largely removing this interaction, e.g., the interaction
term v?|Vul|? is restricted to where v is very small:

Ef(u,v) ::/(n£+vz)|Vu|2dx+Gc i/(l—u)zdx+e/ |Vol?dx ),
€ o s de Jo Q

o 1 ifox)>p
opx) 1= { u(x)  if o(x) < f
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where now f < 1, then the benefit of reducing v is very small and
can only occur in a small region. Nevertheless, it seems plausible that
crack growth could still occur, unless g is so close to 0 that v cannot
effectively decrease where it is already less than p.

Potentially depending on exactly how gradient descents are im-
plemented, any f# < 1 should be enough to prevent softening and
nucleation away from the crack. However, because v will necessarily
be below 1 close to the crack, there is potential for unwanted softening
there, too. Numerical experiments are needed to determine values of
that sufficiently restrict softening, while allowing crack growth.

Finally, it is important when implementing phase-field models to
numerically calculate the surface energy .S,(v), and compare it with
estimates of the computed crack length. Softening will tend to create
errors in the surface energy, artificially increasing it, and we pre-
dict that with the modifications described here, the surface energy
approximations will improve.
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