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The ubiquity of distributed agreement protocols, such as consensus, has galvanized interest in verification of

such protocols as well as applications built on top of them. The complexity and unboundedness of such systems,

however, makes their verification onerous in general, and, particularly prohibitive for full automation. An

exciting, recent breakthrough reveals that, through careful modeling, it becomes possible to reduce verification

of interesting distributed agreement-based (DAB) systems, that are unbounded in the number of processes, to

model checking of small, finite-state systems.

It is an open question if such reductions are also possible for DAB systems that are doubly-unbounded,

in particular, DAB systems that additionally have unbounded data domains. We answer this question in

the affirmative in this work thereby broadening the class of DAB systems which can be automatically and

efficiently verified. We present a novel reduction which leverages value symmetry and a new notion of data

saturation to reduce verification of doubly-unbounded DAB systems to model checking of small, finite-state

systems. We develop a tool, Venus, that can efficiently verify sophisticated DAB system models such as the

arbitration mechanism for a consortium blockchain, a distributed register, and a simple key-value store.
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1 INTRODUCTION

A recent breakthrough in formal reasoning about distributed systems builds on the modularity
inherent in their design to enable modularity in their verification [Griffin et al. 2020; Jaber et al.
2021; Sergey et al. 2017]. The central approach incorporates abstractions of common core protocols,
such as distributed consensus, into verification of applications built on top of such core protocols.
This approach inspires an interesting epiphany: modular models of distributed systems based on
protocol abstractions may permit fully-automated verification à la model checking, even when their
monolithic and intricate counterparts do not [Jaber et al. 2020, 2021]. Amenability to full automation
is significant because the problem of algorithmically verifying correctness of systems with an
unbounded number of processes, popularly known as the parameterized model checking problem
(PMCP), is a well-known undecidable problem [Suzuki 1988]. For instance, recent work [Jaber et al.
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2021] identifies a class of modular models of distributed services, based on distributed agreement

protocols, for which PMCP can be reduced to model checking of small, finite-state systems. However,
a limitation of this approach (and of most PMCP decision procedures [Esparza et al. 1999; Finkel
and Schnoebelen 2001; Jaber et al. 2020]) is that it requires each process in the distributed system
model to be finite-state. This stipulation is not surprising—the distributed system becomes doubly-
unbounded if, in addition to an unbounded number of processes, it has infinite-state processes.

In this paper, we seek to substantially expand the class of unbounded distributed agreement-based
(DAB) systemswhich can be automatically and scalably verified viamodular and bounded verification.
We characterize modular models of DAB systems, unbounded in the number of processes as well as
variable domains, whose verification can be reduced to that of small, bounded systems.

We tackle PMCP for such doubly-unbounded DAB systems, one dimension at time. We first
focus on the verification of DAB systems with unbounded variable domains and some arbitrary,
fixed number �푛 of processes. In particular, we identify conditions under which their verification can
be reduced to model checking of �푛-process DAB systems with small, bounded variable domains.
We then focus on model checking of DAB systems with small, bounded variable domains and an

unbounded number �푛 of processes. Fortunately, this is possible using existing techniques (e.g., [Jaber
et al. 2021]) for reducing PMCP for such systems to model checking of small, finite-state systems.

Our approach is characterized by the following features.

Value Symmetry. We first analyze if a system exhibits symmetry in its use and access of variables
with unbounded domains, specifically, if the system’s correctness is preserved under permutations
of values from these domains. As is standard, verification of such symmetric systems can exploit
the induced redundancies, for instance, through the use of a smaller quotient structure.

Localized Data Saturation. While a quotient structure is not guaranteed to be finite-state in
general, in some cases, the system exhibits data saturation. This means that the number of distinct
values appearing in any of its reachable states is bounded, so the size of its symmetry-reduced
quotient structure has a finite upper bound, even when the system’s data domains are unbounded.
However, it is often infeasible to establish such a bound for a system with an arbitrary number of
processes. Hence, we instead seek to check if a value-symmetric system also exhibits a property we
call localized data saturation. This means that the number of distinct values appearing in certain
influential parts of the system’s state space is bounded while the number of distinct values appearing
in other parts may be unbounded; the influence of different parts of the system’s state space is
determined by the system’s semantics as well as the target safety specification.

Domain Cutoffs. We automatically detect when systems exhibit localized data saturation for
a given safety specification and infer appropriate bounds on the data domains of the system’s
processes. We call these bounds domain cutoffs. We argue that domain cutoffs are more flexible than
upper bounds used by classical data saturation and prove a domain reduction result which ensures
the system with bounded data domains is safe iff the system with unbounded domains is safe.

Process Cutoffs. With the data domains reduced to a fixed, finite space, it now becomes possible to
leverage existing results [Jaber et al. 2021] for PMCP of DAB systems with an unbounded number
of finite-state processes. Specifically, PMCP can now use process cutoffs to reduce verification to
that of systems with a fixed, finite number of processes. Notably, our domain reduction and cutoffs
are not restricted to be used only with the results of Jaber et al. [2021]; instead, our inference of
domain cutoffs can facilitate flexible combination with varied techniques to obtain process cutoffs.
To summarize, we make the following contributions for DAB system models:

(1) Domain-Reducible Verification (Sec. 4): We characterize systems which exhibit value symmetry
and localized data saturation with respect to a given safety specification to define the notion of
domain-reducible verification problems.
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(2) Domain Cutoff Computation (Sec. 5): We present a sound procedure to infer pertinent bounds,
called domain cutoffs, on the data domains of systems in domain-reducible verification problems.

(3) Symmetry-Based Domain Reduction (Sec. 6, Sec. 7): We prove that systems which have domain
cutoffs for a given safety specification will exhibit an error trace iff a corresponding error
trace exists for the system reduced according to the associated domain cutoff. Thus, we reduce
verification of a doubly-unbounded system to verification of a system with a fixed, finite domain.

(4) Venus (Sec. 8): We develop a tool, Venus, for verification of doubly-unbounded systems that
efficiently computes domain/process cutoffs and verifies sophisticated DAB systems.

2 ILLUSTRATIVE OVERVIEW

1 process Consortium

2

3 variables

4 int[1,2] data

5 events

6 br inform : int[1,2]

7 env rz initialize : int[1,2]

8 env rz influence : int[1,2]

9 env br reset : unit

10

11 initial location Engage

12 on recv(initialize) do

13 data ≔ initialize.payld

14 goto Election

15

16 location Election

17 on partition<elect>(All,2)

18 win: goto Deliberate

19 lose: goto Wait

20

21 location Deliberate

22 on recv(influence) do

23 data ≔ influence.payld

24 on consensus<vc>(elect.winS,1,data) do

25 data ≔ vc.decVar[1]

26 goto Decided

27 location Wait

28 on recv(inform) do

29 data ≔ inform.payld

30 goto ReplicaDone

31

32 location Decided

33 on partition<share>(elect.winS,1)

34 win: goto Announce

35 lose: goto LeaderDone

36

37 location Announce

38 on _ do

39 broadcast(inform[data])

40 goto LeaderDone

41

42 location LeaderDone

43 on recv(reset) do

44 data ≔ default(data)

45 goto Engage

46

47 location ReplicaDone

48 on recv(reset) do

49 data ≔ default(data)

50 goto Engage

Safety Property: Actors in locations ReplicaDone and LeaderDone must have equal values of the variable data.

Fig. 1. Mercury model of a Consortium process.

We motivate and illustrate our contributions with an example distributed system, Consortium, that
uses different types of distributed agreement to achieve trust-based consensus.

2.1 Motivation: Distributed Agreement-Based Systems

Consortium. The Consortium distributed system involves a set of actors who want to mutually
make a decision based on information they gather individually. In order to do this efficiently, a
subset of the actors is elected and trusted with making the decision and announcing it to the rest
of the actors. This resembles scenarios where a trade-off between trust and performance is needed
(e.g., a consortium blockchain [Amsden et al. 2020; Hyperledger 2021]).

We model each actor/process of Consortium inMercury [Jaber et al. 2021], a modeling language
with inbuilt primitives for distributed agreement. As can be seen in Fig. 1,Mercury facilitates a
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clean, modular design of DAB systems such as Consortium with its encapsulation of the intricacies
of agreement protocols into agreement primitives, (highlighted in blue).
An actor initially starts in the Engage location, where it may receive an initial input from the

environment (Line 12) before moving to the Election location. Then, the process coordinates
with all other actors (Line 17) to elect at most two among them to deliberate. Notice that this
election is performed using a “partition” agreement primitive with identifier elect (Line 17);
this instance of partition expresses that 2 actors are elected from among All actors. The elected
actors move to the Deliberate location where they are trusted to make a decision for everyone.
The remaining actors move to the Wait location (Line 19), where they wait to be informed once the
elected actors agree on a decision (Line 28). The elected actors in Deliberate may be influenced
(by the environment) to update their proposal, stored in variable data (Line 22). Further, the elected
actors make a decision using a “consensus” agreement primitive with identifier vc (Line 24); this
instance of consensus models agreement on 1 value proposed in the data variable of processes
elected in Election. After storing the decided value in the data variable, the elected actors move
to Decided where they elect one actor (Line 33) to announce the agreed-upon value to all actors
(Line 39). Next, the elected actors move to LeaderDone and all other actors move to ReplicaDone.
All actors then go back to the initial location, reinitializing their variable, to start further rounds
(Lines 43, 48).

Correctness Specification and Parameterized Verification. The correctness specification for a
Consortium distributed system M(�푛) with �푛 instantiations of the above actor is a safety property:
all �푛 actors in locations ReplicaDone and LeaderDone agree on the value of the variable data.

We wish to ensure that a Consortium distributed system with an arbitrary, unbounded number of

actors is correct. In particular, we are interested in fully-automated parameterized verification of
Consortium that seeks to algorithmically check ifM(�푛) satisfies its correctness specification for
all values of �푛. Furthermore, we are interested in modular verification that effectively exploits the
modularity of Mercury’s Consortium model.

PriorWork: UnboundedNumber of Processes and BoundedDomains. While there exist multiple
algorithms and tools for parameterized verification, we are aware of only two fully-automated,
modular approaches [Jaber et al. 2020, 2021] that can tackle DAB systems, of which only one
(�ickSilver [Jaber et al. 2021]) can tackle systems modeled inMercury. In fact,�ickSilver can
perform parameterized verification of Consortium, as shown in Fig. 1, efficiently, in under a second.
Sadly, �ickSilver is limited to Mercury systems composed of finite-state processes with

a relatively modest number of states. Thus, even though �ickSilver can do verification of
systems parameterized with an unbounded number of processes, it cannot handle systems with an
unbounded number of processes and unbounded variable domains. Notice that a Consortium actor
is finite-state with integer datatypes over small subranges. If the integer subrange datatype of the
data variable in Fig. 1 is replaced with true integers (or even standard 32-bit integers),�ickSilver

is unable to perform parameterized verification of the new system.

This work: Unbounded Number of Processes and Unbounded Domains. The inspiration for this
work is two fold: (a) the effectiveness of Mercury in enabling modular design and verification of
DAB systems and (b) the confirmation provided by�ickSilver that fully-automated parameterized

verification of such systems is possible! We ask a natural question to help address �ickSilver’s
limitations:

Is fully-automated, modular, and scalable parameterized verification possible for DAB

systems with large, unbounded, or infinite-state processes?
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In particular, can we algorithmically and efficiently perform parameterized verification of a doubly-
unbounded version of Consortium where the integer subrange datatypes of variables and events
are replaced with (unbounded) integers? In what follows, we continue to denote the Consortium
distributed system with �푛 instantiations of the finite-state actor in Fig. 1 as M(�푛). Further, we
denote Consortium with �푛 instantiations of the corresponding infinite-state actor (with unbounded
integer datatypes) asM∆ (�푛).

2.2 Contributions

Domain-Reducible Verification. Our key contribution employs notions of value symmetry and
localized data saturation, to enable a reachability-preserving transformation of Mercury systems
with unbounded variable domains toMercury systems with finite domains. We illustrate these
concepts and our domain reduction on our target (doubly-unbounded) Consortium system.
Notice that an actor of M∆ (�푛) uses and accesses integer datatypes in a restricted way, in

particular, as a scalarset datatype [Ip and Dill 1996]—expressions over this datatype are restricted
to (dis)equality checks and variables. Notice also that the safety specification accesses integer-
valued variables as scalarsets. This “value symmetry” in an actor ofM∆ (�푛) as well as the safety
specification implies preservation of correctness under permutations of scalarsets—an execution �휂
of M∆ (�푛) violates the safety specification iff any execution corresponding to a permutation of the
scalarset values in �휂 violates the safety specification.
This preservation of reachability under scalarset permutations suggests that many system

executions are redundant for verification, and not all of them need to be explored. Quotient
structures are used commonly to exploit such redundancies to verify properties of symmetric
systems more efficiently. For value-symmetric systems, if the number of distinct values appearing in
any reachable state has a finite upper bound, the size of the quotient structure can have a finite upper
bound, even when the systems’ scalarset domains become unbounded or infinite; this property is
called data saturation [Ip and Dill 1996]. In general, it can be difficult to establish such an upper
bound for every reachable state in systems with an unbounded number of processes. However, we
argue that if such an upper bound can instead be established on the number of distinct scalarset
values appearing in particular process states where this distinctness affects the system’s behavior,
then safety verification of M∆ (�푛) can be reduced to safety verification of a system with finite
integer domains!
By applying this insight to the unbounded Consortium system M∆ (�푛), we now assert that a

bound of two distinct values can be established for M∆ (�푛), thereby reducing safety verification
ofM∆ (�푛) to safety verification ofM(�푛) with integer subrange [1,2]. Any execution ofM∆ (�푛)
is equivalent (w.r.t. the safety property) to one in which only two distinct integer values appear.
This stems from the fact that (a) only one value at a time is needed to represent the most recent
result of consensus, and (b) each actor has only one local variable: data. While, in general, different
actors may have distinct values in their data variable, because these values are never compared or
communicated between actors (except during consensus), any execution in which actors have more
than two distinct values in their local variables can be shown to imply the existence of an execution
in which the actors have the same two values in their data variables: one value representing the
most recent result of consensus, and one other value which is distinct from the result of consensus
(although these two values may switch roles during the course of an execution). Ergo, to verify the
unbounded-domain systemM∆ (�푛), it suffices to verify the [1,2]-bounded-domain systemM(�푛).

