Check for
updates

Synthesis of Distributed Agreement-Based
Systems with Efficiently-Decidable Verification

Nouraldin Jaber! ®) | Christopher Wagner!, Swen Jacobs?, Milind Kulkarni®,
and Roopsha Samanta!

! Purdue University, West Lafayette, USA
{njaber,wagne279,milind,roopsha}@purdue.edu
2 CISPA Helmholtz Center for Information Security, Saarbriicken, Germany
jacobs@cispa.de

Abstract. Distributed agreement-based (DAB) systems use common dis-
tributed agreement protocols such as leader election and consensus as
building blocks for their target functionality. While automated verifica-
tion for DAB systems is undecidable in general, recent work identifies a
large class of DAB systems for which verification is efficiently-decidable.
Unfortunately, the conditions characterizing such a class can be opaque
and non-intuitive, and can pose a significant challenge to system design-
ers trying to model their systems in this class.

In this paper, we present a synthesis-driven tool, CINNABAR, to help
system designers building DAB systems ensure that their intended de-
signs belong to an efficiently-decidable class. In particular, starting from
an initial sketch provided by the designer, CINNABAR generates sketch
completions using a counterexample-guided procedure. The core tech-
nique relies on compactly encoding root-causes of counterexamples to
varied properties such as efficient-decidability and safety. We demon-
strate CINNABAR'’s effectiveness by successfully and efficiently synthe-
sizing completions for a variety of interesting DAB systems including a
distributed key-value store and a distributed consortium system.

1 Introduction

Distributed system designers are increasingly embracing the incorporation of
formal verification techniques into their development pipelines [8,10,13,31]. The
formal methods community has been enthusiastically responding to this trend
with a wide array of modeling and verification frameworks for prevalent dis-
tributed systems [29,17,15,32]. A desirable workflow for a system designer using
one of these frameworks is to (1) provide a framework-specific model and speci-
fication of their system, and (2) automatically verify if the system model meets
its specification.

However, the problem of algorithmically checking if a distributed system
is correct for an arbitrary number of processes, i.e., the automated parameter-
ized wverification problem, is undecidable, even for finite-state processes [5,34].
To circumvent undecidability, the system designer must be involved, one way

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 289-308, 2023.
https://doi.org/10.1007/978-3-031-30820-8 19

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_19&domain=pdf

290 N. Jaber et al.

or another, in the verification process. Fither the designer may choose a semi-
automated verification approach and use their expertise to “assist” the verifier
by providing inductive invariants [32,25,15,36]. Or, the designer may choose a
fully-automated verification approach that is only applicable to a restricted class
of system models [16,17,24,7] and use their expertise to ensure that the model
of their system belongs to the decidable class. This begs the question—for each
workflow, how can we further simplify the system designer’s task? While effec-
tive frameworks have been developed to aid the designer in discovering inductive
invariants for the first workflow (e.g., Ivy [29], 14 [26]), there has been little em-
phasis on aiding the designer to build decidability-compliant models of their
systems for the second workflow.

In this paper, we present a synthesis-driven approach to help system designers
using the second workflow to build models that are both decidability-compliant
and correct. Thus, our approach helps designers to construct models that be-
long to a decidable class for automated, parameterized verification, and can be
automatically verified to be safe for any number of processes.

In particular, we instantiate this approach in a tool, CINNABAR, that targets
an existing framework, QUICKSILVER, for modeling and automated verification
of distributed agreement-based (DAB) systems [17]. Such systems use agreement
protocols such as leader election and consensus as building blocks. QUICKSILVER
enables modular verification of DAB systems by providing a modeling language,
MERCURY, that allows designers to model verified agreement protocols using
inbuilt language primitives, and identifying a class of MERCURY models for which
the parameterized verification problem is efficiently decidable.

Unfortunately, this efficiently-decidable class of MERCURY models is char-
acterized using conditions that are rather opaque and non-intuitive, and can
pose a significant challenge to system designers trying to model their systems
in this class. The designer is responsible for understanding the conditions, and
manually modifying their system model to ensure it belongs to the efficiently-
decidable class of MERCURY. This process can be both tedious and error-prone,
even for experienced system designers.

CINNABAR demonstrates that synthesis can be used to automatically build
models of DAB systems that belong to the efficiently-decidable fragment of MER-
CURY and are correct.

Contributions. The key contributions of this paper are:

1. A synthesis-driven method for building efficiently-decidable, correct MER-
CURY models (Sec. 3). Starting from an initial sketch of the system design
provided by the designer, CINNABAR generates a sketch completion that (i)
belongs to the efficiently-decidable class of MERCURY and (ii) is correct.

2. A counterezample-guided synthesis procedure that leverages an efficient, ex-
tensible, multi-stage architecture (Sec. 4). We present a procedure that in-
volves a learner that proposes completions of the MERCURY sketch, and
a teacher that checks if the completed model belongs to the efficiently-
decidable class of MERCURY and is correct. To enable efficient synthesis
using this procedure, we propose an architecture that proceeds in stages.

CINNABAR 291

The initial stages focus on checking if a completed model is in the efficiently-
decidable class while the latter stages focus on checking if a completed model
is also correct. To enable efficiency, when a candidate completion fails at
any stage, the architecture helps the learner avoid “ similar” completions
by extracting a root-cause of the failure and encoding the root-cause as an
additional constraint for the learner. Each stage is equipped with a coun-
terexample extraction strategy tailored to the property checked in that stage.
The encoding procedure, on the other hand, is property-agnostic—it is able
to encode the root-cause of any failure regardless of the stage that extracts
it. The separation of the counterexample extractions and the encoding al-
lows the architecture to be extensible—one can add a new stage with a new
counterexample extraction strategy, and leverage the existing encoding.

3. The CINNABAR tool (Sec. 5). We develop a tool, CINNABAR, to help sys-
tem designers build MERCURY models of DAB systems. CINNABAR employs
QUICKSILVER as its teacher and the Z3 SMT solver as its learner. CINNABAR
is able to successfully and efliciently complete MERCURY sketches of various
interesting distributed agreement-based systems.

2 The MERCURY Parameterized Synthesis Problem
We first briefly review the syntax and semantics of MERCURY [17], a modeling

language for distributed systems that build on top of verified agreement protocols
such as leader election and consensus. Then, we formalize the synthesis problem.

