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Abstract

Analyzing interactions between actors from a systems perspective yields valuable
information about the overall system’s form and function. When this is coupled
with ecological modeling and analysis techniques, biological inspiration can also be
applied to these systems. The diagnostic value of three metrics frequently used to
study mutualistic biological ecosystems (nestedness, modularity, and connectance)
is shown here using academic engineering makerspaces. Engineering students get
hands-on usage experience with tools for personal, class, and competition-based
projects in these spaces. COVID-19 provides a unique study of university mak-
erspaces, enabling the analysis of makerspace health through the known disturbance
and resultant regulatory changes (implementation and return to normal opera-
tions). Nestedness, modularity, and connectance are shown to provide information
on space functioning in a way that enables them to serve as heuristic diagnos-
tics tools for system conditions. The makerspaces at two large R1 universities are
analyzed across multiple semesters by modeling them as bipartite student-tool inter-
action networks. The results visualize the predictive ability of these metrics, finding
that the makerspaces tended to be structurally nested in any one semester, how-
ever when compared to a “normal” semester the restrictions are reflected via a
higher modularity. The makerspace network case studies provide insight into the use
and value of quantitative ecosystem structure and function indicators for monitor-
ing similar human-engineered interaction networks that are normally only tracked

qualitatively.
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1 | INTRODUCTION

Many of the world’s complex networks can be simplified to directed
graphs where variables and interactions are mapped between actors.
Simplifying complex systems down to a graph network of interactions
enables analyses that can improve our understanding of their function-
ing. Ecologists, for example, use graph and information theory-based
approaches to study complex biological ecosystems. Plant-pollinator
networks become bipartite models, and interspecies predatory net-
works become unipartite food web models. Network graphs and their
matrix depictions are used in ecological and social network analy-
ses to map and study complex networks and their interactions.?3
Social science utilizes bipartite matrices where rows are actors and
columns are events to understand how actors are related to each
other through shared events.2 A bipartite model can be used any
time two unique groups can be identified within a chosen system
boundary where interactions are only between the two groups and
not within the group. NASA, for example, uses networks to study
innovation in their space challenge app, finding that mapping the inno-
vation space of different teams working on the NASA International
Space Apps Challenge as a bipartite network can aid in under-
standing the transfer of information.* Other examples of bipartite
networks include neuron-to-synapse interactions in neural networks,
airports-flights transportation networks, and plant-pollinator models
of ecosystems.1>:¢

Ecological Network Analysis (ENA) provides insight to ecologists
about ecosystem structure and functioning that couldn’t obtained
otherwise.” This approach can identify critical actors who deserve
extra conservation efforts® patterns in redundant feeding that sup-
ports both growth and resilience,” and the importance of the
“brown food web” in maintaining cyclic interactions that maxi-
mize value extraction.'®1! The graph-based approaches investigated
here are nestedness and modularity.}? These analyses are primar-
ily used by ecologists to study plant-pollinator and other bipar-
tite networks, where two groups of actors interact across—not
within—groups.231314 Prior work investigated the nestedness of
Eco-Industrial Parks as unipartite networks, finding that they can
improve their sustainability and resilience when they have more
ecologically-similar nested structures.’>¢ Nestedness has also been
used to predict the stability of bipartite networks to perturbations,
looking at the failure rate of global trading companies based on
their role in larger industrial networks.'”-18 That work found that
when companies deviated from the highly nested structure of their
global training network, a few years later they had disappeared/were
replaced by one that more closely followed the larger network’s nested
structure.”

This paper draws inspiration from nature’s mutualistic networks
(which are modeled as bipartite networks, for example, plant-pollinator
and soil networks)—their resistance to disturbances and network
stability has been found to relate to the levels of modularity and nest-
edness in their architectures,'”-21 however more recent works have
found that the previously held ecological belief that “universal nest-

edness” existed among mutualistic networks is outdated?232* due

SIGNIFICANCE AND PRACTITIONER POINTS

Three metrics commonly used by ecologists to study mutual-
istic ecosystems (nestedness, modularity, and connectance)
are shown here to provide valuable quantitative informa-
tion about the functioning of academic engineering mak-
erspaces, modeled as bipartite student-tool interaction net-
works. Although engineering makerspaces are used here as
a case study, the results provide support for the use of
these metrics as performance indicators for a wide variety
of human-engineered networks that can be represented in
a bipartite model. The findings suggest that these metrics
can serve as heuristic diagnostics tools for system condi-
tions over time resulting from both intended and unintended

restrictions placed on networks.

to practices such as using only “tiny taxonomic cuts” that exclude

25 or are overly dependent on network size2®

rarely occurring species
or degree.?” Enhanced resilience is highly desirable in human net-
works and identifying ecological network structures associated with
resilience can offer valuable bio-inspired design guidance. The ENA
metrics that describe these network characteristics?8 offer a route
for applying this biological system inspiration. Power grids, industrial
manufacturing networks, water distribution, and supply chains have
all been shown to improve their performance when they mimic the
topological and functional characteristics of biological food webs.27-34
Food webs for example, have been found to have a unique balance of
redundancy and efficiency in their networks,3>3¢ a characteristic that
is translatable to human-engineered systems and systems of systems
in such a way that their resilience is improved.37:38