In this work, we identify conditions under which value symmetry and localized data saturation
enable domain reduction for safety verification of Mercury systems with unbounded or infinite-
state processes. In particular, if (a) all values from an unbounded scalarset domain held by a process
in the system can be partitioned into two different regions at any point in a system execution and
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(b) the maximum sizes of these two regions can be statically bounded, then the “large” unbounded
scalarset domain can be replaced by a “small” finite one with size equal to the sum of the bounds of
these two regions. In the first region, processes may be aware of a set of globally distinguishable
values (where equality of values across processes affects the system’s behavior). In the second
region, processes may only have local knowledge of the values they hold (so equality of values
across processes does not affect the system’s behavior).

Domain Cutoff Computation. To support practical application of domain cutoffs, we present
a procedure which analyzesMercury processes to identify two regions as described above and
their associated bounds. In doing so, we provide a concrete path to verification of Mercury models
of DAB systems. The two regions yieldMercury systems with finite, bounded variable domains,
which can then be verified using existing parameterized verification engines such as �ickSilver.

Symmetry-Based Domain Reduction. We prove the soundness of domain cutoffs for DAB systems
by showing that if an unsafe execution exists in the “large” system, there must exist a related
unsafe execution in the “small” system. This domain reduction provides a sound theoretical basis
for verifying safety properties of DAB systems with both an unbounded number of processes
and unbounded variable domains by first reducing their verification to that of a system with an
unbounded number processes but small, finite variable domains.

Venus and Evaluation. We have implemented a tool, Venus, that combines our domain re-
duction and cutoffs with �ickSilver and can perform fully-automated, modular, and scalable
parameterized verification of Mercury system models with large, unbounded, or infinite-state pro-
cesses. In particular, Venus is able to verify, in under a second, that M∆ (�푛) satisfies its correctness
specification for all values of �푛.

3 PROBLEM DEFINITION

Mercury is a modeling language for DAB systems consisting of an arbitrary number of identical
processes and built on top of verified agreement protocols. As a native feature,Mercury includes
two special event handlers, partition and consensus, which capture the behavior of common
agreement protocols (e.g., leader election and consensus). We first review the syntax and semantics
of Mercury systems, and then define the parameterized verification problem for such systems.

3.1 Mercury Systems

AMercury process definition �푃 has three main components: (i) a set of typed process-local variable
declarations, (ii) a set of typed event signatures defining the set of coordination events which may
occur during program execution, and (iii) a set of action handlers describing the behavior of a
process when an event is initiated or received.

Variable Declarations. Each variable declaration consists of a variable name �푣 and an associated
variable domain which may be either a bounded integer range or the powerset of the set of process
identifiers (i.e. �푣 may store a set of process identifiers). We denote the set of variables asV .

Event Declarations and Actions. Event declarations correspond to four different types of process
coordination: (i) pairwise-rendezvous communication, denoted rz, where one process sends a
message, and one other process receives it, (ii) broadcast communication, denoted br, where a
process sends a message, and all other processes receive it, (iii) partition coordination, denoted
pc, where a set of participating processes designates a finite subset of themselves as “winners”, and
all other participating processes as “losers”, or (iv) consensus coordination, denoted vc, where
each process in a set of participating processes proposes a value, and all participating processes
agree on a finite subset of the proposed values.
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Each event declaration consists of an event type (i.e., one of rz, br, pc, vc), event name eID,
a payload data type (either a bounded integer range or unit), and optionally a keyword env if
the event is an interaction with the environment. Each event declaration describes a set of events
and a set of actions. An event �푒 ≔ eID[�푣�푎�푙] corresponds to a particular payload value �푣�푎�푙 of the
associated payload data type.
An action is a polarized event where the polarity indicates if a process is initiating (denoted �푒!)

or reacting to (denoted �푒?) the event. In particular, acting (resp. reacting) events are sends (resp.
receives) of broadcasts and pairwise communication, and correspond to “winners” (resp. “losers”) of
agreement coordination1. We denote the sets of events, acting events, reacting events, and actions
as E, E!, E?, and E

⊸

.

Example 3.1. Consider the inform event declaration defined on Line 6 in Fig. 1 (i.e. br inform

: int[1,2]), for the bounded-domain system M(�푛). The event has type br, name inform, and
payload type int[1,2]. The set E of events associated with this event declaration (and induced by
the values of the payload) is {inform[1], inform[2]}. For each event �푒 ∈ E, there is an acting and
a reacting action. For instance, the acting and reacting actions for event inform[1] are inform[1]!
and inform[1]?, respectively.

Action Handlers. Each location in the process definition is associated with a set of action handlers.
An action handler comprises an action name, a guard, and a set of updates. A guard is a Boolean
predicate over variables inV and the set of updates is a parallel assignment to each variable.

Mercury Semantics. We refer to the semantics of a Mercury process as local and the semantics
of aMercury system composed of multiple identicalMercury processes as global.
The local semantics of a Mercury process, �푃 is given by a labeled state-transition system

�푀�푃 = (�푆, �푆0,�푇 ) with a state space �푆 , a set �푆0 of initial states, and a set �푇 ⊆ �푆 × E
⊸

× �푆 of transitions
induced by the set of action handlers. The state space �푆 corresponds to all possible valuations of
variables inV ∪ {�푣�푙�표�푐 }, where �푣�푙�표�푐 is a special variable defined to store the location. We denote
the value of a variable �푣 in a local state �푠 ∈ �푆 as �푠 (�푣). The set �푆0 of initial states consists of states
where the location variable �푣�푙�표�푐 is set to the initial location (denoted ℓ0) and all variables with the
same domain are set to some default initial value. Action handlers for an event �푒 induce acting and
reacting transitions in �푇 labeled with �푒! and �푒?, respectively. In particular, �푇 contains a transition
(�푠, �푒

⊸

, �푠′) for �푒

⊸

∈ {�푒!, �푒?} iff there exists an action handler for �푒

⊸

such that the handler’s guard is
�푡�푟�푢�푒 in �푠 and �푠′ is obtained by applying the handler’s updates to �푠 .

The global semantics of a Mercury system, consisting of �푛 identical processes �푃1, . . . , �푃�푛 and
an environment process �퐸 communicating synchronously, is given by a labeled transition system
M(�푛) = ⟨�푄,�푄0, �푅⟩ describing their parallel composition. Here, �푄 = �푆�푛 × �푆�퐸 is the set of global
states, �푄0 = �푆�푛

0
× �푆0,�퐸 is the set of initial global states, and �푅 ⊆ �푄 × E ×�푄 is the global transition

relation capturing the process coordination necessary for different event types and payloads. For
instance,
1. �푅 contains a “broadcast transition” (�푞, �푒, �푞′) for broadcast event �푒 iff (1) one process �푃�푖 has a local
“broadcast send” transition (�푞 [�푖], �푒!, �푞′ [�푖]) and (2) all other processes �푃 �푗 have corresponding local
“broadcast receive” transitions (�푞 [ �푗], �푒?, �푞′ [ �푗]) with �푞′ [ �푗] updated with the payload value.

2. �푅 contains a “Consensus transition” (�푞, eID[�푉 ′], �푞′) for Consensus event �푒 = eID[�푉 ′], partici-
pant set �푃�푟�푡 , and set of winning values�푉 ′ iff (1) each participating process in �푃�푟�푡 has a consistent
view of the other participants2, (2) every value �푣 in�푉 ′ is proposed by some process in �푃�푟�푡 with a
local transition for �푒!, (3) each process in �푃�푟�푡 has a corresponding local �푒? local transition, and
(4) the local states of all other processes remain unchanged.

1A process winning consensus means that it proposed one of the agreed-upon values.
2That is, each process stores the same participant set �푃�푟�푡 in its own state locally.
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Example 3.2. Consider an unbounded-domain Consortium systemM∆ (4) with four processes
�푝1 through �푝4. Fig. 2 shows a broadcast transition on event �푒 = inform[99]. Process �푝1 has local
transition (�푞 [1], �푒!, �푟 [1]) ∈ �푇 due to the action handler on Line 37 of Fig. 1, where the process moves
from location Announce to location LeaderDone while transmitting the value 99 from its data
variable. Process �푝2 has an implicit action handler for inform[99]? (not depicted in Fig. 1), which
causes �푝2 to have local transition (�푞 [2], �푒!, �푟 [2]) ∈ �푇 where it stays in the location LeaderDone

without changing its value. Finally, processes �푝3 and �푝4 take transitions (�푞 [�푖], �푒?, �푟 [�푖]) ∈ �푇 where
�푖 ∈ [3, 4], according to the inform receive handler on Line 27 of Fig. 1, which moves them from
location Wait to location ReplicaDone while receiving the value 99 and storing it in the data

variable. Thus, the global transition (�푞, �푒, �푟 ) is in the global transition relation �푅.

𝑝 LeaderDone 99

𝑝 LeaderDone 99

𝑝 ReplicaDone 99

𝑝 ReplicaDone 99

location data

𝑝 Announce 99

𝑝 LeaderDone 99

𝑝 Wait 8

𝑝 Wait 5

inform(99)

				𝑞

				𝑟

Fig. 2. A broadcast transition for the

event �푒 = inform[99].

We refer the reader to App. A for the complete local and
globalMercury semantics. An execution of a global transition
systemM(�푛) is defined in a standard way: a global execution is
a (possibly infinite) sequence of global states, �푞0, �푞1, . . . in�푄 such
that for each �푗 ≥ 0, (�푞 �푗 , �푒, �푞 �푗+1) ∈ �푅 for some event �푒 . Global
state �푞 is reachable if there exists a finite execution of M(�푛)
that ends in �푞.

3.2 The Parameterized

Verification Problem forMercury Systems

The correctness of Mercury systems is given by a global specifi-
cationΦ in the form of atmost clauses. Each atmost clause, writ-
ten atmost(�푘, �휙), is a Boolean predicate over the global states
�푄 that no more than some threshold number �푘 of processes are
in some set {�푠 ∈ �푆 | �푠 |= �휙} of local states characterized by �휙 .
An error state for such a clause is simple a global state which
exceeds the threshold number of processes in those states. These
atmost clauses are a natural fit parameterized distributed systems, as they define a set of error
states for the system instantiated with every number of processes.

For a systemM(�푛) with some number �푛 ∈ N of finite-state processes �푃 and a correctness specifi-
cation Φ, we use M(�푛) |= Φ to denote that the system M(�푛) satisfies Φ. The parameterized model

checking problem (PMCP) targets the verification of a family M(N) of systems {M(0),M(1), . . .}
w.r.t. correctness specification Φ. In particular, PMCP seeks to check if ∀�푛.M(�푛) |= Φ [Bloem et al.
2015]. Note that this standard formulation of PMCP assumes that each process �푃 has a finite state
space. In order to enable reasoning aboutMercury processes with unbounded and possibly infinite
state spaces, we introduce new notation and a new formulation for the parameterized verification
problem.
We denote a Mercury process with a set ∆ of (possibly infinite) data domains as �푃∆ and a

process with a set ∆ of finite data domains as �푃
∆
. We denote aMercury system with �푛 instances

of processes �푃∆ (resp. �푃
∆
) as M∆ (�푛) (resp. M∆

(�푛)). In this paper, we target the parameterized
verification problem over a familyM∆ (N) of Mercury systems {M∆ (0),M∆ (1), . . .}, defined as:

∀�푛. M∆ (�푛) |= Φ.

