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ABSTRACT

The emergence of large-scale wireless networks with partially-
observable and time-varying dynamics has imposed new challenges
on the design of optimal control policies. This paper studies efficient
scheduling algorithms for wireless networks subject to generalized
interference constraint, where mean arrival and mean service rates
are unknown and non-stationary. This model exemplifies realistic
edge devices’ characteristics of wireless communication in modern
networks. We propose a novel algorithm termed MW-UCB for gen-
eralized wireless network scheduling, which is based on the Max-
Weight policy and leverages the Sliding-Window Upper-Confidence
Bound to learn the channels’ statistics under non-stationarity. MW-
UCB is provably throughput-optimal under mild assumptions on
the variability of mean service rates. Specifically, as long as the
total variation in mean service rates over any time period grows
sub-linearly in time, we show that MW-UCB can achieve the sta-
bility region arbitrarily close to the stability region of the class of
policies with full knowledge of the channel statistics. Extensive
simulations validate our theoretical results and demonstrate the
favorable performance of MW-UCB.
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1 INTRODUCTION

Wireless networks are increasingly large-scale and complex in re-
sponse to the surge in edge-based Internet of Things (IoT) architec-
ture [7], mobile communication [13] and wireless paradigm [23].
One fundamental challenge in the transition to large-scale networks
is that minor inefficiencies can accumulate and severely limit perfor-
mance [17]. Consequently, the advance of modern infrastructures
toward massive scale has led to the re-design of operational man-
agement for various network tasks, such as traffic engineering [32],
load-balancing [28], utility maximization [11], and link scheduling
[2, 26]. In this work, we focus on designing scheduling algorithms
that are theoretically efficient and meet the stringent requirements
of emerging large-scale wireless networks.

Efficient scheduling of transmissions is essential for wireless de-
vices to share the common spectrum while achieving high through-
put. Despite its established throughput-optimality for a variety of
classical stochastic network models, the celebrated Max-Weight
scheduling policy [22, 27] requires the full knowledge of the channel
statistics, which are often unknown a priori [26, 31] and thus hinder
its direct adoption. First, due to the delay incurred by the accumu-
lation of global network state information in emerging large-scale
systems and multi-path fading, the instantaneous service capacities
of wireless links and the packet arrivals to nodes are usually un-
available at the time of making scheduling decisions and can only
be observed from channel feedback. We refer to this peculiar char-
acteristic of large-scale networked systems as partial observability.
Second, the mobility of edge devices [5, 24] and unreliable nature
of wireless communication [25] impose non-stationary dynamics,
whereby both the mean packet arrivals and mean service rates
may vary over time, and are unknown in advance to the network
operator. When the channel is not instantaneously observable, it is
well-known that an optimal policy is to leverage the mean service
rates in making Max-Weight scheduling decisions [22, 27]; how-
ever, in our setting, those statistics are unknown, non-stationary
and must be learned. In this paper, we aim to develop throughput-
optimal scheduling algorithms under the requirements of partial
observability, non-stationary dynamics and unknown statistics.

A main challenge in the design of non-stationary network con-
trol algorithm under partially-observed and unknown statistics is
that the analytical characterization of the capacity region for sta-
tionary network setting [22] no longer holds under non-stationarity
due to the potential non-existence of steady state or well-defined
long-term averages [3]. Previous works either consider simplified
models [21, 26], or only achieves a constrained stability region for
bipartite queueing system [31]. In particular, under partial observ-
ability and unknown statistics, [26] designed a throughput-optimal
joint learning and scheduling policy for stationary network control.
While establishing the effectiveness of the Max-Weight policy even
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for non-stationary network control, [21] assumes the availability of
instantaneous nodes’ packet arrivals and links’ service capacities
to the controller for making decision. Closest to our work is [31],
which proposes a stabilizing algorithm for bipartite queueing sys-
tem that supports arrival rates within a stability region constrained
by window-based (non-stationary) dynamics.

In this paper, we propose a new notion of stability for non-
stationary network control, and a novel joint learning and sched-
uling algorithm that achieves a stability region arbitrarily close to
the true stability region. Our contributions can be summarized as
follows:

e We present a new class of approximate stability regions that
is parameterized by a quantity capturing the closeness to the
true stability region. Based on this notion of approximate
stability region, we propose a new notion of throughput-
optimality for non-stationary network control and, as a spe-
cial case, prove its equivalence to the conventional notion
of stability in the simplified setting of stationary network.

e We propose Max-Weight scheduling augmented by Sliding-
Window Upper-Confidence Bound, hence termed MW-UCB,
as a novel algorithm for non-stationary network control,
subject to generalized wireless interference constraints, with
partial observability and unknown statistics. Under mild
assumptions on the system learnability, we establish the
throughput-optimality of MW-UCB and its strong stability
within the window-based region previously considered in
the literature [31].

e We empirically validate our theoretical results and demon-
strate that MW-UCB achieves the same stability region as
that of the idealized Max-Weight policy with full knowledge
of network statistics.

The rest of the paper is organized as follows. We present our sys-
tem model and problem formulation in Section 2. In Section 3, we
present our new notion of throughput-optimality for non-stationary
networks. In Section 4, we propose the throughput-optimal MW-
UCB algorithm and establish its stability results. We conduct numer-
ical simulations to empirically validate the throughput-optimality
of MW-UCB and demonstrate its favorable performance in Section
5, and conclude the paper in Section 6.

2 PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Network Model

A wireless network with arbitrary topology is represented by a
directed graph G(V, E), where V = {1, 2, ..., n} is the set of nodes
and E = {(i, j) : i, j € V} is the set of directed point-to-point links.
Time is slotted. For simplicity of technical exposition, we consider
single-hop trafficl. For any e = (i, j) € E, we denote by a.(t) the
number of packets arriving at node i at time slot ¢ to be transmitted
to neighbouring node j. We consider {ae(t)}s>0 to be independent
with potentially time-varying means A.(t) = E[a.(t)], and are
bounded by a finite number, i.e. a,(t) < Apqx foralle € E and ¢.

!The results of the paper naturally generalize to multi-hop setting by incorporating
the Back-pressure mechanism [27].
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Figure 1: Sequence of events in one time slot.

We assume a general wireless interference model. Denote by
M the set of all admissible link activations and, at time slot ¢, by
x(t) = {xe(t)}ece € M the scheduling decision of whether to
activate link e € E:

B 1, if e is activated at time ¢
X, =
€ 0, if e is not activated at time ¢

We impose no structural restriction on the set M, thereby captur-
ing a wide range of practical wireless models including primary
interference [19], k-hop interference [18], and protocol interference
[9]. Let 0, (t) be the service capacity of link e at time slot ¢, which
is bounded by a finite number, i.e. 0, () < pmax. For any link e € E,
we assume that {0 () };>0 are independent and that the mean ser-
vice rate e (t) = E[0¢(t)] may vary over time. Additionally, we
requires the mean service rate to be lower bounded by a strictly
positive constant, i.e. pe(t) > pmin > 0; this assumption is also
often imposed by the literature on optimal control of queueing
systems with time-varying statistics [14, 31]. The effective service
rate of link e at time slot ¢ is then given by:

be(t) = xe(t)0e(2), (1)

which characterizes the achievable data rate of the link.

Let Q¢ (t) be the physical queue of backlogged packets at link
e € E that are waiting to be transmitted at the end of time slot ¢.
Since any link e receives ae (t) packet arrivals and can serve at most
be(t) packets during a time slot, the queueing dynamics evolves as:

Qe(t+1) = (Qe(t) +ae(t) —be(t))", Veek, ()

where [x]T = max{x, 0}.
In order to capture the realistic characteristics of modern wireless
network, we incorporate the following requirements in our model:

o Partial Observability: For every link e € E, both the instanta-
neous packet arrivals a, (#) and link’s service capacity 6, ()
are not available at the start of the time slot ¢ and thus cannot
be used for making the scheduling decisions. At the end of
time slot t, however, the nodes can accumulate statistics of
the past time slot to obtain the packet arrivals a(t)’s and
the service capacities of the activated links, i.e. those 0, (t)’s
such that x,(t) = 1. For unactivated links e where x,(t) = 0,
though the information of 8, () is not revealed, the effective
service rate is be (t) = 0. Thus, given the knowledge of a(t)
and b (t), the queuing dynamics (2) for the next time slot
t + 1 can always be evaluated at the end of time slot . The
sequence of events within time slot ¢ is depicted in Figure 1.
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Table 1: Asymptotic Relationships

there exists constants M and C such that
|f(x)| < Clg(x)| for all x with ||x]|cc > M.
there exists constants M and C such that
|f(x)| = Clg(x)| for all x with ||x]|cc > M.
f(®%) =0(9(x)) and f(x) = Q(g(x)).

for every ¢ > 0, there exists constant M
such that |f(x)| < ¢€]|g(x)] for all x with
[[x|lco > M. In this case, we alternatively
say f(x) is sub-linear in g(x).

f(x) =0(9(x)

f(x) =Q(9(x)

f(x) =0(9(x))
f(x) =o0(g(x))

o Non-Stationary Dynamics: We assume that both the mean
packet arrivals A(t) = (A¢(t))eck and service rates p(t) =
(pe(t))ecE vary over time, i.e. non-stationary.

e Unknown Statistics: All the statistics {A(t) }>0 and {g(¢) }+>0
are unknown to the scheduler for making control decisions.

2.2 Asymptotic Relationships and Notations

Let Q(2) = (Qe(t))eck: a(t) = (ae(t))eck, 0(1) = (6(1))eck and
b(t) = (be(t))eck be respectively the vector of queue lengths,
packet arrivals, service capacities and effective service rates. For
any two real numbers x and y, we let x V y = max{x,y} and
x A y = min{x, y}. For any vector x = (x;) of real numbers and
p € [1,00), we denote |x||, as its £,-norm. For the two cases
of p € {1, 00} used in this paper, we have ||x|; = 2; |x;| and
Ix]lcc = max;{|x;|}. For two positive multivariate functions f(x)
and g(x), their asymptotic relationships [12] are given in Table 1.