2.1 Review: MERCURY Systems

MERCURY Process Definition. A MERCURY

process DistributedStore

system is composed of an arbitrary number of n variables
identical MERCURY system processes with pro- ev:::ngl’szl cmd
cess identifiers 1,...,n and one environment env rz doCmd : int[1,5]

s initial location Candidate
process. Tjh.e programmer spemﬁes a system pro o partitioncelocts (11, 1)
cess definition P that consists of (i) a set V of win: goto Leader
local variables with finite domains, (ii) a set E of lose: goto Replica

X location Leader
events used to communicate between processes, on recv(doCmd) do
and (iii) a set of locations that the processes can emd := dofnd.payld
if(ecmd = 3) goto Return

move between. Each event e in F incarnates an else goto RepCmd
acting action A(e) and a reacting action R(e)
(e.g., for a rendezvous event, the acting (resp.
reacting) action is the send (resp. receive) of that event). All processes start in
a location denoted initial. Each location contains a set of action handlers a
process in that location can execute. Each handler has an associated action, a
Boolean guard over the local variables, and a set of update statements. A partial
process definition is depicted on the right.

The language supports five different types of events, namely, broadcast, ren-
dezvous, partition, consensus, and internal. The synchronous broadcast (resp.

292 N. Jaber et al.

rendezvous) communication event type is denoted br (resp. rz) and indicates
an event where one process synchronously communicates with all other pro-
cesses (resp. another process). The agreement event type partition, denoted
partition, indicates an event where a set of processes agree to partition them-
selves into winners and losers. For instance, in the figure, partition<elect>
(A11,1) denotes a leader election round with identifier elect where A1l pro-
cesses elect 1 winning process that moves to the Leader location, while all other
losing processes move to the Replica location. The agreement event type con-
sensus, denoted consensus, indicates an event where a set of processes, each
proposing one value, reach consensus on a given set of decided values. For in-
stance, consensus<vcCmd>(All,1,cmd) denotes a consensus round with identi-
fier veCmd where A1l processes want to agree on 1 decided value from the set
of proposed values in the local variable cmd. Finally, the internal event indicates
an event where a process is performing its own internal computations. For a
communication event, the acting action is a send, while the reacting action is
a receive. For a partition event, the acting action is a win, while the reacting
action is a lose. Finally, for a consensus event, the acting action is proposing a
winning value, while the reacting action is proposing a losing value. We denote
by A(E) and R(FE) the set of all acting and reacting actions, respectively.

The updates in an action handler may contain send, assignment, goto, and /or
conditional statements. Assignment statements are of the form 1hs := rhs where
lhs is a local variable and rhs is an expression of the appropriate type. The goto
statement goto ¢ causes the process to switch to location ¢ (i.e., it can be thought
of as the assignment statement v;,. := £, where v, is a special “location vari-
able” that stores the current location of the process). The conditional statements
are of the expected form: if (cond) then...else.... We denote by H the set
of all handlers in the process, and for each handler h € H we denote its action,
guard, and updates as a(h), g(h), and u(h), respectively.

Local Semantics. The local semantics [P] of a process P is expressed as a
state-transition system (S, sg, E,T), where S is the set of local states, sq is the
initial state, E is the set of events, and T' C S x {A(E) U R(E)} x S is the set
of transitions of [P]. A state s € S is a valuation of the variables in V. We let
s(v) denote the value of the variable v in state s.

The set of action handlers associated with all acting and reacting actions of
all events induces the transitions in 7. In particular, a transition t = s — s’
based on action handler h over action a is in T iff the guard g(h) evaluates to
true in s and s’ is obtained by applying the updates u(h) to s.

Global Semantics. The global semantics [P, n] of a MERCURY system Pi||...
|| P]| Pe consisting of n identical processes P, ..., P, and an environment process
P, (with local state space S.) is expressed as a transition system (@, qo, F, R),
where Q = S™ x S, is the set of global states, qg is the initial global state, E is
the set of events, and R C @ X F x @Q is the set of global transitions of [P,n].
The set of events E induce the transitions in R. Asis the case for events, there
are five types of global transitions: broadcast, rendezvous, partition, consensus,
and internal. In particular, a transition » = ¢ < ¢’ for some broadcast event e

CINNABAR 293

is in R iff the send local transition g[i] Al), q[?]" is in T for some process P,
and the receive local transition g[j] Ble), qlj) is in T for every other process P;
with j # i. The remaining global transitions can be formalized similarly.

A trace of a MERCURY system is a sequence qg,q1, ... of global states such
that for every i > 0, the global transition ¢; — ¢i41 for some event e is in R. A
global state g is reachable if there is a trace that ends in it.

Permissible Safety Specifications. QUICKSILVER targets parameterized ver-
ification for a class of properties called permissible safety specifications that dis-
allow global states where m or more processes, for some fixed number m, are in
some subset of the local states. We denote by ¢,(n) the permissible safety spec-
ifications provided by the designer for a system with n processes. A MERCURY
system is safe if there are no reachable error states in its global semantics. We
denote that as [P,n] = ¢s(n).

The Efficiently-Decidable Fragment. QUICKSILVER identifies a fragment of
MERCURY for which the parameterized verification problem of a large class of
safety properties is efficiently-decidable. In particular, a pair (P, ¢) of a MERCURY
process P and a safety specification ¢ is in the efficiently-decidable fragment of
MERCURY if it satisfies phase-compatibility and cutoff-amenability conditions.
For such a pair, a cutoff number c of processes can be computed and the param-
eterized verification problem can be reduced to the verification of the cutoff-sized
system (i.e., Vn : [P,n] = ¢s(n) < [P,] = ¢s(c)).

During verification, QUICKSILVER computes a set of phases that an execution
of the system goes through. On a high level, the phase-compatibility conditions
ensure that the system moves between phases through “globally-synchronizing”
events (i.e., broadcast, partition, or consensus), and that all processes in the same
phase can participate in further globally-synchronizing events. This ensures that
the system’s ability to move between phases is independent of the number of
processes in the system. The cutoff-amenability conditions ensure that an error
state, where m processes are in a subset of the local states violating some safety
specification, is reachable in a system of any size iff it is reachable in a system
with exactly m processes. If any of these conditions fails, the designer must
modify the process definition manually and attempt the verification again. We
denote by [P] = ¢pc (resp. [P] & bca) that the MERCURY process P with local
semantics [P] satisfies phase-compatibility (resp. cutoff-amenability) conditions.