The above problem generalizes PMCP forMercury systems from the verification of an infinite
familyM

∆
(N) of finite-state systems {M

∆
(0),M

∆
(1), . . .} to an infinite familyM∆ (N) of infinite-

state systems {M∆ (0),M∆ (1), . . .}.
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4 DOMAIN-REDUCIBLE VERIFICATION

To enable parameterized verification over a family M∆ (N) of Mercury systems, we utilize value
symmetry and localized data saturation to characterize verification problems, denoted ⟨M∆ (�푛),Φ⟩,
that are domain-reducible. These problems permit a reachability-preserving transformation that

replaces the set of data domains ∆ ofM∆ (�푛) with a set ∆ of finite, bounded domains, which we call
the domain cutoff. For now, we consider M∆ (�푛) with only a single variable (and thus, a single data

domain). Under this assumption, we use the single domain �훿 (resp. �훿) and the singleton set ∆ = {�훿}

(resp. ∆ = {�훿}) interchangeably. For the infinite-state Mercury system M∆ (�푛) = ⟨�푄,�푄0, �푅⟩, let

M
∆
(�푛) = ⟨�푄,�푄0, �푅⟩ denote the Mercury system with �푛 finite-state processes �푃

�훿
, where �푃

�훿
is

obtained from �푃�훿 by replacing �푃 ’s domain �훿 with a finite domain cutoff �훿 .
In this section, we first characterize value symmetry (Sec. 4.1). Then, we define regions of a

process and their properties which enable domain reduction (Sec. 4.2). Finally, we combine these
two notions to define domain-reducible verification problems (Sec. 4.3).

4.1 Permutations and Scalarsets

We first review standard notions of permutations and scalarsets. All permutations are w.r.t. the
unbounded, symmetric domain �훿 ∈ ∆ which is the target of our reduction.

Permutations. A �훿-permutation, �휋 : �훿 ↦→ �훿 , is a bijection mapping the set �훿 onto itself. We
define liftings of �훿-permutations to local states and events as follows. An application �휋 (�푠) of a �훿-
permutation �휋 to a local state �푠 is defined so that the value of a variable �푣 in the permuted state �휋 (�푠)
is equal to the permutation of the value of �푣 in the original state �푠 (i.e.,∀�푣 ∈ V : (�휋 (�푠)) (�푣) = �휋 (�푠 (�푣))).
An application �휋 (�푒) of a �훿-permutation �휋 to an event �푒 = eID[�푣�푎�푙] is eID[�휋 (�푣�푎�푙)], the permutation
�휋 (�푒

⊸

) of an action of event �푒 is (�휋 (�푒))

⊸

, and the permutation of a local transition (�푠, �푒

⊸

, �푠′) ∈ �푇 is
(�휋 (�푠), �휋 (�푒

⊸

), �휋 (�푠′)).

Example 4.1. We illustrate permutations on the unbounded-domain Consortium system M∆ (�푛).
The figure below shows an example of applying a �훿-permutation �휋1 to the local state of process �푝1
from Fig. 2 (here denoted �푠). Let �훿 denote the type int. Recall that the local variable data is of type
int. The permutation �휋1 maps the value 99 in state �푠 to 1 in the permuted state �휋1 (�푠) and maps all
other values appropriately so that �휋1 is a valid permutation (i.e., a bijection over the int domain).
Notice that the value of the location variable �푣�푙�표�푐 is not of type int and, hence, it is not changed in
the permuted state (i.e. �휋1 (LeaderDone) = LeaderDone).

location data

𝜋(𝑠) LeaderDone 1

location data

				𝑠 LeaderDone 99 𝜋: {						…					, 99 ↦ 1,… }

Scalarsets. A scalarset domain [Ip and Dill 1996] is a set of distinct elements with restricted
operations. Specifically:

(i) All valid scalarset terms are variable references; there are no scalarset constants.
(ii) Scalarset terms may only be compared using (dis)equality and only with terms of exactly the

same scalarset type.
(iii) Scalarset variables may only be assigned values of the same scalarset type.

These restrictions ensure that scalarset values are interchangeable, so the local transition relation
of aMercury process is invariant under permutations of a scalarset:

Lemma 4.2. ∀�휋 : ∀(�푠, �훼, �푠′) ∈ �푇 : �휋 ((�푠, �훼, �푠′)) ∈ �푇 .
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Proof Sketch. Since scalarsets may only be used in direct assignment and equality comparisons, the
existence of the transition is preserved by �휋 , because �휋 is a bijection. All equalities in the definition
of �푇 are preserved by �휋 , so Lemma 4.2 follows by applying the permutation �휋 to �푠 , �훼 , and �푠′.

The interchangeability of scalarset values also ensures that permuting scalarset values in an initial
(resp. error) state results in another initial (resp. error) state. Further, we note that the bounded
integer domains inMercury can be treated as scalarsets if used according to the restrictions above.
For instance, inM∆ (�푛), the data variable of Fig. 1 is of type int but can be treated as a scalarset
variable because it conforms to the constraints (i) through (iii).

Definition 4.3 (Value Symmetry). A process �푃 exhibits value symmetry with respect to a domain
�훿 when �푃 treats �훿 as a scalarset (according to constraints (i) through (iii) above).

Data Saturation. A classical result [Ip and Dill 1996] states that, in a system with only scalarset
values, if the number of distinct values appearing in any reachable state of a transition system
is finitely bounded, then the number of permutation-equivalent classes the systems states may
belong to is also bounded, so the size of its symmetry-reduced quotient structure has a finite upper
bound, even when the systems’ data domains are unbounded.
We note that such a bound on the number of distinct values appearing in each reachable state

often does not exist in systems composed of an unbounded number of processes with unbounded
variable domains. Consider, for example, our Consortium system with an unbounded domain.
In the location Election, there may be an arbitrary number of processes which have received
a initialize event from the environment and updated their data variable to a value which is
distinct from all values held by other processes in the system. Thus, for any candidate bound �퐵

on the number of distinct values appearing in any reachable state, there exists some reachable
state in which at least �퐵 + 1 processes hold distinct values in the data variable. So, traditional data
saturation cannot be applied to such a system.

4.2 Regions

To address this shortcoming of data saturation’s applicability, we introduce localized data saturation.
We observe that the distinctness of some values in the system may not affect the system’s semantics.
By dividing a system into two different regions—(i) one region where distinctness of values across
processes impacts the system’s semantics, but the number of values is bounded, and (ii) another
region where the number of distinct values may be unbounded but distinctness of these values
across processes does not impact the system’s semantics—it may still be possible to verify the safety
of this unbounded-state process by exploring a bounded system.

Definition 4.4 (Region). A region Ψ of a process �푃 is a subset of the locations defined in �푃 .

Example 4.5. For the Consortium system, any subset of {Engage, Election, Deliberate, Wait,
Decided, Announce, LeaderDone, ReplicaDone} is a region.

In order to identify and refer to values for which equality across processes may (or may not)
affect the system’s semantics, we introduce some notation. Given a global state �푞, we denote the
set of �훿-values held by processes in �푞 as proj�훿 (�푞), and appearing in the local state �푞 [�푖] of the �푖�푡ℎ

process as proj�훿 (�푞 [�푖]). Given a global state �푞 and a region Ψ, we denote the set of �훿-values held
by processes in locations in Ψ as projΨ

�훿
(�푞), i.e., projΨ

�훿
(�푞) = {�푠 (�푣) | �푠 (�푣�푙�표�푐 ) ∈ Ψ and∃�푖 : �푞 [�푖] = �푠}.

With this, we can characterize regions in which the number of distinct values present is bounded.

Definition 4.6 (Value-Stable Region). A region Ψ is value-stable if there exists a finite integer �휌 ,
with �휌 > 0, such that for all �푛 and all reachable global states �푞 ofM∆ (�푛), |proj

Ψ

�훿
(�푞) | ≤ �휌 .
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Thus, for a value-stable region, there exists a finite upper bound �휌 on the number of distinct values
in projΨ

�훿
(�푞) over all reachable global states �푞 of M∆ (�푛) for every system size �푛. In other words,

the bound �휌 is independent of the number of processes in the system.

Example 4.7. For the Consortium system, the set {Decided, Announce, LeaderDone} is a value-
stable region, because the vc consensus action ensures that only 1 value is present in the Decided
location at a time, and any process which reaches the Announce or LeaderDone location must
carry the value from the Decided location. In this case, the bound �휌 is 1. Regardless of the number
of processes in the system, no global state can be reached where 2 or more distinct values are
simultaneously each held by some process in Decided, Announce, or LeaderDone. Determining
such regions for a given process definition is explored in more detail in Sec. 5.

Finally, we characterize regions which capture all locations for which equality (or disequality) of
values across processes impacts the system’s semantics.

Definition 4.8 (Bounded Region). Avalue-stable regionΨ of process �푃 is bounded w.r.t. specification
Φ if it includes (i) the initial location, (ii) all destination locations of consensus handlers, (iii) all
locations with handlers for sending actions with payloads, and (iv) any error locations identified
by the specification Φ.

Example 4.9. For the Consortium system, the set {Engage, Decided, Announce, LeaderDone,
ReplicaDone} is a bounded region with bound �휌 = 1. How it is established that this region
is value-stable is discussed in Sec. 5. Given that it is a value-stable region, this set satisfies condition
(i) by including the Engage location, condition (ii) by including the Decided location, condition
(iii) by including the Announce location, and condition (iv) by including the LeaderDone and
ReplicaDone locations.

Global transitions of Mercury systems are defined according to a set of derivation-style rules
in App. A. Some of these transition rules enforce (dis)equality between values held by separate
processes in the destination state of the resulting transition as a result of data flow in the global
semantics (e.g. from an assignment). Conditions (i) through (iv) ensure that, for any such global
transition which enforces the (dis)equality of �훿-values across processes, the appropriate �훿-values
for which that (dis)equality must hold are in the bounded region in the state of the transition where
the (dis)equality must hold. As a result, the number of such values is limited by the (finite) global
bound �휌 of the bounded region Ψ. Additionally, no system transition requires any values outside
of Ψ to be distinct across processes. Thus, any disequality of values across processes outside of
the bounded region is unnecessary and may be ignored or eliminated. We defer to Sec. 5.2 for an
example of a bounded region for the Consortium system.
Therefore, all transitions of the systemM∆ (�푛) may depend upon at most �휌 values (limited by

the bound on region Ψ) which are globally distinguished across processes, and one additional value
which serves as a stand-in for an arbitrary value outside of Ψ. So, for any trace in the systemM∆ (�푛)
with an arbitrarily-large domain ∆, there should exist a corresponding trace in a systemM

∆
(�푛)

with domain ∆ of size �휌 + 1, even if the original domain is unbounded. Hence, we say that such a
system exhibits localized data saturation.

Definition 4.10 (Localized Data Saturation). A systemM∆ (�푛) exhibits localized data saturation
w.r.t. the specification Φ if there exists a region Ψ which is bounded w.r.t. Φ.

4.3 Domain-Reducible Verification

Having defined value-symmetry and localized data saturation, we can now combine these notions
to characterize verification problems which are amenable to domain reduction.
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Definition 4.11 (Domain-Reducible Verification). A verification problem ⟨M∆ (�푛),Φ⟩ is domain-

reducible if the systemM∆ (�푛) exhibits value symmetry and localized data saturation with respect
to the specification Φ.

Intuitively, the semantics of a domain-reducible verification problem ⟨M∆ (�푛),Φ⟩ only depends on
a finite number of symmetric data values at a time. We show in Sec. 6 that the safety of M∆ (�푛)
with respect to Φ can be determined by checking the verification problem ⟨M

∆
(�푛),Φ⟩, where the

domain cutoff ∆ consists of the same domains as ∆, except that �훿 is replaced with another scalarset

domain �훿 of size �휌 + 1.
Further, if we can then compute a process cutoff �푐 for the reduced verification problem ⟨M

∆
(�푛),Φ⟩

using some cutoff-based procedure for parameterized verification of systems with finite variable
domains (e.g., [Jaber et al. 2021]), then the verification problem ⟨M

∆
(�푛),Φ⟩ is reduced to checking

the fully-finite verification problem ⟨M
∆
(�푐),Φ⟩. Ultimately, this two-step reduction allows one to

verify the safety ofM∆ (�푛) w.r.t. Φ by checking whether the finite systemM
∆
(�푐) satisfies Φ.

Theorem 4.12. If (i) ⟨M
∆
(�푛),Φ⟩ is domain-reducible with domain cutoff ∆, and (ii) �푐 is a valid

cutoff forM
∆
(�푛), then

(

∀�푛 : M∆ (�푛) |= Φ
)

⇐⇒
(

∀�푛 : M
∆
(�푛) |= Φ

)

⇐⇒
(

M
∆
(�푐) |= Φ

)

.

5 COMPUTING DOMAIN-CUTOFFS

In this section, we discuss how we can automatically determine that a verification problem
⟨M∆ (�푛),Φ⟩ is domain-reducible. While value-symmetry can be determined using simple syn-
tactic checks on the process definition �푃�훿 , observing localized data saturation is more complex. In
what follows, we discuss a procedure for establishing thatM∆ (�푛) exhibits localized data saturation
by computing a bounded region Ψ with bound �휌 for the process definition �푃�훿 . If the procedure

succeeds, the domain cutoff is �훿 with size �휌 + 1.