Nestedness, modularity, and connectance of bipartite networks as
a group?337-41 describe a network beyond just a density of connec-
tions, highlighting where connections are found and where they are
sporadic.*2 The insights they can provide for bipartite human net-
works are investigated here using university engineering makerspaces.
The goal of these spaces is to provide engineering students with a
unique and hands-on educational experience where students use a
wide variety of tools, and the tools serve as stepping stones through
the space. The spaces however are still relatively new, with only a min-
imal amount of research into hidden roadblocks that can limit use by
certain demographics and indirect effects that can have huge influence
on usage patterns.*3~%¢ These characteristics are almost impossible
to see with the naked eye but may be visible using network mod-
els. These spaces also provide a unique case study in contrast with
more traditional unipartite networks that hopefully broaden readers’
scope of when system perspectives and biological inspiration may be of
value.

Prior research utilizing nestedness and modularity analysis to cat-
egorize networks and identify their underlying structures®1247.:48

have focused on static network depictions under normal
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circumstances. Understanding how a network changes over time,
especially in response to a disturbance, is critical for understanding
if network characteristics like nestedness and modularity can signal
network health. For the makerspaces investigated here, there was
interest in if the spaces had recovered from the COVID restrictions.
Due to the nature of ecosystem data collection tracking modular-
ity and nestedness changes during and after a disturbance can be
difficult.*” Modularity and nestedness have primarily been used in the
ecological realm and as such this paper presents the first investigation
into the ability of nestedness and modularity to measure network
health over time. Modeling makerspaces through COVID-19, when
significant restrictions to student usage were in place that were then
gradually lifted, provides a unique opportunity to capture a system

that is undergoing drastic changes.

2 | METHODS

Nestedness quantifies the structural hierarchy amongst actors in a
network. 124250 Multiple methods exist to calculate nestedness, but
Nestedness based on Overlap and Decreasing Fill (NODF) is used here.
NODF has supported understanding both the impact of invasive
species in soil networks and resilience to external and unexpected
disturbances in plant-pollinator networks.’” Nested ecological net-
works have been found to avoid mass extinction events because their
structure promoted interactions between specialists and generalists
creating a more stable environment.”! Nestedness alone can thus pro-
vide a strong indication about the stability of the network, with higher
nestedness assuring that actors with few interactions are connected to
actors with several interactions, preventing the former from failing.”®

Ecologists have used unweighted modularity to identify critical
species in plant-pollinator networks. The analysis of over 29 dif-
ferent plant-pollinator networks identified modular structures with
the plants often linking the modules together.! Modularity also aids
in understanding how a network is partitioned and can be calcu-
lated using unweighted (binary visitations) data, as is done here, or
weighted (frequency) data.>25% Modularity identifies groupings of
actors based on their interactions, as well as hub actors that highly
connect the network and specialized actors that may be at risk of los-
ing connection.>*>> A modularity analysis of global flights was able to
identify airport hubs.® The complex global aerial transportation net-
work was broken up into modules which easily identified the airports
that connected these modules and airports that were dangerously
disconnected.®

Connectance quantifies how connected a network is in reference
to its total number of possible interactions.!? Connectance is used
in ecology as a measure of ecosystem complexity, with a higher con-
nectance indicating a more diverse network.”® While connectance
alone cannot describe network stability, it provides critical informa-
tion for understanding a network’s nestedness and modularity as it
controls their bounds.12°457 Thus, by pairing the metrics together, a
better understanding of a network’s structure, and therefore function-

ing, is achieved. Connectance must be included whenever modularity
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and nestedness are analyzed, as will be clearly shown in the results
following.

2.1 | Case study

Students use of tools across three semesters at two large university
engineering makerspaces are used to illustrate the value of modularity
and nestedness for understanding and designing human networks.>®
The first two semesters (Fall 2020 and Spring 2021) were semesters
under increased COVID-19 restrictions limiting student use of the
space. These restrictions were being removed by the third semester
(Fall 2022), allowing for a look at “normal” operating conditions for the
space. Students use tools such as 3D printers and laser cutters in these
spaces for anything from classes to personal projects to student com-
petition teams. When modeled as a bipartite network of students and
tools, modularity and nestedness can identify hub tools and students>®
and unintentional restrictions placed on students and tools preventing
use.>? This type of information can provide valuable insight for design-
ers, decision makers, and evaluators in a wide range of human networks
with a bipartite configuration.

