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ABSTRACT
The emergence of large-scale wireless networks with partially-

observable and time-varying dynamics has imposed new challenges

on the design of optimal control policies. This paper studies efficient

scheduling algorithms for wireless networks subject to generalized

interference constraint, where mean arrival and mean service rates

are unknown and non-stationary. This model exemplifies realistic

edge devices’ characteristics of wireless communication in modern

networks. We propose a novel algorithm termed MW-UCB for gen-

eralized wireless network scheduling, which is based on the Max-

Weight policy and leverages the Sliding-Window Upper-Confidence

Bound to learn the channels’ statistics under non-stationarity. MW-

UCB is provably throughput-optimal under mild assumptions on

the variability of mean service rates. Specifically, as long as the

total variation in mean service rates over any time period grows

sub-linearly in time, we show that MW-UCB can achieve the sta-

bility region arbitrarily close to the stability region of the class of

policies with full knowledge of the channel statistics. Extensive

simulations validate our theoretical results and demonstrate the

favorable performance of MW-UCB.
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1 INTRODUCTION
Wireless networks are increasingly large-scale and complex in re-

sponse to the surge in edge-based Internet of Things (IoT) architec-

ture [7], mobile communication [13] and wireless paradigm [23].

One fundamental challenge in the transition to large-scale networks

is that minor inefficiencies can accumulate and severely limit perfor-

mance [17]. Consequently, the advance of modern infrastructures

toward massive scale has led to the re-design of operational man-

agement for various network tasks, such as traffic engineering [32],

load-balancing [28], utility maximization [11], and link scheduling

[2, 26]. In this work, we focus on designing scheduling algorithms

that are theoretically efficient and meet the stringent requirements

of emerging large-scale wireless networks.

Efficient scheduling of transmissions is essential for wireless de-

vices to share the common spectrum while achieving high through-

put. Despite its established throughput-optimality for a variety of

classical stochastic network models, the celebrated Max-Weight

scheduling policy [22, 27] requires the full knowledge of the channel

statistics, which are often unknown a priori [26, 31] and thus hinder

its direct adoption. First, due to the delay incurred by the accumu-

lation of global network state information in emerging large-scale

systems and multi-path fading, the instantaneous service capacities

of wireless links and the packet arrivals to nodes are usually un-

available at the time of making scheduling decisions and can only

be observed from channel feedback. We refer to this peculiar char-

acteristic of large-scale networked systems as partial observability.

Second, the mobility of edge devices [5, 24] and unreliable nature

of wireless communication [25] impose non-stationary dynamics,

whereby both the mean packet arrivals and mean service rates

may vary over time, and are unknown in advance to the network

operator. When the channel is not instantaneously observable, it is

well-known that an optimal policy is to leverage the mean service

rates in making Max-Weight scheduling decisions [22, 27]; how-

ever, in our setting, those statistics are unknown, non-stationary

and must be learned. In this paper, we aim to develop throughput-

optimal scheduling algorithms under the requirements of partial

observability, non-stationary dynamics and unknown statistics.

A main challenge in the design of non-stationary network con-

trol algorithm under partially-observed and unknown statistics is

that the analytical characterization of the capacity region for sta-

tionary network setting [22] no longer holds under non-stationarity

due to the potential non-existence of steady state or well-defined

long-term averages [3]. Previous works either consider simplified

models [21, 26], or only achieves a constrained stability region for

bipartite queueing system [31]. In particular, under partial observ-

ability and unknown statistics, [26] designed a throughput-optimal

joint learning and scheduling policy for stationary network control.

While establishing the effectiveness of the Max-Weight policy even
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for non-stationary network control, [21] assumes the availability of

instantaneous nodes’ packet arrivals and links’ service capacities

to the controller for making decision. Closest to our work is [31],

which proposes a stabilizing algorithm for bipartite queueing sys-

tem that supports arrival rates within a stability region constrained

by window-based (non-stationary) dynamics.

In this paper, we propose a new notion of stability for non-

stationary network control, and a novel joint learning and sched-

uling algorithm that achieves a stability region arbitrarily close to

the true stability region. Our contributions can be summarized as

follows:

• We present a new class of approximate stability regions that

is parameterized by a quantity capturing the closeness to the

true stability region. Based on this notion of approximate

stability region, we propose a new notion of throughput-

optimality for non-stationary network control and, as a spe-

cial case, prove its equivalence to the conventional notion

of stability in the simplified setting of stationary network.

• We propose Max-Weight scheduling augmented by Sliding-

Window Upper-Confidence Bound, hence termed MW-UCB,

as a novel algorithm for non-stationary network control,

subject to generalized wireless interference constraints, with

partial observability and unknown statistics. Under mild

assumptions on the system learnability, we establish the

throughput-optimality of MW-UCB and its strong stability

within the window-based region previously considered in

the literature [31].

• We empirically validate our theoretical results and demon-

strate that MW-UCB achieves the same stability region as

that of the idealized Max-Weight policy with full knowledge

of network statistics.

The rest of the paper is organized as follows. We present our sys-

tem model and problem formulation in Section 2. In Section 3, we

present our new notion of throughput-optimality for non-stationary

networks. In Section 4, we propose the throughput-optimal MW-

UCB algorithm and establish its stability results. We conduct numer-

ical simulations to empirically validate the throughput-optimality

of MW-UCB and demonstrate its favorable performance in Section

5, and conclude the paper in Section 6.

2 PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Network Model
A wireless network with arbitrary topology is represented by a

directed graph G(𝑉 , 𝐸), where 𝑉 = {1, 2, ..., 𝑛} is the set of nodes
and 𝐸 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉 } is the set of directed point-to-point links.

Time is slotted. For simplicity of technical exposition, we consider

single-hop traffic
1
. For any 𝑒 = (𝑖, 𝑗) ∈ 𝐸, we denote by 𝑎𝑒 (𝑡) the

number of packets arriving at node 𝑖 at time slot 𝑡 to be transmitted

to neighbouring node 𝑗 . We consider {𝑎𝑒 (𝑡)}𝑡≥0 to be independent
with potentially time-varying means 𝜆𝑒 (𝑡) = E[𝑎𝑒 (𝑡)], and are

bounded by a finite number, i.e. 𝑎𝑒 (𝑡) ≤ 𝐴𝑚𝑎𝑥 for all 𝑒 ∈ 𝐸 and 𝑡 .

1
The results of the paper naturally generalize to multi-hop setting by incorporating

the Back-pressure mechanism [27].

timet t+1

Time slot t

Scheduling
decision

Observe 
and 
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Figure 1: Sequence of events in one time slot.

We assume a general wireless interference model. Denote by

M the set of all admissible link activations and, at time slot 𝑡 , by

x(𝑡) = {𝑥𝑒 (𝑡)}𝑒∈𝐸 ∈ M the scheduling decision of whether to

activate link 𝑒 ∈ 𝐸:

𝑥𝑒 (𝑡) =
{
1, if 𝑒 is activated at time 𝑡

0, if 𝑒 is not activated at time 𝑡
.

We impose no structural restriction on the set M, thereby captur-

ing a wide range of practical wireless models including primary

interference [19], k-hop interference [18], and protocol interference

[9]. Let 𝜃𝑒 (𝑡) be the service capacity of link 𝑒 at time slot 𝑡 , which

is bounded by a finite number, i.e. 𝜃𝑒 (𝑡) ≤ 𝜇𝑚𝑎𝑥 . For any link 𝑒 ∈ 𝐸,
we assume that {𝜃𝑒 (𝑡)}𝑡≥0 are independent and that the mean ser-

vice rate 𝜇𝑒 (𝑡) = E[𝜃𝑒 (𝑡)] may vary over time. Additionally, we

requires the mean service rate to be lower bounded by a strictly

positive constant, i.e. 𝜇𝑒 (𝑡) ≥ 𝜇𝑚𝑖𝑛 > 0; this assumption is also

often imposed by the literature on optimal control of queueing

systems with time-varying statistics [14, 31]. The effective service

rate of link 𝑒 at time slot 𝑡 is then given by:

𝑏𝑒 (𝑡) = 𝑥𝑒 (𝑡)𝜃𝑒 (𝑡), (1)

which characterizes the achievable data rate of the link.

Let 𝑄𝑒 (𝑡) be the physical queue of backlogged packets at link

𝑒 ∈ 𝐸 that are waiting to be transmitted at the end of time slot 𝑡 .

Since any link 𝑒 receives 𝑎𝑒 (𝑡) packet arrivals and can serve at most

𝑏𝑒 (𝑡) packets during a time slot, the queueing dynamics evolves as:

𝑄𝑒 (𝑡 + 1) =
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+
, ∀𝑒 ∈ 𝐸, (2)

where [𝑥]+ = max{𝑥, 0}.
In order to capture the realistic characteristics of modernwireless

network, we incorporate the following requirements in our model:

• Partial Observability: For every link 𝑒 ∈ 𝐸, both the instanta-

neous packet arrivals 𝑎𝑒 (𝑡) and link’s service capacity 𝜃𝑒 (𝑡)
are not available at the start of the time slot 𝑡 and thus cannot

be used for making the scheduling decisions. At the end of

time slot 𝑡 , however, the nodes can accumulate statistics of

the past time slot to obtain the packet arrivals 𝑎𝑒 (𝑡)’s and
the service capacities of the activated links, i.e. those 𝜃𝑒 (𝑡)’s
such that 𝑥𝑒 (𝑡) = 1. For unactivated links 𝑒 where 𝑥𝑒 (𝑡) = 0,

though the information of 𝜃𝑒 (𝑡) is not revealed, the effective
service rate is 𝑏𝑒 (𝑡) = 0. Thus, given the knowledge of 𝑎𝑒 (𝑡)
and 𝑏𝑒 (𝑡), the queuing dynamics (2) for the next time slot

𝑡 + 1 can always be evaluated at the end of time slot 𝑡 . The

sequence of events within time slot 𝑡 is depicted in Figure 1.
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Table 1: Asymptotic Relationships

𝑓 (x) = 𝑂 (𝑔(x)) there exists constants𝑀 and 𝐶 such that

|𝑓 (x) | ≤ 𝐶 |𝑔(x) | for all x with ∥x∥∞ > 𝑀 .

𝑓 (x) = Ω(𝑔(x)) there exists constants𝑀 and 𝐶 such that

|𝑓 (x) | ≥ 𝐶 |𝑔(x) | for all x with ∥x∥∞ > 𝑀 .

𝑓 (x) = Θ(𝑔(x)) 𝑓 (x) = 𝑂 (𝑔(x)) and 𝑓 (x) = Ω(𝑔(x)).
𝑓 (x) = 𝑜 (𝑔(x)) for every 𝜀 > 0, there exists constant𝑀

such that |𝑓 (x) | ≤ 𝜀 |𝑔(x) | for all x with

∥x∥∞ > 𝑀 . In this case, we alternatively

say 𝑓 (x) is sub-linear in 𝑔(x).

• Non-Stationary Dynamics: We assume that both the mean

packet arrivals 𝝀(𝑡) = (𝜆𝑒 (𝑡))𝑒∈𝐸 and service rates 𝝁 (𝑡) =
(𝜇𝑒 (𝑡))𝑒∈𝐸 vary over time, i.e. non-stationary.

• Unknown Statistics:All the statistics {𝝀(𝑡)}𝑡≥0 and {𝝁 (𝑡)}𝑡≥0
are unknown to the scheduler for making control decisions.

2.2 Asymptotic Relationships and Notations
Let Q(𝑡) = (𝑄𝑒 (𝑡))𝑒∈𝐸 , a(𝑡) = (𝑎𝑒 (𝑡))𝑒∈𝐸 , 𝜽 (𝑡) = (𝜃 (𝑡))𝑒∈𝐸 and

b(𝑡) = (𝑏𝑒 (𝑡))𝑒∈𝐸 be respectively the vector of queue lengths,

packet arrivals, service capacities and effective service rates. For

any two real numbers 𝑥 and 𝑦, we let 𝑥 ∨ 𝑦 = max{𝑥,𝑦} and

𝑥 ∧ 𝑦 = min{𝑥,𝑦}. For any vector x = (𝑥𝑖 ) of real numbers and

𝑝 ∈ [1,∞), we denote ∥x∥𝑝 as its ℓ𝑝 -norm. For the two cases

of 𝑝 ∈ {1,∞} used in this paper, we have ∥x∥1 =
∑
𝑖 |𝑥𝑖 | and

∥x∥∞ = max𝑖 {|𝑥𝑖 |}. For two positive multivariate functions 𝑓 (x)
and 𝑔(x), their asymptotic relationships [12] are given in Table 1.

2.3 Policy Space and Problem Statement
For any variable affected by the control of the scheduling deci-

sions, we add the superscript 𝜋 to acknowledge that it is under

the action of the policy 𝜋 . An admissible policy 𝜋 at every time

slot 𝑡 generates a scheduling decision x𝜋 (𝑡) ∈ M using only the

knowledge of the past packet arrivals a(0), a(1), ..., a(𝑡 −1), the past
effective service rates b(0), b(1), ..., b(𝑡 − 1), and the past decisions

x(0), x(1), ..., x(𝑡 − 1) up to time 𝑡 − 1. Additionally, we consider

idealized policies, the definition of which is similar to that of an

admissible policy except that at time slot 𝑡 , it also has the full knowl-

edge of the network statistics 𝝀(𝑡) and 𝝁 (𝑡) and can use them in

making the scheduling decisions. The set of all admissible policies

and the set of all idealized polices are respectively denoted by Π
and Π𝑠 . Under the simplified model whereby the network dynam-

ics are stationary, [26] designed a joint learning and scheduling

algorithm in Π that supports the same stability region, i.e. the set

of arrival rates under which the system is stabilizable, as that of

idealized policies in Π𝑠 . Nevertheless, generalization to the case of

non-stationary network dynamics is non-trivial due to the analyti-

cal intractability of the capacity region. Moreover, the only previous

work [31] that attempts to learn non-stationary network dynamics

could achieve only a reduced stability region that is constrained by

the window-based dynamics, thereby being sub-optimal.

In this paper, we aim to develop a control scheme for the class

of policies in Π that maximizes the stability region of the network

under our considered setting.

3 NOTION OF STABILITY FOR
NON-STATIONARY NETWORKWITH
UNKNOWN STATISTICS

One main challenge of non-stationary network control is that the

analytical characterization of the capacity region for the case of

stationary network may no longer hold under the non-stationarity.