2.2 MERCURY Process Sketch

Let us extend MERCURY’s syntax to allow process sketches that can be com-
pleted by a synthesizer. In particular, we allow the process definition to include
a set of uninterpreted functions that can replace various expressions in MER-
CURY such as the Boolean expression cond in the if (cond) then ... else ...,
the target locations of goto statements, and the rhs of assignments. ® As is stan-
dard, each uninterpreted function f is equipped with a signature determining its

3 Such uninterpreted functions are sufficient to be a building block for more complex
expressions and statements (See, for instance, the SKETCH Language [33]).

294 N. Jaber et al.

Fup ¢s(n)
l Psk l
I Py TEACHER
complete
[P] ¥ ¢pc? Phase-

LEARNER
C [P] ¥ bea? Cutoff-
l—]encode extracty, amenability
P, c] ¥ c)?
11 =null? [Pnn] = l
¢s(n)?

fail success

Fig. 1: Overview of CINNABAR’s architecture.

list of named, typed parameters and its return type. A valid list of arguments
arg for some function f is a list of values with types that match the function’s
parameter list. Applying a function f to a valid list of arguments arg is denoted
by f(arg). Additionally, we define a function interpretation I(f) of an uninter-
preted function f as a mapping from every valid list of arguments of f to a valid
return value.

A MERCURY process definition P that contains one or more uninterpreted
functions is called a sketch, and is denoted Py;. We denote by F the set of
all uninterpreted functions in a sketch Py.. An interpretation I of the set Fi
of uninterpreted functions is then a mapping from every uninterpreted function
fsk € Fsi to some function interpretation I(fg).

For some process sketch Py, and some interpretation I of the set Fg of
uninterpreted functions in Py, we denote by P the interpreted process sketch
obtained by replacing every uninterpreted function fg; € Fg; in the sketch Py
with its function interpretation I(fs) according to the interpretation I.

2.3 Problem Definition

We now define the parameterized synthesis problem for MERCURY systems.

Definition 1 (MERCURY Parameterized Synthesis Problem (MPSP)).
Given a process sketch Pgy with a set of uninterpreted functions Fg, an environ-
ment process P., and permissible safety specification ¢s(n), find an interpretation
I of uninterpreted functions in Fy, such that the system Pr1||...||Prn||Pe is safe
for any number of processes, i.e., ¥n : [Pr,n] & ¢s(n).

3 Constraint-Based Synthesis for MERCURY Systems

Architecture. To solve MPSP, we propose a multi-stage, counterexample-based
architecture, shown in Fig. 1, with the following components:

CINNABAR 295

— LEARNER: a constraint-solver that accepts a set C' of constraints over the

uninterpreted functions F; and generates interpretations I satisfying these
constraints (i.e., I = C). Specifically, a constraint ¢ € C is a well-typed
Boolean formula over uninterpreted function applications.

TEACHER: a component capable of checking phase-compatibility, cutoff-
amenability, safety, and liveness* of MERCURY systems. We refer to these
four conditions as properties.

complete: a component that builds an interpreted process sketch Py from a
process sketch Py, and an interpretation I provided by the learner.
extracty,op: a property-specific component to extract a counterexample cez,
capturing the root cause of a violation, if the TEACHER determines that a
property prop from the above-mentioned properties is violated.

encode: a novel property-agnostic component that encodes counterexamples
generated by extract components into additional constraints for the learner.

Synthesis Procedure. CINNABAR
instantiates this architecture as shown
in Algo. 1. The algorithm starts

Algorithm 1: Solving MPSP.

1 procedure Synth(Ps, ¢s(n), ¢i(c))

with an empty set of constraints, C i Svl:ileg true do

(Line 2) over the set Fg, of uninter- | | ; _ interpret(Fur, C)
preted functions in the process sketch if 1 # null then

Py;. In each iteration, it checks if ¢ P; = complete(Pyy, I)
there exists an interpretation I of 7 [Pr] = buildLs(Pr)

the uninterpreted functions that sat- 8 cex, = £indPhCoCE([Pr])
isfies all the constraints collected so 9 if cex, # null then

far (Line 4). If such an interpretation 10 C'=C U~ encode(cezy)
is found, it is used to obtain an in- 11 Continue

terpreted process sketch Py (Line 6). 12 . B check cutoff-amenability
Then, the algorithm checks if the 12 ¢ = compCutoff (Pr, ds(n))

: . 14 [Pr, c] = buildGS(Pr,c)
system described by P; is phase- 15 cex, — £indSaCE([Pr, c], 6+(c))
compatible and cutoff-amenable. If 16 i csexs 2 nuil then7 Ve
so, a cutoff ¢ is computed (Line 13) . C = C U encode(cexs)
and the c-sized system is checked to ;g Continue
be safe. The cutoff-amenability stage 4 return Pr
is similar to phase-compatibility and 5, else
is hence omitted from the algorithm. o4 | return null

At any stage, if the process fails

to satisfy any of these properties (e.g., a counterexample cez, to phase-
compatibility is found on Line 8), the root-cause of the failure is extracted and
encoded into a constraint for the learner to rule out the failure (e.g., Line 10).

4 While MPSP targets permissible safety specifications, in order to improve the quality
of the interpreted process sketch Pr, we extend MERCURY with liveness specifica-
tions to help rule out trivial completions that are safe. We emphasize that such
specifications are only used as a tool to improve the quality of synthesis, and are
only guaranteed for the cutoff-sized system, as opposed to safety properties that are

guaranteed for any system size.

296 N. Jaber et al.

Note that these stages are checked sequentially due to the inherent depen-
dency between them: (i) the system can only be cutoff amenable if it is phase
compatible, and (ii) one can only check safety after a cutoff has been computed.

Lemma 1. Assuming that the teacher is sound and the learner is complete for
finite sets of interpretations, Algo. 1 for solving MPSP is sound and complete.

Proof. Soundness follows directly from the soundness of the teacher. Complete-
ness follows from that the encoding and extraction procedures ensure progress by
eliminating at least the current interpretation at each iteration, and the finite-
ness of the set of interpretations. Finiteness follows from (i) the finite number of
uninterpreted functions in a sketch Py, (ii) the finiteness of the domain of each
local variable, and (iii) the finiteness of the number of local variables in Pgy.

In the remainder of this section, we describe the property-agnostic encode
component in Algo. 1. In the following section, we describe our implementa-
tion of our synthesis procedure specialized to a QUICKSILVER-based teacher and
property-specific extraction procedures.

