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Abstract

Analyzing interactions between actors from a systems perspective yields valuable

information about the overall system’s form and function. When this is coupled

with ecological modeling and analysis techniques, biological inspiration can also be

applied to these systems. The diagnostic value of three metrics frequently used to

study mutualistic biological ecosystems (nestedness, modularity, and connectance)

is shown here using academic engineering makerspaces. Engineering students get

hands-on usage experience with tools for personal, class, and competition-based

projects in these spaces. COVID-19 provides a unique study of university mak-

erspaces, enabling the analysis of makerspace health through the known disturbance

and resultant regulatory changes (implementation and return to normal opera-

tions). Nestedness, modularity, and connectance are shown to provide information

on space functioning in a way that enables them to serve as heuristic diagnos-

tics tools for system conditions. The makerspaces at two large R1 universities are

analyzed across multiple semesters by modeling them as bipartite student-tool inter-

action networks. The results visualize the predictive ability of these metrics, finding

that the makerspaces tended to be structurally nested in any one semester, how-

ever when compared to a “normal” semester the restrictions are reflected via a

higher modularity. The makerspace network case studies provide insight into the use

and value of quantitative ecosystem structure and function indicators for monitor-

ing similar human-engineered interaction networks that are normally only tracked

qualitatively.
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1 INTRODUCTION

Many of the world’s complex networks can be simplified to directed

graphs where variables and interactions are mapped between actors.

Simplifying complex systems down to a graph network of interactions

enables analyses that can improve our understanding of their function-

ing. Ecologists, for example, use graph and information theory-based

approaches to study complex biological ecosystems. Plant-pollinator

networks become bipartite models, and interspecies predatory net-

works become unipartite foodwebmodels.1 Network graphs and their

matrix depictions are used in ecological and social network analy-

ses to map and study complex networks and their interactions.2,3

Social science utilizes bipartite matrices where rows are actors and

columns are events to understand how actors are related to each

other through shared events.2 A bipartite model can be used any

time two unique groups can be identified within a chosen system

boundary where interactions are only between the two groups and

not within the group. NASA, for example, uses networks to study

innovation in their space challenge app, finding that mapping the inno-

vation space of different teams working on the NASA International

Space Apps Challenge as a bipartite network can aid in under-

standing the transfer of information.4 Other examples of bipartite

networks include neuron-to-synapse interactions in neural networks,

airports-flights transportation networks, and plant-pollinator models

of ecosystems.1,5,6

Ecological Network Analysis (ENA) provides insight to ecologists

about ecosystem structure and functioning that couldn’t obtained

otherwise.7 This approach can identify critical actors who deserve

extra conservation efforts8 patterns in redundant feeding that sup-

ports both growth and resilience,9 and the importance of the

“brown food web” in maintaining cyclic interactions that maxi-

mize value extraction.10,11 The graph-based approaches investigated

here are nestedness and modularity.12 These analyses are primar-

ily used by ecologists to study plant-pollinator and other bipar-

tite networks, where two groups of actors interact across—not

within—groups.2,3,13,14 Prior work investigated the nestedness of

Eco-Industrial Parks as unipartite networks, finding that they can

improve their sustainability and resilience when they have more

ecologically-similar nested structures.15,16 Nestedness has also been

used to predict the stability of bipartite networks to perturbations,

looking at the failure rate of global trading companies based on

their role in larger industrial networks.17,18 That work found that

when companies deviated from the highly nested structure of their

global training network, a few years later they had disappeared/were

replaced by one thatmore closely followed the larger network’s nested

structure.17

This paper draws inspiration from nature’s mutualistic networks

(which aremodeledasbipartite networks, for example, plant-pollinator

and soil networks)—their resistance to disturbances and network

stability has been found to relate to the levels of modularity and nest-

edness in their architectures,19–21 however more recent works have

found that the previously held ecological belief that “universal nest-

edness” existed among mutualistic networks is outdated22,3,24 due

SIGNIFICANCEANDPRACTITIONER POINTS

Threemetrics commonly used by ecologists to studymutual-

istic ecosystems (nestedness, modularity, and connectance)

are shown here to provide valuable quantitative informa-

tion about the functioning of academic engineering mak-

erspaces, modeled as bipartite student-tool interaction net-

works. Although engineering makerspaces are used here as

a case study, the results provide support for the use of

these metrics as performance indicators for a wide variety

of human-engineered networks that can be represented in

a bipartite model. The findings suggest that these metrics

can serve as heuristic diagnostics tools for system condi-

tions over time resulting from both intended and unintended

restrictions placed on networks.

to practices such as using only “tiny taxonomic cuts” that exclude

rarely occurring species25 or are overly dependent on network size26

or degree.27 Enhanced resilience is highly desirable in human net-

works and identifying ecological network structures associated with

resilience can offer valuable bio-inspired design guidance. The ENA

metrics that describe these network characteristics28 offer a route

for applying this biological system inspiration. Power grids, industrial

manufacturing networks, water distribution, and supply chains have

all been shown to improve their performance when they mimic the

topological and functional characteristics of biological food webs.29–34

Food webs for example, have been found to have a unique balance of

redundancy and efficiency in their networks,35,36 a characteristic that

is translatable to human-engineered systems and systems of systems

in such a way that their resilience is improved.37,38

Nestedness, modularity, and connectance of bipartite networks as

a group23,39–41 describe a network beyond just a density of connec-

tions, highlighting where connections are found and where they are

sporadic.42 The insights they can provide for bipartite human net-

works are investigated here using university engineering makerspaces.