In this Section, we propose a new notion of throughput-optimality

that is more suitable to the non-stationary setting. For the simplified

case of stationary network, we further establish the equivalence

between our new notion and the conventional notion of throughput-

optimality.

3.1 Assumption on Non-Staionary Dynamics
For any 𝑡1 < 𝑡2, we denote the total variation of the mean service

rate by:

𝛾 (𝑡1, 𝑡2) =
𝑡2∑︁

𝑡=𝑡1+1
∥𝝁 (𝑡) − 𝝁 (𝑡 − 1)∥∞, (3)

and stipulate the following mild assumption on the non-stationarity

of the mean service rates.

Assumption 1. For any 𝑡1 < 𝑡2, the total variation is upper-bounded

by 𝛾 (𝑡1, 𝑡2) = 𝑂 ( |𝑡2 − 𝑡1 |𝛼 ) for some 𝛼 ∈ [0, 1).

Our assumption only requires the total variation of mean service

rates over any time period to grow sub-linearly in time, thereby

ensuring that the network dynamics do not vary too aggressively.

Similar assumptions have been extensively used the literature of

learning in non-stationary environments [6, 10, 30].

3.2 Performance Metrics
Before characterizing the stability regions of interest, we first define

the 𝑄𝑇 measure that captures the growth of queue size in expec-

tation, and present the equivalent definition of mean rate stability

[22] under the 𝑄𝑇 measure.

Definition 1 (𝑄𝑇 Measure). The total expected queue length at time

𝑇 under a control of policy 𝜋 is quantified by𝑄𝜋
𝑇
= E

[ ∑
𝑒∈𝐸 𝑄

𝜋
𝑒 (𝑇 )

]
.

Definition 2 (Mean Rate Stability). A network is mean rate stable

under a policy 𝜋 if:

lim

𝑇→∞
E[∑𝑒∈𝐸 𝑄𝜋𝑒 (𝑇 )]

𝑇
= 0,

or equivalently 𝑄𝜋
𝑇
= 𝑜 (𝑇 ).

The notion of stability region of a policy 𝜋 describes the set of

arrival rate vectors such that mean rate stability could be achieved

under 𝜋 . The stability region Λ is the region that can be achieved

by the class Π of admissible policies, as formally defined below.

Definition 3 (Stability Region). The stability region of the class of

admissible policies is defined as:

Λ =
{
{𝝀(𝑡)}𝑡≥0 : ∃𝜋 ∈ Π such that 𝑄𝜋

𝑇
= 𝑜 (𝑇 )

}
.

Similarly, we define the idealized stability region Λ𝑠 of the class
Π𝑠 of idealized policies.
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Definition 4 (Idealized Stability Region). The stability region of

the class of idealized policies is defined as:

Λ𝑠 =
{
{𝝀(𝑡)}𝑡≥0 : ∃𝜋 ∈ Π𝑠 such that 𝑄𝜋

𝑇
= 𝑜 (𝑇 )

}
.

Note that we always have Λ ⊆ Λ𝑠 , since the idealized policies

have the full network statistics as opposed to the admissible policies.

For the simplified model of stationary dynamics, a special case of

our setting where Assumption 1 trivially holds with 𝛼 = 0, [26]

designed an admissible policy stabilizing any arrival rate vector

in 𝑖𝑛𝑡 (Λ𝑠 )2, i.e. the interior of the idealized stability region. The

algorithmic development and analysis of [26] heavily rely on the

fact that under the stationary dynamics whereby 𝝀 = 𝝀(𝑡) and
𝝁 = 𝝁 (𝑡) for all 𝑡 ≥ 0, the idealized stability region Λ𝑠 can be

further characterized by the existence of a policy 𝜋∗ ∈ Π𝑠 such
that:

𝜆𝑒 = lim

𝑇→∞
1

𝑇

𝑇−1∑︁
𝑡=0

𝑎𝑒 (𝑡) ≤ lim

𝑇→∞
1

𝑇

𝑇−1∑︁
𝑡=0

𝑏𝜋
∗

𝑒 (𝑡), ∀𝑒 ∈ 𝐸. (4)

However, under non-stationarity, the above limits may not even

exist, thereby hindering the adoption of stability region’s charac-

terization as in the case of stationary dynamics. Such analytical

intractability of the stability region is central to the problem of

optimal control for non-stationary network [3, 21].

3.3 Notion of Throughput-Optimality for
Non-Stationary Network

In this Section, we propose a novel notion of throughput-optimality

for non-stationary networks. For the simplified setting of stationary

network, the conventional notion of stability defines a policy 𝜋 to

be throughput-optimal if it can stabilize the system for any arrival

rate 𝝀 ∈ 𝑖𝑛𝑡 (Λ𝑠 ), i.e. in the interior of the idealized stability region.

This is equivalent to 𝝀 ∈ (1 − 𝜀)Λ𝑠 for some 𝜀 > 0, which is then

usually incorporated with the analytical characterization of Λ𝑠 for
establishing the stability of MaxWeight-type algorithms. However,

in the context of non-stationary networks, such an approach may

not be directly applicable due to the analytical intractability of the

idealized stability region Λ𝑠 . To this end, we first present our new

definition of approximate stability region, which is central to our

throughput-optimality notion and algorithmic development.

Definition 5 (Approximate Stability Region). Given any 𝛽 ∈ [0, 1],
we define the approximate region Λ𝑠 (𝛽) as:

Λ𝑠 (𝛽) =
{
{𝝀(𝑡)}𝑡≥0 : ∃𝜋 ∈ Π𝑠 such that 𝑄𝜋

𝑇
= 𝑂

(
𝑇 𝛽

)}
We now derive the key properties of Λ𝑠 (𝛽) and its relation to

the idealized stability region Λ𝑠 in the following Lemma, whose

proof is deferred to Appendix A.

Lemma 1. The set Λ𝑠 (𝛽) is expanding for increasing 𝛽 , i.e. if 0 ≤
𝛽1 ≤ 𝛽2 ≤ 1, then Λ𝑠 (𝛽1) ⊆ Λ𝑠 (𝛽2). Moreover, for any 𝛽 ∈ [0, 1), we
have Λ𝑠 (𝛽) ⊆ Λ𝑠 ⊆ Λ𝑠 (1).

Lemma 1 suggests that the region Λ𝑠 (𝛽) grows arbitrarily close

to Λ𝑠 as 𝛽 approaches 1. Moreover, leveraging this notion of ap-

proximate stability region, the next Theorem establishes the char-

acterization of the true stability region Λ.
2
[26] considers maximal matching for scheduling under matching constraint, and thus

achieves the interior of
1

2
Λ𝑠 as the stability region. However, by replacing maximal

matching with maximum matching, we can achieve the full stability region 𝑖𝑛𝑡 (Λ𝑠 ) .

Theorem 1. Under Assumption 1, we have the following characteri-

zation of the stability region:

Λ𝑠 (𝛽) ⊆ Λ ⊆ Λ𝑠 ,

for any 𝛽 ∈ [0, 1).

Proof. As the idealized policies have the full network statistics

as opposed to the admissible policies, the idealized stability region

Λ𝑠 trivially subsumes the stability region Λ. The proof of Λ𝑠 (𝛽) ⊆ Λ
is based on our development of the admissible policy MW-UCB in

Section 4 that, given any 𝛽 ∈ [0, 1), achieves mean rate stability for

any set of arrival rates (𝝀(𝑡))𝑡≥0 ∈ Λ𝑠 (𝛽) (Theorem 3). □

Motivated by Theorem 1, we propose the following notion of

throughput-optimality for non-stationary network control.

Definition 6 (Throughput-Optimality). A policy 𝜋 ∈ Π is through-

put optimal if given any 𝛽 ∈ [0, 1), the network under 𝜋 is mean rate

stable for any {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽).

Under the above definition, we aim to develop an admissible

policy in Π that is throughput-optimal for our considered setting

of non-stationary and partially-observable network.

3.4 Connection to Traditional Notion of
Throughput-Optimality for Stationary
Networks

We further demonstrate the equivalence of our throughput-optimality

notion to the usual notion in the case of stationary networkwhereby

𝝀 = 𝝀(𝑡) and 𝝁 = 𝝁 (𝑡) for all 𝑡 ≥ 0. As discussed in Section 3.2, the

idealized stability region Λ𝑠 can be characterized by:

Λ̄𝑠 =
{
𝝀 : ∃𝜋∗ ∈ Π𝑠 such that 𝜋∗ satisfies (4)

}
,

and an admissible policy is throughput-optimal (in the usual notion)

if it can stabilize any arrival rate 𝝀 ∈ Λ̄𝑠 3. The next Theorem

illustrates that our new notion of throughput-optimality implies

the usual notion of throughput-optimality in the stationary network

control problem.

Theorem 2. Under the stationary network setting, if a policy 𝜋 ∈ Π
is throughput-optimal according to Definition 6, then the network

under 𝜋 is mean rate stable for any 𝝀 ∈ Λ̄𝑠 .

Proof Sketch. Given 𝝀 ∈ Λ̄𝑠 , we can show via Lyapunov drift

analysis that the Max-Weight (MW) policy with full knowledge of

the statistics achieves 𝑄MW

𝑇
= 𝑂

(
𝑇

1

2

)
. Consequently, this implies

that 𝝀 ∈ Λ𝑠 ( 1
2
). Since by our Definition 6, a throughput-optimal

policy 𝜋 would support the stability region Λ𝑠 ( 1
2
), it thus guaran-

tees mean rate stability for any 𝝀 ∈ Λ̄𝑠 . The full proof is given in

Appendix B.

4 SCHEDULINGWITH NON-STATIONARY
AND UNKNOWN CHANNEL STATISTICS

In this Section, we present MW-UCB as a provably throughput-

optimal policy for non-stationary network control. We provide

the preliminaries of Upper-Confidence Bound (UCB) for learning

3
Here, we use Λ̄𝑠 to emphasize that this is a special case of Λ𝑠 where such characteri-

zation based on (4) only holds for the stationary network setting.
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uncertain channel statistics in Section 4.1 and the algorithmic de-

velopment of MW-UCB in Section 4.2. The throughput-optimality

and stability results of MW-UCB then follow in Section 4.3.

4.1 Upper-Confidence Bound (UCB) for
Learning Uncertain Channel Statistics

Central to our problem is the learning of not only the unknown

links’ service rates but also the scheduling decisions that can max-

imize the overall network’s throughput. We start by considering

a simplistic problem setting in which the network dynamics are

stationary and the objective is to attain the maximum possible

total service capacity (in expectation) of the network, and show

that a simple Upper-Confidence Bound (UCB) algorithm is close-

to-optimal in this scenario. However, while having the potential

for being the solution for network control under uncertain channel

statistics, the UCB algorithm in its original form lacks the adaptivity

to deal with non-stationary dynamics and is a pure learning scheme

in nature, which is not designed to deal with sophisticated control

tasks as in our original problem.

4.1.1 A Simplistic Problem Setting and Application of UCB. At any
time slot 𝑡 , the scheduling decision x(𝑡) yields in expectation the

service of 𝜇𝑒 (𝑡)𝑥𝑒 (𝑡) for link 𝑒 ∈ 𝐸 and thus the total service of:∑︁
𝑒∈𝐸

𝜇𝑒 (𝑡)𝑥𝑒 (𝑡) . (5)

Now, we turn into a simplified objective of maximizing the total

service (5) over the time horizon 𝑇 of the network and further

assume stationary dynamics of the links’ service rates, i.e. 𝜇𝑒 (𝑡) =
𝜇𝑒 ,∀𝑒 ∈ 𝐸, 𝑡 ≥ 0. Under this setting, an idealized policy with full

knowledge of the statistics 𝝁 = (𝜇𝑒 )𝑒∈𝐸 would make the scheduling

decision at every time slot 𝑡 that maximizes (5), i.e.

x(𝑡) = x∗ = argmax

x∈M

{∑︁
𝑒∈𝐸

𝜇𝑒𝑥𝑒
}
. (6)

However, such statistics 𝝁 = (𝜇𝑒 )𝑒∈𝐸 are unknown in practice and

thus must be learned, under our requirement of partial observabil-

ity, via samples of service capacities of links having been activated.

This gives rise to the exploration/exploitation tradeoff, where the

controller must simultaneously learn the channel statistics 𝝁 and

utilize the existing information of observed service capacities to

schedule transmissions achieving high total throughput. In par-

ticular, the problem of solving (6) over the time horizon 𝑇 can be

characterized as combinatorial multi-armed bandit (CMAB) with

linear reward in stationary environment, which can be addressed

by the class of UCB algorithms [4, 15, 20]. We hereby consider the

UCB algorithm in [20], which proceeds as follows. At any time

slot 𝑡 and for every edge 𝑒 ∈ 𝐸, the UCB algorithm keeps track of

𝑇𝑡 (𝑒) and ˆ𝜃𝑒 (𝑡), which respectively correspond to the number of

times link 𝑒 has been activated and observed up to time 𝑡 , and the

empirical mean of all the observations of the service capacities, i.e.

those 𝜃𝑒 (𝑠) such that 𝑥𝑒 (𝑠) = 1 for 𝑠 ∈ [0, 𝑡). The UCB weights are

computed according to:

𝑈𝑒 (𝑡) = ˆ𝜃𝑒 (𝑡) +

√︄
3 log(𝑡)
2𝑇𝑡 (𝑒)

,∀𝑒 ∈ 𝐸,

which are then used for constructing the scheduling decision as:

x(𝑡) = argmax

x∈M

{∑︁
𝑒∈𝐸

𝑈𝑒 (𝑡)𝑥𝑒
}
. (7)

The total difference in achievable total expected service capacity

between the maximizing policy with the full knowledge of the sta-

tistics 𝝁 that makes the decision x∗ as in (6) and the UCB algorithm

that makes the decision x(𝑡) as in (7) is captured by the regret:

R0 (𝑇 ) = 𝑇
∑︁
𝑒∈𝐸

𝜇𝑒𝑥
∗
𝑒 −

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

𝜇𝑒𝑥𝑒 (𝑡). (8)

This type of metrics is also used by [26] for characterizing the

performance and exploration/exploitation tradeoff of their joint

learning and scheduling algorithm. From [20, Theorem 5], we have

R0 (𝑇 ) = 𝑂
(
log(𝑇 )

)
, which guarantees only logarithmic growth in

total error if the UCB algorithm is applied. Moreover, this regret

bound is asymptotically tight [20, Proposition 1].