2.3 Policy Space and Problem Statement

For any variable affected by the control of the scheduling deci-
sions, we add the superscript 7 to acknowledge that it is under
the action of the policy 7. An admissible policy 7 at every time
slot t generates a scheduling decision x” (t) € M using only the
knowledge of the past packet arrivals a(0),a(1),...,a(t —1), the past
effective service rates b(0),b(1), ..., b(¢ — 1), and the past decisions
x(0),x(1),...,x(t — 1) up to time ¢ — 1. Additionally, we consider
idealized policies, the definition of which is similar to that of an
admissible policy except that at time slot t, it also has the full knowl-
edge of the network statistics A(t) and p(t) and can use them in
making the scheduling decisions. The set of all admissible policies
and the set of all idealized polices are respectively denoted by IT
and IT;. Under the simplified model whereby the network dynam-
ics are stationary, [26] designed a joint learning and scheduling
algorithm in IT that supports the same stability region, i.e. the set
of arrival rates under which the system is stabilizable, as that of
idealized policies in ITs. Nevertheless, generalization to the case of
non-stationary network dynamics is non-trivial due to the analyti-
cal intractability of the capacity region. Moreover, the only previous
work [31] that attempts to learn non-stationary network dynamics
could achieve only a reduced stability region that is constrained by
the window-based dynamics, thereby being sub-optimal.

In this paper, we aim to develop a control scheme for the class
of policies in IT that maximizes the stability region of the network
under our considered setting.
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3 NOTION OF STABILITY FOR
NON-STATIONARY NETWORK WITH
UNKNOWN STATISTICS

One main challenge of non-stationary network control is that the
analytical characterization of the capacity region for the case of
stationary network may no longer hold under the non-stationarity.
In this Section, we propose a new notion of throughput-optimality
that is more suitable to the non-stationary setting. For the simplified
case of stationary network, we further establish the equivalence
between our new notion and the conventional notion of throughput-
optimality.

3.1 Assumption on Non-Staionary Dynamics

For any t; < tz, we denote the total variation of the mean service
rate by:

ty

v(tt) = D Ir®) = pt =Dl 3)

t=t+1

and stipulate the following mild assumption on the non-stationarity
of the mean service rates.

Assumption 1. Foranyt; < ty, the total variation is upper-bounded
by y(t1,t2) = O(|t2 — £1|%) for some a € [0, 1).

Our assumption only requires the total variation of mean service
rates over any time period to grow sub-linearly in time, thereby
ensuring that the network dynamics do not vary too aggressively.
Similar assumptions have been extensively used the literature of
learning in non-stationary environments [6, 10, 30].

3.2 Performance Metrics

Before characterizing the stability regions of interest, we first define
the Qr measure that captures the growth of queue size in expec-
tation, and present the equivalent definition of mean rate stability
[22] under the Q1 measure.

Definition 1 (Q1 Measure). The total expected queue length at time
T under a control of policy 7 is quantified by QF = E| Zecr QF(T)].

Definition 2 (Mean Rate Stability). A network is mean rate stable
under a policy 7 if:
[Zeer Qc (D]

. E
lim ———=—==—"- =,
T—)OO T

or equivalently QF = o(T).
The notion of stability region of a policy 7 describes the set of
arrival rate vectors such that mean rate stability could be achieved

under 7. The stability region A is the region that can be achieved
by the class IT of admissible policies, as formally defined below.

Definition 3 (Stability Region). The stability region of the class of
admissible policies is defined as:

A = {{A(1)}s>0 : 3m € I such that QF = o(T)}.

Similarly, we define the idealized stability region A of the class
I1; of idealized policies.
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Definition 4 (Idealized Stability Region). The stability region of
the class of idealized policies is defined as:

As = {{A(t)}10 : 37 € I, such that of = o(T)}.

Note that we always have A C Ag, since the idealized policies
have the full network statistics as opposed to the admissible policies.
For the simplified model of stationary dynamics, a special case of
our setting where Assumption 1 trivially holds with a = 0, [26]
designed an admissible policy stabilizing any arrival rate vector
in int(As)?, i.e. the interior of the idealized stability region. The
algorithmic development and analysis of [26] heavily rely on the
fact that under the stationary dynamics whereby A = A(t) and
p = u(t) for all t > 0, the idealized stability region Ag can be
further characterized by the existence of a policy 7* € Il such
that:

' 1 T-1 . 1 T-1 -
Ao = lim — D a) < Jim ; bE (1), Ye € E. (4)

However, under non-stationarity, the above limits may not even
exist, thereby hindering the adoption of stability region’s charac-
terization as in the case of stationary dynamics. Such analytical
intractability of the stability region is central to the problem of
optimal control for non-stationary network [3, 21].

3.3 Notion of Throughput-Optimality for
Non-Stationary Network

In this Section, we propose a novel notion of throughput-optimality
for non-stationary networks. For the simplified setting of stationary
network, the conventional notion of stability defines a policy 7 to
be throughput-optimal if it can stabilize the system for any arrival
rate A € int(Ay), i.e. in the interior of the idealized stability region.
This is equivalent to A € (1 — €)Ag for some ¢ > 0, which is then
usually incorporated with the analytical characterization of A for
establishing the stability of MaxWeight-type algorithms. However,
in the context of non-stationary networks, such an approach may
not be directly applicable due to the analytical intractability of the
idealized stability region Ag. To this end, we first present our new
definition of approximate stability region, which is central to our
throughput-optimality notion and algorithmic development.

Definition 5 (Approximate Stability Region). Given any f € [0, 1],
we define the approximate region As(f) as:

As(B) = {{A()}r0 : 3 € T, such that QF = O(TF)}

We now derive the key properties of As(f) and its relation to
the idealized stability region Ay in the following Lemma, whose
proof is deferred to Appendix A.

Lemma 1. The set As(f) is expanding for increasing f, i.e. if 0 <
P1 < P2 <1, then As (1) € As(f2). Moreover, for any f € [0, 1), we
have As(f) € As C As(1).

Lemma 1 suggests that the region Ag(f) grows arbitrarily close
to As as f§ approaches 1. Moreover, leveraging this notion of ap-
proximate stability region, the next Theorem establishes the char-
acterization of the true stability region A.

2[26] considers maximal matching for scheduling under matching constraint, and thus

achieves the interior of %AS as the stability region. However, by replacing maximal
matching with maximum matching, we can achieve the full stability region int (As).
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Theorem 1. Under Assumption 1, we have the following characteri-
zation of the stability region:

As(p) C A C A,
forany p € [0,1).

PROOF. As the idealized policies have the full network statistics
as opposed to the admissible policies, the idealized stability region
A, trivially subsumes the stability region A. The proof of As(f) € A
is based on our development of the admissible policy MW-UCB in
Section 4 that, given any f € [0, 1), achieves mean rate stability for
any set of arrival rates (A(t));»0 € As(f) (Theorem 3). o

Motivated by Theorem 1, we propose the following notion of
throughput-optimality for non-stationary network control.

Definition 6 (Throughput-Optimality). A policy & € II is through-
put optimal if given any B € [0, 1), the network under  is mean rate
stable for any {A(t)}+>0 € As(p).

Under the above definition, we aim to develop an admissible
policy in II that is throughput-optimal for our considered setting
of non-stationary and partially-observable network.

3.4 Connection to Traditional Notion of
Throughput-Optimality for Stationary
Networks

We further demonstrate the equivalence of our throughput-optimality

notion to the usual notion in the case of stationary network whereby

A =A(t) and p = p(t) for all t > 0. As discussed in Section 3.2, the

idealized stability region As can be characterized by:

A = {A : Ar* e I such that 7™ satisfies (4)},

and an admissible policy is throughput-optimal (in the usual notion)
if it can stabilize any arrival rate A € A3. The next Theorem
illustrates that our new notion of throughput-optimality implies
the usual notion of throughput-optimality in the stationary network
control problem.

Theorem 2. Under the stationary network setting, if a policy & € 11
is throughput-optimal according to Definition 6, then the network
under i is mean rate stable for any A € As.

PrOOF SKETCH. Given A € Ag, we can show via Lyapunov drift
analysis that the Max-Weight (MW) policy with full knowledge of
the statistics achieves Q¥[W = O(T%). Consequently, this implies
that A € AS(%). Since by our Definition 6, a throughput-optimal
policy 7 would support the stability region AS(%), it thus guaran-
tees mean rate stability for any A € As. The full proof is given in
Appendix B.

4 SCHEDULING WITH NON-STATIONARY
AND UNKNOWN CHANNEL STATISTICS

In this Section, we present MW-UCB as a provably throughput-

optimal policy for non-stationary network control. We provide

the preliminaries of Upper-Confidence Bound (UCB) for learning

3Here, we use A to emphasize that this is a special case of A5 where such characteri-
zation based on (4) only holds for the stationary network setting.
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uncertain channel statistics in Section 4.1 and the algorithmic de-
velopment of MW-UCB in Section 4.2. The throughput-optimality
and stability results of MW-UCB then follow in Section 4.3.

4.1 Upper-Confidence Bound (UCB) for
Learning Uncertain Channel Statistics

Central to our problem is the learning of not only the unknown
links” service rates but also the scheduling decisions that can max-
imize the overall network’s throughput. We start by considering
a simplistic problem setting in which the network dynamics are
stationary and the objective is to attain the maximum possible
total service capacity (in expectation) of the network, and show
that a simple Upper-Confidence Bound (UCB) algorithm is close-
to-optimal in this scenario. However, while having the potential
for being the solution for network control under uncertain channel
statistics, the UCB algorithm in its original form lacks the adaptivity
to deal with non-stationary dynamics and is a pure learning scheme
in nature, which is not designed to deal with sophisticated control
tasks as in our original problem.