The goal of these spaces is to provide engineering students with a

unique and hands-on educational experience where students use a

wide variety of tools, and the tools serve as stepping stones through

the space. The spaces however are still relatively new, with only a min-

imal amount of research into hidden roadblocks that can limit use by

certain demographics and indirect effects that can have huge influence

on usage patterns.43–46 These characteristics are almost impossible

to see with the naked eye but may be visible using network mod-

els. These spaces also provide a unique case study in contrast with

more traditional unipartite networks that hopefully broaden readers’

scope ofwhen systemperspectives and biological inspirationmay be of

value.

Prior research utilizing nestedness and modularity analysis to cat-

egorize networks and identify their underlying structures1,12,47,48

have focused on static network depictions under normal
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circumstances. Understanding how a network changes over time,

especially in response to a disturbance, is critical for understanding

if network characteristics like nestedness and modularity can signal

network health. For the makerspaces investigated here, there was

interest in if the spaces had recovered from the COVID restrictions.

Due to the nature of ecosystem data collection tracking modular-

ity and nestedness changes during and after a disturbance can be

difficult.49 Modularity and nestedness have primarily been used in the

ecological realm and as such this paper presents the first investigation

into the ability of nestedness and modularity to measure network

health over time. Modeling makerspaces through COVID-19, when

significant restrictions to student usage were in place that were then

gradually lifted, provides a unique opportunity to capture a system

that is undergoing drastic changes.

2 METHODS

Nestedness quantifies the structural hierarchy amongst actors in a

network.12,42,50 Multiple methods exist to calculate nestedness, but

Nestedness based on Overlap and Decreasing Fill (NODF) is used here.

NODF has supported understanding both the impact of invasive

species in soil networks and resilience to external and unexpected

disturbances in plant-pollinator networks.19 Nested ecological net-

works have been found to avoid mass extinction events because their

structure promoted interactions between specialists and generalists

creating a more stable environment.51 Nestedness alone can thus pro-

vide a strong indication about the stability of the network, with higher

nestedness assuring that actorswith few interactions are connected to

actors with several interactions, preventing the former from failing.50

Ecologists have used unweighted modularity to identify critical

species in plant-pollinator networks. The analysis of over 29 dif-

ferent plant-pollinator networks identified modular structures with

the plants often linking the modules together.1 Modularity also aids

in understanding how a network is partitioned and can be calcu-

lated using unweighted (binary visitations) data, as is done here, or

weighted (frequency) data.52,53 Modularity identifies groupings of

actors based on their interactions, as well as hub actors that highly

connect the network and specialized actors that may be at risk of los-

ing connection.54,55 A modularity analysis of global flights was able to

identify airport hubs.6 The complex global aerial transportation net-

work was broken up into modules which easily identified the airports

that connected these modules and airports that were dangerously

disconnected.6

Connectance quantifies how connected a network is in reference

to its total number of possible interactions.12 Connectance is used

in ecology as a measure of ecosystem complexity, with a higher con-

nectance indicating a more diverse network.56 While connectance

alone cannot describe network stability, it provides critical informa-

tion for understanding a network’s nestedness and modularity as it

controls their bounds.12,56,57 Thus, by pairing the metrics together, a

better understanding of a network’s structure, and therefore function-

ing, is achieved. Connectance must be included whenever modularity

and nestedness are analyzed, as will be clearly shown in the results

following.

2.1 Case study

Students use of tools across three semesters at two large university

engineering makerspaces are used to illustrate the value of modularity

and nestedness for understanding and designing human networks.58

The first two semesters (Fall 2020 and Spring 2021) were semesters

under increased COVID-19 restrictions limiting student use of the

space. These restrictions were being removed by the third semester

(Fall 2022), allowing for a look at “normal” operating conditions for the

space. Students use tools such as 3D printers and laser cutters in these

spaces for anything from classes to personal projects to student com-

petition teams. When modeled as a bipartite network of students and

tools, modularity and nestedness can identify hub tools and students58

and unintentional restrictions placed on students and tools preventing

use.59 This type of information can provide valuable insight for design-

ers, decisionmakers, andevaluators in awide rangeof humannetworks

with a bipartite configuration.

The makerspaces are modeled as bipartite networks of students

and tools, with the goal being to understand the impact of tool use on

the functioning of the spaces. The two schools have different under-

lying ideologies: School A is a primarily staff-run space with student

volunteers where students use the space for their classes. School B

is a student-run space usable for both classes and personal projects.