Property-Agnostic Counterexample Encoding Procedure

We first describe the necessary augmentation of local semantics with disabled
transitions needed for CINNABAR’s counterexample extraction and encoding.
While such transitions are not relevant when reasoning about a “concrete” pro-
cess definition (i.e., one with no uninterpreted functions), they are quite im-
portant when extracting an explanation for why some conditions (e.g., phase-
compatibility) fail to hold on [P].

Augmented Local Semantics of the MERCURY Process P1. We extend
the definition of the local semantics of a MERCURY interpreted process sketch Py
to be [Pr] = (S5, 80, E, T1, T#*) where Sy, so, E, and T; are defined as before
and T is the set of disabled transitions under the current interpretation I.
In particular, a disabled transition ¢t = s — 1 based on action handler h over
action a is in Tldis iff the guard g(h) evaluates to false in s. The symbol L here
indicates that no local state is reachable, since the guard is disabled.

Additionally, we say a transition t = s — s’ based on action handler h over
action a is a sketch transition if h contains no uninterpreted functions in its
guard or updates. A local state s € St is concrete if (i) s is the initial state sg, or
(ii) there exists a sketch transition s’ — s where s’ is concrete. In other words, a
local state s is concrete if there exists a path from the initial state sg to s that is
composed purely of sketch transitions and hence is always reachable regardless
of the interpretation we obtain from the learner.

We now formalize counterexamples for phase-compatibility and cutoff amenabil-
ity properties then present an encoding procedure for such counterexamples. The
encoding is ezact in the sense that a generated constraint ¢ corresponding to
some counterexample cex rules out exactly all interpretations I where an in-
terpreted process sketch P; exhibits cex (as opposed to an over-approximation

CINNABAR 297

where ¢ would rule out interpreted process sketches that do not exhibit cex, or
an under-approximation where ¢ would allow interpreted process sketches that
do exhibit cex). Additionally, the encoding is property-agnostic in the sense that
it can handle counterexamples for any property failure.

Counterexamples. Recall that a candidate process P; based on some process
sketch Py, and interpretation I has the local semantics [Pr] = (St, s0, E, Tr, T{%).
A counterexample cex to phase-compatibility (resp. cutoff-amenability) is a “sub-
set” of the local semantics [Pr] such that cex = ¢pe (resp. cex = ¢eq). We say
that cex is a subset of [Pr], denoted cex C [P;], when it has a subset of its
enabled and disabled transitions, i.e., cex = (Sr, so, E, Ty C Ty, Tj%s C T{),
Encoding Counterexamples. Let C be the set of all well-typed constraints that
the learner accepts. The encoding of counterexample cex = (St, so, F, 17, TI‘“S)
w.r.t. interpretation I is a formula (cex)); € C defined as:

feeah; = (N Geadi) A (A Caishs):

ten€TT tais €T

where (ten)); (resp. (tais) ;) is an encoding of an enabled (resp. disabled) local
transition. Note that ((cex)); is satisfied under interpretation I (i.e., I |= ((cex));)
and implies that cez C [P]. An encoding of some enabled transition t., = s — s’
based on action handler h over action a is defined as:

(s = sV =(shy A azshy A (s sa)y,
where:

1. the predicate ((s)),; indicating that the source state s is reachable from the
initial state so under interpretation I. If s is concrete, ((s)); is simply true
(i.e., s is always reachable regardless of I). Otherwise, {(s)); is defined as
follows. Let P be the set of all paths from the initial state sg to state s.
Then, (s); = V,ep{p);, where (p)); for some path p consisting of local
transitions ti,...,t; is defined as (t1); A ... A (ti));-

2. the predicate {a : s)); indicating that the process can perform action a

from state s. The predicate {(a : s)); is defined as follows: (a : s), =
(g(h)[s(V)/V] = true), where g(h)[s(V)/V] is the guard g(h) with each
local variable v € V replaced by its value s(v) in state s.
Ezample. Let uf(z,y) be an uninterpreted function over local int variables
x and y. Let the local state s := {v;,c = F,x = 1,y = 2}, and let the local
guard of action handler h over action a in location F be g = uf(z,y) >
7Vax =2 Then {a:s); = ((uf(s(z),s(y)) > 7V s(z) = 2) = true)) which
is ((uf(1,2) > 7V 1=2) = true) which simplifies to uf(1,2) > 7.

3. the predicate ((s" : s,a)); indicating that s goes to s’ on action a. The pred-
icate ((s" : s,a)); is defined as follows. Let u(h) denote the set of updates
of the form 1hs = rhs of handler h over action a. Then, (s’ : s,a); =
/\lhs::rhseu(h) S/(lhs) = rhs [S(V)/V]

Ezample. Let the set of updates have the single update = := uf(y, z) and
8,8 be {vpe = F,x = 1,y = 2,2 = 3} and {vjo =D,z = 5,y = 2,z = 3}.
Then (s’ : s,a)); is: s'(z) = uf(s(y), s(z)) which is uf(2,3) = 5.

298 N. Jaber et al.

An encoding of some disabled transition tgs = s 2y 1 in cex is defined as
(tais) = (sh; A (—a: s); where ((s)); is as before and the predicate {(—a : s));,
indicating that the process cannot perform action a from state s, is defined as
follows: ((—a : s); = (g(h)[s(V)/V] = false).

The intuition behind breaking a transition’s encoding to various predicates is
that some phase-compatibility conditions leave parts of a transition unspecified.
For instance, the predicate “the local state s can react to event e’ corresponds
to a local transition s — % % € T; with encoding (s)); A (R(e) : s);.

Finally, to rule out any interpretation I that exhibits cex, we add the con-
straint ¢ = —=({cex)); to the learner.

Encoding Counterexamples to Safety Properties. Similar to the local se-
mantics, we extend the definition of the global semantics [Pr,n] of a MER-
CURY system Pril|...||Prn||Pe to be [Pr,n] = (Qr,q,E, Rr, R{*), where
Qr, qo, E, and Ry are defined as before and R{* is the set of disabled global
transitions under the current interpretation I. Then, a counterexample cex
to safety is a “subset” of the global semantics [Pr,c] such that cex = ¢s(c).
Encoding of such a counterexample cex is formalized as before, with the en-
coding of an enabled global transition r in cex being a formula (cex)), € C
computed as follows. For some global transition r = ¢ < ¢/, we denote by

active(r) the local transitions that processes in ¢ locally use to end in ¢’. That

is, active(r) = {t € Ty | 3P : t = qi] 2 ¢ vt = qli] =% ¢/[i]} We then

define the encoding () as: (r); = Aseactiver) (6D 1-

Note that the predicates (q));, (e:q);, (¢’ : ¢,€));, and {(—e : g)); as well as
the encoding for the global disabled transitions can be defined similar to their
counterparts discussed earlier.