5.1 Location Transition System (LTS)

To determine Ψ with bound �휌 , we inspect the movement of values in the Mercury system. In
particular, we wish to examine values that may flow into a set of locations without constructing the
unbounded local semantics of �푃�훿 . We begin by defining a finite-state transition systemA capturing
the control-flow of aMercury process:A = ⟨L, E⟩, where each node in L corresponds to a location
in �푃�훿 and there exists an edge (�푎, �푏) in E if there exists a transition in the local semantics of �푃�훿
between states in locations �푎 and �푏. Notice that this causes A to be an over-approximation of the
local semantics of �푃�훿 . Let the node corresponding to location ℓ be denoted �푛�표�푑�푒 (ℓ), the location of
node �푥 ∈ L be denoted �푙�표�푐 (�푥), and the set of local states with �푣�푙�표�푐 = �푙�표�푐 (�푥) be denoted [�푥]. To track
relevant data flow, we extend A with bookkeeping information for each edge, in particular, the set
of action handlers yielding the edge. Let the set of edges derived from a handler ℎ be �푒�푑�푔�푒�푠 (ℎ).

Example 5.1. The partition handler (Fig. 1, Line 33) is defined under location Decided and
includes a goto statement which sends a process to location Announce, so A includes an edge
�푒 = (�푥1, �푥2) ∈ E, where �푙�표�푐 (�푥1) = Decided and �푙�표�푐 (�푥2) = Announce.

Finally, we extend our notion of a region from Sec. 4.2 to LTSs. Let an abstract region �푟 ⊆ L be a
set of nodes representing a region composed of concrete locations. Let [�푟 ] be the concrete region
{�푙�표�푐 (�푥) | �푥 ∈ �푟 } that the abstract region �푟 represents. We say an abstract region �푟 is value-stable
(resp. bounded) iff the corresponding concrete region [�푟 ] is value-stable (resp. bounded). The bound
�휌 (�푟 ) of an abstract region �푟 is defined to be equal to the bound �휌 of [�푟 ].
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Algorithm 1: Determining an abstract bounded region �푟 .

1 procedure getAbstractBoundedRegion(A, �푃�훿 )
Inputs :A process �푃�훿 , and the LTS A
Output :⊥ or �푟 , a BAR

2 �푟�푒�푔�푖�표�푛�푠 = getInitialRegions(�푃�훿 ,A)

3 �푟�푒�푔�푖�표�푛�푠 = expandRegions(�푟�푒�푔�푖�표�푛�푠,A)

4 �푟�푒�푔�푖�표�푛�푠 = mergeRegions(�푟�푒�푔�푖�표�푛�푠,A)

5 �푟 = getMinimalRegion(�푟�푒�푔�푖�표�푛�푠)

6 if r == null then

7 return ⊥

8 return �푟

Example 5.2. For an abstract region �푟 = {�푛�표�푑�푒 (Engage),�푛�표�푑�푒 (LeaderDone),�푛�표�푑�푒 (ReplicaDone)}
with bound �휌 (�푟 ) = 3, the concrete region represented by �푟 is [�푟 ] = {Engage, LeaderDone,
ReplicaDone} with bound �휌 = 3.

5.2 Determining Bounded Regions

We now present a procedure for determining a suitable bounded abstract region (BAR), defined in
Algo. 1. If successful, Algo. 1 returns an abstract region (AR) �푟 such that [�푟 ] is value-stable and
satisfies the conditions described in Def. 4.8, and the variable domain �훿 may be reduced. Otherwise,
Algo. 1 fails to find such an AR and returns ⊥, so verification does not proceed.

Initial Regions. The first step in Algo. 1 (Line 2) is to identify a set of initial ARs where for each
AR �푟 in that set, it is clear that any number of processes in [�푟 ] hold a finite number of distinct
values of type �훿 in their variables (i.e., �휌 (�푟 ) is finite). To that end, we identify three types of such
initial ARs as defined in Algo. 2. First, for each consensus action �푣�푐 , create an AR composed of all
the nodes corresponding to locations where �푣�푐 terminates (Line 3). The bound �휌 of this AR matches
the cardinality of the set of decided values of the consensus action �푣�푐 . Intuitively, by the nature of
consensus, we know that the result of consensus is consistent across participating processes in
these locations. Second, for each location which can only be occupied by a single process at a time,
as determined by a lightweight, sufficient check onA, we create an AR (with �휌 = 1) consisting of the
singleton set containing the node associated with that location (Line 8). Finally, we create a single
AR (with �휌 = 1) encoding the initial location, where all processes hold some initial default value 3

(Line 12) Here, we denote by �푔�푒�푡�푠 (�푥, �푣, �푥 ′, �푣 ′) that the value in variable �푣 ′ in location �푙�표�푐 (�푥 ′) may
come from variable �푣 in location �푙�표�푐 (�푥) via a direct assignment or transmission. While operating
under the assumption that M∆ (�푛) has only one variable �푣 , we will sometimes use �푔�푒�푡�푠 (�푥, �푥 ′) as
shorthand for �푔�푒�푡�푠 (�푥, �푣, �푥 ′, �푣). Thus, by �푟 = {�푥 | � �푥 ′ : �푔�푒�푡�푠 (�푥, �푥 ′)} we mean that �푟 is assigned the
set of nodes �푥 such that no transition may bring a new value into location �푙�표�푐 (�푥).

Example 5.3. For the Consortium system (Fig. 1), Algo. 2 proceeds as follows. The set �푟�푒�푔�푖�표�푛�푠
is initially empty (Line 2). Then, the only consensus action is vc, so �푐�표�푛�푠�퐴�푐�푡�푖�표�푛�푠 (�푃�훿 ) = {vc} and
the loop variable �푎 becomes vc (Line 3). The set of handlers for �푎 = vc contains only the handler
in location Deliberate which goes to Decided (Fig. 1, Line 24). So, the region �푟 becomes the
singleton set containing the destination node from the edge (�푛�표�푑�푒 (Deliberate), �푛�표�푑�푒 (Decided)) ∈
E. That is, �푟 = {�푛�표�푑�푒 (Decided)} (Algo. 2, Line 5). The cardinality of action �푎 is �푐�푎�푟�푑 (vc) = 1, so
�휌 (�푟 ) = 1 (Line 6). The region �푟 = {�푛�표�푑�푒 (Decided} with bound 1 is then added to �푟�푒�푔�푖�표�푛�푠 (Line 7).
There are no more consensus actions in �푐�표�푛�푠�퐴�푐�푡�푖�표�푛�푠 (�푃�훿 ), so control proceeds to Line 8. The

3While the initial value is consistent across processes, this value is arbitrary. Thus, each value in the variable domain yields

a separate, valid initial global state.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 81. Publication date: April 2023.



81:14 Christopher Wagner, Nouraldin Jaber, and Roopsha Samanta

Algorithm 2: Constructing initial regions.

1 procedure getInitialRegions(�푃�훿 ,A)
Inputs :A Mercury program �푃�훿 and an LTS A
Output :a set of value-stable ARs

2 �푟�푒�푔�푖�표�푛�푠 = {} ▷ initialize the set of regions

3 foreach �푎 ∈ �푐�표�푛�푠�퐴�푐�푡�푖�표�푛�푠 (�푃�훿 ) do
4 �퐻 = ℎ�푎�푛�푑�푙�푒�푟�푠�푂 �푓 (�푎)

5 �푟 = {�푑�푠�푡 (�푒) | ℎ ∈ �퐻 ∧ �푒 ∈ �푒�푑�푔�푒�푠 (ℎ)} ▷ get destination nodes of consensus handlers

6 �휌 (�푟 ) = �푐�푎�푟�푑�푂�푓 (�푎) ▷ set bound �휌 to cardinality of consensus action �푎

7 �푟�푒�푔�푖�표�푛�푠 = �푟�푒�푔�푖�표�푛�푠 ∪ �푟

8 foreach �푠 ∈ �푠�푖�푛�푔�푙�푒�푃�푟�표�푐�푅�푒�푔�푖�표�푛(A) do
9 �푟 = {�푠} ▷ region contains just one node

10 �휌 (�푟 ) = 1 ▷ bound is 1, because there is only 1 process

11 �푟�푒�푔�푖�표�푛�푠 = �푟�푒�푔�푖�표�푛�푠 ∪ �푟

12 �푟 = {�푥 | � �푥 ′ : �푔�푒�푡�푠 (�푥, �푥 ′)} ▷ create region for initial node with no incoming data

13 �휌 (�푟 ) = 1 ▷ bound is 1, for the initial value

14 �푟�푒�푔�푖�표�푛�푠 = �푟�푒�푔�푖�표�푛�푠 ∪ �푟

15 return �푟�푒�푔�푖�표�푛�푠

Consortium system does not have any locations which are guaranteed to only be occupied by a
single process at a time (i.e., �푠�푖�푛�푔�푙�푒�푃�푟�표�푐�푅�푒�푔�푖�표�푛(A) = ∅), so control moves directly to Line 12. At
this point, a region is created for the initial node with no incoming data. While A does include
edges (�푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (Engage)) ∈ E and (�푛�표�푑�푒 (ReplicaDone), �푛�표�푑�푒 (Engage)) ∈ E due
to the handlers on Line 43 and Line 48 of Fig. 1, these are reset handlers, which set all variables
to their default value and do not propagate any non-initial values to the initial location, Engage.
Thus, reset handlers do not affect the �푔�푒�푡�푠 relation. Subsequently, �푟 is assigned the singleton set
{Engage} on Line 12. The bound �휌 (�푟 ) is 1, as only 1 initial value is present in the initial region
(Line 13). The initial region �푟 is added to the �푟�푒�푔�푖�표�푛�푠 set (Line 14), and the resulting set �푟�푒�푔�푖�표�푛�푠 =
{{�푛�표�푑�푒 (Decided)}, {�푛�표�푑�푒 (Engage)}} is returned (Line 15), with both regions having a bound of 1.

Expanding Regions. The second step in Algo. 1 (Line 3) is to expand the initial regions while
maintaining the bound �휌 . Intuitively, Algo. 3 follows the flow of values so that when the variable �푣
may only get its value in a location �푙�표�푐 (�푥) from some AR �푟 , the node �푥 is added to �푟 (Line 6).

Example 5.4. For the Consortium system (Fig. 1), Algo. 3 is called with the set �푟�푒�푔�푖�표�푛�푠 =

{{�푛�표�푑�푒 (Decided)}, {�푛�표�푑�푒 (Engage)}} of initial regions. For the first iteration of the loop, let �푟 =

{�푛�표�푑�푒 (Decided)} (Line 2). The only handler in the Decided location has two goto statements: one
each to Announce and LeaderDone. Note that there is a goto LeaderDone statement in location
Announce (Fig. 1, Line 37), and �푛�표�푑�푒 (Announce) ∉ �푟 , so �푛�표�푑�푒 (LeaderDone) cannot yet be added
to �푟 . Thus, only �푛�표�푑�푒 (Announce) is added to �푟 (Algo. 3, Line 7), and the �푐ℎ�푎�푛�푔�푒�푀�푎�푑�푒 flag is set
(Line 8), so the loop continues. On the next iteration, �푟 = {�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce)}, so
�푛�표�푑�푒 (LeaderDone) can then be added to �푟 (Line 7). Additionally, the inform broadcast from the
Announce location (Fig. 1, Line 39) is handled in the Wait location (Line 28) such that all processes
in Wait replace their data value with one received from a process in Announce as they move to
the ReplicaDone location. Thus, �푛�표�푑�푒 (ReplicaDone) can also be added to �푟 (Algo. 3, Line 7). Af-
ter this iteration, �푟 = {�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce), �푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone)}.
On the next iteration, no more nodes can be added, as the reset handlers from LeaderDone and
ReplicaDone do not propagate any stored values. So, control proceeds to the next iteration of
the loop (Line 2) where the unexpanded region �푟 = {�푛�표�푑�푒 (Engage)}. Since the value in the data
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Algorithm 3: Expanding regions.

1 procedure expandRegions(�푟�푒�푔�푖�표�푛�푠,A)
Inputs :The LTS A and an initial set �푟�푒�푔�푖�표�푛�푠 of regions

Output :a set of value-stable ARs

2 foreach �푟 ∈ �푟�푒�푔�푖�표�푛�푠 do

3 do

4 �푐ℎ�푎�푛�푔�푒�푀�푎�푑�푒 = �푓 �푎�푙�푠�푒 ▷ initialize fixed-point iteration

5 foreach �푥 ∉ �푟 do

6 if {�푥 ′ | �푔�푒�푡�푠 (�푥, �푥 ′)} ⊆ �푟 then

7 �푟 = �푟 ∪ {�푥} ▷ add node which only gets data from inside region �푟

8 �푐ℎ�푎�푛�푔�푒�푀�푎�푑�푒 = �푡�푟�푢�푒 ▷ continue fixed-point computation

9 while �푐ℎ�푎�푛�푔�푒�푀�푎�푑�푒 ;

10 return �푟�푒�푔�푖�표�푛�푠

variable is not preserved by the initialize handler (Fig. 1, Line 12), no nodes are added to �푟 . After
this iteration, no regions remain, so Algo. 3 returns �푟�푒�푔�푖�표�푛�푠 = {{�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce),
�푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone)}, {�푛�표�푑�푒 (Engage)}} (Line 10).