Table S1 lists the specific tools in each space at both schools and how

theywereorganized into12 general tool types. The generalmakerspace

model is needed for comparing the makerspace network structure

across different makerspaces and schools as they will have similar

general tool times but may have different specific tools in each cate-

gory. The most obvious difference between using specific and general

tool network representations is an increase in network size due to

an increase in tools modeled. The increase in network size causes a

decrease in connectance that forces a decrease in the nestedness, as

outlined later in the results (Figure 5). To account for this, normalized

nestedness and null models are used to compare between semesters.

The bipartite networks of students and tools were created using

end-of-semester surveys. The surveys asked students to self-report

the tools they used, both general and specific, over the course of that

semester. For example, a student who said they used a 3D printer

would then be asked which specific 3D printer was used (a drop in stu-

dents’ response rates was seen between the general and specific tool

selections that may impact the network analysis results, see discus-

sion). The survey did not ask about the frequency of a tool’s use. The

surveys also collected demographic information and captured experi-

ence characteristics such as class usage and social interactions. Prior

work has used network analyses to look at specifics of these spaces

with respect to theirmaintenance,59 class versuspersonal usage,60 and

demographic data.60 Survey responses were compiled into a bipartite

graph and associated matrix like what is shown in Figure 1. A value of

one in the matrix indicates a student interacted with a tool and zero if
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F IGURE 1 Hypothetical examplemakerspace network with interactions. Left—A graphic representation of the network. Right—The bipartite
matrix [B] for the hypothetical network shown in Figure 1, with students (S1–10) as rows and tools as columns (T1–10). Interactions between any
two are documentedwith a one and no interaction with a zero.

they did not. The example hypothetical bipartite makerspace network

in Figure 1 is representative of those created from the surveys.

2.2 Modularity

Once the network of interest is created and an interaction matrix con-

structed (Figure 1-Right), its modularity can be analyzed. A modularity

analysis identifies modules present in the network by reorganizing the

structure and links until its maximum modularity value is reached.61

This optimization can be done using several different methods,61 the

Newman/Leading Eigenvector method (61, Equation (1)) is used here

for its added benefit that modules are reproducible given the same

inputs to allow for a consistent modularity value to be obtained as well

as providing the maximized modularity for the network.62 The MAT-

LAB package BiMat62 runs the Newman method to find the modules

(Q).

Qb =
1
L

∑
ij

(
Bij −

kidj
L

)
𝛿
(
gi, hj

)
(1)

Equation (1) calculates the overall network modularity (Q), where

E is the total number of interactions or links in the network, Bij is the

matrix entries (one representing an edge or zero for none), gi and hj
are the module indices of the nodes i and j, and ki and dj represent the

degree of the node i and j respectively. The δ term parses the module

indexes for pairings between actor groups (in this case students and

tools) and assigns a value of one if they are in the same module and

a value of zero if they are in different modules. The process is carried

out by initially splitting the network into two modules using the algo-

rithm and calculating theQb. The network is further split up into more

modules until the splitting no longer increases the overall network’s

modularity.61 Modularity can be any value between zero and one, with

a value of one indicating a perfectly modular network.

F IGURE 2 Left—Bipartite representation of the network with
students (S1–S10) interacting with tools (T1–T10) and color organized
bymodule. Right—BiMat software62 output highlighting the network
from Figure 1with interactions (colored in squares) organized into
modules, shownwith four different colors (black interactions fall
outside of anymodule).

Figure 1-Right shows the Bmatrix for the hypothetical makerspace

network of Figure 1-Left with 10 tools (T1–10), tracking 10 students’

(S1–10) use of the space. The matrix denotes all the network interac-

tions found in the spacewithaone, andzeros indicateno interaction.As

seen in Figure 2-Left, the students fall into modules based on common

tool usage. For example, Students 1, 2, and 10 together form a mod-

ule (teal color in Figure 2) based on Tools 1 and 2 only being used by

Students 1 and 2 and Tool 10 only being used by Students 1 and 10.

These types of patterns in a small andhighlymodular network are iden-

tified relatively easily with a simple visual scan. As a network grows in

size and complexity, however, this becomes exponentially harder, if not
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F IGURE 3 A hypothetical makerspace of 5 students and 5 tools with a nested structure. (A) Diagram of the samplemakerspace. (B) Bipartite
graph of themakerspace. (C) BiMat nested network output visualizing the networkmatrix, where the curve indicates the nested interactions
boundary.