4 Counterexample Extraction

Our tool specializes the synthesis procedure in Algo. 1 by using QUICKSILVER
as the teacher to check phase-compatibility,
cutoff-amenability, and safety. For the Algorithm 2: Counterex-
remainder of this section, we will re- ample Extraction.

fer to phase-compatibility and cutoff- 1 procedure Extract(Pr,¢)

amenability conditions as local properties 2 | ¢’ = makeDNF(—¢)
and safety (and liveness) specifications as 3 |W =9
global properties. 4 | foreach c € cubes(¢’) do
.) 5 if [Pr] = ¢ then

Local Properties. Given a local property 4 cw = &
¢ expressed as first-order logic formulas foreach [€ literals(c) do
over the local semantics of a MERCURY g lw = witness(l)
process, CINNABAR extracts a counterex- 9 cw = cwU {lw}
ample cex according to Algo. 2. 10 W =W U{cw}

First, we negate the property and ex- 11 cex = pickMinimal(W)
press in disjunctive normal form (DNF): 12 | |return cex

CINNABAR 299

¢ = —¢ =cy Ve V..., where each cube ¢; = 11 Aly A ... is a conjunction of
literals (Line 2). Then, for each cube c satisfied under [P;] (Line 5), extract a
cube witness cw that is a subset of the local semantics [Pr] such that [Pr] &= cw
(Lines 7 - 9). This is done by extracting, for each literal [in ¢, a minimal subset
lw of [Pr] such that lw |= [(Line 8). We say lw is a minimal witness of [if any
strict subset of lw cannot be a witness for [(i.e., Viw' C lw : lw’ [). Finally
pick a minimal (in terms of size) cube witness of some cube ¢ as a cex (Line 11).
Since cex = ¢ and ¢ = ¢, we know that cex = —¢ (or equivalently, cex £ ¢).
In this work, we carefully analyzed the phase-compatibility and cutoff amenabil-

ity conditions and incorporated procedures to compute witnesses for their literals
(i.e., the witness calls on Line 8). We refer the interested reader to the extended
version [19] of this paper for complete details, and illustrate one such counterex-
ample extraction procedure using an example.

Ezxample. We present a simplified phase-compatibility condition and demonstrate
the above procedure on it. Let the set of broadcast, partition, and consensus
events be called the globally-synchronizing events, denoted Egiopa1. Let ph(s)
be the set of all “phases” containing local state s. The condition states that:
for each internal transition s — s’ that is accompanied by a reacting transition

R . .
s FOy o for some globally-synchronizing event £, and for each state ¢ in the
same phase as s, state t must have a reacting transition of event f. Formally:

Vf S Egloba17575/ S S :
/ ; R(D) R(£)
(s> eThs —>xeT)= (VX €ph(s),t€ X: It —>x€T).
This condition is an example of a local property ¢ we want to extract counterex-

amples for when it fails. The procedure is applied as follows:
Step (1): We first simplify ¢ to the following:

Vf € Eglobal,s,s',t €5, X €ph(s):
’ ; R(£) . R(f)
(s s eTNsS —>*x¢€ T/\mPhase(X,s,t)) = (Ht —x e T),
where inPhase(X, s,t) indicates that states s and ¢ are in phase X together.
We then obtain the negation —¢:

3f € Egiopar, s, 8',t € S, X € ph(s) :

s—)s’6T/\s’E(i)%*éT/\mPhase(X,s,t)/\—EltE(E)»*GT.

Step (2): The formula —¢ is in DNF, and there is a cube for each instantiation

of event £ € Fgopa1, states s,s",t € S, and phase X that satisfies the formula

—¢. There are 4 literals. The literals “s — s’ € T'” and “s’ LLSIN € T can be

. . . R(£)
witnessed by the corresponding transitions s — s’ and s’ L> *, respectively.
R
The literal “—3t ﬂ) x* € T 7 can be witnessed by the disabled transition

t E@% L. The witness for the literal inPhase(X, s,, sp) for some phase X and

300 N. Jaber et al.

local states s, and s; is more involved. It depends on the nature of that phase.
We analyzed the phase construction procedure given in [17] and distilled it as
follows. For each event e € Eg150a1, We define its source (resp. destination) set
to be the set of states in S from (resp. to) which there exists a transition in T’
labeled with an acting or reacting action of event e. Let corePhases be the set
of all source and destination sets of all globally-synchronizing actions. Then,
two states s, and s, are in the same phase if:
(a) they are part of some core phase, i.e., 3X € corePhases : sq, sy € X, or,
(b) they are in different core phases that are connected by an internal path,
i.e., 3A, B € corePhases : sq, s, € ANsp, s, € BAs) ~ s, where s/, ~ s},
is an internal path from s/, to sj.
If X is a core phase (i.e., case (A) holds), the counterexample extraction pro-
cedure returns the phase itself. Otherwise, case (B) holds and the two core
phases are recursively extracted as well as the internal path connecting them.
Step (3) The final step is to build a subset of the local semantics that include
the extracted witnesses for all 4 literals.

Global Properties. If a candidate process P; meets its phase-compatibility
and cutoff-amenability conditions, then it belongs to the efficiently-decidable
fragment of MERCURY, and a cutoff ¢ exists. It then remains to check if the
system Py 1||...||Prn]|Pe is safe (ie., [Pr,c] E ¢s(c)).

Safety properties ¢s(n) are specified by the system designer as (Boolean
combinations of) permissible safety specifications. Such properties are invariants
that must hold in every reachable state in [Py, c].

A counterexample cex C [Py, c] to a safety property ¢s(c) is a finite trace
from the initial state gop to an error state ¢.. Such traces are extracted while
constructing [Py, c].

5 Implementation and Evaluation

5.1 Implementation

Our tool, CINNABAR®, implements the architecture illustrated in Fig. 1. Addi-
tionally, it incorporates a liveness checker into the teacher. Liveness properties
¢1(c) ensure that the system makes progress and eventually reacts to various
events. We refer the interested reader to the extended version [19] for details on
specifying liveness properties as well as extracting and encoding counterexamples
to such properties.