Merging Regions. After expanding individual ARs, the third step in Algo. 1 (Line 4) is to attempt
to merge ARs which are mutually exclusive (i.e., processes are only in the locations of one of them
when there are no processes in the locations of the other) according to Algo. 4. If two ARs �푟1 and �푟2
are mutually exclusive (Line 4), processes may not hold values in �푟1 and �푟2 simultaneously, so their
bounds are independent and the larger bound applies to both regions. Thus, we create a new AR
�푟 = �푟1 ∪ �푟2 (Line 5) with �휌 (�푟 ) =�푚�푎�푥 (�휌 (�푟1), �휌 (�푟2)) (Line 6).

We determine that the two regions �푟1 and �푟2 are mutually exclusive using a disjunction of
sufficient (but not necessary), static checks on A, encapsulated here by the function �푎�푟�푒�퐸�푥�푐�푙�푢�푠�푖�푣�푒 .
One such sufficient condition is to require that every path from �푟1 to �푟2 (and vice versa) must include
some globally-synchronous transition (e.g. consensus) which is only enabled when all processes
are outside of �푟1 (resp. �푟2).

Example 5.5. For the Consortium system (Fig. 1), Algo. 4 is called with the set �푟�푒�푔�푖�표�푛�푠 =

{{�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce), �푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone)}, {�푛�표�푑�푒 (Engage)}}.
First, the set�푚�푒�푟�푔�푒�푑�푅�푒�푔�푖�표�푛�푠 is initialized with the contents of �푟�푒�푔�푖�표�푛�푠 (Line 2). Then, beginning
with �푟1 = {�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce), �푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone)} and �푟2 =

{�푛�표�푑�푒 (Engage)} (Line 3), we find that (i) for any processes to enter the locations of �푟1, all processes
must have left the Engage location, since all processes must engage in the elect transition together
from the Election location (Fig. 1, Line 17), and (ii) for any processes to enter �푟2, they must all
leave �푟1 at once via a reset transition (Fig. 1, Line 43 and Line 48). Thus, �푎�푟�푒�퐸�푥�푐�푙�푢�푠�푖�푣�푒 (�푟1, �푟2) returns
�푡�푟�푢�푒 (Algo. 4, Line 4) and the merged region �푟�푚�푟�푔 = �푟1 ∪ �푟2 = {�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce),
�푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone), �푛�표�푑�푒 (Engage)} is created (Line 5). The bounds �휌 (�푟1) and
�휌 (�푟2) are both 1, so �휌 (�푟�푚�푟�푔) = �푚�푎�푥 (�휌 (�푟1), �휌 (�푟2)) = �푚�푎�푥 (1, 1) = 1 (Line 6). On Line 7, �푟�푚�푟�푔 is
added to the set of merged regions. The execution is the same for when the contents of �푟1 and
�푟2 are swapped, so the set of merged regions remains the same. Finally, the set�푚�푒�푟�푔�푒�푑�푅�푒�푔�푖�표�푛�푠 =

{{�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce), �푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone)}, {�푛�표�푑�푒 (Engage)},
{�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce), �푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone), �푛�표�푑�푒 (Engage)}} is re-
turned, with all regions having a bound of 1 (Line 8).

AMinimal Bounded Region. After constructing a set of ARs with associated bounds, the final step
in Algo. 1 (Line 5) is to select one which meets the conditions in Def. 4.8 and so represents a bounded
region. That is, we select a region �푟 which includes (i) the node representing the initial location,
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Algorithm 4:Merging regions.

1 procedure mergeRegions(�푟�푒�푔�푖�표�푛�푠,A)
Inputs :The LTS A and an initial set �푟�푒�푔�푖�표�푛�푠 of regions

Output :a set of value-stable ARs

2 �푚�푒�푟�푔�푒�푑�푅�푒�푔�푖�표�푛�푠 = �푟�푒�푔�푖�표�푛�푠

3 foreach (�푟1, �푟2) ∈ �푟�푒�푔�푖�표�푛�푠 × �푟�푒�푔�푖�표�푛�푠 | �푟1 ≠ �푟2 do

4 if areExclusive(�푟1, �푟2) then
5 �푟�푚�푟�푔 = �푟1 ∪ �푟2

6 �휌 (�푟�푚�푟�푔) =�푚�푎�푥 (�휌 (�푟1), �휌 (�푟2)) ▷ larger bound applies to new merged region

7 �푚�푒�푟�푔�푒�푑�푅�푒�푔�푖�표�푛�푠 =�푚�푒�푟�푔�푒�푑�푅�푒�푔�푖�표�푛�푠 ∪ �푟�푚�푟�푔

8 return�푚�푒�푟�푔�푒�푑�푅�푒�푔�푖�표�푛�푠

(ii) all nodes representing destination locations of consensus handlers, (iii) all nodes representing
locations with handlers for sending actions with payloads, and (iv) any nodes corresponding to
locations referenced by the global specification Φ. If no such region exists, null is returned.

We select the final bounded abstract region (BAR) �푟 that satisfies these criteria and has the minimal
bound �휌 (�푟 ) of all such candidate BARs. The bounded region Ψ is then [�푟 ] with bound �휌 (�푟 ). Hence,
the concrete region Ψ is bounded, because it is value-stable, and it satisfies the criteria above. We
consider the soundness of Algo. 1 for computing bounded abstract regions in App. C.1.

Example 5.6. Consider the Consortium system (Fig. 1). According to Algo. 2, the initial regions
include �푟1 = {�푛�표�푑�푒 (Decided)} with �휌 (�푟1) = 1 which captures the results of the vc consensus event,
and �푟2 = {�푛�표�푑�푒 (Engage)} with �휌 (�푟2) = 1 which captures the initial default values. Algo. 3 expands
the initial regions. One such expansion step of region �푟1 through edge �푒 from Example 5.1 adds
�푛�표�푑�푒 (Announce) to �푟1 since the value in the data variable is preserved along edge �푒 . A minimal valid
BAR that meets conditions (i) through (iv) is �푟 = {�푛�표�푑�푒 (Engage), �푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce),
�푛�표�푑�푒 (LeaderDone), �푛�표�푑�푒 (ReplicaDone)}. This �푟 is the result of merging the expansions of �푟1 and
�푟2 and hence has �휌 (�푟 ) =�푚�푎�푥 (�휌 (�푟1), �휌 (�푟2)) = 1.

Example 5.7. Further, imagine a modified version of the Consortium system where every lo-
cation in Fig. 1 has an extra consensus handler allowing all processes to decide on a set of
10 values. Each process non-deterministically stores one of the agreed-upon values, and then
goes to a location Extra. In the Extra location, let there be a reset handler sending all pro-
cesses back to Engage. In addition to �푟 = {�푛�표�푑�푒 (Decided), �푛�표�푑�푒 (Announce), �푛�표�푑�푒 (LeaderDone),
�푛�표�푑�푒 (ReplicaDone), �푛�표�푑�푒 (Engage)} with �휌 (�푟 ) = 1 described in Example 5.6, Algo. 4 will produce
�푚�푒�푟�푔�푒�푑�푅�푒�푔�푖�표�푛�푠 which also contains a region �푟 ′ = �푟 ∪ {�푛�표�푑�푒 (Extra)} with bound �휌 (�푟 ′) = 10. While
�푟 and �푟 ′ are both bounded regions for the Consortium system, our algorithm would prefer �푟 due to
the lower bound. This ultimately results in a more efficient verification target.

5.3 Discussion: Other Scenarios

Domain Reduction Without Consensus. Consider a system which begins by partitioning a finite
number, �푘 , of processes. Let each of those processes receive an arbitrary value from the environment
and go to some location ℓ1. Assuming ℓ1 can only be reached by these �푘 processes, there can be
at most �푘 distinct values held in ℓ1. If there is another location ℓ2 which can only be reached by
the �푛 − �푘 other processes by receiving one of those �푘 values from a process in ℓ1, then there can
be at most �푘 distinct values held in ℓ2. Thus, the set {ℓ1, ℓ2} is a bounded region with �휌 = �푘 . Using
various values of �푘 , bounded regions with various bounds may arise, even within a single system.

Here, the bounded region created by the �푘 processes represents locations where some �푘 values
are distinguished amongst all values held in the system. Therefore, at least �푘 values would be
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needed to represent the set of such distinguished values at any one time. Values which are held by
the other �푛 − �푘 processes and are only known to the process that holds them do not need to be
distinct, so very few values (enough to fill the variables of a single process) are needed to stand in
for these remaining values in the system.

Domain Reduction Failure Despite Scalarset Data Use. Consider a system where processes
leave the initial location, collectively perform some coordination task, and later receive an arbitrary
value from the environment before returning to the initial location.

While the behavior of the system may be correct for the intended coordination task, the fact
that processes bring arbitrary values back to the initial location means that the number of values
needed to represent the values held in the initial location cannot be bounded. As a result, no suitable
bounded region will exist, and domain reduction will not succeed, as the initial location will not be
included in any bounded region constructed by our algorithms. Sec. 6 illustrates how the inclusion
of the initial location in the bounded region is critical to the validity of our technique.

6 DOMAIN REDUCTION FORMERCURY SYSTEMS

Having defined domain-reducible verification problems, and how we can recognize them auto-
matically, we now show that when a verification problem ⟨M∆ (�푛),Φ⟩ is domain-reducible, the
unbounded-domain systemM∆ (�푛) satisfies Φ iff the finite-domain systemM

∆
(�푛) satisfies Φ.

Theorem 6.1. For domain-reducible ⟨M∆ (�푛),Φ⟩, M∆ (�푛) |= Φ ⇔ M
∆
(�푛) |= Φ.

In what follows, we present a proof of Theorem 6.1. Our proof relies on establishing a backward

simulation relation ≈ over pairs of global states in M∆ (�푛) and M∆
(�푛): For all �푟 ∈ �푄, �푟 ∈ �푄 , if �푟 ≈ �푟

and (�푞, �푒, �푟 ) ∈ �푅, then there exists (�푞, �푒, �푟 ) ∈ �푅 such that �푞 ≈ �푞. This relation enables a proof of
Theorem 6.1 by induction on an arbitrary error path inM∆ (�푛) to show that a related error path
exists in M

∆
(�푛). First, we define a new type of global state transformation. Then, we use this state

transformation to define the appropriate relation ≈ and prove the theorem.
To simplify presentation, we continue, for now, with our assumption thatM∆ (�푛) contains exactly

one variable (and thus, a single data domain �훿). Further, we elide the environment process in our
examples. The environment is assumed to be a stateless over-approximation of many possible
environment processes, and is thus unaffected by our reachability-preserving state transformation.
More precisely, the environment process is modeled as a transition system with only a single state,
so that all transitions are self-loops on that state. As a result, the state of the environment process
is invariant to permutation, and all coordination with the environment is effectively non-blocking.

6.1 Component-Wise Permutations

To relate a global state in �푄 of M∆ (�푛) to a global state in �푄 of M
∆
(�푛), we require a state transfor-

mation which can eliminate unnecessary distinct values outside of the bounded region Ψ. Since
standard permutations are bijections, which always preserve the number of distinct elements in

their domain, they are not sufficient to relate states in �푄 to states in �푄 . Thus, we define a new type
of transformation over global system states which generalizes permutations for such states so that
values in different local states may be treated independently.

Definition 6.2 (Component-Wise Permutation). A component-wise permutation (CWP) is a sequence
of separate �훿-permutations which are applied, component-wise, to each local state in a global state.

For a global state �푞 = (�푠1, �푠2, . . . , �푠�푛) let �훾 = (�휋1, �휋2, . . . , �휋�푛) be a CWP over the values of �훿 and
�훾 (�푞) be the component-wise application of permutations in �훾 to local states in �푞. That is, �훾 (�푞) =
(�휋1 (�푠1), �휋2 (�푠2), . . . , �휋�푛 (�푠�푛)). Intuitively, one can think of CWPs as a generalization of permutations
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with the expressive power to alter the result of comparison relations between values across processes.
In the case where that comparison across processes is equality, a CWP �훾 may cause values which
began as unequal in �푞 to be transformed in �훾 (�푞) so that they are equal, potentially causing �훾 (�푞) to
include fewer unique values than �푞, as shown in the following example.

location data

𝑝 Announce 1

𝑝 LeaderDone 1

𝑝 Wait 2

𝑝 Wait 2

location data

𝑝 Announce 99

𝑝 LeaderDone 99

𝑝 Wait 8

𝑝 Wait 5

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {			8 ↦ 2, 99 ↦ 1,… }

𝜋: {			5 ↦ 2, 99 ↦ 1,… }

				𝑞 				𝑞				𝛾

Fig. 3. A CWP.

Example 6.3. An example CWP �훾 = (�휋1, �휋2, �휋3, �휋4) is shown in Fig. 3. Applying �훾 to the global
state �푞 on the left yields the global state �푞 on the right. The local state �푞 [�푖] of each process �푝�푖 is
permuted according to �휋�푖 . Observe that the larger values in state �푞 are permuted to smaller values
in state �푞. Further, notice that while there are three distinct values in �푞, there are only two in �푞!
This is due to �휋3 and �휋4 permuting the distinct values 8 and 5 (respectively) to the same value: 2.