impossible. MATLAB’s BiMat package was used here to find modules

and calculate the overall modularity following Equation (1). BiMat pro-

duces a visual depiction of a network’s interactions, rearranging them

to best show modules (as shown in Figure 2-Right).62 The modular-

ity value for the hypothetical network of Figures 1 and 2 is 0.69. The

main drivers of this modularity can be seen in Figure 2-Right, where

the colored boxes indicate within-module interactions and the black

box indicates outside-of-module interactions. The one out-of-module

interaction, student 4 using tool 7, reduces the network’s modularity

from a perfect value of one. A null model analysis (described in the

following section) is needed to understand whether the value of 0.69

indicates that the network is statistically significantly modular based on

a network of the same size and connectance (in this case connectance

is 0.22).12,47

2.3 Nestedness

Nestedness can be calculated for either a bipartite or unipartite net-

work from the interaction matrix. Nested networks, when rearranged

from most connected actor to least connected actors top to bottom

rows and left to right columns, will wind up with the most general

actor in the upper left of the matrix and the least general actor in

the bottom-left and top-right, as seen in the sample perfect nested

matrix in Figure 3.50 Nestedness can be calculated a few different

ways, with some techniques normalizing the resultant metric on a

scale of zero to one and others, like the one used here, from zero

to one hundred.18,50,63 Nestedness based on Overlap and Decreasing Fill

(NODF) is basedon “overlapanddecreasing fill” to evaluate anetwork’s

architecture and is considered a more appropriate metric for interac-

tion networks.50,63 NODF calculates nestedness values for each row

and column individually before combining those values into an overall

nestedness result. These column and row nestedness values can addi-

tionally be used to aid in understanding a network’s architecture in

more detail.

NODF first organizes the bipartite network in order of total number

of interactions, with the rows organized from most to the least inter-

actions top to bottom and the columns organized from most to least

interactions from left to right. The organized matrix for the hypothet-

ical student-tool network in Figure 3A can be seen in Figure 3C. Once

organized, NODF is calculated to find the overall nestedness, ranging

from 0 to 100 (or 0 to 1 if normalized) with the higher value indicating

amore nested network.12,63 Mutualistic networks in nature, like plant-

pollinator and soil networks, tend to have NODF values ranging from

0.35 to 0.7 (on a scale of 0–1).63,64

Equations (2) and (3) are used to calculateNODF and Figure 4walks

through this process of calculating NODF for a very small 3 × 3 net-

work. The two main aspects of the NODF analysis are the “decreasing

fill” and “overlap.”NODFpairs and compares each rowwith everyother

row and each column with every other column (as seen in Figure 4).

The “decreasing fill condition” is checked first for each pair to ensure

that the number of interactions in the first is more than in the second

by at least one (from left to right for columns and top to bottom for

rows). If this condition is not met NODF defaults to zero. When met

(for example, in the C1-C2 comparison at the top of Figure 4 where C1

has more interactions than C2), the number of interactions that match

from the second to the first is checked. For a column comparison, C1-

C3 in Figure 4-top clarifies that only one of the two C3 interactions

is also found in C1, giving this subset an Npaired value of 50 (i.e., 50%

of interactions match between the two columns). In the case of C1-

C2 both C2 interactions are found in C1 so the value is 100. Once all

comparisons have been made, the Npaired values are averaged, produc-

ing Ncolumn and Nrows. The final NODF value is the average of Ncolumn

and Nrows. NODF can be calculated manually for smaller networks but

becomes increasingly difficult for larger networks.Matrix ordering and

NODF calculations can be donewithin the BiMatMATLAB package.62

Mij =

⎧⎪⎪⎨⎪⎪⎩

0 if c ≤ kj

nij

min
(
ki, kj

) otherwise
(2)

In Equation (2), ki is the sum of row/column i, kj is the sum of

row/column j, nij is the total number of entries that match between the
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F IGURE 4 Process for calculating NODF of a hypothetical 4× 4 network (top-left, actors R1–4 interacting with actors C1–4). The top-right
process shows the column nestedness calculations and the bottom-left process shows the row nestedness calculations. The culmination of which is
shown in the bottom-right with the overall NODF value.

two and c is the number of entries that have a value of 1 in kj. Equa-

tion (3) is the NODF value normalized for the matrix size to better

compare different sized matrices, producing a final NODF value from

zero to one.

NODF =

∑
ij Mijrow +

∑
ij Mijcol

m(m−1)

2
+

n(n−1)

2

(3)

TheNODF calculation process also identifies generalist and special-

ist actors in the network.12 Generalist actors will always be closer to

the top-left of the matrix while specialist actors will be closer to the

bottom and to the right. A nested makerspace network would indi-

cate that students are using a generalist tool first, then progressing

through the space to interact with more complicated and specialized

tools. Figure 3B shows a perfectly nested network, with specialist stu-

dents (for example S4 and S5) interacting with generalist tools (in this

case T1 and T2). The nested analysis can identify generalists and spe-

cialists and how they interact in the network, the underlying causes

as to why a network is nested or not may not be obvious and would

require supplementary investigations.

2.4 Connectance

While both nestedness and modularity analysis can provide valuable

insight into a network, it is imperative to see both in combination to

fully understand the network. Nestedness and modularity are related,

with the primary connection being the network connectance (C, Equa-

tion (4) and a value from zero to one).12 Generally, the higher a

network’s connectance the higher its nestedness will be, while the

lower the connectance the higher the modularity.12 There are bounds

on these trends however, explored later in the results, that also depend

on network size (the total number of rows, Nrows, and the total number

of columns,Ncolumns).