4.1.1 A Simplistic Problem Setting and Application of UCB. At any
time slot t, the scheduling decision x(t) yields in expectation the
service of e (¢)x(t) for link e € E and thus the total service of:

2, He(Dxe(D). )

ecE

Now, we turn into a simplified objective of maximizing the total
service (5) over the time horizon T of the network and further
assume stationary dynamics of the links’ service rates, i.e. e (t) =
e, Ve € E,t > 0. Under this setting, an idealized policy with full
knowledge of the statistics g = (¢ )ecr Would make the scheduling
decision at every time slot ¢ that maximizes (5), i.e.

x(t) = x" = argmax { Z peXe}- (6)

xeM ecE

However, such statistics g = (ite)ecE are unknown in practice and
thus must be learned, under our requirement of partial observabil-
ity, via samples of service capacities of links having been activated.
This gives rise to the exploration/exploitation tradeoff, where the
controller must simultaneously learn the channel statistics g and
utilize the existing information of observed service capacities to
schedule transmissions achieving high total throughput. In par-
ticular, the problem of solving (6) over the time horizon T can be
characterized as combinatorial multi-armed bandit (CMAB) with
linear reward in stationary environment, which can be addressed
by the class of UCB algorithms [4, 15, 20]. We hereby consider the
UCB algorithm in [20], which proceeds as follows. At any time
slot t and for every edge e € E, the UCB algorithm keeps track of
T;(e) and ég(t), which respectively correspond to the number of
times link e has been activated and observed up to time ¢, and the
empirical mean of all the observations of the service capacities, i.e.
those 0, (s) such that x.(s) = 1 for s € [0, ¢). The UCB weights are
computed according to:

3log(1)
2T;(e)

Ue(t) = 6e(t) + ,Ye € F,
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which are then used for constructing the scheduling decision as:

x(t) = argmax { Z Ue(t)xe}, (7)
xe ecE
The total difference in achievable total expected service capacity
between the maximizing policy with the full knowledge of the sta-
tistics p that makes the decision x* as in (6) and the UCB algorithm
that makes the decision x(t) as in (7) is captured by the regret:

T-1
Ro(T) =T D pexs = 3. > pexe(t). (®)

ecE t=0 ecE
This type of metrics is also used by [26] for characterizing the
performance and exploration/exploitation tradeoff of their joint
learning and scheduling algorithm. From [20, Theorem 5], we have
Ro(T) = O(log(T)), which guarantees only logarithmic growth in
total error if the UCB algorithm is applied. Moreover, this regret
bound is asymptotically tight [20, Proposition 1].

4.1.2  Limitations of The Conventional UCB Algorithm. While at-
taining competitive performance in the simplistic problem setting,
the conventional UCB algorithm lacks the generality to readily be
extended to deal with our problem of interest. First, vanilla UCB is
known to be inappropriate for handling non-stationary dynamics
[16]. Second, the formulation (6) that permits the adoption of UCB
as a direct solution does not take into account the control of the
system under arbitrary arrival rates: for example, if a policy aims to
attain the maximum possible total service and hence always makes
the scheduling decision x* as in (6), it would inevitably overload
certain unactivated links, i.e. e € E with x} = 0, to which there
are packet arrivals over time. On the other hand, the Max-Weight
policy [22, 27] that incorporates the queue lengths into making
scheduling decision can adapt to the dynamics of arbitrary arrival
rates. Consequently, the solution for scheduling in non-stationary
wireless networks with partial observability and unknown statistics
requires the interplay between learning and network control. In
the next Section, we present our main algorithm that combines
the Max-Weight policy with UCB to address these aforementioned
challenges through its joint learning and scheduling scheme.

4.2 The MW-UCB Algorithm

We proceed to develop our scheduling algorithm, termed MW-UCB,
based on a frame-based variant [26] of the Max-Weight policy [22,
27] and the augmentation of the sliding-window UCB [10] in the
weight construction for adaptively learning the channels’ statistics
under non-stationarity. The full MW-UCB policy is depicted in
Algorithm 1 with the convention that 0/0 = 0.

For the class of idealized policies in IT;, the Max-Weight policy
[22] that at time slot t weights each edge e by Qe (#)pe(t) and
consequently schedule the link activation vector according to:

x(t) = argmax { )" Qe(t)pe()xe} )
xeM  CE
is known to be throughput-optimal for the case of stationary net-
work [22, 26] and obtains competitive performance on adversarial
network control [21]. Nevertheless, under our considered model,
the vector p(t) of mean service rates is unknown a priori, thereby
hindering any direct adoption of the Max-Weight policy. The al-
gorithmic design for joint network control and learning of the
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Algorithm 1: Max-Weight with UCB (MW-UCB)

Input: graph G(V,E), restart period 7, window size d < 7
1 fort=1,..,T do

2 ift =1; € 7 ={r0,71,.... 7k } then
3 Initialize ¢ (7;) = 0, Ne(7;j) = 0, fe () = 0,Ve € E
1 . L) — QE(TJI)

4 Reset the weights: we(7;) = —\\Q(Tj)llm’ve €E

5 end

6 if t € (1j,7j4+1) then

7 fore € Edo

8 Pe(t) = gpe(t=1) =Ly aybe(t—d) +be(t 1)

9 Ne(t) = Ne(t) - ]l{tzrj+d}xe(t_d)+xe(t_ 1)

10 fie(t) = ff ((tt; > empirical estimate of ,(t)

11 we(t) = we (1) » fixing queue lengths

12 end

13 end

w | pe(t) = Zﬁ\‘}g((j)) (or o0 if N, (t) = 0), Ve € E

15 We(t) = min{we (t)fie(t) + pe(t), 1},Ve € E»
computing UCB weights

16 [Scheduling] Activate the link activation vector:
x(t) = argmax,¢ pq {ZeeE We(t)xe}

17 Observe a(t) and b(t), and update the queues:
Qe(t+1) = (Qe(1) +ac(t) —be(1)”, Veck,

15 end

weights {Qe () e (1) }eeE faces two challenges. First, Qe (¢)pe (1) is
time-varying due to the dynamics of the queue length Q. (t) and
the non-stationarity of y. (). Second, the evolution of the weight
Qe (t)pe(t) is coupled with the scheduling decision x(t) due to
its interdependence with effective service rate via (1) and thus the
queueing dynamics (2). To address these challenges, we periodically
freeze the queue length information in the weight instantiation,
which helps to alleviate a source of non-stationarity and decouples
the weight evolution from the scheduling decision. Specifically,
our method partitions the time horizon T into frames of size ,
where the j¢" frame begins at time slot 7; = jr, called restart point.
We allow the last frame to have size potentially less than 7 and
let T~ = {70, 71, ..., T } be the set of all restart points, i.e. K is the
largest number such that 7x < T. Then for any ¢ € [z, Tj+1), we
use the normalized queue backlogs at the restart point z; as the
unified weights (Line 4 and Line 11 of Algorithm 1):
Qe(r ;)

RN TTEATISAS 10
and aim to solve the following "relaxed" problem of (9) with sim-
plified time-varying weight structure:

x(t) = argmax { Z Qe(rj),ue(t)xe} (11)
xe ecE
(10)
=’ argmax { Z we(fj),ue(t)xe}. (12)
xeM  .cE

Note that the objective in (11) is the "approximation" of the objec-
tive in (9) with error growing linearly in 7. Moreover, the problem
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of solving (12) over 7 time slots from 7; to 7j+1 — 1 can be charac-
terized as stochastic combinatorial multi-armed bandit (SCMAB)
problem in non-stationary environment, whereby the mean reward
of each arm, i.e. we(7j)pe (1), varies over time and is independent
of the action, i.e. scheduling decision. To this end, we adopt the
combinatorial UCB with sliding window (CUCB-SW) algorithm
[10] for dealing with SCMAB under non-stationarity. Specifically,
CUCB-SW is restarted at the beginning of each frame with the
newly updated queue weights for the joint learning of the mean
service rates p(t)’s and control of the system. Given the sliding win-
dow of size d as a hyper-parameter to be chosen later, the algorithm
computes the estimate fic (¢) of the true mean service rate p,(t) as
the local empirical average of the observed service capacities in
the last d time slots. Formally, for t € [z}, 7j+1), i.e. within the jth
frame, and any e € E, the following quantities:

t—1 t—1

ge) = D Tionle(®)= D be(s),  (13)
s=;V(t—d) s=1;V(t-d)
t—1 t—1

Ne( = > gy = D, %els), (14)

s=7;V(t-d) s=1;V(t—d)

respectively denote the total observed service capacities of link e
and the number of times it had been activated up to time t — 1 over
the last d time slots. Line 8 and Line 9 of Algorithm 1 equivalently
rewrite (13) and (14) in recursive forms for actual iterative updates
in the algorithm. Then the local empirical average can be computed
accordingly via fie () = ¢e(t)/Ne(t) as in Line 10. Finally, the UCB
weights are computed by (Line 15):

310_g(r) 1}\7’eEE

W, (t) = min {wg(rj)ﬁe(t) + 2N, (1)

to be used for constructing of the scheduling decision (Line 16) as:

x(t) = argmax { Z We (t)xe}. (15)

xeM  .cE

In order to capture the loss due to learning when CUCB-SW is
applied to solve (12) within the j*# frame, we consider the regret:

Tjy1—1
R(rj)= 3, max } we(zj)pe(t)xe
=1; XM ek
Tj+1—l

— Z Zwe(rj)pe(t)xe(l‘), (16)

t=7; ecE

which characterizes the gap in objective between the maximizing
policy with the full knowledge of the statistics p(t) for t € [z}, 7j41)
that solves (12) and the considered policy that solves (15). The
following Lemma 2, whose proof is given in Appendix D.3, provides
an upper bound for R(z;).
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Lemma 2. Under MW-UCB, the regret R(z;) can be bounded by:

R(rj) < |E|(§ + 1)(2 61og(7) + 48Vd log(r)

Tl 2
+4|E|d - y(1j, Tj41) + |E|— + ?|E| Hmax

Vd
? 2 1/2
+ ? |E| Hmax lOg (Zd )

Under Assumption 1, which gives y(zj, Tj+1) = O(t%), and by setting
d= ®(T§(1_a)), we further have R(r;) = O(log(r)ré(””z)).

The guarantee in Lemma 2 demonstrates that the average loss
due to learning over 7 time slots of the jth frame vanishes as 7

grows in the sense that @ — 0 as 7 — oo under our mild
assumption on the learnability of the system. This is crucial for
establishing the throughput-optimality of MW-UCB in the next
Section.