6.2 Scalarset Domain Reduction

While, in general, a CWP �훾 can permute the same value in different components to different
permuted values, at certain global states in an execution, equality between some values in different
processes is significant (e.g., when the results of consensus are finalized). Hence, component
permutations of �훾 must permute such values consistently to preserve their equality (i.e., if such
values are equal before applying �훾 , they should be equal after �훾 is applied). Further, since our goal is
to transform a state �푞 with possibly many values to a state �푞 with fewer values, �훾 should eliminate
unnecessary distinct values whenever possible.

Consistent and Minimal CWPs. As stated in Sec. 4.2, a bounded region captures all values whose
distinctness across processes affects system transitions. In order to preserve (dis)equality across
these values, we first characterize CWPs which permute values in the bounded region consistently.

Definition 6.4 (Consistent CWP). A CWP �훾 is consistent w.r.t. a bounded region Ψ and global state
�푞, denoted �푐�표�푛�푠 (�훾, �푞,Ψ), iff all component permutations of �훾 map each value in the bounded region
to the same permuted value. That is, �푐�표�푛�푠 (�훾, �푞,Ψ) ⇔ ∀�푖, �푗,∀�푣�푎�푙 ∈ projΨ

�훿
(�푞) : �훾 [�푖] (�푣�푎�푙) = �훾 [ �푗] (�푣�푎�푙).

Then, in order to reduce unnecessary distinct values outside the bounded region, we characterize
CWPs �훾 which bias their mapping of these values toward the smallest values in the domain �훿 ,
according to an arbitrary total order (denoted Υ�훿 ) over �훿 .

Definition 6.5 (Minimal CWP). A CWP �훾 is minimal w.r.t. a bounded region Ψ and global state �푞,
denoted�푚�푖�푛(�훾, �푞,Ψ), iff each component permutation �휋�푖 of �훾 permutes all values outside of the
bounded region to the Υ�훿 -smallest available �훿-values. That is, �휋�푖 permutes the �푗-th Υ�훿 -smallest
value in proj�훿 (�푞 [�푖]) \ proj

Ψ

�훿
(�푞) to the �푗-th Υ�훿 -smallest value that is not in the image of projΨ

�훿
(�푞)

under any component permutation of �훾 .

Example 6.6. For Fig. 3, consider a bounded region Ψ that contains the location LeaderDone.
Since local state q[2] has �푣�푙�표�푐 set to LeaderDone and holds the value 99 in variable data, a CWP
�훾 is consistent w.r.t. �푞 iff all the component permutations of �훾 permute the value 99 consistently
to the same permuted value (e.g., to 1 as done by �훾 = (�휋1, �휋2, �휋3, �휋4)). On the other hand, if �휋1 is
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changed to permute 99 to, say 2 instead of 1, then the resulting �훾 is not consistent. Further, assume
that Ψ does not contain the location Wait. The CWP �훾 in Fig. 3 is minimal since it permutes the
values outside of Ψ (8 and 5 in Wait) to the smallest available value, 2. If �휋3 is changed to permute
8 to, say 3 instead of 2, then the resulting �훾 would not be minimal, because �휋3 could have permuted
8 to a smaller value, 2.

Consistency Sets.We denote by Γ�훿 the set of all CWPs over the domain �훿 . For the remainder of
this section, we will focus on CWPs which are both consistent and minimal.

Definition 6.7 (Consistency Set). For a given region Ψ and global state �푞, the consistency set ΓΨ
�훿
(�푞)

is the set of CWPs which are consistent and minimal w.r.t. Ψ and �푞. That is, ΓΨ
�훿
(�푞) = {�훾 ∈ Γ�훿 |

�푐�표�푛�푠 (�훾, �푞,Ψ) ∧�푚�푖�푛(�훾, �푞,Ψ)}.

Using this definition of the consistency set, we can define a relation between the states ofM∆ (�푛)
andM

∆
(�푛) which will enable the backward simulation we need to prove our domain reduction.

Definition 6.8 (The ≈Ψ Relation). For a domain �훿 and bounded region Ψ, let the equivalence

relation ≈Ψ⊆ �푄 ×�푄 relate pairs of states (�푞, �푞) such that �푞 is equal to the permutation of �푞 according

to some CWP �훾 in the consistency set of �푞. That is, ≈Ψ= {(�푞, �푞) ∈ �푄 ×�푄 | ∃�훾 ∈ Γ
Ψ

�훿
(�푞) : �훾 (�푞) = �푞}.

Informally, when two states �푞 and �푞 are related via ≈Ψ (denoted �푞 ≈Ψ �푞), one can think of the CWP
�훾 which relates them as a mechanism to “collapse” superfluous value disqualities across processes
in �푞 outside of the bounded region Ψ.

Backward Simulation. Consider the domain-reducible verification problem ⟨M∆ (�푛),Φ⟩ with
M∆ (�푛) composed of �푛 instances of �푃�훿 and safety specification Φ. Let Ψ be a bounded region with

bound �휌 as defined earlier. Let �훿 be a scalarset domain of size �휌 + 1. We denote by �푃
�훿
, the process

obtained from �푃�훿 by replacing all variable and event declarations of type �훿 with declarations of type

�훿 . Let M
∆
(�푛) be the system composed of �푛 instances of �푃

�훿
. We then show that for each transition

inM∆ (�푛), there is a corresponding transition inM
∆
(�푛) such that the source and destination states

of these two transitions are related by ≈Ψ.

Lemma 6.9. ∀�푟 ∈ �푄, �푟 ∈ �푄, (�푞, �푒, �푟 ) ∈ �푅 : �푟 ≈Ψ �푟 =⇒ (∃(�푞, �푒, �푟 ) ∈ �푅 : �푞 ≈Ψ �푞).

Proof sketch. Since �푟 ≈Ψ �푟 , we know there must exist a CWP �훾 ′ such that �훾 ′ (�푟 ) = �푟 . Then, we must

identify an appropriate global state �푞 and event �푒 such that (�푞, �푒, �푟 ) ∈ �푅 and �푞 ≈Ψ �푞. Since �푞 must be
related to �푞 by ≈Ψ, we need to show that there exists another CWP �훾 ∈ Γ

Ψ

�훿
(�푞) such that �훾 (�푞) = �푞.

𝑞

𝑟

𝑞 = 𝛾(𝑞)

𝛾′

𝛾

𝑟 = 𝛾′(𝑟)

𝑒 𝑒

Our overall proof strategy is illustrated by the figure on the

right. By identifying a �훾 and �푒 such that (�훾 (�푞), �푒, �푟 ) ∈ �푅, the
lemma is proven by letting �푞 = �훾 (�푞). We carefully define �훾 to
(i) agree with �훾 ′ on values preserved in the transition from �푞

to �푟 so that �훾 (�푞) may transition to �푟 , and (ii) permute values
in projΨ

�훿
(�푞) consistently and values outside of projΨ

�훿
(�푞) to the

smallest possible values so that �훾 ∈ Γ
Ψ

�훿
(�푞). More precisely, we

detail a procedure �푏�푢�푖�푙�푑�훾 below which, given �훾 ′, �푞, and �푟 , con-
structs the CWP �훾 = �푏�푢�푖�푙�푑�훾 (�훾

′, �푞, �푟 ) as follows:

(1) Values in the bounded region both in �푞 and �푟 are permuted consistently as in �훾 ′: for any two
process indices �푖, �푗 ∈ [1, �푛] and value �푣�푎�푙 ∈ �훿 , if �푣�푎�푙 is in both projΨ

�훿
(�푞 [�푖]) and projΨ

�훿
(�푟 [ �푗]),

then for all �푘 let �훾 [�푘] permute �푣�푎�푙 to the same value as the permuted value of �푣�푎�푙 in �훾 ′ [ �푗].

(2) Values preserved in the transition from �푞 to �푟 are permuted as in �훾 ′: for any two process
indices �푖, �푗 ∈ [1, �푛] and variables �푣, �푣 ′, if �푔�푒�푡�푠 (�푟 [ �푗], �푣 ′, �푞[�푖], �푣), where �푔�푒�푡�푠 in this case is used
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to denote the flow of values between variables in particular states rather than locations, then
let �훾 [�푖] permute �푞[�푖] (�푣) to the same value as the permuted value of �푟 [ �푗] (�푣 ′) in �훾 ′ [ �푗].

(3) Values in the bounded region in �푞 but not in �푟 are permuted consistently: for any value
�푣�푎�푙 ∈ �훿 for which there exists some process index �푖 ∈ [1, �푛] such that �푣�푎�푙 ∈ projΨ

�훿
(�푞 [�푖]) but

there is no process index �푗 ∈ [1, �푛] such that �푣�푎�푙 ∈ proj�훿 (�푟 [ �푗]), then for each process index
�푖 ∈ [1, �푛] let �훾 [�푖] permute �푣�푎�푙 to the smallest value �푣�푎�푙 ′ (according to the arbitrary total order
Υ�훿 ) that was not used in any of the previous steps (for any process).

(4) Values not retained in the transition from �푞 to �푟 are permuted minimally: for each process
�푖 ∈ [1, �푛] and variable �푣 ∈ V of type �훿 , if there does not exist a process �푗 ∈ [1, �푛] and variable
�푣 ′ such that �푔�푒�푡�푠 (�푟 [ �푗], �푣 ′, �푞[�푖], �푣) let �훾 [�푖] permute �푞 [�푖] (�푣) to the smallest value �푣�푎�푙 ′ (according
to Υ�훿 ) such that no value from steps 1 through 3 was permuted to �푣�푎�푙 ′ in �푞 [�푖].

(5) Values not appearing in �푞 are permuted so that each permutation �훾 [�푖] is a bijection: for each
�푖 ∈ [1, �푛], permute any remaining values to the next value �푣�푎�푙 ′ (according to Υ�훿 ) that was not
used in any of the previous steps.

The above construction gives �훾 = �푏�푢�푖�푙�푑�훾 (�훾
′, �푞, �푟 ) several important properties. These are that

(i) �훾 is a CWP, (ii) �훾 is consistent and minimal w.r.t. �푞, (iii) �훾 maps all values in proj�훿 (�푞) into the

reduced domain �훿 , and (iv) �훾 preserves data-flow between �푞 and �푟 so that it is straightforward to
determine an event �푒 such that (�훾 (�푞), �푒, �푟 ) is a valid transition. Below, we briefly explain how these
properties are obtained.

First, we note that �훾 is a CWP, because each component �훾 [�푖] is a permutation. Step (1) fixes only
the permutation in �훾 [�푖] of values which are permuted consistently by all components �훾 ′ [ �푗]. Step
(2) fixes the permutation of some values in �훾 [�푖] which are transmitted in the transition from �푞 to
�푟 . The properties of Ψ as a bounded region ensure that these transmitted values are in projΨ

�훿
(�푟 ),

so all component permutations �훾 ′ [ �푗] permute them consistently, ensuring no collision is possible
with values from step (1). Steps (3) and (4) explicitly avoid permuting to values used in steps which
precede them. Step (5) permutes all remaining values to ensure that each �훾 [�푖] is a bijection.

Additionally, steps (1) and (3) ensure that any values in projΨ
�훿
(�푞) are permuted consistently, so

it holds that �푐�표�푛�푠 (�훾, �푞,Ψ), and step (4) ensures that each component permutation �훾 [�푖] permutes all
values in proj�훿 (�푞 [�푖]) \ proj

Ψ

�훿
(�푞) to the smallest available values, so it holds that�푚�푖�푛(�훾, �푞,Ψ). It

then follows immediately that �훾 ∈ Γ
Ψ

�훿
(�푞), and thus �푞 ≈Ψ �훾 (�푞).

Further, steps (1) through (4) ensure that all values in �푞 [�푖] are permuted by �훾 [�푖] to be within the

domain �훿 . In particular, steps (1) and (2) permute values in �푞[�푖] to values which appear in some
state �훾 ′ (�푟 [ �푗]) = �푟 [ �푗], and steps (3) and (4) permute the remaining values of �푞 [�푖] to the smallest

available values to ensure that only values from �훿 are used. As such, �훾 (�푞) ∈ �푄 .

Finally, with the knowledge that �푞 ≈Ψ �훾 (�푞) and �훾 (�푞) ∈ �푄 , it only remains to show that there

exists an event �푒 such that (�훾 (�푞), �푒, �푟 ) is a valid transition in �푅. This can be achieved by permuting
the value carried by �푒 to preserve data flow according to the transition from �푞 to �푟 . If �푒 carries no
payload value (e.g. for an internal transition), �푒 is simply �푒 . If �푒 carries a payload value, �푒 should
carry that payload value, permuted to match the permutation (in �훾 ) of a process that receives it.
The construction of �훾 ensures that all necessary equalities between values both within �푞 and �푟

as well as across �푞 and �푟 are preserved for �훾 (�푞) and �푟 , respectively. This ensures that (�훾 (�푞), �푒, �푟 ) is a

valid transition in �푅. For the full proof of Lemma 6.9, we refer the reader to App. C.3, which includes
a comprehensive case analysis of the various transition types within theMercury semantics.