The makerspaces are modeled as bipartite networks of students
and tools, with the goal being to understand the impact of tool use on
the functioning of the spaces. The two schools have different under-
lying ideologies: School A is a primarily staff-run space with student
volunteers where students use the space for their classes. School B
is a student-run space usable for both classes and personal projects.
Table S1 lists the specific tools in each space at both schools and how
they were organized into 12 general tool types. The general makerspace
model is needed for comparing the makerspace network structure
across different makerspaces and schools as they will have similar
general tool times but may have different specific tools in each cate-
gory. The most obvious difference between using specific and general
tool network representations is an increase in network size due to
an increase in tools modeled. The increase in network size causes a
decrease in connectance that forces a decrease in the nestedness, as
outlined later in the results (Figure 5). To account for this, normalized
nestedness and null models are used to compare between semesters.

The bipartite networks of students and tools were created using
end-of-semester surveys. The surveys asked students to self-report
the tools they used, both general and specific, over the course of that
semester. For example, a student who said they used a 3D printer
would then be asked which specific 3D printer was used (a drop in stu-
dents’ response rates was seen between the general and specific tool
selections that may impact the network analysis results, see discus-
sion). The survey did not ask about the frequency of a tool’s use. The
surveys also collected demographic information and captured experi-
ence characteristics such as class usage and social interactions. Prior
work has used network analyses to look at specifics of these spaces
with respect to their maintenance,”? class versus personal usage,© and
demographic data.?? Survey responses were compiled into a bipartite
graph and associated matrix like what is shown in Figure 1. A value of

one in the matrix indicates a student interacted with a tool and zero if
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FIGURE 1

Hypothetical example makerspace network with interactions. Left—A graphic representation of the network. Right—The bipartite

matrix [B] for the hypothetical network shown in Figure 1, with students (51-10) as rows and tools as columns (T1-10). Interactions between any

two are documented with a one and no interaction with a zero.

they did not. The example hypothetical bipartite makerspace network

in Figure 1is representative of those created from the surveys.

2.2 | Modularity

Once the network of interest is created and an interaction matrix con-
structed (Figure 1-Right), its modularity can be analyzed. A modularity
analysis identifies modules present in the network by reorganizing the
structure and links until its maximum modularity value is reached.!
This optimization can be done using several different methods,®* the
Newman/Leading Eigenvector method (6%, Equation (1)) is used here
for its added benefit that modules are reproducible given the same
inputs to allow for a consistent modularity value to be obtained as well
as providing the maximized modularity for the network.? The MAT-
LAB package BiMat®? runs the Newman method to find the modules

(Q.

Q = %Z(BU—¥>5(gi,h,-) ()
ij

Equation (1) calculates the overall network modularity (Q), where
E is the total number of interactions or links in the network, Bj; is the
matrix entries (one representing an edge or zero for none), g; and h;
are the module indices of the nodes i and j, and k; and d; represent the
degree of the node i and j respectively. The § term parses the module
indexes for pairings between actor groups (in this case students and
tools) and assigns a value of one if they are in the same module and
a value of zero if they are in different modules. The process is carried
out by initially splitting the network into two modules using the algo-
rithm and calculating the Q. The network is further split up into more
modules until the splitting no longer increases the overall network’s
modularity.®? Modularity can be any value between zero and one, with

avalue of one indicating a perfectly modular network.

Module 1
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FIGURE 2 Left—Bipartite representation of the network with

students (S1-S10) interacting with tools (T1-T10) and color organized
by module. Right—BiMat software®? output highlighting the network
from Figure 1 with interactions (colored in squares) organized into
modules, shown with four different colors (black interactions fall
outside of any module).

Figure 1-Right shows the B matrix for the hypothetical makerspace
network of Figure 1-Left with 10 tools (T1-10), tracking 10 students’
(S1-10) use of the space. The matrix denotes all the network interac-
tions found in the space with a one, and zeros indicate no interaction. As
seen in Figure 2-Left, the students fall into modules based on common
tool usage. For example, Students 1, 2, and 10 together form a mod-
ule (teal color in Figure 2) based on Tools 1 and 2 only being used by
Students 1 and 2 and Tool 10 only being used by Students 1 and 10.
These types of patterns in a small and highly modular network are iden-
tified relatively easily with a simple visual scan. As a network grows in

size and complexity, however, this becomes exponentially harder, if not
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FIGURE 3 Ahypothetical makerspace of 5 students and 5 tools with a nested structure. (A) Diagram of the sample makerspace. (B) Bipartite
graph of the makerspace. (C) BiMat nested network output visualizing the network matrix, where the curve indicates the nested interactions

boundary.

impossible. MATLAB’s BiMat package was used here to find modules
and calculate the overall modularity following Equation (1). BiMat pro-
duces a visual depiction of a network’s interactions, rearranging them
to best show modules (as shown in Figure 2-Right).¢2 The modular-
ity value for the hypothetical network of Figures 1 and 2 is 0.69. The
main drivers of this modularity can be seen in Figure 2-Right, where
the colored boxes indicate within-module interactions and the black
box indicates outside-of-module interactions. The one out-of-module
interaction, student 4 using tool 7, reduces the network’s modularity
from a perfect value of one. A null model analysis (described in the
following section) is needed to understand whether the value of 0.69
indicates that the network is statistically significantly modular based on
a network of the same size and connectance (in this case connectance
is 0.22).1247