4.3 Throughput-Optimality and Stability
Results

In this Section, we prove the throughput-optimality of MW-UCB
and, as a byproduct, its strong stability in a region constrained by
window-based dynamics. The key components of the proof lever-
age the regret bound for learning non-stationarity (Lemma 2) in
the analysis of the frame-based Lyapunov drift and non-trivially
generalize the shedding technique from the adversarial network
control literature [21]. In particular, to address the analytical in-
tractability of the capacity region, we shed the traffic of the original
system to obtain a new imaginary system whose traffic is within
the window-based region, which is formally described in Definition
7. While the shedding process incurs additional term in the queue
bound as a tradeoff, it makes the imaginary network dynamics
tractable, from which stability of MW-UCB can be derived.

Definition 7 (Window-Based Region). The window-based region
C (W, ¢) of the class of idealized policies is defined as:

C(W,¢e) = {{A(t)}tzo : A € I such that forq = 0,W,2W, ...

qg+W-1 g+W-1
Z Ae(t) < (1-¢) Z E[b7 (t)], Ve € E}.
t=q t=q

Specifically, the sequence of arrival rates {A()};>¢ satisfies the
window-based region, parameterized by window size W and a
shrinkage term ¢, if there exists an idealized policy such that the
total mean arrivals are less than a fraction 1 — ¢ of the total mean
services over a window of W slots starting at every starting point
t = 0,W,2W, ... Next, we proceed to establish the main Theorem
on the throughput-optimality of MW-UCB.

Theorem 3. Under Assumption 1, MW-UCB is throughput-optimal.

ProoF. Givenany f € [0, 1), we show that MW-UCB can achieve
mean rate stability for any {A(t)};>0 € As(f). We now consider
an imaginary system that is obtained by imitating the same link
service process {0(t)};>0 as the original system’s and shedding
a certain amount of traffic from the original system’s arrivals
{a(t)}s>0 to obtain a new sequence of arrivals {a(t)};>o with
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ie(t) = E[de(t)], Ve € E,t > 0. Denote the amount of shed traffic
within the time horizon by:

T-1 T-1
Xr=3" Y at) =Y > ). (17)

t=0 ecE t=0 ecE
For some ¢ € (0, 1) to be determined later, we consider the shedding
scheme as in the following Lemma 3, whose proof is deferred to
Appendix C.

Lemma 3. Given {A(t)};>0 € As(f) and any e € (0, 1), there exists
a shedding procedure such that {A(t)}s>0 € C(z, ¢) and:

E[X7] = O(TP* e 46T + 7). (18)

Intuitively, Lemma 3 suggests that, for analysis, despite the po-
tential analytical intractability of the approximate region As(f),
we can shed traffic to obtain an imaginary system that is con-
strained in C(7,¢) and thus more tractable with the tradeoff as
characterized by (18). When MW-UCB is applied to the original
system, it produces the sequence of decisions {(xMW-UCB (1)} ;5.
Let Q(t) = {ée(t)}ee g be the virtual queue length vector at time
slot ¢ if such sequence of decisions {xMW-UCB (1)}, is applied to
the imaginary system. Then the following Lemma 4 upper-bounds
the Q1 measure of MW-UCB in the original system. The proof is
given in Appendix D.1.

Lemma 4. We have the following bound:
QYW U < B[Xr] +E[ ) Qe(T)]. (19)

ecE

In particular, though the shedding process incurs the term E[XT],
which can be bounded as in Lemma 3, in the queue bound of the
original system, we are now left with bounding the virtual queues
Q(t) which evolve over the imaginary system that is more tractable.
Next, we further provide guarantee for the total expected queue
length of the imaginary system, i.e. the second term of (19), as
follows.

Lemma 5. Under Assumption 1 and given {A(D)}rs0 € C(1, €), there
exists some universal constant ¢; > 0 such that if ¢1 log(r)r% (a=1) <
e <1, MW-UCB withd = @(rg (1_“)) being applied to the imaginary
system satisfies:
E[ Y Qe(T)] =0(T# 12 LTS E g i), (20)
ecE
The proof of Lemma 5 can be found in Appendix D.2. Notice that
under our assumption a < 1 (implying lim;_,c log(f)r% (a=1) = ),
without loss of generality (WLOG), we can consider 7 large enough
so that ¢1 log(r)r% (@=1) < 1. The requirement that the considered
"shrinkage" ¢ must be bounded away from 0 by such quantity re-
flects the loss due to learning. Note that the whole shedding process
only serves for analytical purposes, i.e. we can shed the original
system into the new imaginary system in the sense of Lemma 3 for
any arbitrary ¢ € (0, 1). Finally, by setting ¢ = ¢; log(T)T% (@=1) e
plug (18) and (20) into (19) to obtain the following bound for the
Qr measure of MW-UCB with d = @(1'%(170‘)):

B
QI}AW'UCB = O(T'BHT_1 +T log(r)fé(‘x—l) +THZ 2 +T%r%).
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Therefore, MW-UCB with r = T2 (#*1) and d = ®(T%(170’)) can
achieve:

QII\_/IW—UCB :O(T%(ﬁ”) n /—log(T)Tl—le(ﬁH)(l—a) +T§(ﬂ+3))
=o(T), (21)

where the last line holds because «, § € [0, 1). Since (21) asserts the
mean rate stability of MW-UCB for {A(#)};>0 € As(f) given any
p € [0,1), we conclude that MW-UCB is throughput-optimal. O

Additionally, we derive the strong stability of MW-UCB for the
window-based region in the following Corollary, whose proof is
given in Appendix E.

Corollary 1. Under Assumption 1, MW-UCB with a fixed win-
dow size T and d = ®(r%(1_“)) achieves strong stability for any

{A()}t>0 € C(z,¢) withanye > ¢; log(r)ré(afl) for some univer-
sal constant c1 > 0, i.e.

T-1
limsup% 3 S EQ(1)] < oo (22)

T—eo t=0 ecE

5 NUMERICAL SIMULATION

In this Section, we empirically evaluate the performance of MW-
UCB and validate its throughput-optimality. We compare our pro-
posed algorithm with two baseline algorithms:

o The idealized Max-Weight (MW) policy [22] with full knowl-
edge of network statistics, which schedules the link activa-
tion vector at time slot ¢ according to (9). This represents
the class of idealized policies IIs and serves as an unrealistic
baseline.

e The MW with restart UCB [26], which can be thought of
as a special case of MW-UCB for d = r and represents the
class of admissible policies IT. While originally proposed for
stationary network control with partial observability and
unknown statistics, this algorithm was empirically verified
as a heuristic for non-stationary settings in [26], and is the
only algorithm in the literature that is directly applicable to
our model.

Figure 2: The 3 X 3 grid topology; an example of link schedule subject to node-
exclusive interference, which forms a matching, is shown in solid lines.

For both MW-UCB and MW with restart UCB [26], we set the
restart period to 7 = T%/3. Sliding window size of MW-UCB is
set tod = er%(l_a)-l + 150. We perform extensive testing on
the 3 x 3 grid network with node-exclusive wireless interference
constraints [8], as depicted in Figure 2. To model the non-stationary
service rates, for any time slot ¢ and link e € E, we consider p(t)
evolving over time according to the Markov chain in Figure 3,
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whereby p.(t) would change its state (between 0.25 and 0.75) with
probability §; which itself may vary over time. Then, given p(t),

the instantaneous service capacity e (t) ~ Rayleigh(\/;ye (1)) is
sampled from the Rayleigh distribution with the scale parameter
that ensures E[6. ()] = pe(t). We consider two settings of d;,

which governs the dynamics of the non-stationary service rates:

(1) Time-invariant §; = %: This corresponds to the uniformly
changing dynamics and was considered in the literature [26]
for simulations.

(2) Time-varying 6; = This non-stationary aperiodic

0.5 .,
()12
setting captures more abruptly changing environments.

[

16[1 76['

o

Figure 3: Markov chain for the time-varying mean service rate . (¢), Ve € E.
At time slot ¢ and for any edge e, given . (t) € {0.25,0.75}, the instantaneous
service capacity 0, (¢) follows Rayleigh distribution with mean . (¢).

Moreover, both of the above settings satisfy Assumption 1 in the
sense that E[y(t1,t2)] = O(|t2 — t1|1/2) forany 0 <t; <tp <T
4 (see [1, Appendix F] for the proof). We thus use a = 1/2 in our
simulations.

5.1 Throughput-Optimality and Stability

We first consider fixed arrival rates where, at time slot ¢, every
link receives Poisson arrivals with the same packet generation
rate A = A.(t),Ve € E. To demonstrate the stability properties
of the algorithms, we investigate the evolution of the total queue
backlog, i.e. Y oecg Qe(t) at time ¢, for A = 0.11 and 0.12, which
respectively represent the regimes of moderately loaded and highly
loaded network. We run the simulations for T = 10° time slots
and report the results for both settings of time-invariant §; and
time-varying J; in Figure 4 and Figure 5, respectively.

Throughput-Optimality of MW-UCB: The results from Fig-
ure 4 and Figure 5 demonstrate that MW-UCB preserves the stability
property of the idealized MW policy and thus supports the same
stability region as achieved by the class of idealized policies with
full statistics. In particular, the total queue backlogs of both algo-
rithms remain stable for the moderate-load regime A = 0.11, and
start to explode in the high-load regime A = 0.12.

Performance Evaluation of MW-UCB: In all experiments
from Figure 4 and Figure 5, MW-UCB consistently outperforms MW
with restart UCB. Whenever the arrival rate A is inside the stability
region (Figure 4a and Figure 5a), MW-UCB can learn the channels’
statistics under non-stationarity and consequently stabilize the
system. Additionally, for MW-UCB and idealized MW, we gradually
increase A = 0.03 — 0.22 and report in Figure 6 the value of
log (Yecp Qe(T)/T) at T = 1.5 - 10° to empirically measure the
closeness of Q7 /T to 0 as well as its growth outside the stability
region. The result suggests that MW-UCB preserves the pattern of
idealized MW.

“While this is E[y (#;, ) |, we can strictly enforce Assumption 1, i.e. without expecta-
tion, by deterministically simulating a feasible trajectory of u(#)’s evolution.