4.1.2 Limitations of The Conventional UCB Algorithm. While at-

taining competitive performance in the simplistic problem setting,

the conventional UCB algorithm lacks the generality to readily be

extended to deal with our problem of interest. First, vanilla UCB is

known to be inappropriate for handling non-stationary dynamics

[16]. Second, the formulation (6) that permits the adoption of UCB

as a direct solution does not take into account the control of the

system under arbitrary arrival rates: for example, if a policy aims to

attain the maximum possible total service and hence always makes

the scheduling decision x∗ as in (6), it would inevitably overload

certain unactivated links, i.e. 𝑒 ∈ 𝐸 with 𝑥∗𝑒 = 0, to which there

are packet arrivals over time. On the other hand, the Max-Weight

policy [22, 27] that incorporates the queue lengths into making

scheduling decision can adapt to the dynamics of arbitrary arrival

rates. Consequently, the solution for scheduling in non-stationary

wireless networks with partial observability and unknown statistics

requires the interplay between learning and network control. In

the next Section, we present our main algorithm that combines

the Max-Weight policy with UCB to address these aforementioned

challenges through its joint learning and scheduling scheme.

4.2 The MW-UCB Algorithm
We proceed to develop our scheduling algorithm, termed MW-UCB,

based on a frame-based variant [26] of the Max-Weight policy [22,

27] and the augmentation of the sliding-window UCB [10] in the

weight construction for adaptively learning the channels’ statistics

under non-stationarity. The full MW-UCB policy is depicted in

Algorithm 1 with the convention that 0/0 = 0.

For the class of idealized policies in Π𝑠 , the Max-Weight policy

[22] that at time slot 𝑡 weights each edge 𝑒 by 𝑄𝑒 (𝑡)𝜇𝑒 (𝑡) and
consequently schedule the link activation vector according to:

x(𝑡) = argmax

x∈M

{∑︁
𝑒∈𝐸

𝑄𝑒 (𝑡)𝜇𝑒 (𝑡)𝑥𝑒
}

(9)

is known to be throughput-optimal for the case of stationary net-

work [22, 26] and obtains competitive performance on adversarial

network control [21]. Nevertheless, under our considered model,

the vector 𝝁 (𝑡) of mean service rates is unknown a priori, thereby

hindering any direct adoption of the Max-Weight policy. The al-

gorithmic design for joint network control and learning of the
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Algorithm 1: Max-Weight with UCB (MW-UCB)
Input: graph G(𝑉 , 𝐸), restart period 𝜏 , window size 𝑑 ≤ 𝜏

1 for 𝑡 = 1, ...,𝑇 do
2 if 𝑡 = 𝜏 𝑗 ∈ T = {𝜏0, 𝜏1, ..., 𝜏𝐾 } then
3 Initialize 𝜙𝑒 (𝜏 𝑗 ) = 0, 𝑁𝑒 (𝜏 𝑗 ) = 0, 𝜇𝑒 (𝑡) = 0,∀𝑒 ∈ 𝐸
4 Reset the weights:𝑤𝑒 (𝜏 𝑗 ) =

𝑄𝑒 (𝜏 𝑗 )
∥Q(𝜏 𝑗 ) ∥∞ ,∀𝑒 ∈ 𝐸

5 end
6 if 𝑡 ∈ (𝜏 𝑗 , 𝜏 𝑗+1) then
7 for 𝑒 ∈ 𝐸 do
8 𝜙𝑒 (𝑡) = 𝜙𝑒 (𝑡 −1) −1{𝑡≥𝜏 𝑗+𝑑 }𝑏𝑒 (𝑡 −𝑑) +𝑏𝑒 (𝑡 −1)

9 𝑁𝑒 (𝑡) = 𝑁𝑒 (𝑡) − 1{𝑡≥𝜏 𝑗+𝑑 }𝑥𝑒 (𝑡 − 𝑑) + 𝑥𝑒 (𝑡 − 1)
10 𝜇𝑒 (𝑡) = 𝜙𝑒 (𝑡 )

𝑁𝑒 (𝑡 ) ⊲ empirical estimate of 𝜇𝑒 (𝑡)
11 𝑤𝑒 (𝑡) = 𝑤𝑒 (𝜏 𝑗 ) ⊲ fixing queue lengths

12 end
13 end

14 𝜌𝑒 (𝑡) =
√︃

3 log(𝜏 )
2𝑁𝑒 (𝑡 ) (or∞ if 𝑁𝑒 (𝑡) = 0),∀𝑒 ∈ 𝐸

15 𝑊̄𝑒 (𝑡) = min{𝑤𝑒 (𝑡)𝜇𝑒 (𝑡) + 𝜌𝑒 (𝑡), 1},∀𝑒 ∈ 𝐸 ⊲

computing UCB weights

16 [Scheduling] Activate the link activation vector:

x(𝑡) = argmaxx∈M
{ ∑

𝑒∈𝐸 𝑊̄𝑒 (𝑡)𝑥𝑒
}

17 Observe a(𝑡) and b(𝑡), and update the queues:

𝑄𝑒 (𝑡 + 1) =
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+
, ∀𝑒 ∈ 𝐸,

18 end

weights {𝑄𝑒 (𝑡)𝜇𝑒 (𝑡)}𝑒∈𝐸 faces two challenges. First, 𝑄𝑒 (𝑡)𝜇𝑒 (𝑡) is
time-varying due to the dynamics of the queue length 𝑄𝑒 (𝑡) and
the non-stationarity of 𝜇𝑒 (𝑡). Second, the evolution of the weight

𝑄𝑒 (𝑡)𝜇𝑒 (𝑡) is coupled with the scheduling decision x(𝑡) due to

its interdependence with effective service rate via (1) and thus the

queueing dynamics (2). To address these challenges, we periodically

freeze the queue length information in the weight instantiation,

which helps to alleviate a source of non-stationarity and decouples

the weight evolution from the scheduling decision. Specifically,

our method partitions the time horizon 𝑇 into frames of size 𝜏 ,

where the 𝑗𝑡ℎ frame begins at time slot 𝜏 𝑗 = 𝑗𝜏 , called restart point.

We allow the last frame to have size potentially less than 𝜏 and

let T = {𝜏0, 𝜏1, ..., 𝜏𝐾 } be the set of all restart points, i.e. 𝐾 is the

largest number such that 𝜏𝐾 < 𝑇 . Then for any 𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1), we
use the normalized queue backlogs at the restart point 𝜏 𝑗 as the

unified weights (Line 4 and Line 11 of Algorithm 1):

𝑤𝑒 (𝜏 𝑗 ) =
𝑄𝑒 (𝜏 𝑗 )

∥Q(𝜏 𝑗 )∥∞
,∀𝑒 ∈ 𝐸, (10)

and aim to solve the following "relaxed" problem of (9) with sim-

plified time-varying weight structure:

x(𝑡) = argmax

x∈M

{∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡)𝑥𝑒
}

(11)

(10)

= argmax

x∈M

{∑︁
𝑒∈𝐸

𝑤𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡)𝑥𝑒
}
. (12)

Note that the objective in (11) is the "approximation" of the objec-

tive in (9) with error growing linearly in 𝜏 . Moreover, the problem

of solving (12) over 𝜏 time slots from 𝜏 𝑗 to 𝜏 𝑗+1 − 1 can be charac-

terized as stochastic combinatorial multi-armed bandit (SCMAB)

problem in non-stationary environment, whereby the mean reward

of each arm, i.e.𝑤𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡), varies over time and is independent

of the action, i.e. scheduling decision. To this end, we adopt the

combinatorial UCB with sliding window (CUCB-SW) algorithm

[10] for dealing with SCMAB under non-stationarity. Specifically,

CUCB-SW is restarted at the beginning of each frame with the

newly updated queue weights for the joint learning of the mean

service rates 𝝁 (𝑡)’s and control of the system. Given the sliding win-

dow of size 𝑑 as a hyper-parameter to be chosen later, the algorithm

computes the estimate 𝜇𝑒 (𝑡) of the true mean service rate 𝜇𝑒 (𝑡) as
the local empirical average of the observed service capacities in

the last 𝑑 time slots. Formally, for 𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1), i.e. within the 𝑗𝑡ℎ

frame, and any 𝑒 ∈ 𝐸, the following quantities:

𝜙𝑒 (𝑡) =
𝑡−1∑︁

𝑠=𝜏 𝑗∨(𝑡−𝑑 )
1{𝑥𝑒 (𝑠 )=1}𝜃𝑒 (𝑠) =

𝑡−1∑︁
𝑠=𝜏 𝑗∨(𝑡−𝑑 )

𝑏𝑒 (𝑠), (13)

𝑁𝑒 (𝑡) =
𝑡−1∑︁

𝑠=𝜏 𝑗∨(𝑡−𝑑 )
1{𝑥𝑒 (𝑠 )=1} =

𝑡−1∑︁
𝑠=𝜏 𝑗∨(𝑡−𝑑 )

𝑥𝑒 (𝑠), (14)

respectively denote the total observed service capacities of link 𝑒

and the number of times it had been activated up to time 𝑡 − 1 over

the last 𝑑 time slots. Line 8 and Line 9 of Algorithm 1 equivalently

rewrite (13) and (14) in recursive forms for actual iterative updates

in the algorithm. Then the local empirical average can be computed

accordingly via 𝜇𝑒 (𝑡) = 𝜙𝑒 (𝑡)/𝑁𝑒 (𝑡) as in Line 10. Finally, the UCB

weights are computed by (Line 15):

𝑊̄𝑒 (𝑡) = min

{
𝑤𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡) +

√︄
3 log(𝜏)
2𝑁𝑒 (𝑡)

, 1

}
,∀𝑒 ∈ 𝐸,

to be used for constructing of the scheduling decision (Line 16) as:

x(𝑡) = argmax

x∈M

{∑︁
𝑒∈𝐸

𝑊̄𝑒 (𝑡)𝑥𝑒
}
. (15)

In order to capture the loss due to learning when CUCB-SW is

applied to solve (12) within the 𝑗𝑡ℎ frame, we consider the regret:

R(𝜏 𝑗 ) =
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x∈M

∑︁
𝑒∈𝐸

𝑤𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡)𝑥𝑒

−
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

∑︁
𝑒∈𝐸

𝑤𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡)𝑥𝑒 (𝑡), (16)

which characterizes the gap in objective between the maximizing

policy with the full knowledge of the statistics 𝝁 (𝑡) for 𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1)
that solves (12) and the considered policy that solves (15). The

following Lemma 2, whose proof is given in Appendix D.3, provides

an upper bound for R(𝜏 𝑗 ).
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Lemma 2. Under MW-UCB, the regret R(𝜏 𝑗 ) can be bounded by:

R(𝜏 𝑗 ) ≤ |𝐸 |
(
𝜏

𝑑
+ 1

) (
2

√︁
6 log(𝜏) + 48

√
𝑑 log(𝜏)

)
+ 4|𝐸 |𝑑 · 𝛾 (𝜏 𝑗 , 𝜏 𝑗+1) + |𝐸 | 𝜏√

𝑑
+ 𝜋

2

3

|𝐸 |2𝜇𝑚𝑎𝑥

+ 𝜋
2

6

|𝐸 |2𝜇𝑚𝑎𝑥 log
(
2𝑑1/2

)
.

Under Assumption 1, which gives 𝛾 (𝜏 𝑗 , 𝜏 𝑗+1) = 𝑂 (𝜏𝛼 ), and by setting
𝑑 = Θ

(
𝜏

2

3
(1−𝛼 ) )

, we further have R(𝜏 𝑗 ) = 𝑂
(
log(𝜏)𝜏

1

3
(𝛼+2) )

.

The guarantee in Lemma 2 demonstrates that the average loss

due to learning over 𝜏 time slots of the 𝑗𝑡ℎ frame vanishes as 𝜏

grows in the sense that

R(𝜏 𝑗 )
𝜏 → 0 as 𝜏 → ∞ under our mild

assumption on the learnability of the system. This is crucial for

establishing the throughput-optimality of MW-UCB in the next

Section.

4.3 Throughput-Optimality and Stability
Results

In this Section, we prove the throughput-optimality of MW-UCB

and, as a byproduct, its strong stability in a region constrained by

window-based dynamics. The key components of the proof lever-

age the regret bound for learning non-stationarity (Lemma 2) in

the analysis of the frame-based Lyapunov drift and non-trivially

generalize the shedding technique from the adversarial network

control literature [21]. In particular, to address the analytical in-

tractability of the capacity region, we shed the traffic of the original

system to obtain a new imaginary system whose traffic is within

the window-based region, which is formally described in Definition

7. While the shedding process incurs additional term in the queue

bound as a tradeoff, it makes the imaginary network dynamics

tractable, from which stability of MW-UCB can be derived.

Definition 7 (Window-Based Region). The window-based region

C(𝑊, 𝜀) of the class of idealized policies is defined as:

C(𝑊, 𝜀) =
{
{𝝀(𝑡)}𝑡≥0 : ∃𝜋 ∈ Π𝑠 such that for 𝑞 = 0,𝑊 , 2𝑊, ...

𝑞+𝑊 −1∑︁
𝑡=𝑞

𝜆𝑒 (𝑡) ≤ (1 − 𝜀)
𝑞+𝑊 −1∑︁
𝑡=𝑞

E[𝑏𝜋𝑒 (𝑡)], ∀𝑒 ∈ 𝐸
}
.

Specifically, the sequence of arrival rates {𝝀(𝑡)}𝑡≥0 satisfies the
window-based region, parameterized by window size 𝑊 and a

shrinkage term 𝜀, if there exists an idealized policy such that the

total mean arrivals are less than a fraction 1 − 𝜀 of the total mean

services over a window of𝑊 slots starting at every starting point

𝑡 = 0,𝑊 , 2𝑊, ... Next, we proceed to establish the main Theorem

on the throughput-optimality of MW-UCB.

Theorem 3. Under Assumption 1, MW-UCB is throughput-optimal.

Proof. Given any 𝛽 ∈ [0, 1), we show thatMW-UCB can achieve

mean rate stability for any {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽). We now consider

an imaginary system that is obtained by imitating the same link

service process {𝜽 (𝑡)}𝑡≥0 as the original system’s and shedding

a certain amount of traffic from the original system’s arrivals

{a(𝑡)}𝑡≥0 to obtain a new sequence of arrivals {ã(𝑡)}𝑡≥0 with

˜𝜆𝑒 (𝑡) = E[𝑎𝑒 (𝑡)],∀𝑒 ∈ 𝐸, 𝑡 ≥ 0. Denote the amount of shed traffic

within the time horizon by:

𝑋𝑇 =

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

𝑎𝑒 (𝑡) −
𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

𝑎𝑒 (𝑡) . (17)

For some 𝜀 ∈ (0, 1) to be determined later, we consider the shedding

scheme as in the following Lemma 3, whose proof is deferred to

Appendix C.