C =
L

NrowsNcolumns
(4)

The numerator of Equation (4) is the total number of network con-

nections (L, the sum of all entries in matrix B). The denominator is the

total number of possible connections or the number of rows multiplied

by the number of columns. A connectance of one indicates that all pos-

sible interactions are occurring meaning that everything is connected

to everything. A connectance of zero indicates that no interactions

exist in the network.While research has highlighted the importance of

analyzing nestedness and modularity together, most work has focused

on either specific connectance ranges or on the overall importance of

nestedness and modularity.12,42 The work in this paper expands on

the relationship presented previously and creates a view of the full

range of the relationship between the twometricswith the sample net-

work creation to further enhance theunderstanding of the relationship

between nestedness andmodularity.
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TABLE 1 Network size (rows= students× columns= tools), nestedness (NODF), modularity (Q), and connectance (C) for Schools A and B in
Fall (FA) and Spring (SP) 2020, 2021, and 2022. Null models are listed for both the corresponding semester AND for SP22 only (the normal
semester, for which School A’s connectance is 0.34 and School B’s connectance is 0.4). Results are shown for general tool groups. Null models that
are significantly different from the real network at p> .05 are starred (*).

Sem. Size C Q

Each semester’s

null modelQ
(z-value)

SP22 null model

Q (z-value) NODF

Each semester’s

null model NODF

(z-value)
SP22 null model

NODF (z-value)

School A FA20 54× 10 0.25 0.34 0.36 (0.32) 0.26 (6.15)* 0.50 0.27 (6.79)* 0.36 (2.46)*

SP21 178× 12 0.18 0.38 0.40 (−1.25) 0.23 (17.3)* 0.33 0.20 (12.7)* 0.36 (−2.33)*

SP22 77× 12 0.34 0.19 0.24 (−3.93) 0.25 (−3.92)* 0.55 0.36 (9.71)* 0.36 (10.1)*

School B FA20 57× 13 0.39 0.18 0.21 (−2.76)* 0.21 (−2.49)* 0.64 0.40 (10.9)* 0.41 (10.1)*

SP21 94× 13 0.34 0.20 0.23 (−2.86)* 0.19 (0.17) 0.61 0.36 (15.0)* 0.41 (11.6)*

SP22 95× 13 0.40 0.18 0.2 (−1.45) 0.20 (−1.91) 0.59 0.42 (12.8)* 0.41 (10.1)*

2.5 Null models

Determining if a network’s nestedness and modularity results are sta-

tistically significant requires the generation of null models to check

against the nestedness and modularity of a random network of the

same size and connectance.12,65,66 A type-one null model65 is used

here,with 1000 sample networks generated at each connectance value

listed in Table 1. Potential errors associated with empty rows in the

random network generation were accounted for by forcing all rows

to have a value of one. This null model modification was previously

used in host-phage interaction networks to better match the dynam-

ics of the network, as well as maintain the null model network sizes.47

The resultant null model networks have the same size and number

of interactions as the original networks, that is, the global proper-

ties remain the same. A probability value (p) of .05 (z-score > 1.96

or z-score < −1.96) will be used for the network to see whether the

resulting modularity and nestedness values are significantly different

from those that would be randomly generated, as determined by the

null models.67 Other variations of null models exist with modifications

formulated for different applications, see refs. 27, 53, 66, 68.

The procedure used here for evaluating networks undergoing dis-

turbances is to compare a network’s modularity/nestedness against

a null model that uses the network’s connectance from normal oper-

ations. Data from Spring 2022 provides connectance values for the

makerspaces here during a normal semester, against which Fall 2020

and Spring 2021 (when COVID-19 restrictions were in place) are

compared. This approach enables a network’s modularity and nested-

ness during disruptions to be understood in comparison with how the

network should be able to operate.

3 RESULTS

3.1 Modularity, nestedness, and connectance

One thousand networks at nine different network sizes, from 10 × 10

to 100 × 100, with varying connectance values were generated to

highlight the relationship between nestedness, connectance, andmod-

ularity in Figure 5. The results highlight a strong negative correlation

between nestedness and modularity for all but the most connected

networks (in most cases a connectance of 0.85 or greater).12,47,65 The

highlighted connected networks experience a drop in nestedness due

to the ideal “triangular shape” seen in Figure3Cnot being achievable.63

These results suggest that modularity and nestedness for a specific

network size are bounded by the connectance of a network. Increas-

ing or decreasing the modularity or nestedness of a network requires

that the connectivity be changed. These findings are consistent with

previous work highlighting connectance as a major limiting factor in

achieving specific network properties related to degree distribution

like nestedness.57 This is the first visual depiction however of the

clear relationship between these three metrics. The primarily nega-

tive relationship between modularity and nestedness also varies with

a network’s size, with larger networks (Figure 5-Bottom Right) more

constrained to a specific modularity based on nestedness and con-

nectance. These results are critical to guide the use of modularity and

nestedness as a network design goal, and they clarify that without a

specific connectance, a desired modularity and/or nestedness is not

achievable.