2.3 | Nestedness
Nestedness can be calculated for either a bipartite or unipartite net-
work from the interaction matrix. Nested networks, when rearranged
from most connected actor to least connected actors top to bottom
rows and left to right columns, will wind up with the most general
actor in the upper left of the matrix and the least general actor in
the bottom-left and top-right, as seen in the sample perfect nested
matrix in Figure 3.°0 Nestedness can be calculated a few different
ways, with some techniques normalizing the resultant metric on a
scale of zero to one and others, like the one used here, from zero
to one hundred.185063 Nestedness based on Overlap and Decreasing Fill
(NODF) is based on “overlap and decreasing fill” to evaluate a network’s
architecture and is considered a more appropriate metric for interac-
tion networks.”%¢3 NODF calculates nestedness values for each row
and column individually before combining those values into an overall
nestedness result. These column and row nestedness values can addi-
tionally be used to aid in understanding a network’s architecture in
more detail.

NODF first organizes the bipartite network in order of total number
of interactions, with the rows organized from most to the least inter-

actions top to bottom and the columns organized from most to least
interactions from left to right. The organized matrix for the hypothet-
ical student-tool network in Figure 3A can be seen in Figure 3C. Once
organized, NODF is calculated to find the overall nestedness, ranging
from O to 100 (or O to 1 if normalized) with the higher value indicating
amore nested network.1263 Mutualistic networks in nature, like plant-
pollinator and soil networks, tend to have NODF values ranging from
0.35t0 0.7 (on a scale of 0-1).63¢%4

Equations (2) and (3) are used to calculate NODF and Figure 4 walks
through this process of calculating NODF for a very small 3 x 3 net-
work. The two main aspects of the NODF analysis are the “decreasing
fill” and “overlap.” NODF pairs and compares each row with every other
row and each column with every other column (as seen in Figure 4).
The “decreasing fill condition” is checked first for each pair to ensure
that the number of interactions in the first is more than in the second
by at least one (from left to right for columns and top to bottom for
rows). If this condition is not met NODF defaults to zero. When met
(for example, in the C1-C2 comparison at the top of Figure 4 where C1
has more interactions than C2), the number of interactions that match
from the second to the first is checked. For a column comparison, C1-
C3 in Figure 4-top clarifies that only one of the two C3 interactions
is also found in C1, giving this subset an Npg4 value of 50 (i.e., 50%
of interactions match between the two columns). In the case of C1-
C2 both C2 interactions are found in C1 so the value is 100. Once all
comparisons have been made, the Npgireq Values are averaged, produc-
ing Neoumn @and Nyous. The final NODF value is the average of Neoumn
and Nyops. NODF can be calculated manually for smaller networks but
becomes increasingly difficult for larger networks. Matrix ordering and
NODF calculations can be done within the BiMat MATLAB package.®?

0 ifc< k;

nj; .
———  otherwise

min (k,', kj)
In Equation (2), k; is the sum of row/column i, ki is the sum of

row/column j, nj; is the total number of entries that match between the
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FIGURE 4 Process for calculating NODF of a hypothetical 4 x 4 network (top-left, actors R1-4 interacting with actors C1-4). The top-right
process shows the column nestedness calculations and the bottom-left process shows the row nestedness calculations. The culmination of which is

shown in the bottom-right with the overall NODF value.

two and c is the number of entries that have a value of 1 in k;. Equa-

tion (3) is the NODF value normalized for the matrix size to better

compare different sized matrices, producing a final NODF value from

zero to one.

Z,.j Mijjrow + Zij Mj;col
mm—1)  nin-1)

2 2

NODF = (3)

The NODF calculation process also identifies generalist and special-
ist actors in the network.'? Generalist actors will always be closer to
the top-left of the matrix while specialist actors will be closer to the
bottom and to the right. A nested makerspace network would indi-
cate that students are using a generalist tool first, then progressing
through the space to interact with more complicated and specialized
tools. Figure 3B shows a perfectly nested network, with specialist stu-
dents (for example S4 and S5) interacting with generalist tools (in this
case T1 and T2). The nested analysis can identify generalists and spe-
cialists and how they interact in the network, the underlying causes
as to why a network is nested or not may not be obvious and would

require supplementary investigations.