Lemma 3. Given {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽) and any 𝜀 ∈ (0, 1), there exists
a shedding procedure such that { ˜𝝀(𝑡)}𝑡≥0 ∈ C(𝜏, 𝜀) and:

E[𝑋𝑇 ] = 𝑂
(
𝑇 𝛽+1𝜏−1 + 𝜀𝑇 + 𝜏

)
. (18)

Intuitively, Lemma 3 suggests that, for analysis, despite the po-

tential analytical intractability of the approximate region Λ𝑠 (𝛽),
we can shed traffic to obtain an imaginary system that is con-

strained in C(𝜏, 𝜀) and thus more tractable with the tradeoff as

characterized by (18). When MW-UCB is applied to the original

system, it produces the sequence of decisions {xMW-UCB (𝑡)}𝑡≥0.
Let Q̃(𝑡) = {𝑄𝑒 (𝑡)}𝑒∈𝐸 be the virtual queue length vector at time

slot 𝑡 if such sequence of decisions {xMW-UCB (𝑡)}𝑡≥0 is applied to

the imaginary system. Then the following Lemma 4 upper-bounds

the 𝑄𝑇 measure of MW-UCB in the original system. The proof is

given in Appendix D.1.

Lemma 4. We have the following bound:

𝑄MW-UCB

𝑇 ≤ E[𝑋𝑇 ] + E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )
]
. (19)

In particular, though the shedding process incurs the term E[𝑋𝑇 ],
which can be bounded as in Lemma 3, in the queue bound of the

original system, we are now left with bounding the virtual queues

Q̃(𝑡) which evolve over the imaginary system that is more tractable.

Next, we further provide guarantee for the total expected queue

length of the imaginary system, i.e. the second term of (19), as

follows.

Lemma 5. Under Assumption 1 and given { ˜𝝀(𝑡)}𝑡≥0 ∈ C(𝜏, 𝜀), there
exists some universal constant 𝑐1 > 0 such that if 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) ≤

𝜀 < 1, MW-UCB with 𝑑 = Θ
(
𝜏

2

3
(1−𝛼 ) )

being applied to the imaginary

system satisfies:

E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )
]
= 𝑂

(
𝑇

1

2 𝜏
1

2 +𝑇 1+ 𝛽
2 𝜏−

1

2 + 𝜀
1

2𝑇
)
. (20)

The proof of Lemma 5 can be found in Appendix D.2. Notice that

under our assumption 𝛼 < 1 (implying lim𝜏→∞ log(𝜏)𝜏
1

3
(𝛼−1) = 0),

without loss of generality (WLOG), we can consider 𝜏 large enough

so that 𝑐1 log(𝜏)𝜏
1

3
(𝛼−1) < 1. The requirement that the considered

"shrinkage" 𝜀 must be bounded away from 0 by such quantity re-

flects the loss due to learning. Note that the whole shedding process

only serves for analytical purposes, i.e. we can shed the original

system into the new imaginary system in the sense of Lemma 3 for

any arbitrary 𝜀 ∈ (0, 1). Finally, by setting 𝜀 = 𝑐1 log(𝜏)𝜏
1

3
(𝛼−1)

, we

plug (18) and (20) into (19) to obtain the following bound for the

𝑄𝑇 measure of MW-UCB with 𝑑 = Θ
(
𝜏

2

3
(1−𝛼 ) )

:

𝑄MW-UCB

𝑇
= 𝑂

(
𝑇 𝛽+1𝜏−1 +𝑇

√︁
log(𝜏)𝜏

1

6
(𝛼−1) +𝑇 1+ 𝛽

2 𝜏−
1

2 +𝑇
1

2 𝜏
1

2

)
.
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Therefore, MW-UCB with 𝜏 = 𝑇
1

2
(𝛽+1)

and 𝑑 = Θ
(
𝜏

2

3
(1−𝛼 ) )

can

achieve:

𝑄MW-UCB

𝑇
= 𝑂

(
𝑇

1

2
(𝛽+1) +

√︁
log(𝑇 )𝑇 1− 1

12
(𝛽+1) (1−𝛼 ) +𝑇

1

4
(𝛽+3) )

= 𝑜 (𝑇 ), (21)

where the last line holds because 𝛼, 𝛽 ∈ [0, 1). Since (21) asserts the
mean rate stability of MW-UCB for {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽) given any

𝛽 ∈ [0, 1), we conclude that MW-UCB is throughput-optimal. □

Additionally, we derive the strong stability of MW-UCB for the

window-based region in the following Corollary, whose proof is

given in Appendix E.

Corollary 1. Under Assumption 1, MW-UCB with a fixed win-

dow size 𝜏 and 𝑑 = Θ
(
𝜏

2

3
(1−𝛼 ) )

achieves strong stability for any

{𝝀(𝑡)}𝑡≥0 ∈ C(𝜏, 𝜀) with any 𝜀 > 𝑐1 log(𝜏)𝜏
1

3
(𝛼−1)

for some univer-

sal constant 𝑐1 > 0, i.e.

lim sup

𝑇→∞

1

𝑇

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸
E[𝑄𝑒 (𝑡)] < ∞. (22)

5 NUMERICAL SIMULATION
In this Section, we empirically evaluate the performance of MW-

UCB and validate its throughput-optimality. We compare our pro-

posed algorithm with two baseline algorithms:

• The idealized Max-Weight (MW) policy [22] with full knowl-

edge of network statistics, which schedules the link activa-

tion vector at time slot 𝑡 according to (9). This represents

the class of idealized policies Π𝑠 and serves as an unrealistic

baseline.

• The MW with restart UCB [26], which can be thought of

as a special case of MW-UCB for 𝑑 = 𝜏 and represents the

class of admissible policies Π. While originally proposed for

stationary network control with partial observability and

unknown statistics, this algorithm was empirically verified

as a heuristic for non-stationary settings in [26], and is the

only algorithm in the literature that is directly applicable to

our model.

Figure 2: The 3 × 3 grid topology; an example of link schedule subject to node-
exclusive interference, which forms a matching, is shown in solid lines.

For both MW-UCB and MW with restart UCB [26], we set the

restart period to 𝜏 = 𝑇 2/3
. Sliding window size of MW-UCB is

set to 𝑑 = 2⌈𝜏
2

3
(1−𝛼 ) ⌉ + 150. We perform extensive testing on

the 3 × 3 grid network with node-exclusive wireless interference

constraints [8], as depicted in Figure 2. To model the non-stationary

service rates, for any time slot 𝑡 and link 𝑒 ∈ 𝐸, we consider 𝜇𝑒 (𝑡)
evolving over time according to the Markov chain in Figure 3,

whereby 𝜇𝑒 (𝑡) would change its state (between 0.25 and 0.75) with

probability 𝛿𝑡 which itself may vary over time. Then, given 𝜇𝑒 (𝑡),
the instantaneous service capacity 𝜃𝑒 (𝑡) ∼ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ

(√︃
2

𝜋 𝜇𝑒 (𝑡)
)
is

sampled from the Rayleigh distribution with the scale parameter

that ensures E[𝜃𝑒 (𝑡)] = 𝜇𝑒 (𝑡). We consider two settings of 𝛿𝑡 ,

which governs the dynamics of the non-stationary service rates:

(1) Time-invariant 𝛿𝑡 =
0.5

𝑇 1/2 : This corresponds to the uniformly

changing dynamics and was considered in the literature [26]

for simulations.

(2) Time-varying 𝛿𝑡 =
0.5

(𝑡+1)1/2 : This non-stationary aperiodic

setting captures more abruptly changing environments.

0.25 0.75
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Figure 3: Markov chain for the time-varying mean service rate 𝜇𝑒 (𝑡 ), ∀𝑒 ∈ 𝐸.
At time slot 𝑡 and for any edge 𝑒 , given 𝜇𝑒 (𝑡 ) ∈ {0.25, 0.75}, the instantaneous
service capacity 𝜃𝑒 (𝑡 ) follows Rayleigh distribution with mean 𝜇𝑒 (𝑡 ) .

Moreover, both of the above settings satisfy Assumption 1 in the

sense that E[𝛾 (𝑡1, 𝑡2)] = 𝑂 ( |𝑡2 − 𝑡1 |1/2) for any 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇
4
(see [1, Appendix F] for the proof). We thus use 𝛼 = 1/2 in our

simulations.

5.1 Throughput-Optimality and Stability
We first consider fixed arrival rates where, at time slot 𝑡 , every

link receives Poisson arrivals with the same packet generation

rate 𝜆 = 𝜆𝑒 (𝑡),∀𝑒 ∈ 𝐸. To demonstrate the stability properties

of the algorithms, we investigate the evolution of the total queue

backlog, i.e.

∑
𝑒∈𝐸 𝑄𝑒 (𝑡) at time 𝑡 , for 𝜆 = 0.11 and 0.12, which

respectively represent the regimes of moderately loaded and highly

loaded network. We run the simulations for 𝑇 = 10
6
time slots

and report the results for both settings of time-invariant 𝛿𝑡 and

time-varying 𝛿𝑡 in Figure 4 and Figure 5, respectively.

Throughput-Optimality of MW-UCB: The results from Fig-

ure 4 and Figure 5 demonstrate thatMW-UCB preserves the stability

property of the idealized MW policy and thus supports the same

stability region as achieved by the class of idealized policies with

full statistics. In particular, the total queue backlogs of both algo-

rithms remain stable for the moderate-load regime 𝜆 = 0.11, and

start to explode in the high-load regime 𝜆 = 0.12.

Performance Evaluation of MW-UCB: In all experiments

from Figure 4 and Figure 5, MW-UCB consistently outperforms MW

with restart UCB. Whenever the arrival rate 𝜆 is inside the stability

region (Figure 4a and Figure 5a), MW-UCB can learn the channels’

statistics under non-stationarity and consequently stabilize the

system. Additionally, for MW-UCB and idealized MW, we gradually

increase 𝜆 = 0.03 → 0.22 and report in Figure 6 the value of

log

(∑
𝑒∈𝐸 𝑄𝑒 (𝑇 )/𝑇

)
at 𝑇 = 1.5 · 106 to empirically measure the

closeness of 𝑄𝑇 /𝑇 to 0 as well as its growth outside the stability

region. The result suggests that MW-UCB preserves the pattern of

idealized MW.

4
While this is E[𝛾 (𝑡1, 𝑡2 ) ], we can strictly enforce Assumption 1, i.e. without expecta-

tion, by deterministically simulating a feasible trajectory of 𝝁 (𝑡 ) ’s evolution.
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(a) Fixed arrival rate 𝜆 = 0.11 strictly within the
stability region.

(b) Fixed arrival rate 𝜆 = 0.12 strictly outside the
stability region.

(c) Adaptive arrival rates ¯𝜆 (𝑡 ) of highly loaded net-
work.

Figure 4: Total queue length over time for time-invariant 𝛿𝑡 = 0.5

𝑇 1/2
.

(a) Fixed arrival rate 𝜆 = 0.11 strictly within the
stability region.

(b) Fixed arrival rate 𝜆 = 0.12 strictly outside the
stability region.

(c) Adaptive arrival rates ¯𝜆 (𝑡 ) of highly loaded net-
work.

Figure 5: Total queue length over time for time-varying 𝛿𝑡 = 0.5

(𝑡+1)1/2
.

(a) Setting of time-invariant 𝛿𝑡 = 0.5

𝑇 1/2
. (b) Setting of time-varying 𝛿𝑡 = 0.5

(𝑡+1)1/2
.

Figure 6: Measuring log(𝑄𝑇 /𝑇 ) at𝑇 = 1.5 · 106 for 𝜆 = 0.03 → 0.22.

5.2 Time-Varying Arrival Rates
Next, we provide additional simulations for time-varying arrival

rates 𝝀(𝑡). We let all links in any time slot 𝑡 to receive Poisson

arrivals with the same packet generation rate
¯𝜆(𝑡) = 𝜆𝑒 (𝑡),∀𝑒 ∈ 𝐸.

Given the mean service rates 𝝁 (𝑡), an upper-bound on the maxi-

mum arrival rate supported by the network is given by:

¯𝜆(𝑡) ≤ min

𝑣∈𝑉
1∑

𝑒∈A(𝑣) 𝜇𝑒 (𝑡)−1
, (23)

where A(𝑣) is the set of links adjacent to node 𝑣 . In our simula-

tions, we set
¯𝜆(𝑡) to be exactly the right-hand side of (23) to model

highly loaded network. We plot the total queue length over time,

i.e.

∑
𝑒∈𝐸 𝑄𝑒 (𝑡) at time 𝑡 , for both settings of time-invariant 𝛿𝑡 and

time-varying 𝛿𝑡 respectively in Figure 4c and Figure 5c. The results

demonstrate that MW-UCB can well adapt to the time-varying ar-

rival rates to achieve stability, and consistently improves over MW

with restart UCB.
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6 CONCLUSION
In this paper, we present MW-UCB as a novel joint learning and

scheduling algorithm for non-stationary wireless network control

under partial observability and non-stationary dynamics. Our algo-

rithmic development is based on theMax-Weight policy for network

control and sliding-window UCB for learning uncertain and time-

varying channel statistics. We propose a new notion of stability for

non-stationary networks and prove that the MW-UCB algorithm

achieves a stability region that is arbitrarily close to the true stabil-

ity region. Extensive simulations on both uniformly changing and

abruptly changing dynamics confirm the throughput-optimality

and the favorable performance of the algorithm.We believe that our

analytical framework can be extended to study stability properties

of algorithms for non-stationary network control under stringent

requirements of emerging large-scale wireless networks.
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APPENDIX
A PROOF OF LEMMA 1
First, we prove that Λ𝑠 (𝛽1) ⊆ Λ𝑠 (𝛽2) for any 0 ≤ 𝛽1 ≤ 𝛽2 ≤ 1.