3.2 Makerspaces’ modularity and nestedness
analyses

School A was found to have a higher modularity and a lower con-

nectance than School B during all three semesters studied. A jump in

nestedness at School A during the Spring 2022 semester is seen, pos-

sibly due to COVID-19 restrictions in the space being lifted (School

A had significantly more student use restrictions in the makerspace

than School B due to COVID-19). The modularity and nestedness

differences between the two makerspace networks can be largely

attributed to differences in connectance (corresponding to student

usage of tools). The makerspaces at the two schools have inherent dif-

ferences in the way they are run. The space at School A is primarily

staff-run and used to support course curriculums. School B’s space is

primarily student-run and used for both course support as well as per-

sonal projects. School B’s space is also set up such that those tools with
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F IGURE 5 The same curve shown for a variety of network sizes, describing the impact of network size on the relationship betweenmodularity
(x-axis), nestedness (y-axis), and connectance (color scale on the right).

the most safety restrictions (for example close-toed shoes, long pants,

eye protection) are placed such that students who don’t meet these

requirements can still enter the space. At School A, safety require-

ments for the most restrictive tools are used as requirements for the

entire space. These operational differences, in addition to slight dif-

ferences in COVID-19 restrictions, show up in the network models as

differences in connectance, modularity, and nestedness.

Tables 1 and 2 highlight the properties of the networks each

semester and their corresponding null models. The modularity and

nestedness visualization of the networks at each school each semester

can be found in the supplementary information Figures S1 and S2.

Null models that are significantly different from the real network at

p > .05 are starred. Tables 1 and 2 show a strong correlation for the

networks highlighting a nested structure for themakerspace. A nested

makerspace indicates many students who have minimal tool interac-

tions in the space (this could be due to many new student(s) coming in

to only use something specific) interact with tools like the 3D or other

generalist tools.58 The nested makerspaces also indicate that students

who have more tool interactions in the space, thereby using a wider

variety of tools, are more likely to use tools that are used by fewer stu-

dents or specialized tools.58 This trend follows intended use patterns

for makerspaces. A jump in nestedness is seen Spring 2022 (Table 2

shows that nestedness increased from0.39 to 0.51 for the specific tool

model). The specific tool-basedmakerspace networks at School B have

slightly lower nestedness values than the general tool networks. This

decrease is due to the increase in network size resulting in a decrease

in connectance (for example, as seen in Tables 1 and 2, Fall 2020 the

network’s connectance drops from 0.36 in the general network to 0.15

in the specific network). Despite the difference in connectance, the

network remains nested in structurewhen compared to its nullmodels.

Figure 6 visualizes the significance of the modularity and nested-

ness results for each school, each semester. The y-axis is the difference

between the null model and the general or specific tool networkmodels.

Positive difference values indicate significantly more nested or mod-

ular than what is generated on average by a random network creation

of the same size and connectance. A negative correlation indicates
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TABLE 2 Network size (rows= students× columns= tools), nestedness (NODF), modularity (Q), and connectance (C) for Schools A and B in
Fall (FA) and Spring (SP) 2020, 2021, and 2022. Null models are listed for both the corresponding semester AND for SP22 only (the normal
semester, for which School A’s connectance is 0.15 and School B’s connectance is 0.22). Results are shown for specific, individual tools. Null models
that are significantly different from the real network at p> .05 are starred (*).

Sem. Size C Q

Each semester’s

null modelQ
(z-value)

SP22 null model

Q (z-value) NODF

Each semester’s

null model NODF

(z-value)
SP22 null model

NODF (z-value)

School A FA20 33× 27 0.10 0.47 0.53 (−1.45) 0.40 (2.86)* 0.22 0.11 (6.95)* 0.16 (3.27)*

SP21 122× 76 0.06 0.44 0.42 (1.07) 0.22 (37.7)* 0.14 0.06 (23.1)* 0.16 (−4.09)*

SP22 70× 77 0.15 0.22 0.28 (−5.15)* 0.26 (−4.97)* 0.39 0.16 (38.8)* 0.16 (39.9)*

School B FA20 54× 45 0.16 0.24 0.30 (−5.09)* 0.24 (−0.19) 0.38 0.17 (20.8)* 0.23 (13.8)*

SP21 85× 76 0.14 0.24 0.26 (−2.50)* 0.19 (10.4)* 0.37 0.15 (40.6)* 0.23 (22.3)*

SP22 94× 71 0.22 0.18 0.19 (−2.00)* 0.19 (−1.89) 0.51 0.23 (44.2)* 0.23 (44.7)*

F IGURE 6 Difference between each semester’s null model’s nestedness (left) andmodularity (right) to themodularity and nestedness of each
school, each semester for both the general and specific networkmodels.

the measured value is significantly lower than the null model. A zero,

or close to zero, difference indicates that the network’s nestedness

or modularity is similar to what would be randomly generated and

is therefore not significant. The nestedness of the spaces at both

schools each semester was found to be significant. The modular-

ity of the spaces at both schools each semester is not significant.