2.4 | Connectance

While both nestedness and modularity analysis can provide valuable
insight into a network, it is imperative to see both in combination to

fully understand the network. Nestedness and modularity are related,
with the primary connection being the network connectance (C, Equa-
tion (4) and a value from zero to one).!2 Generally, the higher a
network’s connectance the higher its nestedness will be, while the
lower the connectance the higher the modularity.'? There are bounds
on these trends however, explored later in the results, that also depend
on network size (the total number of rows, Ny, and the total number

of columns, Neopumns)-

L

Nraws Ncolumns

c (4)

The numerator of Equation (4) is the total number of network con-
nections (L, the sum of all entries in matrix B). The denominator is the
total number of possible connections or the number of rows multiplied
by the number of columns. A connectance of one indicates that all pos-
sible interactions are occurring meaning that everything is connected
to everything. A connectance of zero indicates that no interactions
exist in the network. While research has highlighted the importance of
analyzing nestedness and modularity together, most work has focused
on either specific connectance ranges or on the overall importance of
nestedness and modularity.2242 The work in this paper expands on
the relationship presented previously and creates a view of the full
range of the relationship between the two metrics with the sample net-
work creation to further enhance the understanding of the relationship
between nestedness and modularity.
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TABLE 1

Network size (rows = students x columns = tools), nestedness (NODF), modularity (Q), and connectance (C) for Schools A and B in

Fall (FA) and Spring (SP) 2020, 2021, and 2022. Null models are listed for both the corresponding semester AND for SP22 only (the normal
semester, for which School A’s connectance is 0.34 and School B’s connectance is 0.4). Results are shown for general tool groups. Null models that

are significantly different from the real network at p > .05 are starred (*).

Each semester’s
null model Q
Sem. Size C Q (z-value)
School A FA20 54x 10 0.25 0.34 0.36(0.32)
SP21 178 x 12 0.18 038  0.40(-1.25)
SP22 77 x12 034 019  0.24(-3.93)
School B FA20 57 %13 039 018 0.21(-2.76)*
SP21 94 %13 034 020 0.23(-2.86)"
SP22 95x%x 13 040 0.18  0.2(-145)
2.5 | Null models

Determining if a network’s nestedness and modularity results are sta-
tistically significant requires the generation of null models to check
against the nestedness and modularity of a random network of the
same size and connectance.126%66 A type-one null model®® is used
here, with 1000 sample networks generated at each connectance value
listed in Table 1. Potential errors associated with empty rows in the
random network generation were accounted for by forcing all rows
to have a value of one. This null model modification was previously
used in host-phage interaction networks to better match the dynam-
ics of the network, as well as maintain the null model network sizes.*”
The resultant null model networks have the same size and number
of interactions as the original networks, that is, the global proper-
ties remain the same. A probability value (p) of .05 (z-score > 1.96
or z-score < —1.96) will be used for the network to see whether the
resulting modularity and nestedness values are significantly different
from those that would be randomly generated, as determined by the
null models.®” Other variations of null models exist with modifications
formulated for different applications, see refs. 27,53, 66, 68.

The procedure used here for evaluating networks undergoing dis-
turbances is to compare a network’s modularity/nestedness against
a null model that uses the network’s connectance from normal oper-
ations. Data from Spring 2022 provides connectance values for the
makerspaces here during a normal semester, against which Fall 2020
and Spring 2021 (when COVID-19 restrictions were in place) are
compared. This approach enables a network’s modularity and nested-
ness during disruptions to be understood in comparison with how the

network should be able to operate.

3 | RESULTS

3.1 | Modularity, nestedness, and connectance
One thousand networks at nine different network sizes, from 10 x 10
to 100 x 100, with varying connectance values were generated to

highlight the relationship between nestedness, connectance, and mod-

Each semester’s

SP22 null model null model NODF SP22 null model

Q (z-value) NODF (z-value) NODF (z-value)
0.26 (6.15)* 0.50 0.27 (6.79)* 0.36 (2.46)*
0.23(17.3)* 0.33 0.20(12.7)* 0.36 (—2.33)*
0.25(-3.92)* 0.55 0.36(9.71)* 0.36(10.1)*
0.21(-2.49)* 0.64 0.40 (10.9)* 0.41(10.1)*
0.19(0.17) 0.61 0.36 (15.0)* 0.41(11.6)*
0.20(—1.91) 0.59 0.42(12.8)* 0.41(10.1)*

ularity in Figure 5. The results highlight a strong negative correlation
between nestedness and modularity for all but the most connected
networks (in most cases a connectance of 0.85 or greater).1247:65 The
highlighted connected networks experience a drop in nestedness due
to the ideal “triangular shape” seen in Figure 3C not being achievable.®3
These results suggest that modularity and nestedness for a specific
network size are bounded by the connectance of a network. Increas-
ing or decreasing the modularity or nestedness of a network requires
that the connectivity be changed. These findings are consistent with
previous work highlighting connectance as a major limiting factor in
achieving specific network properties related to degree distribution
like nestedness.>” This is the first visual depiction however of the
clear relationship between these three metrics. The primarily nega-
tive relationship between modularity and nestedness also varies with
a network’s size, with larger networks (Figure 5-Bottom Right) more
constrained to a specific modularity based on nestedness and con-
nectance. These results are critical to guide the use of modularity and
nestedness as a network design goal, and they clarify that without a
specific connectance, a desired modularity and/or nestedness is not
achievable.