5.2 Evaluation

In this section, we investigate CINNABAR’s performance. We study the impact
of CINNABAR’s counterexample extraction and encoding, as well as the choice of
uninterpreted functions, on performance. Finally, we examine how CINNABAR'’s
iterations are distributed across the different types of counterexamples.

5 CINNABAR is publicly available on Zenodo [18].

CINNABAR 301

1x108 23 TRTH FHE 23 £33

100000 g , / 4
10000 . N { A ! r¢

4

w»;},;f;/.;xwy//fﬁ

1000

o
S

=)

Synthesis Time (ms) (log scale)

INNABAR o
Enumeration <
Timed out

0.1

1234567 123456 1234567 1234567 1234567 12345678 123456 123456789 123456 1234567 12345678 12345678910
DLS DSN DSNR TOT RMP RMPR DRF CT™ DR SATS SATS2 DS

Fig. 2: CINNABAR'’s performance compared to enumeration-based synthesis. The
systems studied are: Distributed Store (DS), Consortium (CTM), Distributed
Lock Service (DLS), Distributed Register (DR), Two-Object Tracker (TOT),
Distributed Robot Flocking (DRF), variants Small Aircraft Transportation Sys-
tem Landing Protocol (SATS, SATS2), variants of Distributed Sensor Network
(DSN, DSNR), and variants of Robotics Motion Planner (RMP, RMPR). For
each benchmark, the i-th point denotes the average runtime for all variants with
1 uninterpreted functions.

Benchmarks. The benchmarks we use are process sketches based on the bench-
marks presented in [17]. We refer the reader to the extended version [19] for (i)
a description of each benchmark’s functionality, its safety and liveness speci-
fications, and the unspecified functionality in the sketch, and (ii) an example
MERCURY sketch and its completion.

Ezxperimental Setup. To ensure that our reported results are not dependent
on a particular choice of uninterpreted functions, we create a set of wvariants
for each benchmark as follows. For each benchmark, we first pick a set ue of
“candidate uninterpreted functions”, corresponding to expressions that a designer
might reasonably leave unspecified. Then, for each subset e in the set P(ue) of
all non-empty subsets of ue, we create a variant of the benchmark where the
uninterpreted functions in e are included in the sketch. We set a timeout of 15
minutes when running any variant and conduct our experiments on a MacBook
Pro with 2 GHz Quad-Core Intel Core i5 and 16 GB of RAM.

Effect of Countererample Extraction and Encoding. As our baseline,
we consider a synthesis loop where the learner enumerates interpretations un-
til a correct interpretation is found. If some interpreted process sketch Pj fails
a property at any stage, we add the constraint ¢ = —I to the learner. This
effectively eliminates one interpretation at a time, as opposed to all interpreta-
tions that exhibit the given counterexample at a time (as done by our encoder).
In Fig. 2, we present a comparison of CINNABAR’s runtime compared to this
enumeration-based baseline. We make the following observations. While the run-
times of both enumeration-based synthesis and CINNABAR grow exponentially
when increasing the number of uninterpreted functions, CINNABAR outperforms

302 N. Jaber et al.

1x10° :
100000 ee
10000 M

1000

o
S

-
ey poeid peedl ,.M”- Rt L) l‘éme Mgﬂ ,,MH Mm

=)

Synthesis Time (ms) (log scale)

0.1

1234567 123456 1234567 1234567 1234567 12345678 123456 123456789 123456 1234567 12345678 12345678910
DLS DSN DSNR TOT RMP RMPR DRF CT™ DR SATS SATS2 DS

Fig.3: Effect of the choice of uninterpreted functions on synthesis time. For
some benchmark and some number m of uninterpreted functions, the m-th box-
and-whiskers plot presents, from bottom to top, the minimum, first quartile,
median, third quartile, and maximum synthesis run time across the run times
of all variants of that benchmark with m uninterpreted functions.

enumeration-based synthesis in almost all scenarios. Only for variants with a
single uninterpreted function we observed cases where enumeration-based syn-
thesis found a correct solution faster than CINNABAR (e.g., as in DSNR with one
uninterpreted function). This is due to the additional time spent extracting and
encoding counterexamples. However, the value of the counterexample extraction
and encoding becomes clearly apparent with larger number of unspecified ex-
pressions as the number of interpretations grows much larger and it becomes
infeasible to just enumerate them. Furthermore, CINNABAR is able to perform
synthesis for any variant of our benchmarks in under 9 minutes.

Effect of the Choice of Uninterpreted Functions. In Fig. 3, for each bench-
mark, we examine the variation of synthesis runtime across variants with the
same number of uninterpreted functions. As shown in the figure, in some cases
(e.g., CTM and DS), the variation is more noticeable. The main factor contribut-
ing to this is that uninterpreted functions present different overhead on synthesis
based on their nature. For instance, an uninterpreted function corresponding to
a lhs of some assignment expression is more expensive to synthesize compared
to an uninterpreted function corresponding to a target of some goto statement,
as the latter has a smaller search space.

Counterexample Distribution on Iterations. In Fig. 4, we illustrate the
different types of counterexamples encountered throughout CINNABAR’s itera-
tions. We make the following observations. First, CINNABAR spends most of its
iterations ruling out phase-compatibility violations. This is expected as check-
ing phase-compatibility is the first stage in our synthesis loop. Since a phase-
compatible system moves in a structured way between its phases, this stage rules
out all arbitrary completions that prohibit processes from advancing through the
phases. Furthermore, there are fewer safety violations than any other type of vio-
lations. Once an interpreted process sketch is in the efficiently-decidable fragment

CINNABAR 303

Phase-compatibility
M cutoff-amenability

"'Tl": e e .-__ i W safety

h"“'i e R e T e

Fig.4: A property-based visualization of CINNABAR’s iterations for a represen-
tative subset of the variants. Each line corresponds a CINNABAR’s execution of
a synthesis variant of a benchmark. From left to right, each line starts with iter-
ation 1, ends with the iteration where a correct interpretation was found, and is
colored to indicate nature of violations encountered throughout the execution.
For instance, the line * WEEE would indicate that CINNABAR encountered a phase-
compatibility violation in iteration 1, then a cutoff-amenability in iteration 2,
., and finally was able to find a correct interpretation in iteration 6.

of MERCURY, it is more likely to be safe. There are two factors that contribute
to this: (i) phase-compatible systems move in a structured way and are more
likely to be “closer” to a correct version of the system, and (ii) because cutofi-
amenability depends on the safety specification, satisfying cutoff-amenability
means the interpreted process sketch is more likely to be correct with respect
to the safety property already. Finally, eliminating liveness violations ensures
that CINNABAR is able to synthesize higher-quality completions. As shown in
the figure, liveness violations are often encountered in the very first iteration, as
the SMT-based learner tends to favor interpretations with disabled guards that
trivially satisfy phase-compatibility, cutoff-amenability, and safety properties.