Learning to Schedule in Non-Stationary Wireless Networks With Unknown Statistics

MobiHoc *23, October 23-26, 2023, Washington, DC, USA

350000

250000

— MW-UcB — mMw-ucs — MW-UcB

300000 MW with restart UCB (literature) MW with restart UCB (literature) MW with restart UCB (literature)

—— MW with full statistics (unrealistic) 300000 1 —— MW with full statistics (unrealistic) —— MW with full statistics (unrealistic)
- 200000

~ 250000 ~ =
o = 250000 g
S S 2
I I a
3 S 2 150000

200000
& £ 200000 <
s s K
g g -

150000 2
o g 150000 § 100000
@ ] v
g ] H
I3 4 g
5 100000 5 100000 H
3 ] =
- = g soo00

0.0 0.2 08 1.0 0.0 02 0.8 10 0.0 02 0.4 0.6 0.8 10

0.4 X
T = 1000000 time slots 1e6

(a) Fixed arrival rate A = 0.11 strictly within the

stability region. stability region.

Figure 4: Total queue length over time for time-invariant §; =

0.4 X
T = 1000000 time slots

(b) Fixed arrival rate 1 = 0.12 strictly outside the

1e6 T = 1000000 time slots 1e6

(c) Adaptive arrival rates A(¢) of highly loaded net-
work.

Ti/2°

160000
— MW-UcB

MW with restart UCB (literature)
—— MW with full statistics (unrealistic)

140000
120000
100000

80000

60000

40000

Total Queue Length for Adaptive A(f)

20000

0

—— MW-UCB —— MW-UCB
300000 MW with restart UCB (literature) MW with restart UCB (literature)
—— MW with full statistics (unrealistic) 3000001 __ iy with full statistics (unrealistic)
250000
o o 250000
S S
1 <
5 200000 5 200000
s s
5 B
2 g
9 150000 8 150000
v ©
E g
i g
g ]
i: 100000 : 100000
= =
o o
0.0 0.2 0.4 0.8 10 0.0 0.2

T = 1000000 time slots 1e6

(a) Fixed arrival rate A = 0.11 strictly within the

stability region. stability region.

Figure 5:

T = 1000000 time slots

(b) Fixed arrival rate 1 = 0.12 strictly outside the

Total queue length over time for time-varying §; =

10
1e6

10
1e6

04 06

0.4 0.6
T = 1000000 time slots

(c) Adaptive arrival rates A(¢) of highly loaded net-
work.

05
(t+1)1/2°

0
— MW-UCB — MW-UCB
MW with full statistics {unrealistic) -14 Mw with full statistics (unrealistic)
- N
ey
e ! £
& S —44
s 5
é’ -6 § 5
6
-8
y
s
=10
0.025 0.050 0.075 0100 0.125 0.150 0.175 0.200 0.225 0025 0.050 0075 0100 0125 0150 0175 0200 0225
Arrival Rate A Arrival Rate A
. L . . : . __0s
(a) Setting of time-invariant §, = 7T01-72 . (b) Setting of time-varying &, = 2

Figure 6: Measuring log(Qr/T) at T = 1.5 - 10° for A = 0.03 — 0.22.

5.2 Time-Varying Arrival Rates

Next, we provide additional simulations for time-varying arrival
rates A(t). We let all links in any time slot ¢ to receive Poisson
arrivals with the same packet generation rate A(t) = A¢(t), Ve € E.
Given the mean service rates p(t), an upper-bound on the maxi-
mum arrival rate supported by the network is given by:

(23)

= 1
AMt) £ min —M
veV Zeeﬂ(v) pe ()71

where A(v) is the set of links adjacent to node v. In our simula-
tions, we set A(t) to be exactly the right-hand side of (23) to model
highly loaded network. We plot the total queue length over time,
i.e. Y eck Qe(t) at time ¢, for both settings of time-invariant §; and
time-varying J; respectively in Figure 4c and Figure 5c. The results
demonstrate that MW-UCB can well adapt to the time-varying ar-
rival rates to achieve stability, and consistently improves over MW
with restart UCB.
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6 CONCLUSION

In this paper, we present MW-UCB as a novel joint learning and
scheduling algorithm for non-stationary wireless network control
under partial observability and non-stationary dynamics. Our algo-
rithmic development is based on the Max-Weight policy for network
control and sliding-window UCB for learning uncertain and time-
varying channel statistics. We propose a new notion of stability for
non-stationary networks and prove that the MW-UCB algorithm
achieves a stability region that is arbitrarily close to the true stabil-
ity region. Extensive simulations on both uniformly changing and
abruptly changing dynamics confirm the throughput-optimality
and the favorable performance of the algorithm. We believe that our
analytical framework can be extended to study stability properties
of algorithms for non-stationary network control under stringent
requirements of emerging large-scale wireless networks.
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APPENDIX

A PROOF OF LEMMA 1

First, we prove that Ag(f1) € As(f2) forany 0 < 1 < f2 < 1.
Take any {A(#)}r>0 € As(f1). Then there exists some 7 € Il such
that QF = O(T#"). Since f1 < pa. this implies Q% = O(T#2) and
thus {A(t)}r>0 € As(B2). Therefore, we have Ag(f1) € Ag(f2).

Second, we prove that As;(ff) C A for any f € [0, 1). Take any
{A(®)}t20 € As(f). Then there exists some 7 € II; such that Q7 =
O(Tﬁ). Since § < 1, this implies Q7 = o(T) and thus {A(t)}s50 €
As. Therefore, we have As(f) C As.

Finally, we prove that A; C As(1). Take any {A(#)}s>0 € As.
Then there exists some 7 € Is such that Q7 = o(T), which implies
QF = O(T) and thus {A(t)};50 € As(1). Therefore, we have A; C
Ag(1).

B PROOF OF THEOREM 2

Since A € Ag, by definition there exists some 7* € II; that satisfies:

T-1 T-1
1 1 «
= 1i — < Ii — T
Ae Tlgr‘l)0 T t:EO ae(t) < Tll_r:zo T tzgo by (t),Ve € E. (24)

xIMI be all the admissible link activations in M. For
any time slot ¢t > 0, we consider the empirical counter and distribu-
tion Vi € [1, | M]]:

Let xl, x2,

t-1
ni() = Z T (5)2xi ) (25)

nl(t)

pi(t) = (26)

where n;(t) and p;(t) respectively represent the number of times
and the time fraction that the link activation vector x' has been
chosen by the policy 7* by time ¢. Additionally, we consider Vi €
(1, IM]]:

0, ifx}; =0
Sie(t) = i Ge(s)ll{x,,* (s)=xi}
n;(t)

(27)
, otherwise

Let p(t) = (pi(t))ie[1,| m|] be the vector of all such empirical dis-
tributions. Also note that Zli\f‘ pi(t) = 1 for any ¢t > 0. Since

p(¥) € [0,1] Ml by the Bolzano-Weierstrass Theorem, there exists
a convergent subsequence {p(t)}x=12, . Where limg_,, t; = oco.
Define the limit of this convergent subsequence by:

= lim p(ty). (28)

Now, we note that for any i € [1, | M|] such that p; > 0 (which
also implies limy_, ., n;(#;) = o), by SLLN, we have:

lim Si’e(tk) = ]l{xi:l}pe,\?’e € E. (29)
k—co0 e
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With the convention that 0/0 = 0, we obtain from (24) that Ve € E:
tk 1
e < lim g Z b ()
IM]
= kh_)H:o ; Pi(t) - Sie(tx)

(28)+(29)

IM|
He Z pi Loy (30)
i=1

Consider a stationary randomized policy 7z, that at any time ¢
activates the link schedule x” (¢) = x! with probability p;. Next,
we consider the Max-Weight (MW) policy with the full knowledge
of the statistics (i.e. MW is in II;) that at any time slot ¢, schedules
the link according to:

MW (1) = argmax { Z Qyw(t)yexe}, (31)

xe M ecE

and proceeds to show that QMW O(TZ) For brevity, we use mys
to denote the MW policy. Under the MW policy, we consider the
quadratic Lyapunov function of the queue lengths Q™ (1) as:

O™M(Q™ (1) = Q™M ()T Q™ (1) = ) O (1E. (32)

ecE

We consider the 1-step Lyapunov drift conditioned on the queue
length as follows:

A (1) = E[O™(Q7™ (1 +1)) — @™ (Q™ (1)|Q™ (1)]. (33)
From the queue process (2), we first obtain that Ve € E, t > 0:

QM (t+1)% < (QFM (1) + ae(t) — bV (1))?
= QP(1)? + (ae(t) — b7 (1))?

+207M (1) (e (1) = bM (1))

< QP ()2 + (Amax + fimax)*
+20.M (1) (ae (1) — bg™ (1)),

where in the last line we use 0 < ae(t) < Amax, 0 < bJM (1) <
0c(t) < Hmax. Summing the above over all e € E and taking the
expectation conditioned on Q™M (t), we obtain that:

A™(£) < E|(Amax + fimax)® +2 ) QP (1) ()
ecE

—2 3 QM () E [ (1)]Q"™ (1)]

ecE

(31)
< |E|(Amax + lJmax)2 +2 Z Q?M(t)ﬂe(t)

ecE

—2 ) QMM (DB [x" (1)]Q™ (1)]

ecE

= |E|(Amax + Hmax)2 +2 Z QgM(t)Ae(t)
ecE
IM|

—22Q§M(t)y3 Zpl J]‘{x =1}

ecE

(30
5 |E|(Amax + /—lmax)2~
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Taking expectation of both sides with respect to Q" (t), we have:
E[q)”M Q™ (t+ 1))] - E[CDHM (Q”M(t))] < |E|(Amax + IJmax)2~

Telescoping over t = 0 — T — 1 and noting that ®™ (Q"™ (0)) = 0,

we get:

E[CDHM (Q™ (T))] < TIE|(Amax + Hmax)2~ (39)

Following the same argument as the proof of Lemma 10, we can
similarly obtain that:

oYW =E[ ) 0 (1)]

ecE

< B - E[@m (Qmu (1)) ]

(34 1
< TZ|E|(Amax + Hmax)

which implies QYW = O(T% ). Since mp € II, we thus have A €
As(%). Since by our Definition 6, a throughput-optimal policy 7,
given § € [0, 1), achieves the stability region As(f), the network is
mean rate stable under x for any A € As.