Take any {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽1). Then there exists some 𝜋 ∈ Π𝑠 such
that 𝑄𝜋

𝑇
= 𝑂

(
𝑇 𝛽1

)
. Since 𝛽1 ≤ 𝛽2, this implies 𝑄𝜋

𝑇
= 𝑂

(
𝑇 𝛽2

)
and

thus {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽2). Therefore, we have Λ𝑠 (𝛽1) ⊆ Λ𝑠 (𝛽2).
Second, we prove that Λ𝑠 (𝛽) ⊆ Λ𝑠 for any 𝛽 ∈ [0, 1). Take any

{𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽). Then there exists some 𝜋 ∈ Π𝑠 such that 𝑄𝜋
𝑇
=

𝑂
(
𝑇 𝛽

)
. Since 𝛽 < 1, this implies 𝑄𝜋

𝑇
= 𝑜

(
𝑇
)
and thus {𝝀(𝑡)}𝑡≥0 ∈

Λ𝑠 . Therefore, we have Λ𝑠 (𝛽) ⊆ Λ𝑠 .
Finally, we prove that Λ𝑠 ⊆ Λ𝑠 (1). Take any {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 .

Then there exists some 𝜋 ∈ Π𝑠 such that𝑄𝜋
𝑇
= 𝑜

(
𝑇
)
, which implies

𝑄𝜋
𝑇
= 𝑂

(
𝑇
)
and thus {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (1). Therefore, we have Λ𝑠 ⊆

Λ𝑠 (1).

B PROOF OF THEOREM 2
Since 𝝀 ∈ Λ̄𝑠 , by definition there exists some 𝜋∗ ∈ Π𝑠 that satisfies:

𝜆𝑒 = lim

𝑇→∞
1

𝑇

𝑇−1∑︁
𝑡=0

𝑎𝑒 (𝑡) ≤ lim

𝑇→∞
1

𝑇

𝑇−1∑︁
𝑡=0

𝑏𝜋
∗

𝑒 (𝑡),∀𝑒 ∈ 𝐸. (24)

Let x1, x2, ..., x |M |
be all the admissible link activations inM. For

any time slot 𝑡 > 0, we consider the empirical counter and distribu-

tion ∀𝑖 ∈ [1, |M|]:

𝑛𝑖 (𝑡) =
𝑡−1∑︁
𝑠=0

1{x𝜋∗ (𝑠 )=x𝑖 } , (25)

𝑝𝑖 (𝑡) =
𝑛𝑖 (𝑡)
𝑡

, (26)

where 𝑛𝑖 (𝑡) and 𝑝𝑖 (𝑡) respectively represent the number of times

and the time fraction that the link activation vector x𝑖 has been
chosen by the policy 𝜋∗ by time 𝑡 . Additionally, we consider ∀𝑖 ∈
[1, |M|]:

𝑆𝑖,𝑒 (𝑡) =

0, if 𝑥𝑖𝑒 = 0∑𝑡−1
𝑠=0 𝜃𝑒 (𝑠 )1{x𝜋∗ (𝑠 )=x𝑖 }

𝑛𝑖 (𝑡 ) , otherwise
. (27)

Let p(𝑡) = (𝑝𝑖 (𝑡))𝑖∈[1, |M | ] be the vector of all such empirical dis-

tributions. Also note that

∑ |M |
𝑖=1

𝑝𝑖 (𝑡) = 1 for any 𝑡 > 0. Since

p(𝑡) ∈ [0, 1] |M |
, by the Bolzano–Weierstrass Theorem, there exists

a convergent subsequence {p(𝑡𝑘 )}𝑘=1,2,... where lim𝑘→∞ 𝑡𝑘 = ∞.

Define the limit of this convergent subsequence by:

p∗ = lim

𝑘→∞
p(𝑡𝑘 ) . (28)

Now, we note that for any 𝑖 ∈ [1, |M|] such that 𝑝∗
𝑖
> 0 (which

also implies lim𝑘→∞ 𝑛𝑖 (𝑡𝑘 ) = ∞), by SLLN, we have:

lim

𝑘→∞
𝑆𝑖,𝑒 (𝑡𝑘 ) = 1{𝑥𝑖𝑒=1}𝜇𝑒 ,∀𝑒 ∈ 𝐸. (29)

With the convention that 0/0 = 0, we obtain from (24) that ∀𝑒 ∈ 𝐸:

𝜆𝑒 ≤ lim

𝑘→∞
1

𝑡𝑘

𝑡𝑘−1∑︁
𝑠=0

𝑏𝜋
∗

𝑒 (𝑠)

= lim

𝑘→∞

|M|∑︁
𝑖=1

𝑝𝑖 (𝑡𝑘 ) · 𝑆𝑖,𝑒 (𝑡𝑘 )

(28)+(29)
= 𝜇𝑒

|M |∑︁
𝑖=1

𝑝∗𝑖 · 1{𝑥𝑖𝑒=1} (30)

Consider a stationary randomized policy 𝜋𝑟 that at any time 𝑡

activates the link schedule x𝜋𝑟 (𝑡) = x𝑖 with probability 𝑝∗
𝑖
. Next,

we consider the Max-Weight (MW) policy with the full knowledge

of the statistics (i.e. MW is in Π𝑠 ) that at any time slot 𝑡 , schedules

the link according to:

xMW (𝑡) = argmax

x∈M

{∑︁
𝑒∈𝐸

𝑄MW

𝑒 (𝑡)𝜇𝑒𝑥𝑒
}
, (31)

and proceeds to show that 𝑄MW

𝑇
= 𝑂

(
𝑇

1

2

)
. For brevity, we use 𝜋𝑀

to denote the MW policy. Under the MW policy, we consider the

quadratic Lyapunov function of the queue lengths Q𝜋𝑀 (𝑡) as:

Φ𝜋𝑀 (Q𝜋𝑀 (𝑡)) = Q𝜋𝑀 (𝑡)𝑇Q𝜋𝑀 (𝑡) =
∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑡)2 . (32)

We consider the 1-step Lyapunov drift conditioned on the queue

length as follows:

Δ𝜋𝑀 (𝑡) = E
[
Φ𝜋𝑀 (Q𝜋𝑀 (𝑡 + 1)) − Φ𝜋𝑀 (Q𝜋𝑀 (𝑡))

��Q𝜋𝑀 (𝑡)
]
. (33)

From the queue process (2), we first obtain that ∀𝑒 ∈ 𝐸, 𝑡 ≥ 0:

𝑄
𝜋𝑀
𝑒 (𝑡 + 1)2 ≤

(
𝑄
𝜋𝑀
𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝜋𝑀𝑒 (𝑡)

)
2

= 𝑄
𝜋𝑀
𝑒 (𝑡)2 + (𝑎𝑒 (𝑡) − 𝑏𝜋𝑀𝑒 (𝑡))2

+ 2𝑄
𝜋𝑀
𝑒 (𝑡) (𝑎𝑒 (𝑡) − 𝑏𝜋𝑀𝑒 (𝑡))

≤ 𝑄𝜋𝑀𝑒 (𝑡)2 + (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2

+ 2𝑄
𝜋𝑀
𝑒 (𝜏 𝑗 ) (𝑎𝑒 (𝑡) − 𝑏𝜋𝑀𝑒 (𝑡)),

where in the last line we use 0 ≤ 𝑎𝑒 (𝑡) ≤ 𝐴𝑚𝑎𝑥 , 0 ≤ 𝑏
𝜋𝑀
𝑒 (𝑡) ≤

𝜃𝑒 (𝑡) ≤ 𝜇𝑚𝑎𝑥 . Summing the above over all 𝑒 ∈ 𝐸 and taking the

expectation conditioned on Q𝜋𝑀 (𝑡), we obtain that:

Δ𝜋𝑀 (𝑡) ≤ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2 + 2

∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑡)𝜆𝑒 (𝑡)

− 2

∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑡)𝜇𝑒E

[
𝑥
𝜋𝑀
𝑒 (𝑡)

��Q𝜋𝑀 (𝑡)
]

(31)

≤ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2 + 2

∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑡)𝜆𝑒 (𝑡)

− 2

∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑡)𝜇𝑒E

[
𝑥
𝜋𝑟
𝑒 (𝑡)

��Q𝜋𝑀 (𝑡)
]

= |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2 + 2

∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑡)𝜆𝑒 (𝑡)

− 2

∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑡)𝜇𝑒

|M |∑︁
𝑖=1

𝑝∗𝑖 · 1{𝑥𝑖𝑒=1}

(30)

≤ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2 .
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Taking expectation of both sides with respect to Q𝜋𝑀 (𝑡), we have:

E
[
Φ𝜋𝑀 (Q𝜋𝑀 (𝑡 + 1))

]
− E

[
Φ𝜋𝑀 (Q𝜋𝑀 (𝑡))

]
≤ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2 .

Telescoping over 𝑡 = 0 → 𝑇 − 1 and noting that Φ𝜋𝑀 (Q𝜋𝑀 (0)) = 0,

we get:

E
[
Φ𝜋𝑀 (Q𝜋𝑀 (𝑇 ))

]
≤ 𝑇 |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2 . (34)

Following the same argument as the proof of Lemma 10, we can

similarly obtain that:

𝑄MW

𝑇
= E

[∑︁
𝑒∈𝐸

𝑄
𝜋𝑀
𝑒 (𝑇 )

]
≤
√︃
|𝐸 | · E

[
Φ𝜋𝑀 (Q𝜋𝑀 (𝑇 ))

]
(34)

≤ 𝑇
1

2 |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 ),

which implies 𝑄MW

𝑇
= 𝑂

(
𝑇

1

2

)
. Since 𝜋𝑀 ∈ Π𝑠 , we thus have 𝝀 ∈

Λ𝑠 ( 1
2
). Since by our Definition 6, a throughput-optimal policy 𝜋 ,

given 𝛽 ∈ [0, 1), achieves the stability region Λ𝑠 (𝛽), the network is

mean rate stable under 𝜋 for any 𝝀 ∈ Λ̄𝑠 .

C PROOF OF LEMMA 3
Since {𝝀(𝑡)}𝑡≥0 ∈ Λ𝑠 (𝛽), by definition there exists some policy

𝜋∗ ∈ Π𝑠 such that:

𝑄𝜋
∗

𝑇
= 𝑂 (𝑇 𝛽 ).

For any 𝜏 𝑗 , we consider ∀𝑒 ∈ 𝐸:

𝑟𝑒 (𝜏 𝑗 ) =


0, if

∑𝜏 𝑗+1−1
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) = 0( (1−𝜀 ) (∑𝜏𝑗+1−1𝑡=𝜏𝑗
𝜆𝑒 (𝑡 )−E[𝑄𝜋

∗
𝑒 (𝜏 𝑗+1 ) ] )∑𝜏𝑗+1−1

𝑡=𝜏𝑗
𝜆𝑒 (𝑡 )

)+
, otherwise

(35)

and sheds the traffics such that for any 𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1),
𝑎𝑒 (𝑡) = 𝑟𝑒 (𝜏 𝑗 )𝑎𝑒 (𝑡),∀𝑒 ∈ 𝐸. (36)

We now proceed to show that this shedding scheme guarantees

{ ˜𝝀(𝑡)}𝑡≥0 ∈ C(𝜏, 𝜀) and (18).

From the queue dynamics (2), we have ∀𝑒 ∈ 𝐸:

𝑄𝜋
∗

𝑒 (𝜏 𝑗+1) =
(
𝑄𝜋

∗
𝑒 (𝜏 𝑗+1 − 1) + 𝑎𝑒 (𝜏 𝑗+1 − 1) − 𝑏𝜋

∗
𝑒 (𝜏 𝑗+1 − 1)

)+
≥ 𝑄𝜋

∗
𝑒 (𝜏 𝑗+1 − 1) + 𝑎𝑒 (𝜏 𝑗+1 − 1) − 𝑏𝜋

∗
𝑒 (𝜏 𝑗+1 − 1) .

By repeating the above argument, we get ∀𝑒 ∈ 𝐸:

𝑄𝜋
∗

𝑒 (𝜏 𝑗+1) ≥ 𝑄𝜋
∗

𝑒 (𝜏 𝑗 ) +
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝑎𝑒 (𝑡) −
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝑏𝜋
∗

𝑒 (𝑡)

≥
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝑎𝑒 (𝑡) −
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝑏𝜋
∗

𝑒 (𝑡) .

Taking expectation of the above, we obtain that:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) − E[𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)] ≤
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E[𝑏𝜋
∗

𝑒 (𝑡)], ∀𝑒 ∈ 𝐸.

∴

( 𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) − E[𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)]
)+

≤
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E[𝑏𝜋
∗

𝑒 (𝑡)], ∀𝑒 ∈ 𝐸.

(37)

Taking expectation of (36) and summing over 𝑡 = 𝜏 𝑗 → 𝜏 𝑗+1 − 1,

we obtain in view of (35) and (37) that ∀𝑒 ∈ 𝐸:
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

˜𝜆𝑒 (𝑡)
(36)

= 𝑟𝑒 (𝜏 𝑗 )
( 𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡)
) (35)+(37)

≤ (1 − 𝜀)
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E[𝑏𝜋
∗

𝑒 (𝑡)],

which verifies { ˜𝝀(𝑡)}𝑡≥0 ∈ C(𝜏, 𝜀).
To prove (18), we note that from (17),E[𝑋𝑇 ] =

∑𝑇−1
𝑡=0

∑
𝑒∈𝐸 𝜆𝑒 (𝑡)−∑𝑇−1

𝑡=0

∑
𝑒∈𝐸 ˜𝜆𝑒 (𝑡), and first proceeds to upper-bound

∑𝜏 𝑗+1−1
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡)−∑𝜏 𝑗+1−1
𝑡=𝜏 𝑗

˜𝜆𝑒 (𝑡) by considering two cases as follows.

Case 1:
∑𝜏 𝑗+1−1
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) ≤ E[𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)]. From (35), we have 𝑟𝑒 (𝜏 𝑗 ) =
0 and thus (from (36))

˜𝜆𝑒 (𝑡) = E[𝑎𝑒 (𝑡)] = 0. Then we obtain that:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) −
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

˜𝜆𝑒 (𝑡) =
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) ≤ E[𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)] .

Case 2:
∑𝜏 𝑗+1−1
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) > E[𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)] ≥ 0. We have:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) −
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

˜𝜆𝑒 (𝑡)
(36)

= (1 − 𝑟𝑒 (𝜏 𝑗 ))
( 𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡)
)

(35)

= 𝜀
( 𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡)
)
+ (1 − 𝜀)E[𝑄𝜋

∗
𝑒 (𝜏 𝑗+1)]

≤ 𝜀𝜏𝐴𝑚𝑎𝑥 + E[𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)]

Thus, in any case, we have:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜆𝑒 (𝑡) −
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

˜𝜆𝑒 (𝑡) ≤ 𝜀𝜏𝐴𝑚𝑎𝑥 + E[𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)] .