Usability. If CINNABAR fails to synthesize a correct completion, the designer
can replace existing expressions in the sketch with uninterpreted functions, al-
lowing CINNABAR to explore a larger set of possible candidate completions.

Finally, while the supported uninterpreted functions may not correspond to
large segments of the code or complex control-flow constructs, they are the main
“knobs” that the designer needs to turn to ensure that their systems belong to
the efficiently-decidable fragment of MERCURY.

6 Related Work

Aiding System Designers via Decidable Verification. Ivy [29] adopts an
interactive approach to aid the designer in searching for inductive invariants for
their systems. Ivy translates the system model and its invariant to EPR [30],
and looks for a counterexample-to-induction (CTI). The designer adjusts the
invariant to eliminate that CTI and Ivy starts over. 14 [26] builds on Ivy by first

304 N. Jaber et al.

considering a fixed system size, automatically generating a potential inductive
invariant, and using Ivy to check if that invariant is also valid for any system
size. The approach in [11] identifies a class of asynchronous systems that can be
reduced to an equivalent synchronized system modeled in the Heard-Of Model
[9]. The designer manually annotates the asynchronous system to facilitate the
reduction, and encodes the resulting Heard-Of model in the CL [14] logic which
has a semi-decision procedure. These approaches differ from ours in two ways.
First, the designer needs to manually provide/manipulate inductive invariants
and/or annotations to eventually enable decidable verification. Second, these
approaches are “verification only”: they require a fully-specified model that either
meets or violates its correctness properties and the designer is responsible for
adjusting the model if verification fails. CINNABAR, on the other hand, accepts
a sketch that is then completed to meet its properties.

Parameterized Synthesis. Jacobs and Bloem [20] introduced a general ap-
proach for parameterized synthesis based on cutoffs, where they use an underly-
ing fixed-size synthesis procedure that is required to guarantee that the condi-
tions for cutoffs are met by the synthesized implementation. Our approach can be
seen as an instantiation of this approach, as one of the stages in our multi-stage
counterexample-based loop ensures that cutoff-amenability conditions hold on
any candidate process. Other approaches that tackle the parameterized synthesis
problem without cutoff results are more specialized. For instance, the approach
in [24] adopts a CEGIS-based synthesis strategy where the designer provides a
threshold automaton with some parameters unspecified. Synthesis completes the
model and uses the parameterized model checker in [23] to check the system. A
similar idea, but based on the notion of well-structured transition systems, is
used for the automatic repair of parameterized systems in [21]. The approach
in [22] targets parameterized synthesis for self-stabilizing rings, and shows that
the problem is decidable even when the corresponding parameterized verifica-
tion problem is not. The designer provides a set of legitimate states and the size
of the template process, and the procedure yields a completed self-stabilizing
template. A similar approach for more general topologies is presented in [28§].
Bertrand et al. [6] target systems composed of an unbounded number of agents
that are fully specified and one underspecified controller process. The synthesis
goal is to synthesize a controller that controls all agents uniformly and guides
them to a specific desired state. Markgraf et al. [27] also target synthesis of con-
trollers by posing the problem as an infinite-duration 2-player game and utilize
regular model checking and the L* algorithm [4] to learn correct-by-design con-
trollers. These approaches are not applicable to our setup as they do not admit
distributed agreement-based systems (modeled in MERCURY).

Synthesis of Distributed Systems with a Fixed Number of Processes.
Various approaches focus on automated synthesis of distributed systems with a
fized number of processes [3,2,1,12,35]. While such approaches deploy a similar
counterexample-guided strategy to complete a user-provided sketch, they do
not provide parameterized correctness guarantees nor the necessary agreement
primitives needed to model distributed agreement-based systems.

CINNABAR 305

Data availability. The artifact and related data that support the findings of
this work are publicly available on Zenodo [18].

References

10.

11.

12.

. Alur, R., Martin, M., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.:

Synthesizing finite-state protocols from scenarios and requirements. In: Yahav,
E. (ed.) Hardware and Software: Verification and Testing. pp. 75-91. Springer
International Publishing, Cham (2014)

. Alur, R., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.: Automatic com-

pletion of distributed protocols with symmetry. In: Kroening, D., Pasiareanu, C.S.
(eds.) Computer Aided Verification. pp. 395-412. Springer International Publish-
ing, Cham (2015)

Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols. SIGACT News
48(1), 55-90 (Mar 2017). https://doi.org/10.1145/3061640.3061652, https:
//doi.org/10.1145/3061640.3061652

Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87-106 (nov 1987). https://doi.org/10.1016/0890-5401(87)90052-6,
https://doi.org/10.1016/0890-5401(87)90052-6

Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state
concurrent systems. Information Processing Letters 22(6), 307-309 (1986).
https://doi.org/https://doi.org/10.1016/0020-0190(86)90071-2, https://
www.sciencedirect.com/science/article/pii/0020019086900712

Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H., Godbole, A.A.: Controlling
a population. arXiv preprint arXiv:1807.00893 (2018)

Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory, Morgan & Claypool Publishers (2015)

Bornholt, J., Joshi, R., Astrauskas, V., Cully, B., Kragl, B., Markle, S., Sauri, K.,
Schleit, D., Slatton, G., Tasiran, S., Van Geffen, J., Warfield, A.: Using lightweight
formal methods to validate a key-value storage node in amazon s3. In: Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
p- 836-850. SOSP ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3477132.3483540, https://doi.org/10.
1145/3477132.3483540

Charron-Bost, B., Schiper, A.: The Heard-of Model: Computing in Distributed
Systems with Benign Faults. Distributed Computing 22(1), 49-71 (2009). https:
//doi.org/10.1007/s00446-009-0084-6

Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp. 38-47. Springer
International Publishing, Cham (2018)

Damian, A., Dragoi, C., Militaru, A., Widder, J.: Communication-closed Asyn-
chronous Protocols. In: International Conference on Computer Aided Verification
(2019)