C PROOF OF LEMMA 3

Since {A(t)};>0 € As(f), by definition there exists some policy
m* € Il such that:

oF =o(1h).
For any 7;, we consider Ve € E:
0, if Xl 1}Le(t) =0
(- f)(ZT”1 Ae(D)-E[QF (zj) D \*

20 e )

t=1j

re(Tj) =

, otherwise

(35)
and sheds the traffics such that for any t € [7}, 7j+1),
de(t) =re(tj)ae(t),Ve € E. (36)
We now proceed to show that this shedding scheme guarantees
{A(t)}+>0 € C(z,¢) and (18).
From the queue dynamics (2), we have Ve € E:
QF (zj41) = (QF (zje1 = 1) + ae(tj1 = 1) = b (7js1 = 1)
> QF (tj41 = 1) + ae(tjs1 — 1) = b7 (zj41 - 1).

By repeating the above argument, we get Ve € E:

Tjr1—1 Tjy1—1
OF (7j41) 2 QF (r)+ D) ae()= > b7 (1)
t=1; t=1;
Tj+1—1 Tj+1—1
> > a)- D BT @)

t=1; t=1;

Taking expectation of the above, we obtain that:

Tj+1—1 Tje1—1
D Ae() —EIQF (zu)] < ) BB (1)], Veek.
t=1; t=1;
Tj+1—1 + 7j+1~1
( > Ae<t)—E[Q§*(rj+1>]) < D, EI7 (1], VeckE.
t=1; t=1;
(37)
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Taking expectation of (36) and summing over t = 7; — 7j41 — 1,
we obtain in view of (35) and (37) that Ve € E:

Tj+1—1 Tj+1—1

T, 1
~ (3 )( 7) oy
e Ereep( D) o) (1-0) > BRI ()]

t=1; t=1; t=t;
which verifies {i(t)}tzo € C(r,¢).
To prove (18), we note that from (17), E[XT] = Z ZeeE Ae(t)—
Z ZeeE Xe(t), and first proceeds to upper-bound ZTJ“ ! Ae(t)—

T]+1 1z
t=1;

Case 1: ZTJ“ 1/1 (1) < E[Qe (7j+1)]. From (35), we have re (7) =
0 and thus (from (36)) /ie(t) = E[de(t)] = 0. Then we obtain that:

Ae(t) by considering two cases as follows.

Tj+1—1 Tj+1—1 . Tj+1—1
D A= Y A= ) Ae(t) <E[QF (rjs1)].
t=1; t=t; t=1;

Case 2: £/ "Ae(t) > E[QF (1j41)] = 0. We have:

Tj+1—1 Tj+1—1 Tj1—1
M ae® - Y A a-re@)( D] A)
t=t; t=1; t=t;
Tjr1—1
D () Re) + (1~ OBIQF (0)]
t=t;

< eTAmax + E[Qg* (Tj+1)]

Thus, in any case, we have:

Tj+1—1 Tj+1—1 )
Z Ae(t) - Z Ae(t) < eTAmax +E[Qg (Tj+1)]~
t=t; t=1;

Summing the above over all e € E and j = 0 — K — 1, we obtain:

TK—1 TK—1
Xod= D) D hed= D0 > de®)
t=0 ecE t=0 ecE

K-1
< etKAmax + Z E[Z OF (tj41)]

j=0 ecE

K
= etK Apmax + Z or

J=1

K
=O(erK + Z rjﬁ)
j=1

pLUNTL [
=0 -
(€TK+TK+Z T./T~ xP dx)
Jj=1 J
1 [
=0(erK - p
Ofer +TI€+T/ xP dx)

1

1 K
=O(€TK+TI€+—/ xﬁdx)
T Js

/3+1

= Oferg +70 + )
T

= O(TP 11 4T). (38)
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Finally, we have:

T-1 T-1
E[Xr] =E[Xg ]+ D) D Ze(®)= >° > Ae(t)

=Tk ecE t=TK ecE
< E[XTK] + 7|E|Amax
@ o1t v eT 4 1),
D GUARANTEES OF THE IMAGLNARY
SYSTEM’S QUEUE PROCESS {Q(t)}/50
Recall from Section 4.3 that:

o When MW-UCB is applied to the original system, it produces
the sequence of decisions {(xMW-UCB (1)};5 and thus effec-
tive service rate {bMW-UCB(1)},5 . The queueing dynamics
of the original system evolves as {QMW-UCB ()}, via:

Qg/[W-UCB(t + 1) — (QQ/IW_UCB(t) + ag(t) _ bg/IW—UCB(t))+’ Ve € E.

o The "imaginary" queue lengths Q(t) evolve as the sequence
of decisions {xMW-UCB(1)},5 is applied to the imaginary
system, i.e.

Qe(t+1) = (Qe(t) +ae(t) — BMWUCB(1))* Ve € E.

In the proofs of this Appendix D, we refer to {xMW-UCB(1)},5,,
{BMWUCB (1)} 150 and {QMWUCB (1)} respectively as {x(t) } 2o,
{b(t)}+>0 and {Q(t)};>0 for brevity. Consequently, the queueing
dynamics of the original system and imaginary system can be
respectively expressed as:

Qe(t+1) = (Qe(t) +ae(t) — be(t)) ", Ve € E (39)
Qe(t+1) = (Qe(t) +de(t) — be(t)) ", Ve € E. (40)

D.1 Proof of Lemma 4

From Lemma 6, we have Ve € E:

T-1
Qe(T) < Qe(T) + ) (ac(g) - de(q))

q=0

Summing up the above over all e € E and taking expectation, we
conclude that:

T-1
E[) Qe(T)] <E[ ) (ac(q) - de(9)] +E[ D Qe(T)]

ecE q=0 ecE

<YW <E[Xr] +E[ ) Qe(T)],
ecE

where the last line follows from the definitions of Q7 and X7.

D.2 Proof of Lemma 5

Since {A(1)};>0 € C(1, €), by definition there exists some 7y € Il

such that for any 7; € {r, 71, ..., Tk -1 }:
Tjy1—1 Tjy1—1
Z Je(t) < (1-e) Z [b7(t)], Ve € E. (41)
t=t; t=t;
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We consider the quadratic Lyapunov function of the queue
lengths Q(#) of the imaginary system under MW-UCB as:
®(Q(1) = QA1) = Y Qe()*, (42)
ecE
We consider the 7-step Lyapunov drift of ®(.) conditioned on the

queue lengths of both the original system and the imaginary system
as follows:

A(zy) = E[®(Q(7j+1)) - 2(Q(z;)Q(7). Q(zp)].  (43)
where we recall that 7; = jr. From Lemma 7 (in Appendix D.3), the
drift can be upper-bounded by:

Tjr1—1
A(rj) <Bir(r+1) +2 Z Q(Tj)Ti(t)
t=1;
Tjy1—1
~2 3 BIOE)TDOR(m). Q)] (44)
= 7j

where By = %|E|(Amax + [imax)?. Now, we consider the normalized
queue lengths of both the original and imaginary systems as:

5 ée(fj)
e(7j) = ————, E, (45)
TS TEnT
N Qe(Tj)
We(’l']) = m,\fe € E, (46)

with the convention that 0/0 = 0. Note that (46) is the same weight
updating rule as Line 4 of MW-UCB (Algorithm 1). Then we consider
the following two regrets which respectively use (45) and (46) in
their weight instantiations:

Tj1—1
R(r)) = Z max B[ ) we(5)x:0 (0]Q(7), Q5))]

e€E
Tj+1—1
= >0 B[] we(rp)xe(00(0)]Q(77), Q(r))] (47)
t=1; ecE

Tjy1—1

1
106 e (7)) %00¢
1Rl Z é@(rﬂx (D|Q(7)), Q(z))]

Tjy1—1
1 ~ T =~
[ E D b(t i), 1R 48
e tz [Q(z)Tb®1]Q(r). Q(zp)],  (48)
and (recalling from (16)),

Tjy1—1

R(zj)= > max B[ [ > we(r)xi0e(1)[Q(z)), Q(z))]
t=1; ecE
Tjr1—1
= D1 E[ D] welrp)xe (00 (D]Q(7)), Q(r))] (49)
t=1; ecE
1'7+1 1

1
= 10T Z 1581 3 063000005, Q1)

Tj+1—1

-t ATh(O[O(21), O(z:
10l tZ B[Q(m) b(0[Q(r). Q)] (50)
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From Lemma 8 (in Appendix D.3), we further relate (44) to the
regret R(z;) as follows:

Tjy1—1
PRI CICHR IO ICHNICA)
t=t;
T]+1 1
> (1-¢) >, B[Q(r) b™(1)]Q(r), Q(z))]
t=1;
+£7]|Q(7)) lloottmin — 1Q(7) loR (1))
Tjr1—1
= > 0e(rp1-e) > B (1)]]
eckE t=1;

+¢7]|Q(1) oo tmin — 1Q(7) IR (77)

Tjp1—1
( ) J+1 5
BN AN IIPRD)
ecE t=1;
+7|Q(t) lootmin = 1Q(7)) IR () (51)
Tjy1—1
= Z Q)T A + etll Q) lloopimin = 1Q(z)) loR (7)) (52)
t=1;

where for (51) we recall that 7y € II; is the idealized policy that
satisfies (41). Combining (52) and (44), we have:
A(z)) < Bie(r +1) = 2e7Q(z)leottmin + 211Q(1) R (7).
(53)

Now, we have from Lemma 9 (in Appendix D.3) that:

IQ(t/) IR (7)) < 1Q(z))lloR (7)) + TmaxE[Xr, 1. (54)
and from Lemma 6 (in Appendix D.3) that:
E[”Q(ﬁ)”%\Q(U) Q(Tj)] > E[||Q(Tj)||oo|Q(Tj) Q(Tj)] XTJ
(55)
Plugging (54) and (55) into (53), we obtain that:
A(Tj) < Bir(t+1) + 2(pmax + Ellmin)fE[er]
= 2e7)| Q7)) looptmin + 2[1Q(7j) R (zj).  (56)
Recall from Section 4.2 that MW-UCB, during every time frame
[7j, Tj+1), fixes the queue length in the original system to Q(7;) (and
thus the normalized weights {we(7j)}ccE), and adopts the CUCB-
SW algorithm for scheduling while learning the non-stationary
mean service rate. Thus, the regret R(7;) as in (49) serves to capture

the learning efficiency of CUCB-SW with theoretical guarantee in
[10]. To this end, the regret bound under our choice of parameter

d=730-9) i given by Lemma 2 (in Appendix D.3) as follows:
R(zj) < co log(r)ré(‘”z), (57)

for some universal constant ¢y > 0 that can be explicitly determined.
Substituting (57) into (56) and defining ¢; =

A(zj) < Bir(r + 1) + 2(pmax + gl-lmin)TE[er]
1
= 20]1Q()) lloopimin (e = 1 log(r)r3(“™V). (58)
Now, if ¢ > ¢; log(T)T%(“_l), we obtain from (58) that:

A7) < Bir(1+1) + 2(phmax + s,um,-n)rE[XTj].
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Recall from (43) that A(7;) = E[®(Q(7j+1))-®(Q(7)))|Q(7;), g(rj)].
Taking expectation on both sides of the above with respect to Q(r;)
and Q(7;), we get:

E[®(Q(zj+1))] - E[2(Q()))]
< Bir(r +1) + 2(pmax + epimin) TE[ X7, ].