Summing the above over all 𝑒 ∈ 𝐸 and 𝑗 = 0 → 𝐾 − 1, we obtain:

E[𝑋𝜏𝐾 ] =
𝜏𝐾 −1∑︁
𝑡=0

∑︁
𝑒∈𝐸

𝜆𝑒 (𝑡) −
𝜏𝐾 −1∑︁
𝑡=0

∑︁
𝑒∈𝐸

˜𝜆𝑒 (𝑡)

≤ 𝜀𝜏𝐾𝐴𝑚𝑎𝑥 +
𝐾−1∑︁
𝑗=0

E[
∑︁
𝑒∈𝐸

𝑄𝜋
∗

𝑒 (𝜏 𝑗+1)]

= 𝜀𝜏𝐾𝐴𝑚𝑎𝑥 +
𝐾∑︁
𝑗=1

𝑄𝜋
∗

𝜏 𝑗

= 𝑂
(
𝜀𝜏𝐾 +

𝐾∑︁
𝑗=1

𝜏
𝛽

𝑗

)
= 𝑂

(
𝜀𝜏𝐾 + 𝜏𝛽

𝐾
+
𝐾−1∑︁
𝑗=1

1

𝜏

∫ 𝜏 𝑗+1

𝜏 𝑗

𝑥𝛽𝑑𝑥
)

= 𝑂
(
𝜀𝜏𝐾 + 𝜏𝛽

𝐾
+ 1

𝜏

∫ 𝜏𝐾

𝜏1

𝑥𝛽𝑑𝑥
)

= 𝑂
(
𝜀𝜏𝐾 + 𝜏𝛽

𝐾
+ 1

𝜏

∫ 𝜏𝐾

𝜏1

𝑥𝛽𝑑𝑥
)

= 𝑂
(
𝜀𝜏𝐾 + 𝜏𝛽

𝐾
+
𝜏
𝛽+1
𝐾

𝜏

)
= 𝑂

(
𝑇 𝛽+1𝜏−1 + 𝜀𝑇

)
. (38)
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Finally, we have:

E[𝑋𝑇 ] = E[𝑋𝜏𝐾 ] +
𝑇−1∑︁
𝑡=𝜏𝐾

∑︁
𝑒∈𝐸

𝜆𝑒 (𝑡) −
𝑇−1∑︁
𝑡=𝜏𝐾

∑︁
𝑒∈𝐸

˜𝜆𝑒 (𝑡)

≤ E[𝑋𝜏𝐾 ] + 𝜏 |𝐸 |𝐴𝑚𝑎𝑥
(38)

= 𝑂
(
𝑇 𝛽+1𝜏−1 + 𝜀𝑇 + 𝜏

)
.

D GUARANTEES OF THE IMAGINARY
SYSTEM’S QUEUE PROCESS {Q̃(𝑡)}𝑡≥0

Recall from Section 4.3 that:

• WhenMW-UCB is applied to the original system, it produces

the sequence of decisions {xMW-UCB (𝑡)}𝑡≥0 and thus effec-

tive service rate {bMW-UCB (𝑡)}𝑡≥0. The queueing dynamics

of the original system evolves as {QMW-UCB (𝑡)}𝑡≥0 via:

𝑄MW-UCB

𝑒 (𝑡 + 1) =
(
𝑄MW-UCB

𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏MW-UCB

𝑒 (𝑡)
)+
,∀𝑒 ∈ 𝐸.

• The "imaginary" queue lengths Q̃(𝑡) evolve as the sequence
of decisions {xMW-UCB (𝑡)}𝑡≥0 is applied to the imaginary

system, i.e.

𝑄𝑒 (𝑡 + 1) =
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏MW-UCB

𝑒 (𝑡)
)+
,∀𝑒 ∈ 𝐸.

In the proofs of this Appendix D, we refer to {xMW-UCB (𝑡)}𝑡≥0,
{bMW-UCB (𝑡)}𝑡≥0 and {QMW-UCB (𝑡)}𝑡≥0 respectively as {x(𝑡)}𝑡≥0,
{b(𝑡)}𝑡≥0 and {Q(𝑡)}𝑡≥0 for brevity. Consequently, the queueing
dynamics of the original system and imaginary system can be

respectively expressed as:

𝑄𝑒 (𝑡 + 1) =
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+
,∀𝑒 ∈ 𝐸 (39)

𝑄𝑒 (𝑡 + 1) =
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+
,∀𝑒 ∈ 𝐸. (40)

D.1 Proof of Lemma 4
From Lemma 6, we have ∀𝑒 ∈ 𝐸:

𝑄𝑒 (𝑇 ) ≤ 𝑄𝑒 (𝑇 ) +
𝑇−1∑︁
𝑞=0

(𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞))

Summing up the above over all 𝑒 ∈ 𝐸 and taking expectation, we

conclude that:

E[
∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )] ≤ E[
𝑇−1∑︁
𝑞=0

(𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞))] + E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )
]

∴𝑄MW-UCB

𝑇
≤ E[𝑋𝑇 ] + E

[∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )
]
,

where the last line follows from the definitions of 𝑄𝑇 and 𝑋𝑇 .

D.2 Proof of Lemma 5
Since { ˜𝝀(𝑡)}𝑡≥0 ∈ C(𝜏, 𝜀), by definition there exists some 𝜋0 ∈ Π𝑠
such that for any 𝜏 𝑗 ∈ {𝜏0, 𝜏1, ..., 𝜏𝐾−1}:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

˜𝜆𝑒 (𝑡) ≤ (1 − 𝜀)
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E[𝑏𝜋0𝑒 (𝑡)], ∀𝑒 ∈ 𝐸. (41)

We consider the quadratic Lyapunov function of the queue

lengths Q̃(𝑡) of the imaginary system under MW-UCB as:

Φ(Q̃(𝑡)) = Q̃(𝑡)𝑇 Q̃(𝑡) =
∑︁
𝑒∈𝐸

𝑄𝑒 (𝑡)2 . (42)

We consider the 𝜏-step Lyapunov drift of Φ(.) conditioned on the

queue lengths of both the original system and the imaginary system

as follows:

Δ(𝜏 𝑗 ) = E
[
Φ(Q̃(𝜏 𝑗+1)) − Φ(Q̃(𝜏 𝑗 ))

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
, (43)

where we recall that 𝜏 𝑗 = 𝑗𝜏 . From Lemma 7 (in Appendix D.3), the

drift can be upper-bounded by:

Δ(𝜏 𝑗 ) ≤ 𝐵1𝜏 (𝜏 + 1) + 2

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

Q̃(𝜏 𝑗 )𝑇 ˜𝝀(𝑡)

− 2

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E[Q̃(𝜏 𝑗 )𝑇 b(𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )], (44)

where 𝐵1 =
1

2
|𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2. Now, we consider the normalized

queue lengths of both the original and imaginary systems as:

𝑤̃𝑒 (𝜏 𝑗 ) =
𝑄𝑒 (𝜏 𝑗 )

∥Q̃(𝜏 𝑗 )∥∞
,∀𝑒 ∈ 𝐸, (45)

𝑤𝑒 (𝜏 𝑗 ) =
𝑄𝑒 (𝜏 𝑗 )

∥Q(𝜏 𝑗 )∥∞
,∀𝑒 ∈ 𝐸, (46)

with the convention that 0/0 = 0. Note that (46) is the same weight

updating rule as Line 4 ofMW-UCB (Algorithm 1). Thenwe consider

the following two regrets which respectively use (45) and (46) in

their weight instantiations:

¯R(𝜏 𝑗 ) =
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑤̃𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
−
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[∑︁
𝑒∈𝐸

𝑤̃𝑒 (𝜏 𝑗 )𝑥𝑒 (𝑡)𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
(47)

=
1

∥Q̃(𝜏 𝑗 )∥∞

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
− 1

∥Q̃(𝜏 𝑗 )∥∞

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
, (48)

and (recalling from (16)),

R(𝜏 𝑗 ) =
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑤𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
−
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[∑︁
𝑒∈𝐸

𝑤𝑒 (𝜏 𝑗 )𝑥𝑒 (𝑡)𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
(49)

=
1

∥Q(𝜏 𝑗 )∥∞

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
− 1

∥Q(𝜏 𝑗 )∥∞

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
. (50)
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From Lemma 8 (in Appendix D.3), we further relate (44) to the

regret
¯R(𝜏 𝑗 ) as follows:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

≥ (1 − 𝜀)
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b𝜋0 (𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

+ 𝜀𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 − ∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 )

=
∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )
[
(1 − 𝜀)

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E[𝑏𝜋0𝑒 (𝑡)]
]

+ 𝜀𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 − ∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 )

(41)

≥
∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )
[ 𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

˜𝜆𝑒 (𝑡)
]

+ 𝜀𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 − ∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) (51)

=

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

Q̃(𝜏 𝑗 )𝑇 ˜𝝀(𝑡) + 𝜀𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 − ∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) (52)

where for (51) we recall that 𝜋0 ∈ Π𝑠 is the idealized policy that

satisfies (41). Combining (52) and (44), we have:

Δ(𝜏 𝑗 ) ≤ 𝐵1𝜏 (𝜏 + 1) − 2𝜀𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 + 2∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) .
(53)

Now, we have from Lemma 9 (in Appendix D.3) that:

∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) ≤ ∥Q(𝜏 𝑗 )∥∞R(𝜏 𝑗 ) + 𝜏𝜇𝑚𝑎𝑥E[𝑋𝜏 𝑗 ] . (54)

and from Lemma 6 (in Appendix D.3) that:

E
[
∥Q̃(𝜏 𝑗 )∥∞

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
≥ E

[
∥Q(𝜏 𝑗 )∥∞

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
− E[𝑋𝜏 𝑗 ]

(55)

Plugging (54) and (55) into (53), we obtain that:

Δ(𝜏 𝑗 ) ≤ 𝐵1𝜏 (𝜏 + 1) + 2(𝜇𝑚𝑎𝑥 + 𝜀𝜇𝑚𝑖𝑛)𝜏E[𝑋𝜏 𝑗 ]
− 2𝜀𝜏 ∥Q(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 + 2∥Q(𝜏 𝑗 )∥∞R(𝜏 𝑗 ) . (56)

Recall from Section 4.2 that MW-UCB, during every time frame

[𝜏 𝑗 , 𝜏 𝑗+1), fixes the queue length in the original system toQ(𝜏 𝑗 ) (and
thus the normalized weights {𝑤𝑒 (𝜏 𝑗 )}𝑒∈𝐸 ), and adopts the CUCB-

SW algorithm for scheduling while learning the non-stationary

mean service rate. Thus, the regretR(𝜏 𝑗 ) as in (49) serves to capture
the learning efficiency of CUCB-SW with theoretical guarantee in

[10]. To this end, the regret bound under our choice of parameter

𝑑 = 𝜏
2

3
(1−𝛼 )

is given by Lemma 2 (in Appendix D.3) as follows:

R(𝜏 𝑗 ) ≤ 𝑐0 log(𝜏)𝜏
1

3
(𝛼+2) , (57)

for some universal constant 𝑐0 > 0 that can be explicitly determined.

Substituting (57) into (56) and defining 𝑐1 =
𝑐0
𝜇𝑚𝑖𝑛

, we have:

Δ(𝜏 𝑗 ) ≤ 𝐵1𝜏 (𝜏 + 1) + 2(𝜇𝑚𝑎𝑥 + 𝜀𝜇𝑚𝑖𝑛)𝜏E[𝑋𝜏 𝑗 ]

− 2𝜏 ∥Q(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛
(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) ) . (58)

Now, if 𝜀 ≥ 𝑐1 log(𝜏)𝜏
1

3
(𝛼−1)

, we obtain from (58) that:

Δ(𝜏 𝑗 ) ≤ 𝐵1𝜏 (𝜏 + 1) + 2(𝜇𝑚𝑎𝑥 + 𝜀𝜇𝑚𝑖𝑛)𝜏E[𝑋𝜏 𝑗 ] .

Recall from (43) thatΔ(𝜏 𝑗 ) = E
[
Φ(Q̃(𝜏 𝑗+1))−Φ(Q̃(𝜏 𝑗 ))

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
.

Taking expectation on both sides of the above with respect to Q̃(𝜏 𝑗 )
and Q(𝜏 𝑗 ), we get:

E
[
Φ(Q̃(𝜏 𝑗+1))

]
− E

[
Φ(Q̃(𝜏 𝑗 ))

]
≤ 𝐵1𝜏 (𝜏 + 1) + 2(𝜇𝑚𝑎𝑥 + 𝜀𝜇𝑚𝑖𝑛)𝜏E[𝑋𝜏 𝑗 ] .

Summing up the above for 𝑗 = 0, 1, ..., 𝐾 − 1 and noting that

Φ(Q̃(𝜏0)) = Φ(Q̃(0)) = 0, we obtain that:

E
[
Φ(Q̃(𝜏𝐾 ))

]
≤ 𝐵1𝜏 (𝜏 + 1)𝐾 + 2(𝜇𝑚𝑎𝑥 + 𝜀𝜇𝑚𝑖𝑛)𝜏

𝐾−1∑︁
𝑗=0

E[𝑋𝜏 𝑗 ]

(18)

= 𝑂
(
𝜏2𝐾 + 𝜏

𝐾−1∑︁
𝑗=0

(𝜏𝛽+1
𝑗

𝜏−1 + 𝜀𝜏 𝑗 )
)

= 𝑂
(
𝜏2𝐾 + 𝜏𝛽+1

𝐾−1∑︁
𝑗=0

𝑗𝛽+1 + 𝜀𝜏2
𝐾−1∑︁
𝑗=0

𝑗
)

= 𝑂
(
𝜏2𝐾 + 𝜏𝛽+1

∫ 𝐾−1

0

𝑥𝛽+1𝑑𝑥 + 𝜀𝜏2
𝐾−1∑︁
𝑗=0

𝑗
)

= 𝑂
(
𝜏2𝐾 + 𝜏𝛽+1𝐾𝛽+2 + 𝜀𝜏2𝐾2

)
= 𝑂

(
𝜏𝑇 +𝑇 𝛽+2𝜏−1 + 𝜀𝑇 2

)
, (59)

where for last line, we recall that 𝐾 is the largest number such that

𝜏𝐾 = 𝜏𝐾 < 𝑇 . From Lemma 10 (in Appendix D.3), we have:

E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏𝐾 )
]
≤
√︃
|𝐸 | · E

[
Φ(Q̃(𝜏𝐾 ))

]
(59)

= 𝑂
(
𝑇

1

2 𝜏
1

2 +𝑇 1+ 𝛽
2 𝜏−

1

2 + 𝜀
1

2𝑇
)
. (60)

Noting that 0 < 𝑇 − 𝜏𝐾 ≤ 𝜏 and using Lemma 6 (in Appendix D.3),

we have:

E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )
]
= E

[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏𝐾 )
]
+ E

[∑︁
𝑒∈𝐸

(𝑄𝑒 (𝑇 ) −𝑄𝑒 (𝜏𝐾 ))
]

≤ E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏𝐾 )
]
+ (𝑇 − 𝜏𝐾 ) (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )

(60)

= 𝑂
(
𝑇

1

2 𝜏
1

2 +𝑇 1+ 𝛽
2 𝜏−

1

2 + 𝜀
1

2𝑇 + 𝜏
)

= 𝑂
(
𝑇

1

2 𝜏
1

2 +𝑇 1+ 𝛽
2 𝜏−

1

2 + 𝜀
1

2𝑇
)
,

which concludes the proof of the Lemma.