Damm, W., Finkbeiner, B.: Automatic Compositional Synthesis of Distributed
Systems. In: International Symposium on Formal Methods. pp. 179-193. Springer
(2014)

https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/https://doi.org/10.1016/0020-0190(86)90071-2
https://www.sciencedirect.com/science/article/pii/0020019086900712
https://www.sciencedirect.com/science/article/pii/0020019086900712
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6

306

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

N. Jaber et al.

Dill, D., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, E.: Fast and reliable
formal verification of smart contracts with the move prover. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
183-200. Springer International Publishing, Cham (2022)

Dragoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A Logic-based
Framework for Verifying Consensus Algorithms. In: International Conference on
Verification, Model Checking, and Abstract Interpretation. pp. 161-181. Springer
(2014)

Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts,
M.L., Setty, S., Zill, B.: Ironfleet: Proving practical distributed systems cor-
rect. In: Proceedings of the 25th Symposium on Operating Systems Princi-
ples. p. 1-17. SOSP ’15, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2815400.2815428, https://doi.org/10.
1145/2815400.2815428

Jaber, N., Jacobs, S., Wagner, C., Kulkarni, M., Samanta, R.: Parameterized veri-
fication of systems with global synchronization and guards. In: Lahiri, S.K., Wang,
C. (eds.) Computer Aided Verification. pp. 299-323. Springer International Pub-
lishing, Cham (2020)

Jaber, N., Wagner, C., Jacobs, S., Kulkarni, M., Samanta, R.: Quicksilver: Mod-
eling and parameterized verification for distributed agreement-based systems.
Proc. ACM Program. Lang. 5(O0OPSLA) (oct 2021). https://doi.org/10.1145/
3485534, https://doi.org/10.1145/3485534

Jaber, N., Wagner, C., Jacobs, S., Kulkarni, M., Samanta, R.: Synthesis of Dis-
tributed Agreement-Based Systems with Efficiently-Decidable Verification (Arti-
fact) (Apr 2023). https://doi.org/10.5281/zenodo.7497463, https://doi.org/
10.5281/zenodo. 7497463

Jaber, N., Wagner, C., Jacobs, S., Kulkarni, M., Samanta, R.: Synthesis of dis-
tributed agreement-based systems with efficiently-decidable verification (extended
version) (2023). https://doi.org/10.48550/ARXIV.2208.12400, https://arxiv.
org/abs/2208.12400

Jacobs, S., Bloem, R.: Parameterized Synthesis. Logical Methods in Computer
Science 10(1) (2014)

Jacobs, S., Sakr, M., Volp, M.: Automatic repair and deadlock detection for pa-
rameterized systems. In: FMCAD 2022. pp. 225-234

Klinkhamer, A.P.,; Ebnenasir, A.: Synthesizing parameterized self-stabilizing rings
with constant-space processes. In: Dastani, M., Sirjani, M. (eds.) Fundamentals
of Software Engineering. pp. 100-115. Springer International Publishing, Cham
(2017)

Konnov, 1., Lazi¢, M., Veith, H., Widder, J.: A Short Counterexample Property
for Safety and Liveness Verification of Fault-tolerant Distributed Algorithms. ACM
SIGPLAN Notices 52(1), 719-734 (2017)

Lazic, M., Konnov, 1., Widder, J., Bloem, R.: Synthesis of Distributed Algorithms
with Parameterized Threshold Guards. In: Aspnes, J., Bessani, A., Felber, P.,
Leitao, J. (eds.) OPODIS. LIPIcs, vol. 95, pp. 32:1-32:20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2017)

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning. pp. 348-370. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.48550/ARXIV.2208.12400
https://doi.org/10.48550/ARXIV.2208.12400
https://arxiv.org/abs/2208.12400
https://arxiv.org/abs/2208.12400

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

CINNABAR 307

Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: 14:
Incremental inference of inductive invariants for verification of distributed proto-
cols. In: Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples. p. 370-384. SOSP ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3341301.3359651, https://doi.org/10.
1145/3341301.3359651

Markgraf, O., Hong, C.D., Lin, A.W., Najib, M., Neider, D.: Parameterized syn-
thesis with safety properties. In: Oliveira, B.C.d.S. (ed.) Programming Languages
and Systems. pp. 273-292. Springer International Publishing, Cham (2020)
Mirzaie, N., Faghih, F., Jacobs, S., Bonakdarpour, B.: Parameterized synthesis of
self-stabilizing protocols in symmetric networks. Acta Informatica 57(1-2), 271-304
(2020)

Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety ver-
ification by interactive generalization. In: Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. p.
614-630. PLDI ’16, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2908080.2908118, https://doi.org/10.
1145/2908080.2908118

Piskac, R., de Moura, L., Bjgrner, N.: Deciding Effectively Propositional Logic
Using DPLL and Substitution Sets. Journal of Automated Reasoning 44(4), 401—
424 (2010)

Reid, A., Flur, S., Church, L., de Haas, S., Johnson, M., Laurie, B.: Towards
making formal methods normal: meeting developers where they are. In: HATRA
2020: Human Aspects of Types and Reasoning Assistants (2020), https://arxiv.
org/abs/2010.16345

Sergey, 1., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. 2(POPL) (Dec 2017). https://doi.org/
10.1145/3158116, https://doi.org/10.1145/3158116

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
Sketching for Finite Programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems. pp.
404-415. ASPLOS XII, ACM (2006)

Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213-214 (Jul 1988). https://doi.org/10.1016/0020-0190(88)90211-6,
https://doi.org/10.1016/0020-0190(88)90211-6

Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M., Alur,
R.: TRANSIT: Specifying Protocols with Concolic Snippets. ACM SIGPLAN No-
tices 48(6), 287-296 (2013)

Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.: Verdi: A framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. p. 357-368. PLDI 15, Association for
Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/
2737924.2737958, https://doi.org/10.1145/2737924.2737958

https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://arxiv.org/abs/2010.16345
https://arxiv.org/abs/2010.16345
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958

308 N. Jaber et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Synthesis of Distributed Agreement-Based Systems with Efficiently-Decidable Verification
	1 Introduction
	2 The Mercury Parameterized Synthesis Problem
	2.1 Review: Mercury Systems
	2.2 Mercury Process Sketch
	2.3 Problem Definition

	3 Constraint-Based Synthesis for Mercury Systems
	4 Counterexample Extraction
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Related Work
	References