Proving Theorem 6.1 Using Backward Simulation. Recall that Theorem 6.1 states that for
domain-reducible ⟨M∆ (�푛),Φ⟩, the system M∆ (�푛) is safe iff M

∆
(�푛) is safe. Equivalently, there
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exists an execution �휂 of M∆ (�푛) that ends in an error state iff there exists an execution �휂 of M
∆
(�푛)

that ends in an error state.
Having proved Lemma 6.9, we can prove the theorem by considering an arbitrary execution

�휂 of M∆ (�푛) from some initial state �푞0 ∈ �푄0 to an (erroneous) final state �푞�푥 ∈ �푄 . Observe that a

corresponding (erroneous) state �푞�푥 = �훾 ′ (�푞�푥 ) ∈ �푄 can be identified by constructing �훾 ′ according
to the �푏�푢�푖�푙�푑�훾 procedure with �푞�푥 in place of �푞 and assuming that �푟 contains no �훿-values (because
no state follows �푞�푥 in �휂). By construction, �푞�푥 ≈Ψ �푞�푥 . Then, for each transition in the execution,

beginning with (�푞�푥−1, �푒, �푞�푥 ), by Lemma 6.9, there must exist a transition (�푞�푥−1, �푒, �푞�푥 ) ∈ �푅 with
source state �푞�푥−1 such that �푞�푥−1 ≈Ψ �푞�푥−1. Repeating this process for each subsequent �푞�푥−�푘 and
�푞�푥−�푘 constructs an execution �휂 from initial state �푞0 to a final state �푞�푥 where all states appearing in

�휂 are in �푄 and �푞�푖 ≈Ψ �푞�푖 for each �푖 ∈ [0, �푥]. For an example of this process, see App. B.
Finally, as any bounded region Ψ such that �푞�푖 ≈Ψ �푞�푖 for specification Φ must include the initial

location and any error locations identified by Φ, we draw two conclusions. First, since the value
held by all processes in the initial location must be permuted consistently for all processes, and

M∆ (�푛) exhibits value symmetry, �푞0 must be in�푄0. Second, because all values held in error locations
are permuted consistently, �푞�푥 is an error state iff �푞�푥 is an error state. Therefore, there is a execution
�휂 of M

∆
(�푛) ending in an error state iff there is a execution �휂 of M∆ (�푛) ending in an error state. □

Example 6.10. Fig. 4 illustrates the above process on a segment of an execution of the Consortium
system. Here, the bounded region Ψ = {Engage, Decided, Announce, LeaderDone, ReplicaDone},
as determined in Example 5.6, and all locations in Ψ are shaded in gray. The left side of the figure
shows the execution �푞1, . . . , �푞5 in the unbounded system M∆ (�푛), while the right side of the figure
shows the corresponding execution �푞1, . . . , �푞5 in the bounded systemM

∆
(�푛). Between each pair of

corresponding states �푞�푖 and �푞�푖 is the CWP �훾�푖 which relates them such that �푞�푖 = �훾�푖 (�푞�푖 ).
Beginning with �푞5, we explain how the CWP �훾5 (which relates �푞5 with the corresponding state

�푞5) is constructed according to the procedure(s) above. Since the value 99 is in Ψ in state �푞5, but
no state follows �푞5, 99 is permuted consistently to the smallest available value, 1, (as in step (3)
of �푏�푢�푖�푙�푑�훾 ) by all component permutations of �훾5. As in step (5), all other values are permuted so
each component permutation �훾5 [�푖] is a bijection. Similarly, the payload of event inform(99) is
permuted to inform(1). Then, each CWP �훾�푖 for �푖 ∈ [1, 4] is constructed according to �푏�푢�푖�푙�푑�훾 .

First, to construct �훾4, step (1) permutes 99 to 1 in all components �훾4 [�푖]; steps (2) and (3) have no
effect; step (4) permutes 8 to 2 in �훾4 [3] and 5 to 2 in �훾4 [4]; and step (5) completes each permutation
�훾4 [�푖]. The share event has no payload, so it is used as-is in a valid transition from �푞3 to �푞4.

Second, to construct �훾3, step (1) permutes 99 to 1 in all components �훾3 [�푖]; step (2) permutes 8 to 2
in �훾3 [3] and 5 to 2 in �훾3 [4]; steps (3) and (4) have no effect; and step (5) completes each permutation
�훾3 [�푖]. The payload value of the vc(99) event is received by processes �푝1 and �푝2 in �푞3, so the event
payload, 99, is permuted to 1 according to �훾3 [1], yielding the permuted event �푒 = vc(1).
Third, to construct �훾2, step (1) has no effect; step (2) permutes 99 to 1 in �훾2 [1], 8 to 2 in �훾2 [3],

and 5 to 2 in �훾2 [4]; step (3) has no effect; step (4) permutes 17 to the smallest available value, 1,
in �훾2 [2]; and step (5) completes each permutation �훾2 [�푖]. The payload value of the influence(17)
event is received by process �푝2 in �푞2, so the event payload, 17, is permuted to 1 according to �훾3 [2],
yielding the permuted event �푒 = influence(1).
Finally, to construct �훾1, step (1) has no effect; step (2) permutes 99 to 1 in �훾1 [1], 8 to 2 in �훾1 [3],

and 5 to 2 in �훾1 [4]; step (3) has no effect; step (4) permutes 1 to the smallest available value, 1, in
�훾1 [2]; and step (5) completes each permutation �훾1 [�푖].
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𝑝 Decided 99

𝑝 Decided 99

𝑝 Wait 8

𝑝 Wait 5

location data

𝑝 Deliberate 1

𝑝 Deliberate 1

𝑝 Wait 2

𝑝 Wait 2

𝑝 Decided 1

𝑝 Decided 1

𝑝 Wait 2

𝑝 Wait 2

𝑝 LeaderDone 99

𝑝 LeaderDone 99

𝑝 ReplicaDone 99

𝑝 ReplicaDone 99

location data

𝑝 Deliberate 99

𝑝 Deliberate 1

𝑝 Wait 8

𝑝 Wait 5

𝑝 LeaderDone 1

𝑝 LeaderDone 1

𝑝 ReplicaDone 1

𝑝 ReplicaDone 1

𝑝 Deliberate 1

𝑝 Deliberate 1

𝑝 Wait 2

𝑝 Wait 2

𝑝 Deliberate 99

𝑝 Deliberate 17

𝑝 Wait 8

𝑝 Wait 5

𝑝 Announce 1

𝑝 LeaderDone 1

𝑝 Wait 2

𝑝 Wait 2

𝑝 Announce 99

𝑝 LeaderDone 99

𝑝 Wait 8

𝑝 Wait 5

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {			8 ↦ 2, 99 ↦ 1,… }

𝜋: {			5 ↦ 2, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {			8 ↦ 2, 99 ↦ 1,… }

𝜋: {			5 ↦ 2, 99 ↦ 1,… }

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {17 ↦ 1,						…					, … }

𝜋: {			8 ↦ 2,						…					, … }

𝜋: {			5 ↦ 2,						…					, … }

influence(17)

vc(99)

share

inform(99)

influence(1)

vc(1)

share

inform(1)

𝜋: {						…					, 99 ↦ 1,… }

𝜋: {			1 ↦ 1,						…					, … }

𝜋: {			8 ↦ 2,						…					, … }

𝜋: {			5 ↦ 2,						…					, … }

				𝑞 				𝑞				𝛾

				𝑞 				𝑞				𝛾

				𝑞 				𝑞				𝛾

				𝑞 				𝑞				𝛾

				𝑞 				𝑞				𝛾

Fig. 4. Inductive application of �푏�푢�푖�푙�푑�훾 to an execution of M∆ (�푛).

7 DOMAIN REDUCTION FOR MULTI-VARIABLE AND MULTI-DOMAIN SYSTEMS

To simplify presentation, we assumed throughout Sections 4, 5, and 6 thatM∆ (�푛) contained only a
single variable, and thus, a single scalarset domain �훿 . In this section, we discuss how the above
results extend to systems involving multiple variables. In Sec. 7.1, we address systems with multiple
variables of the same unbounded scalarset domain. In Sec. 7.2, we discuss systems involving multiple
unbounded scalarset domains.

7.1 Multi-Variable Systems

Regions. First, we redefine a region of a process �푃 (Sec. 4.2) to be a set Ψ ⊆ �푆 × V of pairs of
process-local states and variables, rather than a set of locations. Thus, we generalize our notion of
a process being in a bounded region Ψ to a notion of a process holding variables in Ψ, while the
process holding those variables may also hold some variables which are not in Ψ.

The definition of a value-stable region is augmented to include that there must exist a finite upper
bound, �휆, over all reachable global states �푞, on the number of distinct �훿-values that are held by any
individual process and are not in projΨ

�훿
(�푞). The bound �휆 may be determined by various means,

but one simple method is simply to count the number of variables in the process definition (as no
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process can hold at any time more values than it has variables). For example, in the Consortium
system (Fig. 1), �휆 is 1 since the data variable may appear in locations outside of its bounded region
(e.g., in the Wait location).

The size of the domain cutoff, then is �휌 + �휆, rather than �휌 + 1. Note that in the case of the
single-variable assumption in the previous sections, these two formulas are equivalent.
Similarly, the definition of a bounded region Ψ is adjusted to ensure, as in the single-variable

case, that system transitions only depend only the (dis)equality of �훿-values across processes when
those values are in the bounded region in the state where said (dis)equality is enforced by the
transition relation. More precisely, in addition to value-stability, a bounded region Ψ must include
every state-variable pair (�푠, �푣) ∈ �푆 ×V such that (i) �푠 is an initial local state, (ii) �푠 is a destination
local state of a consensus action, (iii) �푠 is a source state of a broadcast action which takes its payload
value from �푣 , or (iv) �푠 and �푣 both appear together in the global specification Φ.

Determining Bounded Regions. When determining bounded regions, the construction of the
LTS described in Sec. 5 changes slightly. Rather than each node �푥 representing a location ℓ in
program �푃 , each node represents a set [�푥] of local states with �푣�푙�표�푐 = ℓ . Each of these nodes
may be augmented with a Boolean predicate �푏 to refine the set of states represented by �푥 to be
[�푥] = {�푠 | �푠 (�푣�푙�표�푐 ) = �푙�표�푐 (�푥) ∧ �푠 |= �푏}. Then, an abstract region �푟 is set of node-variable pairs (i.e.,
�푟 ⊆ �퐿 ×V) such that each node-variable pair (�푥, �푣) represents the set [(�푥, �푣)] = {(�푠, �푣) | �푠 ∈ [�푥]}
of state-variable pairs. Let [�푟 ] be the concrete region {(�푠, �푣) ∈ [(�푥, �푣)] | (�푥, �푣) ∈ �푟 } that the abstract
region �푟 represents. As before, we say an abstract region �푟 is value-stable (resp. bounded) iff the
corresponding region [�푟 ] is, and the bounds �휌 (�푟 ) and �휆(�푟 ) are equal to the bounds �휌 and �휆 of [�푟 ].
Determining a suitable abstract bounded region proceeds as before, with a few alterations to

account for refining bounded regions from sets of program locations to sets of state-variable pairs.
The three types of initial regions are modified as follows. For the first type, composed of all

the nodes corresponding to locations where some consensus action terminates, each such node
is paired with the variable holding the values agreed upon by consensus. For the second type,
composed of a single node representing a location which can only be occupied by a single process at
a time, we create an ABR consisting of this node paired with every variable in the process definition.
The bound �휌 of each of these ABRs is the number of variables of type �훿 , as one process can only
hold as many unique �훿-values as it has �훿-variables. Finally, for the ABR encoding the initial location,
pair each node with every variable of type �훿 , as all variables are assumed to begin with the same
default value; the bound �휌 for this region remains 1.

As before, initial regions are expanded using the �푔�푒�푡�푠 relation. When the variable �푣 may only get
its value in a location �푙�표�푐 (�푥) from a variable �푣 ′ in location �푙�표�푐 (�푥 ′), where (�푥 ′, �푣 ′) is in some ABR �푟 ,
the pair (�푥, �푣) is added to �푟 (instead of just the node �푥 ).
When merging expanded regions, the definition of when two regions are mutually exclusive is

relaxed along with the definition of regions. Two ABRs �푟1 and �푟2 are considered mutually exclusive
if it can be shown that processes may hold data which is in �푟1 only when no process may hold
data in �푟2 (and vice versa). Mutually exclusive regions are merged by taking the union of their
state-variable pairs and the maximum of their associated �휌 bounds.
Then, after constructing the set of merged ABRs, we select the one with the smallest bound �휌

which satisfies the necessary conditions to represent a bounded region.

Scalarset DomainReduction.While in Sec. 6, we assumed thatM∆ (�푛) contained only one variable
of type �훿 to simply presentation, we emphasize that the proofs of Lemma 6.9 and Theorem 6.1 are
written in a way that is agnostic to this assumption. Thus, our results hold under the assumption
of a process definition �푃�훿 with an arbitrary number of variables of the unbounded domain �훿 .
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7.2 Multi-Domain Systems

We focused on the single reductionM∆ (�푛)
�훿
−→ M

∆
(�푛) with respect to unbounded scalarset domain

�훿 ∈ ∆. Our results extend immediately to the case with multiple unbounded data domains via a

sequence of reductions w.r.t. each �훿 ∈ ∆:M∆ (�푛)
�훿1
−→ M∆′ (�푛)

�훿2
−→ . . .