Summing up the above for j = 0,1,..,
@(Q(1)) = (Q(0)) = 0, we obtain that:

K — 1 and noting that

K-1

E[®(Q(1k))] < Bir(r + DK + 2(fimax + elmin) Z E[X,]
7=0

+£Tj))

K-1
(18) O(r°K + Z (Tjﬁﬂfl
j=0

K-1 K-1
= O(T2K+Tﬁ+1 Z jﬁﬂ +er? Z j)

Jj=0 Jj=0

K-1
= O(T2K+ AR /

0

K-1

P dx + e? Z j)
j=0

= O(c?K + TPTIKPH2 4 er?K?)

= O(cT + TP2r71 1 6T2), (59)

where for last line, we recall that K is the largest number such that
7x = 7K < T. From Lemma 10 (in Appendix D.3), we have:

E[ > Qe(r)] <

ecE

|E| - E[®(Q(7x))]

59 B
Dorict + 151 edT).  (60)

rol—

Noting that 0 < T — g < 7 and using Lemma 6 (in Appendix D.3),
we have:

E[ > 0e(T)] =

E[ D Qe(mk)] +E[ D" (Qe(T) = Qe (k)]

ecE ecE e€E
E[ Z ée(TK)] + (T = k) (Amax + Hmax)
ecE
(©0)

11 B _1 1
O(T272 +T™*2772 +¢2T + 1)

=0(T2r? + TS +e2T),

which concludes the proof of the Lemma.

D.3 Supplementary Lemmas
Lemma 6. We have the following bounds Ve € E:

[Qe(t1) = Qe(t2)| < |t1 = t2|(Amax + Hmax) (61)
|§e(t1) - ée(t2)| < |t1 — t2 (Amax + Hmax) (62)

=1
Qe(t) < Qe(t) < Qel(t) + Z(ae(q) —de(q)) (63)

=0

19l < 1Q(Dlleo < 1Q(#) oo +Xe (64)



Learning to Schedule in Non-Stationary Wireless Networks With Unknown Statistics

ProoF. (61) trivially holds for t; = t2. If 11 # t2 , WLOG, we
assume that t; > t». From the queue dynamics (39), we have:

Qe(t1) 2 Qe(t1 — 1) +ae(ty — 1) = be(t1 = 1)
2 Qe(tl -1) - Hmax>
Qe(tl) < Qe(tl - 1) + ae(tl - 1) < Qe(tl - 1) +AmaXs

where we use 0 < a.(t) < Amax and 0 < be(t) < 0e(t) < Umax-
Iterating the above, we obtain that:

Qe(t1) 2 Qe(t2) — (t1 — t2) hmax»
Qe(tl) < Qe(tZ) + (tl - tZ)Amax~

Combining the two above, we have (61). Similarly, we obtain (62).

Next we proceed to prove (63) by induction om ¢.

Base case t = 0: Now, (63) trivially holds since Qe(o) =Q.(0) =
0,Ve € E.

Inductive stept — t + 1: First, we note that the number of packet
arrivals of the imaginary system are shed from and thus upper-
bounded by the number of packet arrivals of the original system, i.e.
de(q) < ae(q),VYe € E,q =0,1,2,... From the inductive hypothesis
Qe(t) < Qe(t) < Qe(t) + Z;;é(ae(q) — de(q)) and the queue
dynamics (39) and (40), we have Ve € E:

Qe(t + 1) = (Qe(t) + ae(t) - be(t))+
2 (QE(t) +ae(t) - be(t))+
(g) §e(t+ 1),

and,
Qe(t+1) = (Qe(t) +ac(t) = be(1)"
t—1
< (Qe(t) + " (ae(q) = Ge(9)) + ae(t) = be(1))*
q=0

t
< (Qe(t) +ae(t) = be(t) + ) (ae(q) - de(q)))*
q=0

t
< (Qe(t) +ae(t) = be(£)* + )" (ae(q) = ae(q))

q=0
(40) ~ -
= Qe(t+1)+ ) (ac(g) - de(q).
q=0
Thus, (63) also holds for ¢ + 1.
To prove (64), we first obtain from (63) that:
Qe(t) < Qe(t) < Qe(t) + X1, Ve € E.

Next, we consider e} = arg max, g Qe (t) and ey = argmax,cp Qe (1)
and get that:

IQ()lleo = Qe (1) < Qes (1) < 1Q(1) |,
Q1) lloo = Qe (1) < Qe (8) + X < 1Q(1) oo + X,

which concludes the proof of the Lemma. O
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Lemma 7. We have the following bound:

Tjr1—1

A(tj) < Bir(t+1) +2 Z Q(Tj)Ti(t)

t=1;
Tjy1—1

—2 3 EBQ)TBOIR). Q)] (69)

=7

where By = %|E|(Amax + ,Umax)z-

Proor. From the queue process (40) of the imaginary system,
we first obtain that Ve € E, t € [7j, Tj4+1):

Qe(t+1)% < (Qe(t) +de(t) — be(1))?
= Qe(1)% + (Ge(t) = be()® + 20, (1) (e (t) — be(t))
= Qe (1) + (Ge(t) = be (1)) +2Qe (7)) (e (t) — be(t))
+2(Qe(t) = Qe (7)) (e (1) — be (1))
< Qe()? + (de(t) = be(1))* + 20, (1)) (e (t) = be (1))
+2|Qe (t) = Qe (tj)|de (t) = be(1)]
< 0e(V)? + (Amax + pimax)* (1 +t — 1))

+20¢ () (e (t) = be (1)),

where in the last line we use 0 < d(t) < ae(t) < Amax, 0 <
be(t) < 0e(t) < fmax and Lemma 6 which gives |0e (1) —ée(fj)| <
(t = 7) (Amax + imax)- Telescoping the above for t = 7; — 741 -1
and summing over all e € E, we obtain that:

> B < 3" Be(5)* + Sl Amax + pima) e+ 1)

ecE ecE

2 )" Qelr))(ae(t) = be(1).

ecE

Taking the expectation conditioned on @(T]‘) and Q(7;) of the above
and noting that A (t) = E[de(t)] = E[ac(t)|Q(j), Q(z;)], i.e. the
packet arrivals are independent of the queue lengths, we conclude
the proof of (65). O

Lemma 8. We have the following bound:

Tjy1—1

D E[Q() b(®)[Q(r), Q(r))]

t=1;
Tjy1—1

> (1-2) ) E[Q() ™ (0]Q(r), Q(r))]
t=1;

+e7]1Q () lootmin = 1Q(7)) IR (7)) (66)



MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

Proor. First, letting e* = argmax, g ée(rj),we note that:

Tjy1—1
D max B[ 3 Qe(r))x0e (0]Q(), ()]
t=1; e€E
T]+1—1 _ _
D 10 e - 1- B [0 (1]Q(x), Q(z)]]
t=t;
Tj+1_1 _ _
> 19 loopmin = 7l1Q(z)) looptmin, (67)
t=t;

where for the first inequality, we compare the maximizing solution
with the feasible activation link vector that activates only the link
e*. Also, we have:

Tjy1—1

Z max E[ Z Qe(T])x 9e(t)|Q(Tj) Q(Tj)]

ecE
Tj+1_1

> > E[Q() ™ (1]Q(), Q(r)], (68)

t=1;

where we compare the maximizing policy with the policy mp with
also the full knowledge of every link e’s weight, i.e.

E[ée(fj)ee(t”@(fj)’ Q(Tj)] = Qe(fj)lle(t)~
Now, from (48), we have:

Tj+1—1

D7 E[Q() b(1)]Q(7), Q(r))]

t=1;

Tjy1—1

Z max B[ 3 Qe(1))x0e (1]Q(7). Q(z))] = 1Q(7) IR (7))

eM

ecE
(67)+(68) Tl
(1-2) > E[Q() ™ ()]Q()), Q(r))]
t=1;
+£7l1Q(z)) oo prmin = 1Q(7) R (7)),
which concludes the proof of the Lemma. O

Lemma 9. We have the following bound:
IRt/ IR (7)) < 1Q(z))lleoR (7)) + TmaxE[Xz;]  (69)

Proor. From (48), we have:

Tjy1—1
1Q(r) IR (z)) = Z max B[ > Qe(1)x:0 (1]Q(r), Qzy)]
ecE
Tj+171
- > E[QE) b®[R(r). Q] (70)
t=1;
From Lemma 6, we have Ve € E:
Tj—l

E[Qe(1)]Q(7). Q)] = D (Ae(t) = Ae (1))
t=0

< E[Qe(7))|Q(1)), Q(7j)]| < E[Qe(7))|Q(z)),Q(z)].  (71)
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Plugging (71) into (70), we have:

Tjy1—1
19 llewR(z)) = Z max B[ > Qe(5)x:0 (1]Q(7), Q(7))]
ecE
Tjr1—1
- > E[Q()Th®[Q(r), Q(r)]
t=1;
Tjs1—1
< Z max E[ZQe(TJ)x ee(t)|Q(T]) Q(T])]
ecE
Tj+]_1
- > E[Q(r) b®[Q(r), Q(x)]
t=1;

Tjir1—17;—1

+ 13T Relt) = Ae(0)E[be(1]Q(7)), Q(7))]
t=7j t=0 ecE

(50)

< QU leoR (1)) + ThmaxELXe; ],

which concludes the proof of the Lemma. O

Lemma 2. [Restated] Under MW-UCB, the regret R(r;) can be
bounded by:

R(r])<|E|( +1)(2 6log(r) +48Vd log(7)
+4|E|d - y(zj,7j41) + |E|%

? 2 1/2
+?|E| Hmax log (2d7/%).