3.2 | Makerspaces’ modularity and nestedness
analyses

School A was found to have a higher modularity and a lower con-
nectance than School B during all three semesters studied. A jump in
nestedness at School A during the Spring 2022 semester is seen, pos-
sibly due to COVID-19 restrictions in the space being lifted (School
A had significantly more student use restrictions in the makerspace
than School B due to COVID-19). The modularity and nestedness
differences between the two makerspace networks can be largely
attributed to differences in connectance (corresponding to student
usage of tools). The makerspaces at the two schools have inherent dif-
ferences in the way they are run. The space at School A is primarily
staff-run and used to support course curriculums. School B’s space is
primarily student-run and used for both course support as well as per-

sonal projects. School B’s space is also set up such that those tools with
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FIGURE 5 The same curve shown for a variety of network sizes, describing the impact of network size on the relationship between modularity

(x-axis), nestedness (y-axis), and connectance (color scale on the right).

the most safety restrictions (for example close-toed shoes, long pants,
eye protection) are placed such that students who don’t meet these
requirements can still enter the space. At School A, safety require-
ments for the most restrictive tools are used as requirements for the
entire space. These operational differences, in addition to slight dif-
ferences in COVID-19 restrictions, show up in the network models as
differences in connectance, modularity, and nestedness.

Tables 1 and 2 highlight the properties of the networks each
semester and their corresponding null models. The modularity and
nestedness visualization of the networks at each school each semester
can be found in the supplementary information Figures S1 and S2.
Null models that are significantly different from the real network at
p > .05 are starred. Tables 1 and 2 show a strong correlation for the
networks highlighting a nested structure for the makerspace. A nested
makerspace indicates many students who have minimal tool interac-
tions in the space (this could be due to many new student(s) coming in
to only use something specific) interact with tools like the 3D or other

generalist tools.”® The nested makerspaces also indicate that students

who have more tool interactions in the space, thereby using a wider
variety of tools, are more likely to use tools that are used by fewer stu-
dents or specialized tools.”® This trend follows intended use patterns
for makerspaces. A jump in nestedness is seen Spring 2022 (Table 2
shows that nestedness increased from 0.39 to 0.51 for the specific tool
model). The specific tool-based makerspace networks at School B have
slightly lower nestedness values than the general tool networks. This
decrease is due to the increase in network size resulting in a decrease
in connectance (for example, as seen in Tables 1 and 2, Fall 2020 the
network’s connectance drops from 0.36 in the general network to 0.15
in the specific network). Despite the difference in connectance, the
network remains nested in structure when compared to its null models.
Figure 6 visualizes the significance of the modularity and nested-
ness results for each school, each semester. The y-axis is the difference
between the null model and the general or specific tool network models.
Positive difference values indicate significantly more nested or mod-
ular than what is generated on average by a random network creation

of the same size and connectance. A negative correlation indicates
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TABLE 2 Network size (rows = students x columns = tools), nestedness (NODF), modularity (Q), and connectance (C) for Schools A and B in
Fall (FA) and Spring (SP) 2020, 2021, and 2022. Null models are listed for both the corresponding semester AND for SP22 only (the normal
semester, for which School A’s connectance is 0.15 and School B’s connectance is 0.22). Results are shown for specific, individual tools. Null models
that are significantly different from the real network at p > .05 are starred (*).

Each semester’s
null model Q
Sem. Size C Q (z-value)
School A FA20 33x27 0.10 0.47 0.53(—1.45)
SP21 122x76 0.06 0.44 0.42(1.07)
SP22 70x77 0.15 022  0.28(-5.15)*
School B FA20 54 x 45 0.16 024  0.30(-5.09)*
SP21 85x76 0.14 024  0.26(-2.50)*
SP22 94x71 022 018  0.19(-2.00)*
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Each semester’s

SP22 null model null model NODF SP22 null model

Q (z-value) NODF (z-value) NODF (z-value)
0.40(2.86)* 0.22 0.11(6.95)* 0.16 (3.27)*
0.22(37.7)* 0.14 0.06 (23.1)* 0.16 (—4.09)*
0.26 (—4.97)* 0.39 0.16(38.8)* 0.16 (39.9)*
0.24(-0.19) 0.38 0.17 (20.8)* 0.23(13.8)*
0.19(10.4)* 0.37 0.15 (40.6)* 0.23(22.3)*
0.19(—1.89) 0.51 0.23 (44.2)* 0.23(44.7)*
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FIGURE 6 Difference between each semester’s null model’s nestedness (left) and modularity (right) to the modularity and nestedness of each

school, each semester for both the general and specific network models.

the measured value is significantly lower than the null model. A zero,
or close to zero, difference indicates that the network’s nestedness
or modularity is similar to what would be randomly generated and
is therefore not significant. The nestedness of the spaces at both
schools each semester was found to be significant. The modular-
ity of the spaces at both schools each semester is not significant.
The significance of this difference is largest for the Spring 2022
semester at both schools when the spaces were back to their normal
operations.