The significance of this difference is largest for the Spring 2022

semester at both schools when the spaces were back to their normal

operations.

The restrictions put in place in these makerspaces during the initial

COVID-19 pandemic offer a chance to understand the value of modu-

larity and nestedness for understanding disturbance-induced changes

over time.Connectance, the number of interactions in thenetwork ver-

sus total possible interactions (seen in Tables 1 and2), clearly highlights

the usage changes occurring due to the COVID-19 restrictions. With-

out COVID-19 restrictions, one would expect the connectance values

of the networks to remain relatively similar from one semester to the

next. Understanding how the makerspaces were impacted requires

comparing the network each semester to what they would be if that

semester were normal, or using a null model corresponding to the

connectance of the normal semester. Spring 2022 is taken here as

representative of a “normal” semester. Tables 1 and 2 list both the

null model for each semester alongside the null model for the Spring

2022 (SP22) “normal” semester. Significant differences in the z-values

at p > .05 of nestedness to the models are starred. The nestedness

(NODF) of the “normal” null models are the same for each semester as

the calculations accounted for network size when the value is normal-

ized, causing the connectance to be themajor driving factor for the null

models.

Figure 7 highlights the differences in modularity (right) and nest-

edness (left) between the “normal” Spring 2022 semester’s null model

and each school’s makerspace networks each semester. School A’s

(diamond shape) makerspace during Fall 2020 and Spring 2021 has a

higher modularity than the null models, indicating that student usage

of the space created a significantly modular student-tool interaction

network when COVID-19 restrictions were in place. School B’s mak-

erspace during Fall 2020 and Spring 2021 compared to the “normal”

Spring 2022 semester’s null model are still significantly nested in both

the general and specific tool formats, as well as having overall lower

modularity values.
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F IGURE 7 Difference between the normal (SP22) null models’ nestedness (left) andmodularity (right) to themodularity and nestedness of
each school, each semester for both the general and specific networkmodels.

4 DISCUSSION

Nestedness and modularity can identify the current state of a mak-

erspace and any hidden challenges or roadblocks that may exist. A

healthy makerspace provides an environment where students can

explore different ideas, interact with a variety of tools, and have

ample resources to make products.69,70 University makerspaces

must also train students, providing a more hands-on approach to

learning course-basedmaterial.71 These goals should result in a nested

space, which would indicate that new students are introduced first to

general tools while students that have been around longer used a

wider variety andmore specialized tools.Metrics, such as the variation

on Shannon’s Index looking at interaction diversity—H2’53, exist that

may offer an improved approach for identifying specialization amongst

the network’s actors using weighted interaction information. A less

nested/more modular makerspace structure would indicate that

students are only using tools associated with the course they are in,

creating clusters or modules of student-tool interactions. An extreme

version would be an almost perfectly modular network, with few if any

interactions happening outside the modules indicating that students

never explore the space beyond the tools used for class.

The makerspaces of the two schools appear similar in real life

(both belong to large R1 schools with significant resources and are

used primarily to facilitate student learning in engineering courses).

The nestedness and modularity analyses used here on student-tool

network models provide insight that uncovers significant differences,

especially in terms of how they function during and after disruptions.

The modular structure of School A’s makerspace during a disruption

and the nested structure of School B’s makerspace staying consistent

throughout the ordeal suggest that differences in makerspace oper-

ations are causing large impacts at the network level. The analysis

done here and shown in Figure 5 underscores the importance of con-

nectance in a network’s modularity and nestedness. In the face of

perturbations, School B remained static in all its ecological metrics. On

the other hand, School A had relatively large changes to the network

properties, particularly in its connectance. A static analysis of the space

would have likely not yielded valuable information, as the initial null

model analysis indicated a consistent trend. However, by imposing a

higher expected connectance to the network, a method of analyzing

howanetwork is performingunder different conditions canbe created.

The potential for the shift of the network based on connectance is also

highlighted in Figure 5, with connectance being the main driver of the

potential nestedness and modularity of a random network. The impor-

tanceof connectance thusbecomeskeywhenanalyzing aperturbation,

as it is likely that a networkwill experience potential lower connections

during the duration that could drastically affect the work.

The impact of COVID-19 restrictions at each school can be quan-

titatively visualized using modularity and nestedness analyses and

comparing against the network under normal operating conditions.