2
T
+ ?|E|2l‘max

Under Assumption 1 and by setting d = @(1'% (1_“)), we further
have R(r;) = O(log(r)r%(“”)).

Proor. When we fix the queue lengths Q(z;) throughout the
frame [}, 7j+1), we aim to find a scheduling policy that solves

max ]E Z we (7)), 9e(¢)|Q(T1) Q(TJ)]

ecE

= max er/—le(t)E WE(TJ)‘Q(T]) Q(r))]

eEE

over the 7 time slots from 7; to 7j41 despite not knowing p(t) and
thus the true rewards at the time of making decisions. This problem,
whereby the mean reward of each arm, i.e. e (t)we (7}), varies over
time, can be characterized as stochastic combinatorial multi-armed
bandit (SCMAB) problem in non-stationary environment and solved
via the CUCB-SW algorithm [10]. To derive the bound for R(7;), we
first verify the conditions required by [10] and adapt the notations
therein to our case. In particular, our model corresponds to SCMAB
without probabilistically triggered arms, each of which is associated
with a link e € E. At any time slot ¢ € [7},7j4+1), an action is a link
activation vector x € M. The expected reward of arm e € E at time
t € [1j,7j41), if it’s activated, is denoted by We(t) = we (7)) e (t).
Let W(t) = (We(t))ecE be the vector of the arms’ expected rewards
at time ¢. The total variation of the mean reward statistics inside
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the frame [}, 7j+1) is thus depicted by:

Tj+1

DT IW() - Wt = Dlleo (72)

t=Tj+l

V(zj)

Tj+1

D e (@) (e(®) = pre(t = 1)))eeklo

t=7;+1

Tj+1

D7 () =t = Dl (73)

t=Tj+1

= y(zj, 7j41) = O(%), (74)

IN

where (73) holds since we(7;) < 1, and (74) is by Assumption 1. For
convenience, we denote the total expected reward under the arms’
expected rewards W and the action x € M as:

r(W,x) = Z Wexe. (75)

ecE

In view of the requirements imposed by [10], given two vectors of
expected rewards W and W’ and any action x, we can verify that our
model satisfies both the #1 TPM bounded smoothness assumption
of with constant B =1, i.e.

Ir(W,x) = r(W,x)[ < > [We = W],
e:xe=1
and the monotonicity assumption, i.e. if W < W’ (entry-wise), we
have:

r(W,x) < r(W/,x).

Furthermore, for each action x € M, the optimality gap with respect
to the reward W is defined as AW = maxy ¢ pq r(W,x’) — r(W, x).
Then for each arm e € E and t € [z}, 7j+1), we define:

o= AN
xEM:Axw(t)>O

et _ W(t)

Aprax = max Ay .

xEM:Axw(t)>0

We define Afr’fin = o0 and A%L . = 0 if they are not properly de-
fined by the above definitions. Then, Apin = inf,cf ;e [7/,T41) Af’fm
and Apmax = SUPeE re(r),701) A%l . are respectively the mini-
mum and maximum gap. For our problem instance, noting that
We(t) = we(7j)pte(t) < pimax, we have the following bounds on

the optimality gaps:

A < max r(W(0,x) < 3 We(t) < |Eljimas

ece

“Amax < |Elpimax- (76)

Following [10], given a set of positive parameters {M,}.cr and
for any action x € M, we define My = maxe.x,=1 Me With the
convention that My = 0 if x, = 0,Ve € E. From the proof of
[10, Theorem 4] , we have the following regret bound given the
frame size 7, sliding-window size d and any arbitrary set of positive
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parameters {Me }ecE:

R(Tj) < Z (S + 1)(2 6log(r) + W)

ecE Me
Tjr1—1 ”2
+AEld V() + D My + 5 |ElBmax
t=1;
2 e
+ ?Amax Z Jmax> (77)

ecE

where jg,,, = max {flog (%Eel)] 0} (also see [29]). Finally, by plug-
ging (74) and (76) into (77) and setting M, = M = %,Ve € E,

which also implies that My ;) = M, Vt € [}, 7j+1), we conclude the
required statements of the Lemma. O

Lemma 10. We have the following bound for any time slot T:

E[ )} 0e(D)] < yIEI - E[0(Q(T))] (78)
ecE
Proor. By Cauchy-Schwarz inequality, we first have:

NACE \/|E|( 3 Ge(1)?) = yIEI@(T)).

ecE ecE

Taking expectation of the above and by Jensen’s inequality, we
obtain that:

E[ Y Qe(D)] < B[IER(@(T)] < yIEI-E[2@(D)].

ecE

which concludes the proof of the Lemma. O

E PROOF OF COROLLARY 1

The proof follows as a side result of a special case of the proof
of Lemma 5 (Appendix D.2). In particular, since now {A(t)};>0 €
As(p), we can consider the shedding scheme that sheds no traffic,
i.e. de(t) = ae(t) for any e € E and ¢ > 0 and thus the total amount
of shed traffic from (17) is:

T-1 T-1
Xp=, D ()= ) > ae(t) =0, (79)

t=0 ecE t=0 ecE

Then the original and imaginary systems are now the same where
{Q(®)} =0 = {Q(#) }+>0 and the Lyapunov drift (43) can be equiva-
lently written as:

A(7j) = E[@(Q(rj41)) = 2(Q(r))[Q(r)). Q)] (80)

Now from (58) in the proof of Lemma 5

A(7)) < B1e(t +1) + 2(Hmax + tmin) TE[X7; ]
— 2011Q(e)) looftmin & = 1 log(r) 73 (@)
) Bre(r+1) - 201Q(e))lleopimin (€ — 1 log () (<)
< Brr(r+1) = 22( ) Qe(£)IEI ™ pmin (e - 1 log(r) 73 (*~1),

ecE
(81)
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where for the last line we use Y cg Qe(7j) < Yeer 1Q(7j)lle0 =
|E|1Q(7})|lco- Taking expectation on both sides of (81) with respect
to Q(Tj) and Q(7;) in view of (80), we get:

E[®(Q(zj+1))] - E[®(Q(7)))]
< Buir(r+1) = 20B[ ), Q(t))]1E|™ pmin (¢ = e1 log(r)e3 (*~ ).
ecE

(82)

Now, if £ > ¢1 log(r)ré (a=1), by summing (82) from j =0 - K -1
and noting that ®(Q(zx)) = 0 and ®(Q(0)) = 0, we obtain that:

Ki D E[Qe(r)] <

j=0 e€E

Bi(z + DK|E]|

2pmin(e — 1 log(r)r%(“_l)) '

(83)

By Lemma 6 and noting that 7x = 7K < T and T — g < 7, we have:

K-17jx1—1
ZZE Q] =), D, D E[Qe(®)]
t=0 ecE Jj=0 t=7; ecE
T-1
Z D E[Qe(1)]
t=tx ecE

< KZ D E[Qe(r))]

Jj=0 t=7; [eEE

+(t - Tj)|E|(Amax + Ilmax)]

+ Z [Z [Qe(ric-1)]

t=T1k " e€E

+ (t =k~ |El(Amax +I1max)}

K-1
<2r Z Z E[Qe(rj)]
j=0 ecE
+ |E|(Ama3;+/1max) (
(8<3) Bi(r + 1)K|E]|

Kr(r—1)+27% - 7)

Hmin(€ = c1 log(r)r%(”_l))
n |E|(Ama);+llmax) (
2B1T|E|

Kr(r—1)+27% - 7)

- Hmin (€= c1 log(f)r%(“_l))

" |E|(Amax + fimax)
2
2B |E|

(T(r-1)+ 27 — 7)

Zt =0 ZeeEE[Qe(t)]
T

:umm(g -1 10g(T)T3 (a= 1))
202 — ¢

+ |E|(Amax +I1max) (T 14+ )
2 T

Taking lim sup of the above, we conclude that required statement
of the Corollary, i.e. for fixed ,

lim sup = Z ZE Qe ()] <

T—co t=0 ecE
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F SUPPLEMENTARIES FOR SIMULATIONS

For the experimental setup in Section 5, we justify that B[y (¢1, £2)] =
O(|tz—t1 |1/2) forany 0 < t; < tp < T for both settlngs of 6; =
and §; = m Recall from (3) that y(1,t2) = t=t1+1 ||p(t)

1(t —1)||eo. Under our experimental setting, since pie (), pte (1 —1) €
{0.25,0.75},Ve € E, t > 0, we obtain that:

0.5
T1/2

E[|lz(#) — p(t — 1)|leo] = 0.5 - P(ue(t) changes its state for some e)
=0.5-[1-(1-68)F]
< 0.5|E|8;,
where the last line follows Bernoulli’s inequality. Summing up the
above for t = t; + 1 — t3, we have:

ty

E[y(n.12)] < 05[E| ) &

t=t1+1

(84)

If §; = %3 we obtain from (84) that:

T1/2°
<025|E|\/t2—t1 O(|t2 — 11|/?).

we obtain from (84) that:

Ely(n.t2)] <o0. 25|E|

If5t = m,

E[y(t1,t2)] < 0.25|E] -
t;‘ﬂ (t+ 1)1/2

t1
< 0.25|E| —
t=t;42 x1/2

= 0.5|E|(Vtz + 1 = Vt; +2)
< 0.5|E|VE =11 = O(|ts — t1]/2).
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