The restrictions put in place in these makerspaces during the initial
COVID-19 pandemic offer a chance to understand the value of modu-
larity and nestedness for understanding disturbance-induced changes
over time. Connectance, the number of interactions in the network ver-
sus total possible interactions (seen in Tables 1 and 2), clearly highlights
the usage changes occurring due to the COVID-19 restrictions. With-
out COVID-19 restrictions, one would expect the connectance values
of the networks to remain relatively similar from one semester to the
next. Understanding how the makerspaces were impacted requires
comparing the network each semester to what they would be if that
semester were normal, or using a null model corresponding to the

connectance of the normal semester. Spring 2022 is taken here as
representative of a “normal” semester. Tables 1 and 2 list both the
null model for each semester alongside the null model for the Spring
2022 (SP22) “normal” semester. Significant differences in the z-values
at p > .05 of nestedness to the models are starred. The nestedness
(NODF) of the “normal” null models are the same for each semester as
the calculations accounted for network size when the value is normal-
ized, causing the connectance to be the major driving factor for the null
models.

Figure 7 highlights the differences in modularity (right) and nest-
edness (left) between the “normal” Spring 2022 semester’s null model
and each school’s makerspace networks each semester. School A’s
(diamond shape) makerspace during Fall 2020 and Spring 2021 has a
higher modularity than the null models, indicating that student usage
of the space created a significantly modular student-tool interaction
network when COVID-19 restrictions were in place. School B’s mak-
erspace during Fall 2020 and Spring 2021 compared to the “normal”
Spring 2022 semester’s null model are still significantly nested in both
the general and specific tool formats, as well as having overall lower

modularity values.
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4 | DISCUSSION

Nestedness and modularity can identify the current state of a mak-
erspace and any hidden challenges or roadblocks that may exist. A
healthy makerspace provides an environment where students can
explore different ideas, interact with a variety of tools, and have
ample resources to make products.®”’% University makerspaces
must also train students, providing a more hands-on approach to
learning course-based material.”! These goals should result in a nested
space, which would indicate that new students are introduced first to
general tools while students that have been around longer used a
wider variety and more specialized tools. Metrics, such as the variation
on Shannon’s Index looking at interaction diversity—H2’53, exist that
may offer an improved approach for identifying specialization amongst
the network’s actors using weighted interaction information. A less
nested/more modular makerspace structure would indicate that
students are only using tools associated with the course they are in,
creating clusters or modules of student-tool interactions. An extreme
version would be an almost perfectly modular network, with few if any
interactions happening outside the modules indicating that students
never explore the space beyond the tools used for class.

The makerspaces of the two schools appear similar in real life
(both belong to large R1 schools with significant resources and are
used primarily to facilitate student learning in engineering courses).
The nestedness and modularity analyses used here on student-tool
network models provide insight that uncovers significant differences,
especially in terms of how they function during and after disruptions.
The modular structure of School A’s makerspace during a disruption
and the nested structure of School B’s makerspace staying consistent
throughout the ordeal suggest that differences in makerspace oper-
ations are causing large impacts at the network level. The analysis
done here and shown in Figure 5 underscores the importance of con-
nectance in a network’s modularity and nestedness. In the face of

perturbations, School B remained static in all its ecological metrics. On

the other hand, School A had relatively large changes to the network
properties, particularly in its connectance. A static analysis of the space
would have likely not yielded valuable information, as the initial null
model analysis indicated a consistent trend. However, by imposing a
higher expected connectance to the network, a method of analyzing
how a network is performing under different conditions can be created.
The potential for the shift of the network based on connectance is also
highlighted in Figure 5, with connectance being the main driver of the
potential nestedness and modularity of a random network. The impor-
tance of connectance thus becomes key when analyzing a perturbation,
asitis likely that a network will experience potential lower connections
during the duration that could drastically affect the work.

The impact of COVID-19 restrictions at each school can be quan-
titatively visualized using modularity and nestedness analyses and
comparing against the network under normal operating conditions.
The class-based use restriction at School A is hypothesized to be
the primary driver of the lower connectivity and more modular
makerspace use structure. The modules here for School A appear
to correspond somewhat with specific courses across the different
engineering majors that use the space. Variations from this could be
attributed to more multidisciplinary projects, causing the non-module
interactions (the black-colored interactions in the modularity plots
of Figures S1 and S2). The makerspace at School B is also intended
to supplement engineering courses in the same way as School A,
however, it is known that School B’s makerspace also has a significant
number of personal projects occurring at any one time. School B also
has arranged its makerspace such that personal protective equipment
(PPE) restrictions vary throughout, with the entrance to the space
having almost none to encourage curious students to enter. School
A’s PPE requirements are significant for the entire space regardless of
where you are or what you are doing. The other significant difference
between the two schools is that School B’s space is entirely student-
run, with all the “workers” in the space being paid or volunteering

students. School A’s space has some paid student workers but is still



BLAIRET AL.