The class-based use restriction at School A is hypothesized to be

the primary driver of the lower connectivity and more modular

makerspace use structure. The modules here for School A appear

to correspond somewhat with specific courses across the different

engineering majors that use the space. Variations from this could be

attributed to more multidisciplinary projects, causing the non-module

interactions (the black-colored interactions in the modularity plots

of Figures S1 and S2). The makerspace at School B is also intended

to supplement engineering courses in the same way as School A,

however, it is known that School B’s makerspace also has a significant

number of personal projects occurring at any one time. School B also

has arranged its makerspace such that personal protective equipment

(PPE) restrictions vary throughout, with the entrance to the space

having almost none to encourage curious students to enter. School

A’s PPE requirements are significant for the entire space regardless of

where you are or what you are doing. The other significant difference

between the two schools is that School B’s space is entirely student-

run, with all the “workers” in the space being paid or volunteering

students. School A’s space has some paid student workers but is still
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a primarily university staff-run space. These three major differences

have resulted in a modular and less connected space at School A and

a nested and more connected space at School B during and imme-

diately after the restrictions. Students are encouraged to explore

the space, likely leading to the higher interactions documented and

the increase in nestedness. The overall nestedness structure of both

spaces during normal operating conditions indicates that students are

also primarily interacting with the “generalist” tools in the space and

specializing further in more advanced tools, with students that have

fewer interactions primarilyworkingwith the “generalist” tools aswell.

The modularity and nestedness analyses also make the impact of

COVID-19 restrictions visible in both spaces. The decreasing modu-

larity from Fall 2020 to Spring 2022 can be attributed to decreasing

COVID-19 related restrictions in both spaces. Fall 2020 and Spring

2021 semesters at School A saw restrictions within the space down

to only the most basic class requirements and no student workers,

resulting in an increase in modularity and a decrease in nestedness

and connectance during the height of COVID-19 restrictions. Start-

ing Summer 2021, restrictions have eased and as of Spring 2022 the

school reported COVID-19 related restrictions had been completely

removed. School B, while they did have some restrictions, did not

remove personal projects or student workers resulting in their nested

structure being lower during the height of COVID-19 restrictions but

still present. The use restrictions at both spaces caused fewer inter-

actions and thus lowered connectance values, but only at School A

did that result in a significantly modular structure after the pertur-

bation. School B, although nestedness decreased it never dropped

so low that the space became modular during the perturbation. The

impact of restrictions on the network structure is visible when they

were lifted, in the 2022 Spring semester. Schools A and B both see

large increases in how nested their students and tools are. The con-

nectance also increases during that semester at both schools. These

results offer strong support for the use of modularity and nested-

ness as diagnostic tools for network health. This could especially be

useful for networks where equity may be of interest, energy equity

for example could be investigated for a power grid network with

modularity and nestedness, showing that a more nested structure

has better reach to historically underserved users or neighborhoods.

Translating modularity values to a water distribution network for

example could help ensure that the communities have water during

disturbances.

The study in Figure 5 highlights the relationship between nested-

ness, modularity, and connectance. Different types of networks can

often be characterized by their connectance level and fill. Utilizing the

sample network plot a sample operation region can be identified for

what the likely modularity and nestedness results could indicate. If the

network has high connectance, a positive relationship between modu-

larity and nestedness can be expected and there is a high likelihood the

network will showcase both. This can be useful when first identifying

the network and obtaining overall nestedness andmodularity values.

While amakerspacemay seek to becomemore nested, other human

networks may want to bemoremodular. For example, in electrical net-

works, a modular structure has been found to help mitigate the effects

of network perturbations, particularly when using microgrids.72 On

the other hand, industrial water networks have been found to benefit

fromamore nested structurewhen experiencing disturbances.15 Mod-

ularity and nestedness can also be used as diagnostics tools to see if

changes in a network are affecting the network structure positively or

negatively. Future work will expand the case studies investigated here

to include interaction frequency data to create weighted bipartite net-

works, which have been found in ecology to provide enhanced pattern

recognition22 and additional insight into the network.52,53

5 CONCLUSIONS

Analyzing human networks using quantitative ecosystem metrics can

provide valuable information about network function across time.

Changes in nestedness, modularity, and connectance are here shown

to provide valuable insight into the healthy functioning of student-tool

network models of academic engineering makerspaces. Network size

and connectance were found to play a major role in the level of mod-

ularity/nestedness of interactions in the network. The three metrics

combine yield further valuable information about the impact of usage

restrictions on the network structure over time. The usage restric-

tions to class-based projects only at School A (versus personal projects

allowed at School B) results in a more modular student-tool usage net-

work at School A. The more nested usage network at School B reflects

the ability of students to freely use a wide variety of tools. The impacts

of COVID-19 usage restrictions, based on normal operations, were

found to introduce more modularity/less nestedness at both Schools

A and B. This highlights how these intentional restrictions (related

to COVID-19) and the maybe unintentional usage restrictions related

to personal use both limit connectance and create a more modular

structure. These quantitative metrics provide measurable feedback

for policymakers about how space restrictions impact system perfor-

mance. Although academic engineering makerspaces are used here as

case studies, the results provide support for the use of these met-

rics as performance indicators for a wide variety of human-engineered

networks that can be represented in a bipartite model.

NOMENCLATURE

B Bipartite network interactionmatrix

C connectance

ENA Ecological Network Analysis

L total number of network interactions/links

N total number of network actors

Ncolumn number of column actors

NODF nestedness based on overlap and decreasing fill

Nrow number of row actors

p probability value

Q modularity

z Z-score
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