D.3 Supplementary Lemmas
Lemma 6. We have the following bounds ∀𝑒 ∈ 𝐸:

|𝑄𝑒 (𝑡1) −𝑄𝑒 (𝑡2) | ≤ |𝑡1 − 𝑡2 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 ) (61)

|𝑄𝑒 (𝑡1) −𝑄𝑒 (𝑡2) | ≤ |𝑡1 − 𝑡2 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 ) (62)

𝑄𝑒 (𝑡) ≤ 𝑄𝑒 (𝑡) ≤ 𝑄𝑒 (𝑡) +
𝑡−1∑︁
𝑞=0

(𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞)) (63)

∥Q̃(𝑡)∥∞ ≤ ∥Q(𝑡)∥∞ ≤ ∥Q̃(𝑡)∥∞ + 𝑋𝑡 (64)
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Proof. (61) trivially holds for 𝑡1 = 𝑡2. If 𝑡1 ≠ 𝑡2 , WLOG, we

assume that 𝑡1 > 𝑡2. From the queue dynamics (39), we have:

𝑄𝑒 (𝑡1) ≥ 𝑄𝑒 (𝑡1 − 1) + 𝑎𝑒 (𝑡1 − 1) − 𝑏𝑒 (𝑡1 − 1)
≥ 𝑄𝑒 (𝑡1 − 1) − 𝜇𝑚𝑎𝑥 ,

𝑄𝑒 (𝑡1) ≤ 𝑄𝑒 (𝑡1 − 1) + 𝑎𝑒 (𝑡1 − 1) ≤ 𝑄𝑒 (𝑡1 − 1) +𝐴𝑚𝑎𝑥 ,

where we use 0 ≤ 𝑎𝑒 (𝑡) ≤ 𝐴𝑚𝑎𝑥 and 0 ≤ 𝑏𝑒 (𝑡) ≤ 𝜃𝑒 (𝑡) ≤ 𝜇𝑚𝑎𝑥 .

Iterating the above, we obtain that:

𝑄𝑒 (𝑡1) ≥ 𝑄𝑒 (𝑡2) − (𝑡1 − 𝑡2)𝜇𝑚𝑎𝑥 ,
𝑄𝑒 (𝑡1) ≤ 𝑄𝑒 (𝑡2) + (𝑡1 − 𝑡2)𝐴𝑚𝑎𝑥 .

Combining the two above, we have (61). Similarly, we obtain (62).

Next we proceed to prove (63) by induction om 𝑡 .

Base case 𝑡 = 0: Now, (63) trivially holds since 𝑄𝑒 (0) = 𝑄𝑒 (0) =
0,∀𝑒 ∈ 𝐸.

Inductive step 𝑡 → 𝑡 + 1: First, we note that the number of packet

arrivals of the imaginary system are shed from and thus upper-

bounded by the number of packet arrivals of the original system, i.e.

𝑎𝑒 (𝑞) ≤ 𝑎𝑒 (𝑞),∀𝑒 ∈ 𝐸, 𝑞 = 0, 1, 2, ... From the inductive hypothesis

𝑄𝑒 (𝑡) ≤ 𝑄𝑒 (𝑡) ≤ 𝑄𝑒 (𝑡) +
∑𝑡−1
𝑞=0 (𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞)) and the queue

dynamics (39) and (40), we have ∀𝑒 ∈ 𝐸:

𝑄𝑒 (𝑡 + 1) =
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+
≥

(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+
(40)

= 𝑄𝑒 (𝑡 + 1),

and,

𝑄𝑒 (𝑡 + 1) =
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+
≤

(
𝑄𝑒 (𝑡) +

𝑡−1∑︁
𝑞=0

(𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞)) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)
)+

≤
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡) +

𝑡∑︁
𝑞=0

(𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞))
)+

≤
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)+ +
𝑡∑︁
𝑞=0

(𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞))

(40)

= 𝑄𝑒 (𝑡 + 1) +
𝑡∑︁
𝑞=0

(𝑎𝑒 (𝑞) − 𝑎𝑒 (𝑞)) .

Thus, (63) also holds for 𝑡 + 1.

To prove (64), we first obtain from (63) that:

𝑄𝑒 (𝑡) ≤ 𝑄𝑒 (𝑡) ≤ 𝑄𝑒 (𝑡) + 𝑋𝑡 ,∀𝑒 ∈ 𝐸.

Next, we consider 𝑒∗
1
= argmax𝑒∈𝐸 𝑄𝑒 (𝑡) and 𝑒∗2 = argmax𝑒∈𝐸 𝑄𝑒 (𝑡)

and get that:

∥Q̃(𝑡)∥∞ = 𝑄𝑒∗
1

(𝑡) ≤ 𝑄𝑒∗
1

(𝑡) ≤ ∥Q(𝑡)∥∞,

∥Q(𝑡)∥∞ = 𝑄𝑒∗
2

(𝑡) ≤ 𝑄𝑒∗
2

(𝑡) + 𝑋𝑡 ≤ ∥Q̃(𝑡)∥∞ + 𝑋𝑡 ,

which concludes the proof of the Lemma. □

Lemma 7. We have the following bound:

Δ(𝜏 𝑗 ) ≤ 𝐵1𝜏 (𝜏 + 1) + 2

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

Q̃(𝜏 𝑗 )𝑇 ˜𝝀(𝑡)

− 2

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E[Q̃(𝜏 𝑗 )𝑇 b(𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )], (65)

where 𝐵1 =
1

2
|𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2.

Proof. From the queue process (40) of the imaginary system,

we first obtain that ∀𝑒 ∈ 𝐸, 𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1):

𝑄𝑒 (𝑡 + 1)2 ≤
(
𝑄𝑒 (𝑡) + 𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)

)
2

= 𝑄𝑒 (𝑡)2 + (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡))2 + 2𝑄𝑒 (𝑡) (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡))

= 𝑄𝑒 (𝑡)2 + (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡))2 + 2𝑄𝑒 (𝜏 𝑗 ) (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡))

+ 2(𝑄𝑒 (𝑡) −𝑄𝑒 (𝜏 𝑗 )) (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡))

≤ 𝑄𝑒 (𝑡)2 + (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡))2 + 2𝑄𝑒 (𝜏 𝑗 ) (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡))

+ 2|𝑄𝑒 (𝑡) −𝑄𝑒 (𝜏 𝑗 ) | |𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡) |

≤ 𝑄𝑒 (𝑡)2 + (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2 (1 + 𝑡 − 𝜏 𝑗 )

+ 2𝑄𝑒 (𝜏 𝑗 ) (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)),

where in the last line we use 0 ≤ 𝑎𝑒 (𝑡) ≤ 𝑎𝑒 (𝑡) ≤ 𝐴𝑚𝑎𝑥 , 0 ≤
𝑏𝑒 (𝑡) ≤ 𝜃𝑒 (𝑡) ≤ 𝜇𝑚𝑎𝑥 and Lemma 6 which gives |𝑄𝑒 (𝑡)−𝑄𝑒 (𝜏 𝑗 ) | ≤
(𝑡 −𝜏 𝑗 ) (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 ). Telescoping the above for 𝑡 = 𝜏 𝑗 → 𝜏 𝑗+1 − 1

and summing over all 𝑒 ∈ 𝐸, we obtain that:

∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗+1)2 ≤
∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )2 +
1

2

|𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )2𝜏 (𝜏 + 1)

2

∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 ) (𝑎𝑒 (𝑡) − 𝑏𝑒 (𝑡)).

Taking the expectation conditioned on Q̃(𝜏 𝑗 ) andQ(𝜏 𝑗 ) of the above
and noting that

˜𝜆𝑒 (𝑡) = E[𝑎𝑒 (𝑡)] = E[𝑎𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )], i.e. the

packet arrivals are independent of the queue lengths, we conclude

the proof of (65). □

Lemma 8. We have the following bound:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

≥ (1 − 𝜀)
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b𝜋0 (𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

+ 𝜀𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 − ∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) (66)
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Proof. First, letting 𝑒∗ = argmax𝑒∈𝐸 𝑄𝑒 (𝜏 𝑗 ),we note that:
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
≥
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

∥Q̃(𝜏 𝑗 )∥∞ · 1 · E
[
𝜃𝑒∗ (𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
]

≥
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 = 𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛, (67)

where for the first inequality, we compare the maximizing solution

with the feasible activation link vector that activates only the link

𝑒∗. Also, we have:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
≥
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b𝜋0 (𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
, (68)

where we compare the maximizing policy with the policy 𝜋0 with

also the full knowledge of every link 𝑒’s weight, i.e.

E
[
𝑄𝑒 (𝜏 𝑗 )𝜃𝑒 (𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
= 𝑄𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡) .

Now, from (48), we have:

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

=

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
− ∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 )

(67)+(68)
≥ (1 − 𝜀)

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b𝜋0 (𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

+ 𝜀𝜏 ∥Q̃(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛 − ∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ),

which concludes the proof of the Lemma. □

Lemma 9. We have the following bound:

∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) ≤ ∥Q(𝜏 𝑗 )∥∞R(𝜏 𝑗 ) + 𝜏𝜇𝑚𝑎𝑥E[𝑋𝜏 𝑗 ] (69)

Proof. From (48), we have:

∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) =
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
−
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
. (70)

From Lemma 6, we have ∀𝑒 ∈ 𝐸:

E
[
𝑄𝑒 (𝜏 𝑗 )

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
−
𝜏 𝑗−1∑︁
𝑡=0

(𝜆𝑒 (𝑡) − ˜𝜆𝑒 (𝑡))

≤ E
[
𝑄𝑒 (𝜏 𝑗 )

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
≤ E

[
𝑄𝑒 (𝜏 𝑗 )

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
. (71)

Plugging (71) into (70), we have:

∥Q̃(𝜏 𝑗 )∥∞ ¯R(𝜏 𝑗 ) =
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
−
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q̃(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

≤
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
−
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

E
[
Q(𝜏 𝑗 )𝑇 b(𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

+
𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝜏 𝑗−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

(𝜆𝑒 (𝑡) − ˜𝜆𝑒 (𝑡))E
[
𝑏𝑒 (𝑡)

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]

(50)

≤ ∥Q(𝜏 𝑗 )∥∞R(𝜏 𝑗 ) + 𝜏𝜇𝑚𝑎𝑥E[𝑋𝜏 𝑗 ],

which concludes the proof of the Lemma. □

Lemma 2. [Restated] Under MW-UCB, the regret R(𝜏 𝑗 ) can be

bounded by:

R(𝜏 𝑗 ) ≤ |𝐸 |
(
𝜏

𝑑
+ 1

) (
2

√︁
6 log(𝜏) + 48

√
𝑑 log(𝜏)

)
+ 4|𝐸 |𝑑 · 𝛾 (𝜏 𝑗 , 𝜏 𝑗+1) + |𝐸 | 𝜏√

𝑑
+ 𝜋

2

3

|𝐸 |2𝜇𝑚𝑎𝑥

+ 𝜋
2

6

|𝐸 |2𝜇𝑚𝑎𝑥 log
(
2𝑑1/2

)
.

Under Assumption 1 and by setting 𝑑 = Θ(𝜏
2

3
(1−𝛼 ) ), we further

have R(𝜏 𝑗 ) = 𝑂
(
log(𝜏)𝜏

1

3
(𝛼+2) )

.

Proof. When we fix the queue lengths Q(𝜏 𝑗 ) throughout the
frame [𝜏 𝑗 , 𝜏 𝑗+1), we aim to find a scheduling policy that solves

max

x′∈M
E
[∑︁
𝑒∈𝐸

𝑤𝑒 (𝜏 𝑗 )𝑥 ′𝑒𝜃𝑒 (𝑡)
��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )

]
= max

x′∈M

∑︁
𝑒∈𝐸

𝑥 ′𝑒𝜇𝑒 (𝑡)E
[
𝑤𝑒 (𝜏 𝑗 )

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
,

over the 𝜏 time slots from 𝜏 𝑗 to 𝜏 𝑗+1 despite not knowing 𝝁 (𝑡) and
thus the true rewards at the time of making decisions. This problem,

whereby the mean reward of each arm, i.e. 𝜇𝑒 (𝑡)𝑤𝑒 (𝜏 𝑗 ), varies over
time, can be characterized as stochastic combinatorial multi-armed

bandit (SCMAB) problem in non-stationary environment and solved

via the CUCB-SW algorithm [10]. To derive the bound forR(𝜏 𝑗 ), we
first verify the conditions required by [10] and adapt the notations

therein to our case. In particular, our model corresponds to SCMAB

without probabilistically triggered arms, each of which is associated

with a link 𝑒 ∈ 𝐸. At any time slot 𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1), an action is a link

activation vector x ∈ M. The expected reward of arm 𝑒 ∈ 𝐸 at time

𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1), if it’s activated, is denoted by𝑊𝑒 (𝑡) = 𝑤𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡).
LetW(𝑡) = (𝑊𝑒 (𝑡))𝑒∈𝐸 be the vector of the arms’ expected rewards

at time 𝑡 . The total variation of the mean reward statistics inside
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the frame [𝜏 𝑗 , 𝜏 𝑗+1) is thus depicted by:

𝑉 (𝜏 𝑗 ) =
𝜏 𝑗+1∑︁
𝑡=𝜏 𝑗+1

∥W(𝑡) −W(𝑡 − 1)∥∞ (72)

=

𝜏 𝑗+1∑︁
𝑡=𝜏 𝑗+1

∥
(
𝑤𝑒 (𝜏 𝑗 ) (𝜇𝑒 (𝑡) − 𝜇𝑒 (𝑡 − 1)

)
)𝑒∈𝐸 ∥∞

≤
𝜏 𝑗+1∑︁
𝑡=𝜏 𝑗+1

∥𝝁 (𝑡) − 𝝁 (𝑡 − 1)∥∞ (73)

= 𝛾 (𝜏 𝑗 , 𝜏 𝑗+1) = 𝑂 (𝜏𝛼 ), (74)

where (73) holds since𝑤𝑒 (𝜏 𝑗 ) ≤ 1, and (74) is by Assumption 1. For

convenience, we denote the total expected reward under the arms’

expected rewards W and the action x ∈ M as:

𝑟 (W, x) =
∑︁
𝑒∈𝐸

𝑊𝑒𝑥𝑒 . (75)

In view of the requirements imposed by [10], given two vectors of

expected rewardsW andW′
and any action x, we can verify that our

model satisfies both the ℓ1 TPM bounded smoothness assumption

of with constant 𝐵 = 1, i.e.

|𝑟 (W, x) − 𝑟 (W′, x) | ≤
∑︁
𝑒 :𝑥𝑒=1

|𝑊𝑒 −𝑊 ′
𝑒 |,

and the monotonicity assumption, i.e. if W ≤ W′
(entry-wise), we

have:

𝑟 (W, x) ≤ 𝑟 (W′, x) .