�훿<
−−→ M

∆
(�푛).

8 EVALUATION

In this section, we present the implementation of our technique and evaluate it on a set of doubly-
unbounded DAB systems.

Venus. We develop a tool,Venus, for verification of doubly-unbounded DAB systems that combines
our domain reduction with a recent tool, �ickSilver, for parameterized verification of DAB
systems with finite-state processes. As explained in Sec. 4, Venus yields a program with finite data
domains, paving the way for�ickSilver to perform its reasoning.
We note that while each expansion step in Algo. 3 can only expand a region with a single

node-variable pair, in Venus, the implementation of the region expansion procedure is more
involved. We generalize an expansion step to expand a region with a strongly-connected set of
node-variable pairs, even when its pairs cannot be used individually. Further, we emphasize that
Venus automatically identifies data domains which can be treated as scalarsets.

Case Studies. Here, we demonstrate the efficacy of our technique on three case studies which
represent commonly used DAB systems: Consortium, Distributed Register, and a Key-Value Store.
Consortium was introduced in Sec. 2 along with its safety property. We now introduce three

variants of this system. The first variant, Consortium-Three, elects a consortium of size three instead
of two to showcase that the number of processes in the bounded region is independent from the
bound on the number of unique values there. The second variant, Consortium-BCast, does not
elect a particular trusted actor to announce the decision, but rather allows either elected actor to
perform a broadcast of the decided value to the rest of the system to illustrate that the domain
cutoff computation is not sensitive to coordination within the bounded region. The third variant,
Consortium-Check, forces both of the trusted actors to share the decided value with the rest of the
system, and allows the rest of the actors to check, using a local assertion, if the shared values are
identical, and if not, move to an error state. This variant illustrates that domain reduction can be
applied to programs with local assertions.

Distributed Register is based on Atomix’s AtomicValue [Atomix 2021] which gives a consistent
view of some stored value under concurrent updates. In Distributed Register, clients in the environ-
ment submit requests to read from and update a register. Processes service read requests from their
local copy of the register. For update requests, processes use consensus to determine a consistent
value to be stored in the shared register. The safety property is that any two processes that are in
a location where they serve client read requests always have equal values in their local copy of
the register. We define a variant of this system, called DistReg-Two, that allows two registers to be
manipulated simultaneously; we construct this variant to help demonstrate that multiple variable
domains can be reduced in sequence.

Our Key-Value Store is a simple, dictionary-based, distributed key-value store inspired by [Redis
2021]. Clients in the environment submit requests to store a value, or read data stored, under a
given key. When handling update requests for a given key, processes use consensus to determine a
consistent value to be stored under that key. The safety property is that any two processes in a
location where they serve a client read request for some key must have equal values stored under
that key. To enable verification with variables with dictionary datatypes, we employ a lightweight
shape-reduction to first reduce verification to that of a system where each process has a finite
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number of integer domains. Intuitively, this is possible when the system’s transitions on events
indexed by some key are effectively independent of transitions and data indexed by other keys.
We then apply our domain cutoff reduction which is the primary focus of this paper. This layered
application of shape reduction, domain reduction, and finally process cutoff reduction demonstrates
how domain reduction can be composed with other reduction techniques to verify systems which
handle more complex datatypes than simple scalarset variables.
For each case study �퐶�푆 , we also define a version �퐶�푆-32Bit, with 32-bit integer domains, to

highlight that domain cutoffs can be applied to large, finite domains as well as unbounded domains.

Evaluation. We now discuss the result of evaluating our case studies in Venus. All experiments
are performed on a Dell Latitude 7400 with Intel Core i7 CPU at 1.9 GHz and 16 GB of RAM.

Table 1. Performance of Venus.

Benchmark LoC
Domain Domain Process

Time(s)
Size Cutoff Cutoff

Consortium 62 ∞ 3 3 0.249 ± 0.003

Consortium-Three 62 ∞ 3 4 0.261 ± 0.012

Consortium-BCast 58 ∞ 3 3 0.218 ± 0.012

Consortium-Check 68 ∞ 3 5 0.312 ± 0.007

Consortium-32Bit 62 2
32 3 3 0.254 ± 0.010

DistReg 34 ∞ 2 2 0.220 ± 0.025

DistReg-Two 79 ∞ 2 2 1.620 ± 0.056

DistReg-32Bit 34 2
32 2 2 0.202 ± 0.003

KeyValStore 50 ∞ 2 2 0.205 ± 0.003

KeyValStore-32Bit 50 2
32 2 2 0.213 ± 0.014

The performance of Venus is shown in Table 1. For each benchmark, we provide the number
of lines of code needed to model the benchmark inMercury, the initial size of the data domain
(marked ∞ if unbounded), the domain cutoff computed by Venus, the process cutoff used for
verification4, and the mean run time for 10 verification runs with the 95% confidence intervals.

Venus successfully reduces both large and unbounded data domains to relatively small, bounded
domains (2 and 3). Note that the domain cutoff remains constant across all variations of a given
benchmark. This illustrates that our domain cutoff computation is robust to control flow changes.
Also, we point out that for the DistReg-Two benchmark, Venus identifies two unbounded data
domains (corresponding to the two registers) and computes domain cutoffs for each independently,
even though the variables storing the register values are both of type int. Finally, Venus is able to
verify each of our benchmarks rather efficiently in under 2 seconds. While it is still true that the
complexity of model checking finite systems is exponential in both the number of processes in the
system and the size of each process’s state space, Venus is able to find bounds for these systems
which are small enough to enable efficient automated verification.

Intuition for Designing Domain-Reducible Systems. In practice, we find that localized data
saturation often arises when the local/global knowledge of values in each variable is reflected in the
processes’ control locations. That is, when processes reach a location with a value in some variable

4While Venus is able to compute a domain cutoff for DistReg-Two, �ickSilver is unable to compute a process cutoff.

Because Venus can potentially be combined with tools beyond�ickSilver for computing process cutoffs, we make an

exception for this case by manually computing a process cutoff of 2.
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�푥 which has been communicated with all other processes, the process definition should prevent
them from reaching that location again with a value in �푥 which has not been shared globally.

9 RELATED WORK

The formal methods community has developed a variety of techniques for verifying infinite-state
concurrent/distributed systems. At the coarsest level, these approaches can be divided into semi-
automated [Krogh-Jespersen et al. 2020; Ma et al. 2019; Padon et al. 2017, 2016; Taube et al. 2018;
v. Gleissenthall et al. 2019] and fully-automated [Abdulla et al. 2016, 1996, 2007; Alur et al. 2015;
Aminof et al. 2018; Außerlechner et al. 2016; Bloem et al. 2015; Burch et al. 1992; Clarke et al. 1989,
1998, 2006; Emerson et al. 2000; Emerson and Kahlon 2000, 2003; Emerson and Sistla 1997; Emerson
and Wahl 2003; Finkel and Schnoebelen 2001; Ip and Dill 1996; Jaber et al. 2020, 2021; Jacobs
and Sakr 2018; Kaiser et al. 2010; Lubachevsky 1984; Marić et al. 2017; Schmitz and Schnoebelen
2013] techniques. Semi-automated verification typically involves manually discovering inductive
invariants [Padon et al. 2016; Wilcox et al. 2015]. Fully automated verification (the focus of this
paper) requires no user intervention and is challenging when applied to unbounded systems.
Symbolic representations and reduction strategies are typically employed to scale or enable

automated verification for systems with large or infinite state spaces. For instance, symmetry
reduction [Alur et al. 2015; Clarke et al. 1998; Emerson et al. 2000; Emerson and Sistla 1997;
Emerson andWahl 2003; Ip and Dill 1996] is used to explore the state space of a system via a reduced
quotient structure. Automated verification of distributed systems is further often complicated by an
unbounded number of processes, infinite data domains, or both. A popular approach to handling
systems with an unbounded number of processes is to use (process) cutoffs [Abdulla et al. 2016;
Aminof et al. 2018; Außerlechner et al. 2016; Bloem et al. 2015; Clarke et al. 2006; Emerson and
Kahlon 2000, 2003; Jaber et al. 2020, 2021; Jacobs and Sakr 2018; Kaiser et al. 2010; Marić et al. 2017].
Another approach for dealing with an unbounded number of processes and/or unbounded variable
domains is to impose a well-order [Finkel and Schnoebelen 2001; Schmitz and Schnoebelen 2013]
over the state space of the system.
In what follows, we briefly explore prior work on verification of distributed systems with

unbounded processes or infinite process state spaces.

Bounded Number of Processes, Unbounded Process States. One inspiration for this paper is the
notion of data saturation, first broached by Lubachevsky [1984] and explored further by Ip and
Dill [1996]. Infinite state spaces are also handled in well-ordering based frameworks [Abdulla et al.
1996] or using “temporal case splitting” wherein each case identifies a particular value and all other
values are represented with a symbolic constant [Clarke et al. 1989]. None of these approaches
target doubly-unbounded systems.

Unbounded Number of Processes, Bounded Process States. The two common approaches for
parameterized verification of finite-state processes are based on well-ordering [Esparza et al. 1999;
Finkel and Schnoebelen 2001; Schmitz and Schnoebelen 2013] and cutoff results computed either
statically [Aminof et al. 2018; Außerlechner et al. 2016; Clarke et al. 2006; Emerson and Kahlon
2000, 2003; Jaber et al. 2020; Jacobs and Sakr 2018; Marić et al. 2017] or dynamically [Abdulla et al.
2016; Kaiser et al. 2010]. Notably, many of these cutoff results can potentially be combined with
our domain reduction approach to enable verification of doubly-unbounded systems.

Doubly-Unbounded Systems. A related effort [Abdulla et al. 2007] tackles parameterized verifica-
tion of infinite-state systems using a well-ordering over global states and performing a backward-
reachability analysis. Our approach differs from this effort in the target distributed systems and
their models, as well as the technical approach. The work of Abdulla et al. [2007] targets generic
distributed systems that are modeled using the more-traditional system model where processes are
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defined as extended finite-state automata with local variables and global conditions on transitions.
On the other hand, we target modularly-designed DAB systems built with abstractions of agree-
ment protocols and, in particular, modeled in an easy-to-use modeling language Mercury. Further,
the reduction presented by Abdulla et al. [2007] does not require systems to be value-symmetric
and tackles the unboundedness of both the number of processes and the process state space in
one consolidated step. In contrast, while the reduction in our approach requires the system to be
value-symmetric, it is separable, and, arguably, more flexible. Specifically, our approach relies on
two separate reductions, one for the process state spaces and one for the number of processes, each
of which can potentially be replaced with other reductions.

Clarke et al. [2006] combine predicate and counter abstractions into an “environment abstraction”
to verify doubly-unbounded systems. The environment abstraction designates one process as
the “reference” process and models all other processes in relation to it. Our work differs from
their approach in two ways: (i) they do not verify systems which incorporate abstractions of
agreement protocols, and (ii) they capture the relationships between values in the system using
predicates describing the environment of the reference process, while we capture such relationships
by determining bounded regions.

Marić et al. [2017] reduce parameterized verification of consensus algorithms over inputs from
infinite domains to parameterized verification of these algorithms over binary inputs. They provide
a process cutoff to reduce the problem to finite verification of consensus algorithms over binary
inputs. Aside from focusing on consensus algorithms (as opposed to systems built on top of them),
their work also differs from ours in that their reduction of infinite domains to finite ones relies
on the zero-one principle for sorting networks rather than a static analysis of the system being
verified, like our domain cutoff computation.

10 CONCLUSION

In this paper, we have characterized a class of domain-reducible safety verification problems for
DAB systems with an unbounded number of infinite-state processes. We presented algorithms
for identifying evidence that a given verification problem is domain-reducible and calculating a
suitable reduced cutoff domain to yield a simplified verification problem. Further, we also provided
proof that this evidence is sufficient to imply that successful verification of the simplified system
implies verification of the original system. Our domain reduction can be composed with process
cutoff reductions to enable fully-automated verification of doubly-unbounded DAB systems.
While our domain reduction cannot be applied to verification problems which are not domain-

reducible (e.g. to systems which treat data asymmetrically), the composability of reduction tech-
niques for different dimensions of unboundedness in a distributed system opens up interesting
avenues for further research. As with our scalarset domain reduction, the addition of a reduction
technique for one dimension of unboundedness advances the utility of reduction techniques for
others. For example, in ongoing work, we are developing process cutoffs for client-server-based
DAB systems. The domain reduction in this paper can be easily composed with this new process
cutoff reduction to enable automated verification of a new class of doubly-unbounded DAB systems.

Composable reductions also pave the way for tackling other dimensions of unboundedness, one
dimension at a time. For instance, we can envision that domain and process reductions can be
composed with reductions for verification of systems with asynchronous, unbounded channels
to verification of systems with bounded channels, thereby greatly expanding the classes of DAB
systems and communication models that can be tackled using finite-state model checking.
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