WILEY -2

a primarily university staff-run space. These three major differences
have resulted in a modular and less connected space at School A and
a nested and more connected space at School B during and imme-
diately after the restrictions. Students are encouraged to explore
the space, likely leading to the higher interactions documented and
the increase in nestedness. The overall nestedness structure of both
spaces during normal operating conditions indicates that students are
also primarily interacting with the “generalist” tools in the space and
specializing further in more advanced tools, with students that have
fewer interactions primarily working with the “generalist” tools as well.

The modularity and nestedness analyses also make the impact of
COVID-19 restrictions visible in both spaces. The decreasing modu-
larity from Fall 2020 to Spring 2022 can be attributed to decreasing
COVID-19 related restrictions in both spaces. Fall 2020 and Spring
2021 semesters at School A saw restrictions within the space down
to only the most basic class requirements and no student workers,
resulting in an increase in modularity and a decrease in nestedness
and connectance during the height of COVID-19 restrictions. Start-
ing Summer 2021, restrictions have eased and as of Spring 2022 the
school reported COVID-19 related restrictions had been completely
removed. School B, while they did have some restrictions, did not
remove personal projects or student workers resulting in their nested
structure being lower during the height of COVID-19 restrictions but
still present. The use restrictions at both spaces caused fewer inter-
actions and thus lowered connectance values, but only at School A
did that result in a significantly modular structure after the pertur-
bation. School B, although nestedness decreased it never dropped
so low that the space became modular during the perturbation. The
impact of restrictions on the network structure is visible when they
were lifted, in the 2022 Spring semester. Schools A and B both see
large increases in how nested their students and tools are. The con-
nectance also increases during that semester at both schools. These
results offer strong support for the use of modularity and nested-
ness as diagnostic tools for network health. This could especially be
useful for networks where equity may be of interest, energy equity
for example could be investigated for a power grid network with
modularity and nestedness, showing that a more nested structure
has better reach to historically underserved users or neighborhoods.
Translating modularity values to a water distribution network for
example could help ensure that the communities have water during
disturbances.

The study in Figure 5 highlights the relationship between nested-
ness, modularity, and connectance. Different types of networks can
often be characterized by their connectance level and fill. Utilizing the
sample network plot a sample operation region can be identified for
what the likely modularity and nestedness results could indicate. If the
network has high connectance, a positive relationship between modu-
larity and nestedness can be expected and there is a high likelihood the
network will showcase both. This can be useful when first identifying
the network and obtaining overall nestedness and modularity values.

While a makerspace may seek to become more nested, other human

networks may want to be more modular. For example, in electrical net-

works, a modular structure has been found to help mitigate the effects
of network perturbations, particularly when using microgrids.”2 On
the other hand, industrial water networks have been found to benefit
from a more nested structure when experiencing disturbances.'®> Mod-
ularity and nestedness can also be used as diagnostics tools to see if
changes in a network are affecting the network structure positively or
negatively. Future work will expand the case studies investigated here
to include interaction frequency data to create weighted bipartite net-
works, which have been found in ecology to provide enhanced pattern

recognition?? and additional insight into the network.5253

5 | CONCLUSIONS

Analyzing human networks using quantitative ecosystem metrics can
provide valuable information about network function across time.
Changes in nestedness, modularity, and connectance are here shown
to provide valuable insight into the healthy functioning of student-tool
network models of academic engineering makerspaces. Network size
and connectance were found to play a major role in the level of mod-
ularity/nestedness of interactions in the network. The three metrics
combine yield further valuable information about the impact of usage
restrictions on the network structure over time. The usage restric-
tions to class-based projects only at School A (versus personal projects
allowed at School B) results in a more modular student-tool usage net-
work at School A. The more nested usage network at School B reflects
the ability of students to freely use a wide variety of tools. The impacts
of COVID-19 usage restrictions, based on normal operations, were
found to introduce more modularity/less nestedness at both Schools
A and B. This highlights how these intentional restrictions (related
to COVID-19) and the maybe unintentional usage restrictions related
to personal use both limit connectance and create a more modular
structure. These quantitative metrics provide measurable feedback
for policymakers about how space restrictions impact system perfor-
mance. Although academic engineering makerspaces are used here as
case studies, the results provide support for the use of these met-
rics as performance indicators for a wide variety of human-engineered

networks that can be represented in a bipartite model.
NOMENCLATURE

B  Bipartite network interaction matrix
C connectance
ENA  Ecological Network Analysis
L  total number of network interactions/links
N total number of network actors
Neojumn  number of column actors

NODF

N,ow  number of row actors

nestedness based on overlap and decreasing fill

p probability value
Q modularity
z Z-score
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