Furthermore, for each action x ∈ M, the optimality gapwith respect

to the reward W is defined as ΔW
x = maxx′∈M 𝑟 (W, x′) − 𝑟 (W, x).

Then for each arm 𝑒 ∈ 𝐸 and 𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1), we define:

Δ𝑒,𝑡
𝑚𝑖𝑛

= min

x∈M:ΔW(𝑡 )
x >0

Δ
W(𝑡 )
x ,

Δ𝑒,𝑡𝑚𝑎𝑥 = max

x∈M:ΔW(𝑡 )
x >0

Δ
W(𝑡 )
x .

We define Δ𝑒,𝑡
𝑚𝑖𝑛

= ∞ and Δ𝑒,𝑡𝑚𝑎𝑥 = 0 if they are not properly de-

fined by the above definitions. Then, Δ𝑚𝑖𝑛 = inf𝑒∈𝐸,𝑡 ∈[𝜏 𝑗 ,𝜏 𝑗+1 ) Δ
𝑒,𝑡
𝑚𝑖𝑛

and Δ𝑚𝑎𝑥 = sup𝑒∈𝐸,𝑡 ∈[𝜏 𝑗 ,𝜏 𝑗+1 ) Δ
𝑒,𝑡
𝑚𝑎𝑥 are respectively the mini-

mum and maximum gap. For our problem instance, noting that

𝑊𝑒 (𝑡) = 𝑤𝑒 (𝜏 𝑗 )𝜇𝑒 (𝑡) ≤ 𝜇𝑚𝑎𝑥 , we have the following bounds on

the optimality gaps:

Δ
W(𝑡 )
x ≤ max

x′∈M
𝑟 (W(𝑡), x′) ≤

∑︁
𝑒∈𝑒

𝑊𝑒 (𝑡) ≤ |𝐸 |𝜇𝑚𝑎𝑥

∴Δ𝑚𝑎𝑥 ≤ |𝐸 |𝜇𝑚𝑎𝑥 . (76)

Following [10], given a set of positive parameters {𝑀𝑒 }𝑒∈𝐸 and

for any action x ∈ M, we define 𝑀x = max𝑒 :𝑥𝑒=1𝑀𝑒 with the

convention that 𝑀x = 0 if 𝑥𝑒 = 0,∀𝑒 ∈ 𝐸. From the proof of

[10, Theorem 4] , we have the following regret bound given the

frame size 𝜏 , sliding-window size 𝑑 and any arbitrary set of positive

parameters {𝑀𝑒 }𝑒∈𝐸 :

R(𝜏 𝑗 ) ≤
∑︁
𝑒∈𝐸

(
𝜏

𝑑
+ 1

) (
2

√︁
6 log(𝜏) + 48|𝐸 | log(𝜏)

𝑀𝑒

)
+ 4|𝐸 |𝑑 ·𝑉 (𝜏 𝑗 ) +

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

𝑀x(𝑡 ) +
𝜋2

3

|𝐸 |Δ𝑚𝑎𝑥

+ 𝜋
2

6

Δ𝑚𝑎𝑥
∑︁
𝑒∈𝐸

𝑗𝑒𝑚𝑎𝑥 , (77)

where 𝑗𝑒𝑚𝑎𝑥 = max

{
⌈log

(
2 |𝐸 |
𝑀𝑒

)
⌉, 0

}
(also see [29]). Finally, by plug-

ging (74) and (76) into (77) and setting 𝑀𝑒 = 𝑀 =
|𝐸 |√
𝑑
,∀𝑒 ∈ 𝐸,

which also implies that𝑀x(𝑡 ) = 𝑀,∀𝑡 ∈ [𝜏 𝑗 , 𝜏 𝑗+1), we conclude the
required statements of the Lemma. □

Lemma 10. We have the following bound for any time slot 𝑇 :

E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )
]
≤
√︃
|𝐸 | · E

[
Φ(Q̃(𝑇 ))

]
(78)

Proof. By Cauchy–Schwarz inequality, we first have:∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 ) ≤
√︄
|𝐸 |

(∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )2
)
=

√︃
|𝐸 |Φ(Q̃(𝑇 )) .

Taking expectation of the above and by Jensen’s inequality, we

obtain that:

E
[∑︁
𝑒∈𝐸

𝑄𝑒 (𝑇 )
]
≤ E

[√︃
|𝐸 |Φ(Q̃(𝑇 ))

]
≤
√︃
|𝐸 | · E

[
Φ(Q̃(𝑇 ))

]
,

which concludes the proof of the Lemma. □

E PROOF OF COROLLARY 1
The proof follows as a side result of a special case of the proof

of Lemma 5 (Appendix D.2). In particular, since now {𝝀(𝑡)}𝑡≥0 ∈
Λ𝑠 (𝛽), we can consider the shedding scheme that sheds no traffic,

i.e. 𝑎𝑒 (𝑡) = 𝑎𝑒 (𝑡) for any 𝑒 ∈ 𝐸 and 𝑡 ≥ 0 and thus the total amount

of shed traffic from (17) is:

𝑋𝑇 =

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

𝑎𝑒 (𝑡) −
𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

𝑎𝑒 (𝑡) = 0. (79)

Then the original and imaginary systems are now the same where

{Q(𝑡)}𝑡≥0 ≡ {Q̃(𝑡)}𝑡≥0 and the Lyapunov drift (43) can be equiva-

lently written as:

Δ(𝜏 𝑗 ) = E
[
Φ(Q(𝜏 𝑗+1)) − Φ(Q(𝜏 𝑗 ))

��Q̃(𝜏 𝑗 ),Q(𝜏 𝑗 )
]
. (80)

Now from (58) in the proof of Lemma 5

Δ(𝜏 𝑗 ) ≤ 𝐵1𝜏 (𝜏 + 1) + 2(𝜇𝑚𝑎𝑥 + 𝜀𝜇𝑚𝑖𝑛)𝜏E[𝑋𝜏 𝑗 ]

− 2𝜏 ∥Q(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛
(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) )

(79)

= 𝐵1𝜏 (𝜏 + 1) − 2𝜏 ∥Q(𝜏 𝑗 )∥∞𝜇𝑚𝑖𝑛
(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) )

≤ 𝐵1𝜏 (𝜏 + 1) − 2𝜏
(∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )
)
|𝐸 |−1𝜇𝑚𝑖𝑛

(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) ),
(81)
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where for the last line we use

∑
𝑒∈𝐸 𝑄𝑒 (𝜏 𝑗 ) ≤ ∑

𝑒∈𝐸 ∥Q(𝜏 𝑗 )∥∞ =

|𝐸 | ∥Q(𝜏 𝑗 )∥∞. Taking expectation on both sides of (81) with respect

to Q̃(𝜏 𝑗 ) and Q(𝜏 𝑗 ) in view of (80), we get:

E
[
Φ(Q(𝜏 𝑗+1))

]
− E

[
Φ(Q(𝜏 𝑗 ))

]
≤ 𝐵1𝜏 (𝜏 + 1) − 2𝜏E

[∑︁
𝑒∈𝐸

𝑄𝑒 (𝜏 𝑗 )
]
|𝐸 |−1𝜇𝑚𝑖𝑛

(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) ) .

(82)

Now, if 𝜀 > 𝑐1 log(𝜏)𝜏
1

3
(𝛼−1)

, by summing (82) from 𝑗 = 0 → 𝐾 − 1

and noting that Φ(Q(𝜏𝐾 )) ≥ 0 and Φ(Q(0)) = 0, we obtain that:

𝐾−1∑︁
𝑗=0

∑︁
𝑒∈𝐸
E
[
𝑄𝑒 (𝜏 𝑗 )

]
≤ 𝐵1 (𝜏 + 1)𝐾 |𝐸 |

2𝜇𝑚𝑖𝑛
(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) ) . (83)

By Lemma 6 and noting that 𝜏𝐾 = 𝜏𝐾 < 𝑇 and𝑇 −𝜏𝐾 ≤ 𝜏 , we have:
𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸
E
[
𝑄𝑒 (𝑡)

]
=

𝐾−1∑︁
𝑗=0

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

∑︁
𝑒∈𝐸
E
[
𝑄𝑒 (𝑡)

]
+
𝑇−1∑︁
𝑡=𝜏𝐾

∑︁
𝑒∈𝐸
E
[
𝑄𝑒 (𝑡)

]
≤
𝐾−1∑︁
𝑗=0

𝜏 𝑗+1−1∑︁
𝑡=𝜏 𝑗

[∑︁
𝑒∈𝐸
E
[
𝑄𝑒 (𝜏 𝑗 )

]
+ (𝑡 − 𝜏 𝑗 ) |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )

]
+
𝑇−1∑︁
𝑡=𝜏𝐾

[∑︁
𝑒∈𝐸
E
[
𝑄𝑒 (𝜏𝐾−1)

]
+ (𝑡 − 𝜏𝐾−1) |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )

]
≤ 2𝜏

𝐾−1∑︁
𝑗=0

∑︁
𝑒∈𝐸
E
[
𝑄𝑒 (𝜏 𝑗 )

]
+ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )

2

(
𝐾𝜏 (𝜏 − 1) + 2𝜏2 − 𝜏

)
(83)

≤ 𝐵1 (𝜏 + 1)𝐾 |𝐸 |
𝜇𝑚𝑖𝑛

(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) )

+ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )
2

(
𝐾𝜏 (𝜏 − 1) + 2𝜏2 − 𝜏

)
≤ 2𝐵1𝑇 |𝐸 |
𝜇𝑚𝑖𝑛

(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) )

+ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )
2

(
𝑇 (𝜏 − 1) + 2𝜏2 − 𝜏

)
∴

∑𝑇−1
𝑡=0

∑
𝑒∈𝐸 E

[
𝑄𝑒 (𝑡)

]
𝑇

≤ 2𝐵1 |𝐸 |
𝜇𝑚𝑖𝑛

(
𝜀 − 𝑐1 log(𝜏)𝜏

1

3
(𝛼−1) )

+ |𝐸 | (𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 )
2

(
𝜏 − 1 + 2𝜏2 − 𝜏

𝑇

)
.

Taking lim sup of the above, we conclude that required statement

of the Corollary, i.e. for fixed 𝜏 ,

lim sup

𝑇→∞

1

𝑇

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸
E[𝑄𝑒 (𝑡)] < ∞.

F SUPPLEMENTARIES FOR SIMULATIONS
For the experimental setup in Section 5, we justify thatE[𝛾 (𝑡1, 𝑡2)] =
𝑂 ( |𝑡2−𝑡1 |1/2) for any 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇 for both settings of 𝛿𝑡 =

0.5

𝑇 1/2

and 𝛿𝑡 = 0.5

(𝑡+1)1/2 . Recall from (3) that 𝛾 (𝑡1, 𝑡2) =
∑𝑡2
𝑡=𝑡1+1 ∥𝝁 (𝑡) −

𝝁 (𝑡 −1)∥∞. Under our experimental setting, since 𝜇𝑒 (𝑡), 𝜇𝑒 (𝑡 −1) ∈
{0.25, 0.75},∀𝑒 ∈ 𝐸, 𝑡 > 0, we obtain that:

E[∥𝝁 (𝑡) − 𝝁 (𝑡 − 1)∥∞] = 0.5 · 𝑃 (𝜇𝑒 (𝑡) changes its state for some 𝑒)

= 0.5 ·
[
1 − (1 − 𝛿𝑡 ) |𝐸 |

]
≤ 0.5|𝐸 |𝛿𝑡 ,

where the last line follows Bernoulli’s inequality. Summing up the

above for 𝑡 = 𝑡1 + 1 → 𝑡2, we have:

E[𝛾 (𝑡1, 𝑡2)] ≤ 0.5|𝐸 |
𝑡2∑︁

𝑡=𝑡1+1
𝛿𝑡 . (84)

If 𝛿𝑡 =
0.5

𝑇 1/2 , we obtain from (84) that:

E[𝛾 (𝑡1, 𝑡2)] ≤ 0.25|𝐸 | 𝑡2 − 𝑡1
𝑇 1/2 ≤ 0.25|𝐸 |

√
𝑡2 − 𝑡1 = 𝑂 ( |𝑡2 − 𝑡1 |1/2) .

If 𝛿𝑡 =
0.5

(𝑡+1)1/2 , we obtain from (84) that:

E[𝛾 (𝑡1, 𝑡2)] ≤ 0.25|𝐸 |
𝑡2∑︁

𝑡=𝑡1+1

1

(𝑡 + 1)1/2

≤ 0.25|𝐸 |
∫ 𝑡2+1

𝑡=𝑡1+2

1

𝑥1/2
𝑑𝑥

= 0.5|𝐸 | (
√
𝑡2 + 1 −

√
𝑡1 + 2)

≤ 0.5|𝐸 |
√
𝑡2 − 𝑡1 = 𝑂 ( |𝑡2 − 𝑡1 |1/2) .
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